
A CRITICAL COMPARISON OF LINEAR AND NONLINEAR UNMIXING FOR INTIMATE
MIXTURES

Bikram Koirala1 Samiran Das2, Behnood Rasti2, Pedram Ghamisi2, Richard Gloaguen2, Paul Scheunders1

1 Imec-Visionlab, University of Antwerp (CDE) Universiteitsplein 1, B-2610 Antwerp
2 Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology.

ABSTRACT

In this study, we conducted a comparative analysis of var-
ious linear and nonlinear unmixing methods to estimate the
composition of intricate clay powder mixtures based on their
spectral reflectance. Our experiments were conducted using
industrial clay powder mixtures generated in a laboratory.
Specifically, we created 325 uniform mixtures by combin-
ing five types of clay powders: Kaolin, Roof clay, Red clay,
mixed clay, and Calcium hydroxide. Among these 325 sam-
ples, 60 were binary mixtures, 150 were ternary mixtures,
100 were quaternary mixtures, and 15 were quinary mixtures.
We acquired spectral data by scanning these samples using
two handheld spectrometers (ASD Spectroradiometer and
PSR-3500 spectral evolution) and two hyperspectral cameras
(Specim AsiaFenix and Specim sCMOS). We applied several
state-of-the-art unmixing methods to the generated datasets.
The experimental findings indicate that specialized nonlinear
unmixing methods are necessary for accurate estimation of
the fractional abundances in these complex mixtures.

Index Terms— Hyperspectral image, linear and nonlin-
ear unmixing, intimate mixtures

1. INTRODUCTION

Hyperspectral unmixing techniques estimate the fractional
abundances of various materials within a pixel’s field of view
by minimizing the discrepancy between the measured spec-
tral reflectance and the spectrum generated through a specific
mixing model. The linear mixing model (LMM) is the most
widely used mixing model in the remote sensing commu-
nity. It assumes that each incident ray of light interacts with
a single pure material in the instantaneous field of view of
the pixel before being detected by the sensor. To account
for the physical constraints of non-negativity and sum-to-
one for fractional abundances, the Fully Constrained Least
Squares Unmixing procedure (FCLSU) was introduced [1].
However, the linear mixing model proves inadequate when
incident light undergoes multiple reflections before reaching
the sensor [2, 3].

Nonlinear mixing models have been developed to explain
the complex interaction of light with the target’s surface [4, 5].

Bilinear mixing models (e.g., PPNM [6, 7] and GBM ([8, 9])
assume that an incident ray of light interacts with two pure
materials before reaching the sensor. To explain higher-order
interactions, multilinear mixing models (e.g., [10]) and inti-
mate mixture models (e.g., [11, 12]) have been developed.

Among existing mixing models, physics-based mixing
models such as the Hapke model [11] are found to be suitable
for analyzing the spectral reflectance of intimate mixtures,
only when the material grains/particles have a size, larger
than the wavelength of the light, their shape is spherical, and
they behave as isotropic scatterers. In reality, most of the
particles are non-spherical, and grain size varies between a
few micrometers to a few hundred micrometers, leading to a
low performance of the Hapke model on natural mixtures.

To assess the efficacy of spectral unmixing models in es-
timating the composition of intimate mixtures, we created a
comprehensive dataset consisting of intimate mixtures involv-
ing up to five pure clay powders: Kaolin, Roof clay, Red
clay, mixed clay, and Calcium hydroxide. This dataset, in
total, consists of 330 samples. Among these, five samples
are pure clay powders, 60 mixtures are binary, 150 mixtures
are ternary, 100 mixtures are quaternary, and 15 mixtures
are quinary. The spectral reflectance of these samples is ac-
quired by four sensors utilizing various acquisition configu-
rations, covering the visible near-infrared and shortwave in-
frared wavelength regions (350 nm - 2500 nm). We con-
ducted an extensive series of experiments with these datasets,
especially focusing on estimating endmembers and fractional
abundances of these mixtures. This estimation was performed
using three linear and five nonlinear unmixing methods.

2. HYPERSPECTRAL DATA DESCRIPTION

Recently, we prepared a comprehensive laboratory ground
truth dataset of intimately mixed mineral powders [13]. This
dataset was prepared by homogeneously mixing five pure
clay powders: Kaolin, Roof clay, Red clay, mixed clay, and
Calcium hydroxide. All possible clay combinations of these
powders were considered, i.e., 5 pure clay powders, 10 binary
combinations (Kaolin-Roof clay, Kaolin-Red clay, Kaolin-
Mixed clay, Kaolin-Calcium hydroxide, Roof clay-Red
clay, Roof clay-Mixed clay, Roof clay-Calcium hydroxide,



Red clay-Mixed clay, Red clay-Calcium hydroxide, Mixed
clay-Calcium hydroxide), 10 ternary combinations (Kaolin-
Roof clay-Red clay, Kaolin-Roof clay-Mixed clay, Kaolin-
Roof clay-Calcium hydroxide, Kaolin-Red clay-Mixed clay,
Kaolin-Red clay-Calcium hydroxide, Kaolin-Mixed clay-
Calcium hydroxide, Roof clay-Red clay-Mixed clay, Roof
clay-Red clay-Calcium hydroxide, Roof clay-Mixed clay-
Calcium hydroxide, Red clay-Mixed clay-Calcium hydrox-
ide), 5 quaternary combinations (Kaolin-Roof clay-Red clay-
Mixed clay, Kaolin-Roof clay-Red clay-Calcium hydroxide,
Kaolin-Roof clay-Mixed clay-Calcium hydroxide, Kaolin-
Red clay-Mixed clay-Calcium hydroxide, Roof clay-Red
clay-Mixed clay-Calcium hydroxide), and one quinary com-
bination (Kaolin-Roof clay-Red clay-Mixed clay-Calcium
hydroxide).

Within each clay combination, samples with different
mixture fractions are generated in such a way that the ground
truth fractional abundances uniformly cover the simplex. The
chosen step size between mass ratios is 14.286%. Following
this approach, six unique mixtures are generated for each
binary clay combination, 15 for the ternary clay combina-
tion, 20 for the quaternary clay combination, and 15 for the
quinary clay combination, making a total of 325 mixtures. As
an illustration, Fig. 1 showcases the ground truth fractional
abundances for a ternary clay combination. As can be ob-
served, the three pure clay powders are located at the corners
of the simplex. All binary mixtures are positioned at the lines
that connect two pure clay powders, while ternary mixtures
are located inside the simplex.

To create the mixtures, we weighed and combined the
pure components. Each sample had a fixed total weight of
10 g (with a precision of 0.001 g on the scale). Each 10 g
sample was placed inside a glass bottle and rotated continu-
ously for five minutes to ensure a thorough and homogeneous
mixture.

Using the particle densities of the pure clays, we con-
verted the mass fractions to volume fractions by:

aj =

Mj

ρj∑p
j=1

Mj

ρj

, (1)

where p denotes the number of pure clays involved in the mix-
ture, Mj is the mass fraction of the j-th pure clay, and ρj its
density. The samples were placed inside a clear plastic jar
with an interior diameter of 3.048 cm and a height of 1.524
cm. Approximately 3 g of the mixtures was required to fill
the sample holder. The samples were then compacted and
smoothed using a stamp compactor.

In the next step, all samples were scanned by 4 different
sensors. Two hand-held spectroradiometers: ASD and PSR-
3500 spectral evolution generate a single spectrum of each
sample. Two hyperspectral cameras: a Specim AisaFenix and
a Specim sCMOS generated a hyperspectral data cube. Table
1 summarizes the properties of these sensors. The radiance

Fig. 1. The ternary diagram of clay mixtures.

data captured by the Specim AsiaFenix and Specim sCMOS
cameras were converted to reflectance using an internal work-
flow based on Hylite [14]. The spectra acquired by the hyper-
spectral cameras were averaged over the entire sample surface
for further analysis.

The datasets can be downloaded from the following link:
https://github.com/VisionlabHyperspectral/
Multisensor_datasets.

3. EXPERIMENTS

3.1. Experimental Setup

Because existing state-of-the-art unmixing methods require
a hyperspectral dataset as input, for each sensor, we gener-
ated a matrix by assembling the spectral reflectances of all
330 samples (325 mixtures and 5 pure pixels). This matrix
was further reshaped to produce hyperspectral data of size
22×15×#bands. Note that there is no spatial relationship
between neighboring pixels in this image. For a fair com-
parison, all methods in our experiment are blind unmixing
approaches, i.e., they extract or estimate endmembers and es-
timate the fractional abundances of the input hyperspectral
data. The following unmixing methods were considered in
the experiments:

• Geometrical unmixing: VCA [15] is applied for end-
member extraction and FCLSU [16] for abundance es-
timation. In this work, we will refer to this procedure
as FCLSU.

• A Deep Neural Network for Blind Unmixing: MiSiC-
Net [3].

• Geometrical and blind linear unmixing: NMF-QMV
[2].

• Bilinear unmixing: PPNM [6]. Endmembers are ob-
tained using VCA. Hereafter, abundances are estimated



Table 1. Properties of sensors employed in this study
Sensor Spectral range Bands/Channels Spatial resolution Spectral resolution

ASD Spectroradiometer 350 nm to 2500 nm 2151 - 3-6 nm
PSR-3500 spectral evolution 350 nm to 2500 nm 1024 - 2.8-8 nm

Specim AisaFenix 400 nm to 2500 nm 450 1024 pixels 3.5-10 nm
Specim sCMOS 400 nm to 1000 nm 238 2148 pixels 6 nm

by bilinear unmixing.

• Blind nonlinear unmixing: Deep Autoencoder based on
PPNM (MAC-U) [7]. VCA was applied for initializing
the endmembers.

• Bilinear unmixing: Nonnegative Tensor Factorization
(LR-NTF) [9]. Endmembers are obtained using VCA.
Hereafter, abundances are estimated by Nonnegative
Tensor Factorization.

• Multilinear unmixing: MLM [10]. Endmembers are
obtained using VCA. Hereafter, abundances are esti-
mated by multilinear unmixing.

• Intimate unmixing: Hapke[11]. Endmembers are ob-
tained using VCA. Hereafter, abundances are estimated
by applying the Hapke model.

For all methods, the default parameters provided by the au-
thors were used. All quantitative comparisons are provided
by the abundance root mean squared error (RMSE), i.e. the
error between the estimated fractional abundances (Â) and
the ground truth fractional abundances (A):

Abundance RMSE =

√√√√ 1

pm

p∑
k=1

m∑
i=1

(
Âki −Aki

)2
× 100

(2)
and the spectral angle distance (SAD) in degree between the
estimated and ground-truth endmembers:

SAD(E, Ê) =
1

p

p∑
i=1

arccos

( 〈
e(i), ê(i)

〉∥∥e(i)∥∥2 ∥∥ê(i)∥∥2
)

× 180/π,

(3)
where p and m denote the number of endmembers and the
number of mixed spectra, respectively, ⟨.⟩ denotes the inner
product and e(i) indicates the ith column of the ground truth
endmembers matrix E.

3.2. Unmixing Experiments

We applied the state-of-the-art unmixing methods to the
individual datasets acquired by the four sensors (Specim
AisaFenix, ASD Spectroradiometer, PSR-3500 spectral evo-
lution, and Specim sCMOS). Table 2 and Table 3 show the
RMSE and the SAD by all unmixing methods. In gen-
eral, the abundance estimation performance is low (i.e.,

RMSE is high). Among the competing methods, MLM
performed the best on the Specim AisaFenix and ASD Spec-
troradiometer data, while NMF QMV outperformed others
on the PSR-3500 spectral evolution and Specim sCMOS
data. Even though LR NTF is based on PPNM, its perfor-
mance was lower than PPNM itself for most of the datasets.
The Hapke model, which was developed to analyze intimate
mixtures, did not perform better than the linear (FCLSU), bi-
linear (PPNM), and multilinear mixing models (MLM). This
demonstrates the high complexity of these mixtures.

Table 2. Abundance RMSE (in %). The best performances
are shown in bold.

AISA ASD PSR sCMOS

MLM 18.97 12.61 17.93 32.34
PPNM 22.80 33.13 20.26 22.60
FCLSU 19.26 21.31 18.05 29.26
Hapke 21.06 33.51 18.68 29.13

MAC-U 20.46 12.71 19.03 20.46
MiSiCNet 28.85 27.34 27.13 29.20

NMF QMV 22.08 21.42 14.63 17.42
LR NTF 57.02 30.13 39.37 34.02

Table 3. SAD (in degree). The best performances are shown
in bold.

AISA ASD PSR sCMOS

VCA 2.12 0.92 1.75 1.25
MAC-U 2.08 0.55 1.81 0.99

MiSiCNet 4.06 4.23 4.80 2.48
NMF QMV 7.11 7.99 4.26 4.74

The acquired SAD values are relatively low, indicating
a favorable performance in endmember extraction. Fig. 2
displays both the ground truth endmembers (depicted in red)
and the endmembers extracted/estimated by the competing
methods. Because the datasets contain pure spectra, VCA
was able to extract most of the endmembers properly (see
overlapping red and black lines). Although both MiSiCNet
and NMF QMV are powerful blind linear unmixing meth-
ods, they were not able to accurately estimate the endmem-
bers. This can be partially attributed to the nonlinearity of the
components. It is interesting to observe that the SAD value



of MAC-U is the lowest (as shown in Table 3) for the ASD
Spectroradiometer, However, the absolute reflectance values
exhibit significant deviation from the ground truth (as indi-
cated by the blue curves). It is important to highlight that
SAD is scale-invariant and, as such, should not be exclusively
relied upon for endmember evaluation.

4. CONCLUSIONS

We conducted a comparative analysis involving linear and
nonlinear mixing methods using an extensive dataset of spec-
tral reflectance from intimate clay powder mixtures. The ex-
perimental results indicate that accurate extraction of end-
members can be achieved when pure pixels are present in the
dataset. On the other hand, the estimation of fractional abun-
dances within the context of intimate mixtures poses a more
intricate challenge.
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Fig. 2. Endmembers extracted/estimated by the competing techniques from the dataset acquired by (a) Specim AisaFenix;
(b)ASD Spectroradiometer; (c) PSR-3500 spectral evolution; (d) Specim sCMOS. The figure shows ground truth endmembers
(in red) alongside the endmembers estimated by VCA (black), MAC-U (blue), MiSiCNet (cyan) and NMF QMV (magenta),
respectively.


