
Computer Vision and Image Understanding 117 (2013) 306–318
Contents lists available at SciVerse ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate /cviu
Dynamic angle selection in binary tomography

K. Joost Batenburg a,b,⇑, Willem Jan Palenstijn b, Péter Balázs c, Jan Sijbers b

a Centrum Wiskunde & Informatica, Science Park 123, NL-1098 XG Amsterdam, The Netherlands
b Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
c Department of Image Processing and Computer Graphics, University of Szeged, Árpád tér 2, H-6720 Szeged, Hungary

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 November 2011
Accepted 3 July 2012
Available online 8 December 2012

Keywords:
Binary tomography
Discrete tomography
Angle selection
1077-3142/$ - see front matter � 2012 Elsevier Inc. A
http://dx.doi.org/10.1016/j.cviu.2012.07.005

⇑ Corresponding author at: Centrum Wiskunde & I
NL-1098 XG Amsterdam, The Netherlands.

E-mail address: joost.batenburg@cwi.nl (K.J. Baten
In this paper, we present an algorithm for the dynamic selection of projection angles in binary tomogra-
phy. Based on the information present in projections that have already been measured, a new projection
angle is computed, which aims to maximize the information gained by adding this projection to the set of
measurements. The optimization model used for angle selection is based on a characterization of solu-
tions of the binary reconstruction problem, and a related definition of information gain. From this formal
model, an algorithm is obtained by several approximation steps. Results from a series of simulation
experiments demonstrate that the proposed angle selection scheme is indeed capable of finding angles
for which the reconstructed image is much more accurate than for the standard angle selection scheme.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Tomography deals with the reconstruction of an image from its
projections, acquired along a range of angles. The Inverse Radon
Transform provides a closed-form inversion formula for this recon-
struction problem, provided that projections are available for all
angles. Although this assumption is clearly not satisfied in practice,
an accurate reconstruction can be computed if a large number of
projections are available, for a full angular range, by using the
well-known Filtered Backprojection algorithm [1,2].

In several applications of tomography, only few projections can
be acquired. Such reconstruction problems are known as limited-
data problems. In electron tomography, for example, the electron
beam damages the sample, limiting the number of projections that
can be acquired [3]. In industrial tomography for quality assurance,
cost considerations impose limitations on the duration of a scan,
and thereby on the number of projections.

Applying classical reconstruction algorithms such as Filtered
Backprojection to limited-data problems often results in inferior
reconstruction quality. Several approaches have been proposed to
overcome these problems, by incorporating various forms of prior
knowledge about the object in the reconstruction algorithm.
Recently, advances in the field of Compressed Sensing have dem-
onstrated high potential in obtaining a reduction of the number
of required projection images by exploiting sparsity of the image
with respect to a certain set of basis functions [4–8]. Following a
ll rights reserved.
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different approach, the field of discrete tomography focuses on the
reconstruction of images that consist of a small, discrete set of gray
values [9,10]. By exploiting the knowledge of these gray values in
the reconstruction algorithm, it is often possible to compute
accurate reconstructions from far fewer projections than required
by classical ‘‘continuous’’ tomography algorithms [11,12].

When reconstructing an image from a small set of projections
(i.e., less than 20), the particular set of projection angles can have
a large influence on the quality of the reconstruction. In [13,14],
it was shown that the choice of the projection angles can have a
crucial influence on the reconstruction quality in binary tomogra-
phy, i.e., discrete tomography based on just two gray levels. The
authors also presented algorithms to identify optimal projection
angles based on a blueprint image, which is known to be similar
to the scanned object. For more general grayscale tomography, a
framework was recently proposed for optimizing the acquisition
of projections, based on certain prior knowledge on the object to
be scanned [15].

These findings naturally lead to the question if ‘‘optimal’’ angles
can also be selected in cases where no blueprint image is available.
As the optimal angles depend on the scanned object, they can cer-
tainly not be selected prior to the scanning procedure. Instead, we
consider an on-line variant of the problem, where projections are
measured one-by-one, and the new angle is selected based on
the information present in the currently available projections.

In this paper, we present an algorithm for angle selection in bin-
ary tomography that is based on a concise model of the available
projection information and prior knowledge of the binary charac-
ter of the unknown object. The algorithm depends on two key
ingredients: sampling of the set of images that adhere to the
currently available projections, and determining the amount of
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Fig. 1. Discretized strip projection model.
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information that can be gained by adding a particular angle to the
set of measurements.

This paper is structured as follows. In Section 2, we introduce a
formal model for the tomography problem, as well as several re-
lated concepts, which are necessary to define the angle selection
problem. Although our formulation of the angle selection problem
characterizes the optimal angle, it does not directly lead to an algo-
rithm for computing this angle, which requires several approxima-
tions. Section 3 describes how the current set of binary solutions to
the reconstruction problem can be approximated by a sampling
procedure, leading to so-called surrogate solutions. In Section 4,
we describe how the information gain can be approximated for a
particular candidate angle. These two approximation steps are
then combined into an algorithm for the angle selection problem,
which is presented in Section 5. An example is discussed in Sec-
tion 6, where the concepts involved in the angle estimation algo-
rithm are related to actual images involved in the computations.
Section 7 describes a series of simulation experiments that have
been performed to investigate how the reconstructions obtained
by the proposed angle selection scheme compare to several alter-
native angle selection strategies. In the experimental results, pres-
ent in Section 8, it is shown that the proposed method is indeed
capable of finding angles for which the reconstructed image is
much more accurate than for the standard angle selection scheme.
The approach and experimental findings are discussed in Section 9,
followed by conclusions in Section 10.
2. Notation and concepts

Our description is restricted to the reconstruction of two-
dimensional images from one-dimensional projections, but can
be generalized to higher-dimensional settings in a straightforward
manner. The reconstructed image is represented on a rectangular
grid of size n = w � h.

For setting up the tomography model, we make the idealized
assumption that the unknown original object is a binary image that
can also be represented on this grid, even though the proposed
algorithm can still be used if the grid assumption is not satisfied.
The unknown original image can be represented by a vector
�v ¼ ð�v iÞ 2 f0;1gn, where the entries �v i correspond to the pixel val-
ues of the reconstruction.1

Projections are measured as sets of detector values for various
angles, rotating around the object. For each angle, the detectors
register a parallel projection of the object. The finite set H = {h1,
. . . ,hd} of angles for which projection data has been measured is
gradually expanded: each time, an angle is selected based on the
projections available so far, and the projection corresponding to
that angle is added to the set of measurements.

We denote the number of detector values for each projection by
k. For any angle h 2 [0,p), the projection process in tomography,
assuming noiseless measurements, can be modeled as a linear
operator W(h), which maps the image �v to the vector p(h) of mea-
sured data:

pðhÞ ¼W ðhÞ �v : ð1Þ

The k � n matrix W ðhÞ ¼ ðwðhÞij Þ is called the projection matrix for
angle h. The entry wðhÞij determines the weight of the contribution of
pixel j to measurement i, which represents the area of the intersec-
tion between the image pixel and a strip that intersects with the
image and projects onto the ith detector pixel. These concepts
are illustrated in Fig. 1.
1 Throughout this paper, we indicate a vector or a scalar that has a binary domain
by putting a bar above its symbol.
From this point on, we assume that each matrix W(h) has the

property that
Pk

i¼1wðhÞij ¼ 1 for all j = 1, . . . ,n. Assuming that the im-
age is completely covered within the field of view of the detector,
this property is satisfied for the strip projection model that we use
here, as the total pixel weight for each projection angle is equal to
the area of a pixel, which is 1. For most other projection models
commonly used in tomography, such as the line model, where
the weight of a pixel is determined by the length of its intersection
with a line, this property is approximately satisfied, but not always
exactly.

For a set of projection angles H = {h1,h2, . . . ,hd}, the projection
matrix W(H) consists of a stack of projection matrices for the indi-
vidual angles, resulting in measurements p(H) of the form

pðHÞ ¼
pðh1Þ

..

.

pðhdÞ

0
BB@

1
CCA ¼

W ðh1Þ

..

.

W ðhdÞ

0
BB@

1
CCA�v : ð2Þ

For a given projection matrix W(H) and projection data
pðHÞ ¼W ðHÞ �v , let SWðHÞ ðpðHÞÞ ¼ fx 2 Rn : W ðHÞx ¼ pðHÞg be the set
of all real-valued solutions corresponding with the projection data,
and let SWðHÞ ðpðHÞÞ ¼ SWðHÞ ðpðHÞÞ \ f0;1gn be the set of binary
solutions of the system. We focus on the case where the total
number of measurements m = dk is small with respect to n,
such that the real-valued reconstruction problem is severely
underdetermined.

For any two binary images �x; �y 2 f0;1gn, define the image dis-
tance by k�x� �yk2. For any set V � {0,1}n, define the diameter of this
set by diamðVÞ ¼maxfk�x� �yk2 j �x; �y 2 Vg. If the diameter of V is
small, all images in the set must be quite similar, whereas a large
diameter indicates that strong variations occur within the set.

We now turn to the problem of angle selection. Let H = {h1,
. . . ,hd} be the current set of d directions for which projection data
pðHÞ ¼W ðHÞ �v of the unknown original image �v have already been
measured. The task is now to select the next angle for which a pro-
jection will be measured in such a way that as much ‘‘information’’
as possible is gained by the new measurement.

A principal obstacle in constructing a formal model of this prob-
lem is the fact that the original image can be any element of the set
SWðHÞ ðpðHÞÞ, unless additional prior knowledge is available about the
original image. A projection angle that yields much information for
a particular element of this set, might yield very little information
for other images in the same set.

To quantify the amount of information that is contained in a
certain set of projections p(H), we propose to use

diam SWðHÞ ðpðHÞÞ
� �

: the diameter of the set of binary solutions that

adhere to all current projections. Note that even when large
switching components exist for the given set of projection
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directions (i.e., pairs of binary images that have the same projec-

tions in all directions), diam SWðHÞ ðpðHÞÞ
� �

may still be small, or even

0, as p may uniquely determine a binary solution. For any binary
image �x and set of angles H = {h1,h2, . . .}, define the uncertainty of
ð�x;HÞ by

Uð�x;HÞ ¼ diam SWðHÞ ðW ðHÞ�xÞ
� �

: ð3Þ

The uncertainty corresponds with the diameter of the set of bin-
ary images that have the same projections as �x for all angles in H.
Similarly, we define the information gain of ð�x;H; hÞ by

Gð�x;H; hÞ ¼ Uð�x;HÞ � Uð�x;H [ fhgÞ; ð4Þ

which can be used as a measure for the information gained by mea-
suring the projection for angle h, if the projections for all angles in
H are already available and �x is the original object. Clearly, the
information gain is always nonnegative, and is zero for any h that
is already in H. We extend this concept to the mean information gain
of a set of binary images V � {0,1}n, defined by

GðV ;H; hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
jV j
X
�x2V

Gð�x;H; hÞ2
s

: ð5Þ

We have now defined all concepts and notation required for for-
mulating the angle estimation problem:

Problem 1. Let H = {h1, . . . ,hd} be the current set of d directions for
which projection data pðHÞ ¼W ðHÞ �v of the unknown original image
�v have already been measured. Find

hdþ1 ¼ arg max
h2½0;pÞ

G SWðHÞ ðpðHÞÞ;H; h
� �

:

This problem can be interpreted as follows: we seek the new
projection angle hd+1, such that the total information gained by
adding this angle, over all binary images that adhere to the current
set of known projections, is maximized.

Although Problem 1 effectively captures all concepts involved in
the angle estimation problem, its formulation is not suitable for di-
rect translation into an algorithm. It is well known that certain
variants of the problem of reconstructing binary images from more
than two projections are NP-hard [16], and for the strip model we
are not aware of any feasible approach to enumerate the set of bin-
ary solutions for a large-scale reconstruction problem. Such an
enumeration is needed at two levels: (1) to compute the total gain
over all binary solutions that adhere to the available projections,
and (2) to compute the diameter of the solution set within the
computation of the gain for an individual image.

To construct an algorithm based on the concepts in Problem 1,
we propose to use three approximations. Firstly, the summation
over all binary solutions within the computation of the total gain
is replaced by a summation over a set of surrogate solutions, which
are real-valued solutions to the reconstruction problem for which
all pixel values are in the interval [0,1]. Secondly, within the
computation of the gain for an individual image, the diameter of
the binary solution set is approximated by an upper bound of
the diameter, which was recently proposed in [17]. Based on the
experimental results presented in that paper, we expect that
this upper bound can be used effectively as a substitute for the
true diameter. Finally, the continuous domain of the candidate
angle hd+1 is replaced by a finite discretization, with an angular
step of 1 degree.

In the next two sections, we provide a description of these
approximation steps, which are then combined into a complete
algorithm for angle selection in Section 5.
3. Surrogate solutions

To approximate the evaluation of G SWðHÞ ðpðHÞÞ;H; h
� �

, we resort

to computing the mean information gain for a set of surrogate solu-

tions, which are not necessarily binary. The surrogate solutions are
real-valued solutions of the reconstruction problem for which all
entries have values in the interval [0,1]. These surrogate solutions
are then used as samples to represent the true set SWðHÞ ðpðHÞÞ of bin-
ary solutions.

The starting point for generating a surrogate solution is a gray
level template image c 2 [0,1]n, which is randomly generated from
a given parameterized family of gray level images. The template
image is used as a starting point for an iterative algorithm that
computes a real-valued surrogate solution v 2 SWðHÞ ðpðHÞÞ \ ½0;1�n.
The generation of surrogate images can be considered as sampling
based on a prior distribution, where the particular family of tem-
plate images determines the prior distribution. Features present
in the template images are partially preserved within the corre-
sponding surrogate solutions, and therefore control the approxi-
mation of the current set of binary solutions.

In preliminary experiments, we also considered the case that
the gray levels for surrogate solutions are not constrained. In that
case, surrogate solutions are sometimes formed with values that
are considerably greater than 1, or smaller than 0, and therefore
far away from any binary image (which they are supposed to rep-
resent). This behavior is effectively avoided by including the gray
level constraint.

In our implementation, the basic algorithm for computing a
real-valued surrogate solution is the iterative SIRT algorithm
[18], defined as follows. Let v(0) = c. For q = 1,2, . . . , let r(q) = p(H)

�W(H)v(q�1) be the projection difference before the qth iteration.
In each iteration q, the current reconstruction v(q�1) is updated,
yielding a new reconstruction v(q), as follows:
v ðqÞj ¼ v ðq�1Þ
j þ 1Pm

i¼1wðHÞij

Xm

i¼1

wðHÞij rðqÞiPn
j¼1wðHÞij

: ð6Þ
with m the total number of detector measurements. It can be shown
that for a consistent system of equations, the SIRT-algorithm as de-
scribed in Eq. (6) converges to the solution ~v that is closest to the
initial image v(0) with respect to a certain norm (a weighted sum
of squares, see [18]). Here, we use an adaptation of this algorithm
which confines the solution to the interval [0,1]. After each itera-
tion, the pixels that have a negative value are set to 0, and those that
are greater than 1 are set to 1. As this truncation operation is the
projection onto a convex set, the resulting algorithm still converges
to a solution of the tomography problem, yet it is not guaranteed to
be the solution that is closest to the initial image.

We remark that the real-valued equation system W(H)x = p is
severely underdetermined, such that the algorithm can typically
reach a solution that still resembles the template image. As a con-
sequence, allowing sufficient variation within the set of template
images will result in variations in the set of surrogate solutions
formed.

The surrogate solutions are typically not binary images, and it is
not at all clear that by sampling these grayscale images, the prop-
erties of the set of binary solutions can be ‘‘represented’’ with suf-
ficient detail to allow for effective angle selection. Yet, the
experimental results presented in Section 8 suggest that for the
phantoms considered, the mean information gain for a set of surro-
gate solutions can often approximate the information gain with re-
spect to the actual unknown object quite accurately. The example
that is presented in Section 6 shows that particular properties of
the binary solution set, such as the presence of binary switching
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components can indeed be observed in the set of surrogate
solutions.
4. Computing an upper bound for the diameter

Once a surrogate solution v has been computed, the information
gain needs to be computed for each of the candidate angles. We re-
call that the information gain for a candidate angle h is defined as
the difference between the diameter of the current set of binary
solutions, and the diameter of the set of binary images that have
the same projections as v for all angles in H [ {h}. In this section,
we derive an upper bound on the diameter of SWðHÞ ðpðHÞÞ, which
can be used effectively as a substitute for the true diameter.

An important concept in the derivation of this upper bound is
the central reconstruction: the shortest real-valued solution in
SWðHÞ ðpðHÞÞ with respect to the ‘2 norm. Throughout this section,
we denote this solution by x⁄. The central reconstruction can be
computed by standard linear algebra methods. In our implementa-
tion, we use an iterative Krylov subspace method for solving the
system W(H)x = p(H), called CGLS (Conjugate Gradient Least
Squares, [19]). The CGLS algorithm can effectively exploit the
sparse structure of the projection matrix to reduce the required
computation time, and does not require storage of large, dense
matrices. Apart from numerical errors, applying CGLS to the sys-
tem W(H)x = p(H) results, after convergence, in the computation
of x⁄.

Although the derivation of the upper bound on the diameter is
already included in [17], we include a slightly modified version
here, for easy reference and clarity. We start by showing that the
Euclidean norm of any binary solution of W(H)x = p(H) is com-
pletely determined by p(H). This property follows from two basic
observations: (1) summing the measured values over all detector
elements for a projection angle yields the sum of the pixel values
in the image, and (2) the squared Euclidean norm of a binary image
is equal to the sum of its pixel values.
Fig. 2. Algorithmic steps for computing the mean information g
Lemma 2. Let �x 2 SW ðHÞ ðpðHÞÞ. Then, k�xk2
2 ¼

kpðHÞk1
d .
Proof. By the definition of the ‘1-norm, kpðHÞk1 ¼Pm
i¼1jp

ðHÞ
i j ¼

Pm
i¼1pðHÞi , since pðHÞi P 0 ði ¼ 1; . . . ;mÞ. Also,

Xm

i¼1

pðHÞi ¼
Xm

i¼1

Xn

j¼1

wðHÞij
�xj

 !
¼
Xn

j¼1

Xm

i¼1

wðHÞij

 !
�xj ¼

Xn

j¼1

d�xj; ð7Þ

and therefore kpðHÞk1 ¼ d
Pn

j¼1�xj. As �x 2 f0;1gn, we have
k�xk2

2 ¼ k�xk1 ¼
Pn

j¼1�xj ¼ kp
ðHÞk1
d . h

Define the central radius by R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpðHÞk1

d � kx�k2
2

� �r
. The following

Lemma states that all binary solutions of the reconstruction prob-
lem lie on the hypersphere centered in x⁄ with radius R:

Lemma 3. Let �x 2 SW ðpðHÞÞ. Then k�x� x�k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpðHÞk1

d � kx�k2
2

q
.

Proof. LetNðWÞ denote the nullspace of W. Then ð�x� x�Þ 2 N ðWÞ.
As the shortest solution of a linear system is orthogonal to the null-
space of that system, we have x� ? ð�x� x�Þ. Applying Pythagoras’
Theorem and Lemma 2 yields

k�x� x�k2
2 ¼
kpðHÞk1

d
� kx�k2

2: � ð8Þ

Supposing the existence of at least two different binary solu-
tions, Lemma 3 allows us to derive an upper bound on the number
of pixel differences between those solutions.
Theorem 4. Let �x; �y 2 SWðHÞ ðpðHÞÞ. Then k�x� �yk2 6 2R.
Proof. According to Lemma 3, we have k�x� x�k2 ¼ k�y � x�k2 ¼ R.
Therefore,

k�x� �yk2 6 k�x� x�k2 þ k�y � x�k2 ¼ 2R: �
ain for a candidate angle h, based on K surrogate solutions.
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The upper bound from Theorem 4 can be computed simply
by evaluating the radius R of the sphere centered in x⁄ that con-
tains the binary solutions. We remark that there is no guarantee
that different binary solutions are indeed so far apart, or even
that one or more binary solutions exist. Still, the experimental
results in Section 7 demonstrate that the radius R correlates
strongly with the reconstruction error that is made when recon-
structing a binary image from a small number of projections. It
can therefore serve as a substitute of the true diameter, to cal-
culate the amount of ‘‘information’’ present in the projection
data.
5. Angle selection algorithm

Combining the ingredients from Sections 3 and 4, we can now
define an algorithm for approximating the mean information gain
for a candidate angle h, over the current set of binary solutions.
Fig. 2 shows each of the algorithmic steps. Note that this descrip-
tion is formulated for maximum clarity and includes unnecessary
recomputation steps, which can be optimized in the actual
implementation.

Based on this algorithm for computing the mean information
gain, the angle selection algorithm is formed by iterating over all
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Fig. 4. Original phantom images used for the experiments.
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possible candidate angles, and selecting the angle that yields the
highest mean information gain.
6. Example of an angle selection problem

To illustrate the concepts of surrogate solutions and informa-
tion gain, we now consider an example. Fig. 3(a) shows a binary
phantom image �x that has two principal orientations. Let us sup-
pose that the projection of this image has already been measured
for the horizontal and vertical directions. The central reconstruc-
tion x⁄ corresponding to these two projections is shown in
Fig. 3b. The difference image ð�x� x�Þ is shown in Fig. 3c. The
Euclidean norm of this image corresponds with the central radius,
Fig. 5. Information gain and rNMP as a functi
and therefore provides, after multiplication by two, an upper
bound on the diameter of the set of binary solutions that adhere
to the two given projections.

Fig. 3d–f shows three template images that were formed as a
random superposition of Gaussian elliptic blobs. The template
images are set to 0 outside the circular reconstruction region.
The corresponding surrogate solutions are shown in Fig. 3g–i,
respectively. The surrogate solutions adhere to the two available
projections and contain only pixel values in the interval [0,1].
Although the surrogate solutions share the same horizontal and
vertical projections, there are substantial differences between the
three images. In particular, the white arrows in Fig. 3g and i indi-
cate our visual impression of where the major axis of the large el-
lipse should be. Both surrogate solutions suggest an opposite
on of the projection angle for Phantom 1.



Fig. 6. Information gain and rNMP as a function of the projection angle for Phantom 2.

2 For interpretation of color in Fig. 3, the reader is referred to the web version of
this article.

312 K.J. Batenburg et al. / Computer Vision and Image Understanding 117 (2013) 306–318
orientation, which corresponds with the fact that the phantom
contains a large binary switching component: two identical blocks
of white pixels can be selected in the bottom left and top right part
of the large ellipse. When these blocks are flipped vertically (mov-
ing them to the top left and bottom right, respectively, and replac-
ing them by background pixels), a new image is formed that has
identical projections to the phantom, yet has a general orientation
that is rotated 90� compared to the phantom. The phantom image
and this second image will likely have quite different information
gain characteristics, yet the angle selection algorithm has no way
to determine which one is the actual unknown original image. In
Fig. 3j, we see that the information gain computed based on the
different surrogate solutions has an additional peak around 55�,
reflecting the uncertainty about the principal feature direction of
the original object. For high quality angle selection, it is important
that the different possibilities for binary solutions are properly rep-
resented within the set of surrogate solutions, thereby averaging
among the information gains for different solutions.

Although it may be possible to gain information about favorable
directions using the central reconstruction, it cannot be used as a
surrogate solution in our approach. The central reconstruction is
the shortest solution that adheres to the available projections,
using the Euclidean metric. If one would compute the projections
of the central reconstruction for all candidate angles and deter-
mine the information gain for each of these angles, this gain will
also be 0, as the central reconstruction does not change: the cur-
rent central reconstruction will also be the shortest solution of
the new equation system that is formed by adding the extra
projection.
After computing the surrogate solutions, the information gain
can now be computed for each angle, and for each surrogate solu-
tion, by first computing the projection of the surrogate solution for
the new angle, and then computing an upper bound on the diam-
eter of the set of binary solutions for the reconstruction problem
that is formed by adding this projection to the current measured
data. Fig. 3(j) shows plots of the information gain for each candi-
date angle, based on knowledge of the phantom image (in red2),
and the mean information gain based on the three surrogate solu-
tions (in blue). We observe that, even though the phantom image
is hardly recognizable in the three surrogate solutions, the peak of
the information gain for the phantom can also be seen in the infor-
mation gain for the set of surrogate images. A secondary peak can be
observed in the plot based on the surrogate solutions, caused by the
uncertainty about the original binary object, as the original image
contains a large switching component.
7. Experiments

Simulation experiments have been performed to assess the abil-
ity of the proposed algorithm to select favorable projection angles.
Starting with a general description of the methodology of the
experiments in Section 7.1, two sets of experiments are described
in Sections 7.2 and 7.3. The results are presented in Section 8.



Fig. 7. Information gain and rNMP as a function of the projection angle for Phantom 3.
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7.1. General methodology

The experiments are all based on simulated projection data ob-
tained by computing the projections of the test images (so-called
phantoms) in Fig. 4: (a) a single ellipse; (b) a double ellipse; (c) a
hand phantom; (d) a foam phantom. All phantoms have a size of
128 � 128 pixels. The reconstruction area, however, was confined
to the pixels within a disk of radius 64.

Ideally, a quantitative evaluation of the proposed angle selec-
tion algorithm should include an experiment that shows how well
the approximate information gain, computed based on a surrogate
solutions and an upper bound on the diameter of the current bin-
ary solution set, can approximate the actual information gain as
defined by Eq. (5). However, we resorted to this approximation
in the first place, because of the complexity of this evaluation.

As an alternative, we evaluate the quality of the selected angles
with respect to the actual unknown object, based on the assump-
tion that a good angle selection scheme should lead to an accurate
reconstruction of the object from fewer angles than the number of
angles that would be needed for the standard equi-angular
scheme. We remark that this problem should be approached from
a statistical point-of-view: in particular cases, an angle for which
limited information is gained with respect to the actual unknown
object, might yield significantly more information for other candi-
date solutions that adhere to the currently known projections.

As discussed in Section 3, the class of images from which the
template images are sampled can have a substantial impact on
the sampling of surrogate solutions. We believe that some form
of prior knowledge about the object, represented in the template
images, might help to achieve better angle choices. We consider
a full exploration of the various possibilities for generating tem-
plate images to be outside the scope of the present paper, yet rec-
ommend such a study for future research. In preliminary
experiments, we found that for the type of phantom images we
consider here, each template image should contain a substantial
number of randomly generated ‘‘features’’, representing a variety
of orientations. In particular, for all experimental results presented
here, the template images are generated as a superposition of 2D
gaussian blobs. Each template image is formed by adding the
intensity for 50 such blobs, where the orientation of the blob is
chosen randomly and the standard deviation along both the major
and minor axis are chosen randomly between 3 and 10 pixels.
Examples of such template images are shown in Fig. 3d–f. For all
experiments, K = 10 surrogate solutions where generated for the
selection of each angle. In preliminary experiments we observed
that for the considered phantoms, increasing the number of surro-
gate images beyond this number did not result in a clear improve-
ment of the angle selection quality. As the computation time
increases linearly with the number of surrogate solutions, we
decided to use this number. We remark that the information from
the available projection data is incorporated in the surrogate solu-
tions that are derived from the template images. So, starting with a
template image (that does not contain information related to the
current projections), a solution of the current tomography problem
is computed that is ‘‘close to’’ the template image. In that way, the
sampling diversity of the template images is retained within the
set of surrogate solutions, while the available projection data are
incorporated as well.
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7.2. Experiments I: selecting one new angle

In the first set of experiments, we follow the proposed angle
selection algorithm as it chooses consecutive angles for a single
phantom. Each time a new angle has to be selected, the following
error measures are evaluated for each candidate angle h:

Phantom gain. The approximate information gain Gð�x; hÞ for the
actual phantom image �x, computed using the central radius.
Sample gain. The approximate mean information gain G(V,h) for
a set of surrogate solutions V, computed using the central
radius.
Relative number of misclassified pixels (rNMP). A thresholded
CGLS (TCGLS) reconstruction is first computed, with threshold
0.5, obtained after adding the projection for angle h. This value
is computed by determining the number of pixel differences
between the TCGLS reconstruction and the phantom image,
and dividing this by the total number of pixels in the circular
reconstruction region.

Although the TCLGS reconstruction is typically inferior to recon-
structions computed by more specialized Discrete Tomography
algorithms [11,12], its computation is straightforward as a by-
product of the proposed angle selection method, and the general
shape of the rNMP curve seems to be similar compared to more ad-
vanced methods.

When interpreting the results, we focus on two comparisons.
Firstly, if the (local) maxima of the information gain for the
Fig. 8. Information gain and rNMP as a functi
surrogate solutions coincide with the maxima for the information
gain based on the phantom, the angle selection algorithm will
choose an angle that yields substantial information about the
phantom, as it results in a relatively strong reduction of the central
radius. Secondly, the positions of the extremal points of the infor-
mation gain curve for the phantom should correspond with the
extremal points of the rNMP curve, such that local maxima of the
gain curve correspond with local minima of the rNMP curve, and
vice versa. If this property is approximately satisfied, a large infor-
mation gain as defined by Eq. (4) will correspond with a relatively
large reduction of the reconstruction error for the TCGLS algorithm.

7.3. Experiments II: selecting a series of angles

In the second set of experiments, we consider the selection of a
complete sequence of angles, starting with a single angle and
expanding the sequence up to 20 angles. The experiments have
been performed using three different angle selection methods:

Standard. Angles are selected between 0� and 180�, with equi-
angular spacing. Note that for this scheme, changing the number
of angles actually changes the entire set of selected angles.
Gap-angle. Based on the current set of angles, a new angle is
selected as the mid-point between the two consecutive angles
that have the largest angular gap between them. If several pairs
of angles have equal gaps, a uniformly random choice is made.
Dynamic. Angles are selected using the dynamic angle selection
algorithm of Section 5. To select an angle, K = 10 surrogate
on of the projection angle for Phantom 4.
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solutions are generated, and their mean information gain is
evaluated for all candidate angles, with steps of 1�.

To reduce the dependency of the results on the particular start-
ing angle, as well as the dependency on the random seed (for the
Dynamic and Gap-angle strategies), a series of runs has been
performed for each angle selection method, using nine randomly
selected starting angles, and five different random seeds for each
starting angle.
8. Results

In this section, we report on the results of the two sets of exper-
iments, described in Sections 7.2 and 7.3.
8.1. Results I: selecting one new angle

Figs. 5–8 show the Phantom gain and the Sample gain, for each
candidate angle between 0� and 180� (in steps of 1�), and for each
phantom image, respectively. The Phantom gain is shown along
with its variation (shaded area), indicating the range from the min-
imum to the maximum value observed for a surrogate solution. As
only the positions of the local optima of the gain curves are
important for angle selection, and not the absolute values of the
approximate information gain, the curve for the Sample gain is
scaled such that the total area under the graph is the same as for
the Phantom gain. In addition to the gain curves, the rNMP of the
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Fig. 9. rNMP as a function of t
TCGLS reconstruction for each candidate angle, obtained by recon-
structing the image after adding the projection for the candidate
angle, is shown in the same plot.

In Figs. 5a and 6a, it can be clearly observed that if the number
of projections is extremely small (two, in this case), the dynamic
angle selection algorithm does not select the angle that corre-
sponds to the maximum Phantom gain. This can be explained by
the fact that for d = 2, the reconstruction problem is highly under-
determined, and there are large differences between the surrogate
solutions. An angle choice that is optimal with respect to the phan-
tom does not appear to be optimal with respect to the combined
set of surrogate solutions.

However, for more than two projections, the correlation be-
tween the Sample gain curve and the Phantom gain curve is much
higher, for both Phantoms 1 and 2. Indeed, for three projections,
the dynamic angle selection selects an angle that closely matches
that of the maximum Phantom gain (see Figs. 5b and 6b). Similar
observations can be made for four and five projections. For the
more complex Phantoms 3 and 4, the number of projections that
is needed to reach a reasonable agreement between the Phantom
gain and the Sample gain is substantially higher. For Phantom 3,
there is a high correlation between both curves for d P 4, whereas
14 projections are required to properly localize the ‘‘best’’ projec-
tion angle for Phantom 4.

Another observation that can be made, is that for all four phan-
toms, there is generally a good agreement between the rNMP that
is computed with respect to the phantom, and the Phantom gain.
Local minima of the rNMP curve tend to correspond with local
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maxima of the Phantom gain, and vice versa. This correspondence
is crucial for the ability of the dynamic angle selection algorithm to
rapidly achieve a high reconstruction quality with respect to the
phantom object, even though the phantom is not known to the
algorithm.

8.2. Results II: selecting a series of angles

To compare the results for the three angle selection methods,
two plots have been generated for each phantom. The first series
of plots, presented in Fig. 9, shows the rNMP of TCGLS as a
function of the number of projection angles. For each number d
of angles, the TCGLS reconstruction was computed based on the
projections for the first d angles in the sequence. The second
series of plots, presented in Fig. 10 shows the central radius as a
function of the number of projection angles. For each number d
of projection angles, the central radius, which scales proportion-
ally to the upper bound on the diameter of the set of binary
solutions, is determined based on the first d angles in the se-
quence. The shaded regions denote the standard deviation origi-
nating from repeating the experiments with varying starting
angles and random seeds.

The results show that for Phantoms 1, 2, and 4, the rNMP the
Dynamic strategy is never clearly outperformed by the Standard
and Gap-angle methods, while at substantial intervals for the
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Fig. 10. Central radius as a function
number of projection angles, the rNMP are substantially better
for the Dynamic strategy. For Phantom 1, the proposed angle selec-
tion method works particularly well if the number of angles is very
small (between 3 and 10), whereas for the more complex Phantom
4, the key advantage of the Dynamic strategy shows up when using
a larger number of projections (10 or more). The advantage of
dynamic angle selection is smallest for Phantom 3 (the hand phan-
tom), which has a relatively large number of features, each having
a different orientation.

What is also clear from the plots in Figs. 9 and 10, is that the
curves for the rNMP with respect to the unknown phantom, and
for the central radius, have similar shapes and roughly show the
same ordering between the performance of the different meth-
ods. Just as for the results in the first series of experiments, con-
firmation of this correspondence is important for establishing the
ability of the dynamic angle selection algorithm to rapidly
achieve a high reconstruction quality with respect to the phan-
tom object, even though the phantom is not known to the
algorithm.

In Fig. 11, a selection of TCGLS reconstructions is shown that
was obtained after a run of the three angle selection strategies.
For each phantom, the number of angles was selected such that a
reasonable reconstruction could already be obtained, quite similar
to the phantom, yet the number of projections was still too small to
obtain an almost perfect reconstruction.
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Fig. 11. Illustration of TCGLS reconstructions obtained after using the different angle selection algorithms, for the four phantoms. Next to each binary reconstruction, an
image is shown that represents the difference between the reconstruction and the phantom. From left to right: standard, gap angle, dynamic; from top to bottom: Phantom 1
(6 angles), Phantom 2 (8 angles), Phantom 3 (12 angles), Phantom 4 (16 angles).
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9. Discussion

The experimental results for the four phantom images suggest
that the proposed dynamic angle selection strategy is indeed capa-
ble of finding angles for which the reconstructed image is substan-
tially more accurate than for the standard angle selection scheme,
if the number of angles is not too small. It seems that although the
central radius provides an upper bound on the diameter of the set
of binary solutions, a strategy that aims to reduce this upper bound
also reduces the actual reconstruction error with respect to the un-
known phantom.

It should also be noted that the proposed angle selection algo-
rithm lacks computational efficiency. Within the context of this
article, we focused on the capabilities of the algorithm with respect
to reconstruction quality, and on avoiding the exponential time
complexity of enumerating the set of binary solutions. However,
in our implementation which utilizes a modern GPU for perform-
ing the SIRT and CGLS subroutines, selecting a single angle for an
image of size 128 � 128 takes around 30 s if the current number
of angles is 4.

By far the most computation time is spent in the CGLS subrou-
tine, which computes the central reconstruction within the evalu-
ation of the information gain for a surrogate solution. As this
computation is performed for each surrogate solution, and for each
angle, it is called around 180 K times just to select a single angle.
We expect that the algorithm can be made far more efficient if
the complete recomputation of the central radius can be avoided
by using the results from earlier computations.

Despite these computational obstacles, we feel that the type of
algorithm proposed here should be seen as a proof-of-concept for
more efficient, or more advanced algorithms that utilize the con-
cepts of information gain. Formal modeling of the amount of infor-
mation that is present in a set of projection data is not
straightforward, in particular for underdetermined reconstruction
problems, where many solutions may exist.
The results also demonstrate that dynamic angle selection is not
only useful in the domain of an extremely small number of projec-
tion angles (i.e. less than 10). In fact, for the more complex Phan-
tom 4, which clearly has a certain ‘‘preferential orientation’’, the
dynamic angle selection scheme mainly outperforms the standard
method if there are more than 10 projections. This means that the
approach can potentially be useful for angle selection in the recon-
struction of quite complex objects, such as trabecular bones, where
it is crucial to use as few projection images as possible, due to radi-
ation damage.

For the derivation of our angle selection algorithm, we made the
idealized assumption that the projection data contains no noise.
The actual algorithm can also be used when there is noise, as both
SIRT (used for generating the surrogate solutions) and CGLS (used
for computing the information gain) are convergent even if the
righthand side of the linear system is perturbed. We consider a
complete exploration of the capabilities and limitations to handle
noisy data to be outside of the scope of the current article.
10. Conclusions

In this article, we proposed a formal model for the angle selec-
tion problem in binary tomography, and an actual algorithm that
was obtained by introducing several approximation steps with re-
spect to the idealized model.

It was shown that for a set of phantom images, the proposed dy-
namic angle selection strategy compares favorably to other strate-
gies that do not take specific properties of the binary
reconstruction problem into account.

Although the computational requirements for the dynamic an-
gle selection method are currently restricting its use for large
experimental dataset, we consider this work as a starting point
for developing more efficient algorithm variants, based on the
same underlying ideas.
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An important question that was not addressed in this work, is
how the class of template images influences the results. Ideally,
these images should represent properties that can occur in the true
scanned objects, while also having sufficient variations to provide a
trustful sampling of the current set of binary solutions. In future
work, we intend to explore this relation further.
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