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ABSTRACT
In this work, a new framework, called curved Parametric Reconstruction, is proposed, which recon-
structs a parametric model of curved fibers from computed tomography scans of glass fiber-reinforced
polymers (GFRP). The fiber detection and tracing strategy is described and it is shown how to represent
the detected fiber trajectories using an efficient curve representation. The curve representation is
then incorporated into an optimization framework to improve the initial estimate of the true fiber
trajectories. Finally, the framework is evaluated on simulated data and on real tomography scans of a
GFRP specimen.

1. Introduction
The development of advanced materials such as glass

fiber-reinforced polymers (GFRP) is an essential part of
materials science in the quest of making existing materi-
als stronger and lighter [1]. To enable the development of
materials with mechanical properties customized for their
specific task, tools for the analysis and modeling of the
composites are key. A popular choice for the analysis is
the non-destructive testing using X-ray micro computed
tomography (�CT). It is still an active research topic [2]
and is approached through traditional image processing, as
well as supervised and unsupervised Machine Learning to
segment fibers, determine their locations, and analyze their
direction distribution as well as to simulate tensile strength
and suitability in different applications [3, 4, 5, 6, 7, 8].

Many of the GFRP analysis methods focus on a spe-
cific feature of the fiber composite, such as the orientation
or length distribution of the fibers. Zauner et al. [9] use
a template matching and binary thinning to extract fiber
center lines and subsequently cluster the fibers in composites
using tracing. This approach is elaborated by Bhattacharya
et al. who introduced clustering on a fiber bundle level
[10]. Emerson et al. [6] used semi-automatic Dictionary
Learning (Insegt Fibre) to segment the fiber voxels from
uni-directional GFRP samples and detect their centers per
slice, stacking the resulting points on top of each other,
subsequently clustering into individual fiber traces. While
tracking individual fibers requires higher resolution than
methods that extract parameter distributions, it provides the
opportunity to extract various statistical measures without
having to re-analyse the tomograms.

A compact parametric description of the fibers contained
in a GFRP sample is convenient, as those models are easier
to manipulate than a list of coordinates describing the center
line and take significantly less memory to store than the
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voxel grids. Several ways of describing fibers as parametric
curves in 3D space have been proposed. Adluru et al. use
cosine series to represent and match long fiber traces from
magnetic resonance imaging tractography data [11] and
Lemkaddem et al. [12] employ splines for a similar purpose.
Zhao et al. represent single fibers in yarn plies with circular
helices [13]. The stress analysis following the extraction of
the fibers is often carried out using either finite element
analysis as a general purpose approach or mathematical
models tailored to the application [7], for which a parametric
representation could be used.

Parametric Reconstruction (PARE) is a theoretical frame-
work for reconstructing individual straight glass fibers from
tomographic reconstructions of GFRP samples and opti-
mizing their orientation, location and length based on the
projections used for the reconstruction [14]. It offers a
convenient way to improve upon fiber traces by optimization
directly in projection space. That is, PARE allows to retrieve
fiber parameters, even if only few projections are available.
The validity of the PARE framework has been shown on
simulated data. Unfortunately, it has only been developed for
perfectly straight fibers, and has not yet been demonstrated
on real data.

In this work, a new framework called curved Parametric
Reconstruction (cuPARE) is proposed. This method extends
the fiber model to curved glass fibers and estimates the
parameters of that model within a fully automatic processing
pipeline from reconstructions from only a couple hundred
projections. To that end, we use a parametric representa-
tion based on polynomials [15], able to accommodate for
arbitrarily curved or deformed fiber trajectories while being
compact and easy to manipulate. The fibers are clustered
using a tracing based approach [16] and then optimized,
reconstructing the parameters of the curve representation.
Finally, a quality assessment of the retrieved fiber parameters
on simulated and realistic data is calculated via a volumetric
overlap metric and the estimated model is compared a model
generated from traces detected by Insegt Fibre [6].
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2. Methods
Our proposed algorithm, cuPARE, consists of three

stages. The first stage is the initial reconstruction of the
volume from the tomograms and subsequent detection of
the fibers within that reconstruction. In the second stage,
the detected fiber voxels are clustered into individual fibers
by means of tracing and then interpolated using polynomial
curves, which serve as the concise fiber representation.
This representation is converted into a mesh model to be
projected. Finally, simulated CAD projections are optimized
using the Nelder-Mead Simplex algorithm with a modifi-
cation of the step parameters, that accommodate the high
dimensional nature of the parameter space according to Gao
et al. [17].
2.1. Fiber Center Line Detection

After reconstructing a 3D image from the acquired pro-
jections, the contained fiber voxels are detected. As prior
knowledge we assume the radius of the fiber to be constant
and known to the user. The fore- and background intensities,
i.e. the intensity of the fiber voxels and the intensity of
the polymer matrix voxels, respectively, are either known a
priori (e.g., in the case of simulations), or estimated from the
histogram.

To extract the fiber voxels, the polymer matrix is first
removed using the h-dome transform [18]. This morpho-
logical transform, based on morphological reconstruction,
suppresses the background of an image while preserving
the foreground. After this step, values below a threshold t,
a percentage of the maximum intensity, were set to zero.
The threshold was set to 60% of the maximum intensity
in this work, but is a user parameter that can be adjusted
depending on the contrast in the reconstruction. Following
this, a template matching using a spherical template with the
mean fiber radius [19] is computed. The template matching
image has maxima at the center lines of the fibers in the
volume. Those center lines are then extracted using the same
threshold as before, this time setting the foreground to 1
and the background to 0. This method might produce hollow
tubes in some cases. To remove the holes a binary closing is
applied to solidify the binary objects. Finally, the center lines
are obtained from the resulting binary image using binary
thinning or skeletonization [20]. Cross connections that still
remain after this are removed by removing all voxels that
have 3 or more nonzero neighbors [21].
2.2. Parametric Fiber Representation

The polynomial representation of the fibers consists of
three 2D curves gx, gy, gz which together describe the x, y,
and z coordinates of the center line. Given the traced points
of the fiber center line, a least-squares curve is computed,
parameterized in terms of the locus on the fiber center line
u ∈ [0, 1]. This results in the following representation of the
fiber from its 3D coordinates
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with k the degree of the used polynomials. Thus a single
fiber can be represented completely using 3(k+1) parameters
combined in a list �i, independent of its length or curvature.
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withΞ the set of all fiber parameter lists of the fibers detected
in x. Using this representation, the optimization can be
performed, improving upon the initial center line estimate
made by the tracing algorithm.An example of such a curve in
3d space and the resultingmeshmodel, that is used to project
the estimated fiber, is shown in Figure 1. It is convenient to
define the notion of a fiber object, based on the parameter
list as well. Let

Z =
{

�1, �2,… , �N
}

=
⋃

�i∈Ξ

{

f ib(�i, r)
} (3)

be the set of all fiber objects and f ib(∙) a function that
converts a fiber parameter list �j and a radius r to a fiber
object �j .
2.3. Fiber Tracing

Using the skeletonized fiber centers, the tracing [16] is
started with all fiber center line coordinates as so called seed
points. Additionally, the local direction in each voxel is com-
puted. The direction is obtained from the the Eigenvectors of
the Hessian matrix of the reconstruction x, convolved with a
Gaussian g� with standard deviation equal to the fiber radius
H� = (∇∇)T (x ∗ g�). The direction of lowest curvature, i.e.the local direction of the fiber, is the Eigenvector correspond-
ing to the Eigenvalue with the smallest magnitude [22].

Until all seed points have been marked as ’visited’, the
following process is repeated. A fiber is considered as a
collection of connected straight segments. Each segment is
a cylinder with the fiber radius and height of 2.5 times the
fiber radius. The initial segment of a fiber is created at a
random seed point. The cylinder axis is the local direction
in that voxel. As the direction information from the Hessian
often deviates significantly from the direction of the center
line, the seed points within the axis aligned bounding box
of the initial cylinder segment are then used to estimate a
new direction by means of a least-squares fit of the seed
coordinates. All seed points used for the fit are marked as
visited. The next segment is centered around the closest seed
point to the previous cylinder segment that has not yet been
visited. The segment is added to the fiber if it meets the
following requirements:

1. the smallest distance L between the segments is
smaller than dmax
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(a)

(b)

Figure 1: (a) Curve representing a fiber in 3d space and the voxels it was estimated from. A wire frame around the curve is
shown to visualize the triangle mesh model of the fiber that is used in the end to represent the fiber for generating projections.
(b) shows a close up of a part of the voxels (red and blue), center line (dark green) and the wire frame (black) is partially cut to
reveal the voxels and center line.

 

θ1

θ2

L
S1

S2

Figure 2: Schematic of two straight segments S1 and S2 as
they can appear during the tracing procedure and how the
angles �1, the angle between the direction vectors and �2, the
angle between the segments as well as the distance between
the segments L are computed.

2. the angle �1 between the the direction vector at the
center of the new segment and the estimated direction
vector at the center of the current segment needs to be
smaller than �1.

3. the angle �2 between the current segment’s axis and
the new segment’s axis needs to be smaller than �2.

A schematic of how the criteria are applied to two segments
is shown in Figure 2

For the experiments in section 3, �1 = 20◦, �2 = 20◦,
dmin = rf iber and dmax = 3rf iber were used, which has been
empirically chosen and proven to be adequate for the datasets
investigated so far. If the above conditions are met, the
segment is added to the fiber. Otherwise, if the tracing went
into the direction of the cylinder axis, the tracing restarts at
the first segment, in the opposite direction until it stops there
as well.

The spherical template causes regions at either end of
the fiber to differ from the rest of the fiber. Thus, the fibers
are estimated systematically too short by a value roughly
equal to the fiber radius when applying the threshold. To
counteract this, the detection is finalized with an end point
detection step. To obtain the fiber edges, a line is sampled
along the first and last segment of the fiber and the intensities
in the original reconstructions are recorded at those lines.
The resulting line profiles are then interpolated using splines
and the largest intensity step is found by evaluating the first
and second derivatives of the splines [14]. An additional line
segment is added between the previous end point and the
newly detected end point. In case of low contrast, the end

detection is rejected and the original fiber end is kept, as
the detection is unreliable otherwise. The threshold for this
rejection is 85% of the range between attenuation values for
polymer matrix and fibers. If the contrast is higher than that,
the detection is considered reliable.
2.4. Projecting the Fibers

In our previous work [14], fiber voxel models were
generated from their parameters and subsequently projected
using the ASTRA toolbox [23]. This requires expensive
computations both for generating and projecting the voxel
model. In this work, a triangle mesh/CAD model using
VTKs tube filter [24] on the detected fiber center lines is
generated. To achieve realistic borders, the tube model is
then cut off at the volume boundary if it is protruding out
of it using a Boolean intersection [25] of the fiber mesh and
a cube representing the volume. The resulting fiber mesh is
projected using a custom, GPU accelerated, CAD projec-
tor [26]. This reduces the computational load significantly.
Additionally, the projection data used for the computation
of the objective function is cropped to reduce the amount
of data needed to be generated and transferred to and from
the GPU. To that end, the axis aligned bounding box of the
current fiber being optimized is computed in reconstruction
space. This bounding box is then projected onto the detector
for each projection angle and the largest overlapping region
of all projected bounding boxes is computed. Finally, the
region is extended in its largest dimension to span the whole
width or height of the detector. This can reduce the amount
of pixels significantly, depending on the orientation and
position of the fiber relative to the rotation axis of the
tomography setup.
2.5. Fiber Optimization

The Nelder-Mead Simplex algorithm is used for the
optimization of the fibers in projection space, i.e. using only
the projections used for the reconstruction of the volume or
a subset thereof. To keep the fiber parameter space as low
dimensional as possible, each individual fiber is optimized
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separately. Thus, for a single fiber parameter set the opti-
mization problem becomes

�̂j = arg min
�j∈ℝ3(k+1)

floss(p,Wx(�j)) , (4)

where floss is some objective function, k is the degree
of the polynomials representing the fiber center line, p the
measured projection data and Wx the forward projection of
an estimate of the reconstruction as a function of the fiber
parameter list �i.The parameter values are converted to be in the range
of [0, 1] while they are manipulated during optimization,
leading to better numerical stability. To convert to the nor-
malized range, the whole population of estimated fibers is
considered. The conversion is therefore mapping 0 to the
lowest value that each coefficient had in the population and 1
to the highest value in each coefficient. This keeps the step-
size the same for each parameter, even when the parameters
have vastly different ranges originally. Once a fiber needs to
be generated, the values are converted back to their original
range.

With the more complex fiber model, the objective func-
tion is increasingly complex as well. The mean of the sum
of the squared projection differences or root mean squared
error (RMSE) is notoriously sensitive to slight differences
in intensity. As the main objective is to estimate the fiber
shape the SSIM Loss [27]

SSIMloss(A,B) =
1
2

(

1 − 1
M

M
∑

i=1
SSIM(ai,bi)

)

(5)

= 1
2
(1 − MSSIM(A,B)) .

was chosen as the objective function for the optimization.
The SSIM measure is computed on M local windows aiand bi, which are corresponding regions in the projectionsAand B and then averaged resulting in a scalar measure. This
measure is widely used in Deep Learning in combination
with the RMSE to tackle similar problems in image similar-
ity assessment and has proven to be much more robust as a
measure than the RMSE in our experiments. To compensate
for noisy projections the projections can be smoothed per
projection view with a Gaussian filter of variable width,
depending on the noise level of the input images.
2.6. Assessment of optimization quality

For datasets with the ground truth or a reference dataset
available, the quality of the optimization with respect to the
fiber morphology can be verified. This was done by means
of a volumetric overlap metric introduced in [28]

do3(a, b) = 1 − o(a, b)

{ �(a)
�(b) if �(a) < �(b)
�(b)
�(a) otherwise , (6)

where o(a, b) denotes the volumetric overlap of two fibers a
and b and �(∙) denotes the volume of a fiber. The volumetric

overlap of a and b is defined as the number n of points
sampled within the volume of fiber a that are contained
in fiber b divided by the total number of sampled points
N . A value of 0 denotes that the two fibers are identical,
whereas a value of 1 would show that no common partial
volume between them exists. In Section 4 the term overlap
dissimilarity will be used synonymous to d3o , but will beemphasized to make this clear. The overlap dissimilarity is
also used to obtain a mapping from the ground truth fiber set
Zgt to the estimated fibers Zest , so the corresponding fibers
in both sets can be identified

m ∶ Zgt → Zest (7)
�j ↦ arg min

�i∈Zest
d3o (�j , �i).

Using an overlap basedmetric is important here, as fibers
that are too short, but contained in a larger fiber of the ground
truth, are often further from the ground truth in parameter
space than fibers located next to each other, running parallel.
A simple comparison of the parameters is therefore worse at
estimating fibers that correspond between the two sets.

3. Experiments
To validate our method, the tracing and optimization was

performed on two simulated datasets, subsequently named
SimA and SimB, containing a mixture of curved and straight
fibers, varying fiber radii and exhibiting two different noise
levels.

The cuPARE algorithm was then applied to a realistic,
publicly available, dataset of unidirectional glass fibers em-
bedded in a polymer resin [29] (XCT_H). As a comparison
to the previous method the detected fiber center lines were
also interpolated using polynomials with k = 1, to emulate
using PARE instead of cuPARE.

For the optimization of the simulated datasets the stop
condition for the optimization was either after 1000 itera-
tions, or if the simplex vertex with the best and the simplex
vertex with the worst value in floss had at most a difference
of 1 × 10−5. The iteration limit for dataset XCT_H was also
1000, but the error delta was slightly higher with 5 × 10−4.
3.1. Experiment 1: Simulation

The fiber composite phantomswere simulated consisting
of a polymer matrix and glass fibers just as in [14]. The
RSA algorithm was used to position fiber shapes into a
volume in random orientations following a vonMises-Fisher
distribution in ℝ3.

VMF(x;�, �) = �
2�(e� − e−�)

exp(��Tx), (8)

with the mean direction � = (1, 0, 0).
The curved fibers were generated by choosing three

points on a straight line, following the orientation drawn
from the direction distribution. The central point was then
displaced by a random amount within the plane perpen-
dicular to the fiber axis and a parabola was fitted through
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(a) Reconstruction of SimA (b) Reconstruction of SimB

Figure 3: Reconstructions with 400 × 400 × 400 voxels of the simulated datasets. The reconstruction was performed using 100
iterations of the Barzilai-Borwein [30] algorithm and the background was made transparent to make the fibers more visible.

the three points, generating the final centerline of the fiber.
This displacement, influencing the amount of curvature, was
randomly chosen from the interval [6, 14] voxels for SimA
and [3, 7] voxels for SimB.

The first simulated dataset, SimA, is shown in Fig-
ure 3a. Here 186 fibers were added to a volume of size
400×400×400 with varying degrees of curvature. The fiber
radius was 6.5 ± 0.3 voxels, simulating slight variations in
the fiber production process. The spread parameter �A was
arbitrarily set to 50, modeling nearly uni-directional fibers.
The second dataset, SimB, has the same voxel dimension, but
contains 225 fibers with a smaller radius of 4.0 ± 0.3 voxels
and the fiber directions are spread wider, with �B being set
to 26. This second dataset is visualized in Figure 3b. In both
datasets the length of the fibers was set to 340±40 voxels to
generate fibers that are fully included in the volume, as well
as fibers that are cut by the volume borders on one end or on
both.

The projection geometry for both simulated datasets
was modeled after the scanner setup in our laboratory [31].
The source-object-distance (SOD) was 19.9 mm and the
source-detector-distance (SDD) 1995.0 mm, with a voxel
size of 3 µm and a 1024×1024 detector with a pixel size
of 150 µm. With this geometry 100 projections equidistant
on the full circle were simulated. Poisson noise was added
to the projections, simulating 10000 photons per detector
pixel in the first dataset and 12000 photons per pixel in the
second dataset. Additionally an intensity drop-off of from
the center due to the X-rays hitting the detector at an oblique
angle as well as the increased distance due to the flatness of
the detector was simulated. A slight correlation between the
detector pixels (i.e. a point spread function) using a Gaussian
filter with width � = 0.3 voxels was also applied.

The peak-signal-to-noise-ratio (PSNR)

PSNR = 10 log10

( max(pgt)
MSE(pgt , pnoisy)

)

of the simulated projections was 42.63 dB and 43.62 dB
for SimA and SimB, respectively. Here pgt is the noiseless
projection and pnoisy the projection with added Poisson
noise. The functionMSE(∙) denotes the mean squared error
and max the maximum value of the input.
3.2. Experiment 2: Unidirectional GFRP

Our method was also applied to a publicly available
dataset of high resolution scans of a uni-direcional glass
fiber-reinforced polymer sample reconstructed from 4201
projections [29]. To obtain the projection data, an experi-
ment was simulated using the reconstruction as a phantom.
To reduce processing time, a 256 × 256 × 256 cutout of the
high resolution X-ray CT dataset (XCTH [29]), containing
209 individual fibers, was extracted from the larger recon-
structed volume. Figure 4 shows the cutout that was used
in this experiment. The intensity of the polymer matrix was
estimated at 0.04±0.02 and the intensity of the fibers was es-
timated at 0.608±0.22. The projection data for the optimiza-
tion was composed of only 100 projections on the full circle.
The geometry to simulate those projections was defined with
an SDD of 55.0027 mm and an SOD of 10.0141 mm. To
achieve good coverage of the projections on the detector,
the voxel size was set to 1 µm and the pixel size of the
1024 × 1024 detector was 2 µm. This reduces the effective
pixel size to 0.36µm, giving a subsampling effect. This does
not affect the projection of the voxel based reconstruction,
as the voxel size is fixed in the ASTRA toolbox. The sub-
sampling does, however, affect the projections of the mesh
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Figure 4: Cutout of a small region of 256 × 256 × 256 voxels
from the high resolution dataset from [29] used as a realistic
phantom. The polymer matrix was made transparent to make
the fibers more visible.

model by that amount when projecting during optimization,
because the model is defined by its vertices, whose position
in space is defined with floating point precision.

4. Results
For the first simulation experiment, all fibers were de-

tected and thus each fiber was optimized as well. Using
the previously described overlap dissimilarity metric, the
quality of the fit both before and after the optimization
can be assessed. Figure 5 shows boxplots of the overlap
dissimilarity for SimA. It is clear that the median overlap
dissimilarity score improves significantly with optimization,
being reduced from 0.0685 to 0.0089. This means that over
99% of the total volume overlaps after the optimization.
To compare these results to PARE, the tracing and opti-
mization was performed a second time, this time reducing
the degree of the polynomials to k = 1 to simulate only
being able to analyze straight fibers. As expected, the overlap
dissimilaritywas lower than for the polynomial interpolation
with a higher degree. Before the optimization the median
overlap dissimilarity was 0.1645, while it dropped to 0.1475
after optimization. Note that here the overlap dissimilarity
never reaches the value 0, as the fibers can never exactly
overlap when using linear functions, whereas with cuPARE
the shape can be fully matched.

Similarly the SimB, which contained 225 fibers, was
analyzed. Due to the smaller fiber diameter used in this
dataset, the detection is slightly erroneous and 226 fibers
are detected. Several fibers were not completely detected
and some were split into two segments during the tracing,

(a) (b) (c) (d)
0.0

0.1

0.2

0.3

0.4

d
3 o

Overlap for the simulated dataset SimA

PARE

cuPARE

Figure 5: Boxplot of the overlap scores for each fiber in SimA
before and after optimization. (a) and (b) show d3o for the
detected and optimized fibers with k = 1, which is equivalent
to using PARE. (c) and (d) show the same for k = 3, showing
the algorithm cuPARE. The median of each boxplot is written
out on the top and matches the color of the line in the plot.

causing this discrepancy. The individual pieces can be opti-
mized separately and overlap at the end of the optimization,
forming a full fiber. This effect can be seen in Figures 9g and
9h when comparing the difference image before and after
optimization. Some of the fibers that do show up as positive
values disappear, while others stay. The former are fibers
split into segments, which individually settle in their correct
locations, the latter are fibers that are too short and can not
be improved by the optimization.

The median overlap dissimilarity for SimB was 0.073
and was decreased to 0.033 after the optimization with
the cuPARE parameters. Using PARE, the median overlap
dissimilarity was 0.164 after detection, improving to 0.143
after optimization. Again it is clear that the results are much
better when using higher degree polynomials, as the fibers
are curved. The curvature of the fibers in SimB is much
lower, however, so the results are generally better than for
fibers with a higher curvature. This also means that the
optimization works better in this case. The complete overlap
dissimilarity results are shown as boxplots in Figure 6.

In addition to the boxplots, a visualization of the dif-
ferences between the sets of detected and optimized fibers
compared to the ground truth is shown in Figure 9 for both
simulated datasets. This figure also includes the SSIM and
MSE of two fiber sets. To calculate thosemeasures both fiber
sets were rendered into a voxel volume of the same size as
the original reconstruction where the background was 0 and
the fiber objects were set to 1. The SSIM and MSE was then
computed for the image pairs.

For the dataset shown in Figure 4 traces in the form of
sequences of coordinates were available from Insegt Fibre,
so the overlap dissimilarity between our results and the
results they obtained can be computed. Of the 209 fibers
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Figure 6: Boxplot of the overlap scores for each fiber in SimB
before and after optimization. (a) and (b) show d3o for the
detected and optimized fibers with k = 1, which is equivalent
to using PARE. (c) and (d) show the same for k = 3, showing
the algorithm cuPARE. The median of each boxplot is written
out on the top and matches the color of the line in the plot.

that were contained in the volume most were detected. The
tracing found 221 traces, of which some are the result of
a fiber splitting during tracing. The fibers that were not
detected at all were partially cut off and thus did not have
enough information within the actual volume to be traced
properly. The median overlap dissimilarity of the detected
fibers with the results from Insegt Fibre initially was 0.097
and was lowered by optimization to 0.074. The boxplots of
the overlap dissimilarity of the detection and subsequent
optimization relative to the available traces are shown in
Figure 8 and a difference image of the two fiber sets from
those boxplots are shown in Figure 7.

Figures 10 and 11 show the arclength distribution and
orientation distributions of the datasets analyzed with PARE
and cuPARE. The arclength is the length of the fiber along
the curve or the distance of start and end point for straight
fibers. For the orientation distribution visualization the nor-
malized direction vector of the least square line of all points
on the curve was converted to spherical coordinates and the
azimuth angle ' was projected onto the disk by computing
r cos('), so the coordinates of each orientation vector could
be expressed in polar coordinates.

It is clear that for the simulated datasets the orientation
distributions can be retrieved using PARE and cuPARE
when optimizing, the detection alone being slightly off in
estimating fiber length, biased towards higher values. For the
realistic dataset the lengths could not be matched exactly,
but optimization improves the length estimates. The fiber
orientation is very close both in the simple detection of the
fibers as well as after optimization, relative to the traces
obtained with InsegtFibre.

5. Discussion and Future Work
The cuPARE algorithm presented in this work is able

to detect curved as well as straight fibers in simulated and
realistic data and create a mathematical model of the indi-
vidual fibers in those datasets. It was shown that it is possible
to estimate the shape of those individual fibers based on
relatively few projections.

Slight mistakes in the fiber tracing can be compensated
through the optimization. This is especially apparent when
looking at the length distributions of the simulated fibers
before and after optimization. However, large differences
in fiber morphology can cause the optimization procedure
to converge to local minima. The method is not limited to
the analysis pipeline proposed here. Different methods of
detecting the fibers and representing them with parametric
models can be employed and improved upon using the
measured projection information. The method is not even
limited to fibers; the detection and geometric model can
be adjusted to reflect any shape, as long as optimization
is possible with a reasonable parameter space, as a high
dimensional parameter space makes the optimization more
difficult.

The procedure to simulate projections from the models
could still be improved. For now, the CAD projector uses
meshes generated from the center line, but those do not
depend on the line continuously. The tube filter generating
the model can produce jumps in the objective function for
small variations, which decreases numerical stability of any
optimization procedure. Additionally, noise in the projec-
tions disturbs the SSIM measure on a small scale, which
is partially compensated with smoothing, but reduces the
overall achievable accuracy.

Ideally, the projector should be able to produce a projec-
tion image from the coefficients of the center line directly. A
signed-distance-function based approach could work here,
as it continuously defines the surface of the fiber. However,
this would require a tailor made projector for such objects,
which is currently not available to the author’s knowledge.

Another possible solution would be to compute analytic
derivatives per vertex of the fiber mesh and then move those
vertices accordingly, enabling a smooth transition between
two fibers that are close in parameter space. Koo et al. [32]
lay the groundwork for such an approach and Renders et al.
[33] already apply a similar method to 4D-CT images of
foam.

Finally, as future work we aim to include more param-
eters into the model, such as the radius of the fiber or a
combination of fibers with different materials. Extending the
model to woven fiber bundles [34] will also be considered,
as well as a mixture of different objects, e.g. modeling pores
and inclusions in addition to fibers.

To do (1) To do (2)
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(a) Comparison with InsegtFibre, cuPARE, detected, SSIM =
0.687, MSE = 0.083

(b) Comparison with InsegtFibre, cuPARE, optimized, SSIM=
0.773, MSE = 0.055

Figure 7: Difference images of the fiber models of both Insegt Fibre and cuPARE traces before and after optimization of the
fibers detected with cuPARE.
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d
3 o
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Figure 8: Boxplot of the overlap dissimilarity scores for each
fiber in the realistic dataset containing unidirectional fibers.
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Figure 9: Overview of the detection (left column, 9a, 9c, 9e, 9g) and optimization (right column, 9b, 9d, 9f, 9h) of the simulated
datasets. Each image shows the difference of the ground truth and the detected and optimized fibers rendered into a voxel grid
of the same size as the reconstruction.
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(a) SimA: PARE
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(c) SimB: PARE
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(d) SimB: cuPARE

Figure 11: Length and orientation distributions for the simulated datasets in the ground truth, after detection (labeled estimated)
and after optimization. To the right of the polar plot of the orientation a zoomed in wedge is shown to accentuate the spread of
the values better.
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To do. . .
□ 1 (p. 7): discussion in results, then conclu-

sion as positive
□ 2 (p. 7): reduce size of section 2.2, 2.3
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