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ABSTRACT In this article, we introduce some of the most effective paradigms used in compressing 

signals having sparse representation in different domain. These methods are discussed here are 

compressed sensing (CS) and best k-term approximation (BkTA). In both manners, the signals are 

supposed to have sparsity in another domain (in this paper, just frequency domain is considered). By 

choosing an upper bound for the SNR loss, the sparsest level of supports might be estimated. Simulation 

and calculation of complexity point out the advantages as well as disadvantages of the two procedures, in 

which BkTA is going to be more efficient despite of being simpler. Consequently, this very short overview 

is to assert the existence of a compression paradigm which is perfectly used at the SNR loss at most 0.5 dB.  
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1. INTRODUCTION 

In telecommunication, a cognitive radio (CR) is a radio 

that might be dynamically programmed and configured 

to detect the best transmitting channels in its 

neighborhood to avoid user interference and 

congestion. More precisely, it is such a radio which is 

able to automatically access available channels in 

normal wideband spectrum, then consequently changes 

technical parameters to allow more concurrent wireless 

communications in a given spectrum band at one 

location. One of the main functions of cognitive radios 

is wideband spectrum sensing, which refers to spectrum 

sensing over large spectral bandwidth, typically 

hundreds of MHz or even several GHz. Traditional 

methodology requires avery large number of the 

computation since the standard ADC implementation is 

supposed to use the usual quantized Shannon 

representation[2]. Furthermore, it also cannot afford the 

high sampling rate with high resolution. As a result, 

revolutional techniques are required, e.g., sub-Nyquist 

sampling[7]. The theory of signal compression travels 

against the common sense in data acquisition, where 

one might recover a certain signal (speech, image, 

video,…) from a very far fewer measurements 

quantized from the ground truth. 

By intuition, for signals having a sparsity one can 

“measure” them by recording just some components 

that have largest magnitudes together with their 

locations. Fortunately, most of signals in general 

having this property by transforming to a different 

domain, e.g., Fourrier transform. In detail, let �(�) be a 

time-continuous signal represented by a vector � ∈ ℝ�, 

its discrete Fourier transform (DFT) can be obtained by 

taking the matrix-vector multiplication 

�̂ = � • �,                                 (1) 

where � is the �-by-� DFT matrix 
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, with 

� = �����/�. 

The sections below describe two of the most effective 

methods used in compressing these characteristic 

signals: Compressed sensing (CS) and best k-term 

approximation (BkTA). 

2. COMPRESSED SENSING 

2.1. PROBLEM FORMULATION 
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The novel problem is stated as followed: Given a time-

continuous signal �(�) which is sampled by the vector 

� so that the Shannon-Nyquist sampling theorem is 

satisfied, how one can locate it inside the memory such 

that i) the least memory capacity is used and ii) the 

ideal signal �(�) can be recovered by some proposed 

algorithm which iii) does not prevent it from losing 

fundamental characteristics?  Compressed sensing (CS) 

is a method which was born to resolve this issue. It is a 

signal processing technique for efficiently acquiring 

and reconstructing a signal, by finding solutions to 

underdetermined linear systems[4]. This is based on the 

principle that, through optimization, the sparsity of a 

signal can be exploited to recover it from far fewer 

samples than required by the Shannon-Nyquist 

sampling theorem[4][5][7].  

The CS problem can be briefly formulated as followed: 

Given a vector � ∈ ℝ� be the signal to be compressed 

and � ∈ ℝ� where � ≪ � stands for the signal which 

“measures” the ideal signal � through the following 

linear transformation: 

� = � • �,                                 (2) 

where � ∈ ℝ�×� is a given matrix. Find a good 

approximation for the signal  �. 

The theory of linear algebra said that the equation (2) 

does not have unique solution. As a result, there is not 

any method to perfectly recover � from �. Nonetheless, 

if the original vector � has a sparsity, there might be a 

possibility to reconstruct � from � through some 

techniques in CS. 

From (1) and (2), the following equality is obtained: 

� = ���� • �̂,                             (3) 

where the vector is �̂ is sparse. How can we estimate �̂? 

 

2.2. METHODOLOGIES 

The most useful method to reconstruct �̂ is to consider 

its smallest-Euclidean-length estimator, i.e., to 

minimize the mean square error in ℝ�. In more 

particular, the so-called �̂-recovery using �� is 

considered: 

�̂∗ = �������̂‖�̂‖�,                       (4) 

subject to  

� = ���� • �̂.                              (5) 

Here ‖•‖� denotes the Euclidean distance in the �-

dimensional vector space ℝ�, i.e, ‖�‖� = �∑ ��
��

��� . 

However, this computation is often not in used since 

the solution �̂∗ is basically incorrect compared to the 

ground truth. This can be briefly explained by the lack 

property of the sparsity: The solution of this least 

square problem might be seen as the shortest projection 

of the original onto a hyperplane in ℝ�, which is 

basically not located on any axis! So, the signal 

obtained is not sparse. 

In order to avoid this unexpected phenomena, the �̂-

recovery using �� is often in used: 

�̂∗ = �������̂‖�̂‖�,                       (6) 

subject to  

� = ���� • �̂.                              (7) 

Here‖•‖� denotes the pseudo-norm which can be seen 

as the sparsity level in �-dimensional vector space, i.e, 

‖�‖� =⋕ {�� ≠ 0 |� = 1,2, … , �}. However, this is an 

NP-hard problem which requires a numerous 

complicated computations and cannot be solved in a 

polynomial time. Hence, in term of scientific 

computing, �� is more comfortable in used: 

�̂∗ = �������̂‖�̂‖�,                       (8) 

subject to  

� = ���� • �̂.                              (9) 

Here ‖•‖� denotes the ��-norm in ℝ�, i.e, ‖�‖� =

∑ |��|
�
��� . 

This is so-called Basis Pursuit (BP). 

 

2.3. ALGORITHMS 

This section introduces some reconstruction methods 
related to �̂-recovery problems using �� and ��, 
respectively. The sensing matrix in each part should 
satisfies the restricted isometry property (RIP) 
condition and the incoherent sampling condition[5][7]. 
In particular, it is shown that with exponentially high 
probability, random Gaussian[5], Bernoulli[10], and 
partial Fourier matrices satisfy the RIP with number of 
measurements nearly linear in the sparsity level. 
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BASIS PURSUIT (BP) 

In fact, the BP is not a linear programming problem 

(LPP). However, by a simple mathematical 

transformation, it becomes a LPP. More precisely, by 

adding new variables ��, ��, ��, … , �� so that  

|�̂�| ≤ ��                               (10) 

for all 1 ≤ � ≤ �, the problem becomes a LPP which 

might be easily solved by Danzig’s simplex method: 

�̂∗ = �������̂〈�, �〉,                   (11) 

subject to  

��̂ − �� ≤ 0,                                 (12) 

��̂ + �� ≥ 0,                             (13) 

�����̂ = �,                             (14) 

where � is the identity matrix of order � and � =
[1, 1, 1, … , 1, 1]� ∈ ℝ�. The �̂-recovery using �� is 
practicallyspecificized from the following more general 
problem: 

�̂∗ = �������̂‖�̂‖�,                      (15) 

subject to  

‖���� • �̂ − �‖� < �,                      (16) 

Where  � is a sufficiently small. 

It is proved that this issue is equivalent to the Basis 

Pursuit Denoising (BPD) problem which is stated as 

followed: 

�̂∗ = �������̂ �
�

�
‖���� • �̂ − �‖� + �‖�̂‖��.   (17) 

In both cases, it is obvious that the problems are 

equivalent to the BP when � → 0 and � → 0. 

For the signal whose representation in the frequency 

domain is sparse enough, in [16] Wang et. al. proved a 

lower bound  for the signal-to-noise ratio loss after the 

decode session using CS: 

�������  ≥ 10����� �
�

�
�.                   (18) 

Furthermore, the maximal sparsity is also estimated. In 

the perfect reconstruction (������� < 0.5��, �/� =

2), Fourier representation is allowed to have at most 5 

nonzero magnitudes. This implies the disadvantage of 

CS in compression. 

 

 

ORTHOGONAL MATCHING PURSUIT (OMP) 

Suppose that � is an arbitrary �-sparse signal in ℝ�, 
and let {��, ��, … , ��} be a family of � measurement 
vectors (for instance, the equation (2)). Form an � × � 
matrix 

� = ����,                             (19) 
whose rows are the measurement vectors, and observe 
that the � measurements of the signal can be collected 
in an �-dimensional data vector � = � • �. Here �̂ is 
replaced by � to put it more simply. We refer to � as 
the measurement “sensing” matrix and denote its 

columns by ���, ��, … , ���. 

 
As we mentioned, it is intuitively to think of signal 
recovery as a problem dual to sparse approximation. 
Assume that � has only � nonzero components, the 
data vector � = � • � is a linear combination of 
columns from � where nonzero components of � have a 
bigger contribution to the measurement vector. 
Therefore, to identify the ideal signal � we need to 
determine which columns of � participate in the 
measurement vector �. The idea behind the algorithm is 
to greedily identify these columns. We choose the 
column of � at each iteration that is most strongly 
correlated with the remaining part of �. Finally, we 
subtract off its contribution to � and iterate on the 
residual. It is expected that after � iterations, the 
algorithm will have identified the correct set of 
columns. 
 
Input: i) � × � sensing matrix �, ii) �-dimensional 
data vector �, iii) the sparsity � of the ideal signal and 
Φ� is initialized as an empty construction matrix. 
Output: i) An estimate �̂ ∈ ℝ� for the ideal signal, and 
Λ� containing � elements from {1, 2, … , �}. 

Algorithm: 

1. Initialize �� ← �, Λ� ← ϕ, � ← 1. 

2. Solve  

�� ← ���������,�,…,��〈����, ��〉�, 

where �� is �-th column of the sensing matrix. 

3. Λ� ← Λ��� ∪ {��} and Φ� ← �Φ������
�. 

4. Solve the least square problem 

�� ← �������‖� − Φ��‖�. 

5. Calculate the new approximation 

�� ← Φ���, 

�� ← v − a�. 
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6. � ← � + 1, return to Step 2 if � < �. 

7. The approximation �̂ for the ideal signal has 

nonzero indices at the components listed in  

Λ�. The value of �̂ in component �� is equal to 

the �-th component of ��. 

In other multiscale base (e.g. wavelets), the signals not 
only have few significant coefficients, but also those 
significant coefficients are well-organized in trees. 
Therefore, the Tree-based Orthogonal Matching Pursuit 
(TOMP)[3] is also often used to exploit this sparse tree 
representation as additional prior information for linear 
inverse problems with limited numbers of 
measurements. Although TOMP seems to be better 
than both OMP and BP in term of reconstruction 
quality when the number of measurements is limited 
and even better than OMP in computational efficiency, 
the TOMP algorithm is not discussed in this paper 
since it hasn’t achieved the best performance. 

 

3. BEST k-TERM APPROXIMATION 

Compare to CS, BkTA is much simpler. The idea is 
after transforming the destination signal onto the 
Fourier domain, all the new magnitude values are zero 
out except � largest-magnitude components. The value 
� here should be chosen in order that the sub-sampling 
rate is less than twice since the compression algorithm 
is desired to save just at most half of the sampled data. 
The original signal is recovered simply by taking the 
inverse Fourrier transform of this pattern. 

Algorithm: 

1. � ← � • �. 

2. � ← � after keeping just � largest values. 

3. �̂ ← ��� • �. 

 

4. SIMULATION 

In this section, we provide some numerical results for 

the signal compression using CS and BkTA. The 

scenario includes testing the CS and BkTA frameworks 

so that the sampling rate is reduced to a half. The 

signal-to-noise ratio is also taken into account since it 

dies out along the falling down of data recorded. First, 

the signals are initially generated normally to have a 

sparsity in Fourrier domain. The implementation 

follows the BP and/or OMP methods proposed before, 

respectively. The SNR loss here expectly depends on i) 

the sparsity, ii) the sampling rate and iii) the algorithm. 
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Figure 1: Sparse reconstruction using OMP 

The signal: 20 frequency tones 

(� = 2048;  � = 1024;  �������� 2%;  ������� = 2.2804 ��) 

 

 

Figure 2: Sparse reconstruction using OMP 

The signal: 50 MHz, down sampled. 

(� = 2048;  � = 1024;  �������� 5%;  ������� = 5.31 ��) 
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Figure 4: Sparse reconstruction using BkTA 

The signal: 50 MHz, down sampled. 

(� = 8096;  � = 4096;  �������� 5%;  ������� =  −0.6720 ��) 

 

5. CONCLUSION 

It could be seen from the simulation given in the CS 

part that the SNR loss is quite approximately equal to 

10����� �
�

�
� with respect to a suitable level of sparsity. 

As though CS has numerous applications in the image 

compression, i.e., 2-dimensional signals, for one-

dimensional signals currently it is quite difficult to 

apply under the SNR loss benchmarks. Wavelet 

transforms allow us to see its representation but not all 

the characteristics except the edge magnitudes 

detection.  

 

Experiments on the simulation show that BkTA is 

much efficient than CS. Nonetheless, it still requires a 

lot of works in improving the paradigms. For the future 

work, reducing the computational cost of the algorithm 

by optimizing the calculations in the BP, OMP and 

BkTA is preferable.  
Table 1: Comparison between the two methods. 

 

 Compressed sensing BkTA 

Encode Fast Fast 
Decode  Slow Fast 
Capacity Upper-medium Lower-medium 
SNR loss Small Very small 
RMSE Small Small 
Level Medium High 

 
Figure 3: SNR loss versus measurement decreasing  

The signal: 3 bands in frequency domain. 
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