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a b s t r a c t

Discrete tomography deals with the reconstruction of images from their projections where
the images are assumed to contain only a small number of grey values. In particular,
there is a strong focus on the reconstruction of binary images (binary tomography).
A variety of binary tomography problems have been considered in the literature, each
using different projection models or additional constraints. In this paper, we propose
a generic iterative reconstruction algorithm that can be used for many different binary
reconstruction problems. In every iteration, a subproblem is solved based on atmost two of
the available projections. Each of the subproblems can be solved efficiently using network
flow methods. We report experimental results for various reconstruction problems. Our
results demonstrate that the algorithm is capable of reconstructing complex objects from
a small number of projections.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Tomography deals with the reconstruction of images from their projections. In practice, the goal of tomography is
usually to reconstruct some physical object, of which projection images are acquired by a tomographic scanner. Several
efficient algorithms exist for computing reconstructions, such as Filtered Backprojection (FBP) and Algebraic Reconstruction
Techniques (ART, see, e.g., [1]). These algorithms are capable of computing accurate reconstructions, but require a large
number of projections. The field of discrete tomography focuses on the reconstruction of images that consist of only a few
different grey levels [2,3]. In particular, there is a strong focus on the reconstruction of binary images. By using the prior
knowledge of the grey levels that can occur in the reconstructed image, it is often possible to vastly reduce the number of
projections required for an accurate reconstruction.
In this paper, we consider the problem of reconstructing binary images from a small number of projections. The exact

definition of the term projection varies among different reconstruction problems. Many authors have studied the problem
of reconstructing binary images from discrete X-rays [4–6]. This problem can be solved in polynomial time for any set of two
projections, but is NP-hard for any set of three or more projections [4]. In [7], Frosini and Nivat consider the reconstruction
of binary images from projections measured by sliding a fixed window over the image, counting the total number of ones
within the window for each window position. Gardner et al. have recently investigated the case of discrete point X-rays [8].
In all these reconstruction problems, the term projection refers to a partition of the pixels in the image, such that for each
subset in the partition the total number of 1s in the unknown binary image is given. This general projection concept was
also considered in [9].
Projection models based on counting the number of elements in discrete sets have important practical applications in

electron microscopy. It is now possible to count the number of atoms in projected columns of a nanocrystal, viewed from

∗ Corresponding author. Tel.: +32 03 8202449; fax: +32 03 8202245.
E-mail addresses: joost.batenburg@ua.ac.be (K.J. Batenburg), jan.sijbers@ua.ac.be (J. Sijbers).
URLs: http://visielab.ua.ac.be/staff/batenburg (K.J. Batenburg), http://visielab.ua.ac.be/staff/sijbers (J. Sijbers).

1 K.J. Batenburg and J. Sijbers are both postdoctoral fellows of the F.W.O. (Fund for Scientific Research—Flanders, Belgium).

0166-218X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2008.05.033

http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:joost.batenburg@ua.ac.be
mailto:jan.sijbers@ua.ac.be
http://visielab.ua.ac.be/staff/batenburg
http://visielab.ua.ac.be/staff/batenburg
http://visielab.ua.ac.be/staff/batenburg
http://visielab.ua.ac.be/staff/batenburg
http://visielab.ua.ac.be/staff/batenburg
http://visielab.ua.ac.be/staff/batenburg
http://visielab.ua.ac.be/staff/batenburg
http://visielab.ua.ac.be/staff/sijbers
http://visielab.ua.ac.be/staff/sijbers
http://visielab.ua.ac.be/staff/sijbers
http://visielab.ua.ac.be/staff/sijbers
http://visielab.ua.ac.be/staff/sijbers
http://visielab.ua.ac.be/staff/sijbers
http://visielab.ua.ac.be/staff/sijbers
http://dx.doi.org/10.1016/j.dam.2008.05.033


K.J. Batenburg, J. Sijbers / Discrete Applied Mathematics 157 (2009) 438–451 439

different directions [10]. Since atoms are discrete objects, the projection measurements are also discrete. In many other
applications of tomography, it can be assumed that the image should consist of only two grey values, but the reconstructed
object does not have an intrinsic lattice structure. For example, if one scans a slice of a homogeneous plastic object in a
tomographic X-ray scanner, its reconstruction should be a binary image, indicating the presence or absence of plastic in
each pixel. The measured projection data can now be considered as line integrals of the density of the object, through the
reconstructed volume. Such reconstruction problems are studied in the field of discrete tomography [11–13] as well as in
geometric tomography, see [14] for an overview. Although much of the work on geometric tomography is concerned with
the reconstruction of rather specific objects, such as convex or star-shaped objects, the domain of geometric objects can also
be as general as the collection of measurable sets. The problem of reconstructing a binary image from its projections can be
considered as reconstructing a subset of the plane, corresponding to the interior of the object. In the present paper, we do
not aim at exact reconstructions: the reconstruction is computed on a pixel grid, at a finite resolution.
The problem of reconstructing a binary image from two of its projections, taken along discrete lines, can be solved

efficiently using methods from the field of Network Flows. The reconstruction problem can be modeled as an integral max
flow problem in a certain graph, which can be solved in polynomial time [15]. Extending the network flow approach to the
case of more than two projections is a nontrivial task. For any set of more than two projection directions, the problem of
reconstructing a binary image from its discrete X-rays along these directions is NP-hard [4]. Recently, an iterative network
flow algorithm was proposed for this problem in [15]. The algorithm is very successful in reconstructing images that are
relatively smooth, containing large areas of connected 0s or 1s. For such images, prior knowledge about the fact that the
reconstruction is smooth can efficiently be incorporated into the iterative algorithm, using a local weight function.
In this paper we describe an iterative algorithm that can be used for any of the reconstruction problems mentioned

above. Similar to the network flow algorithm for discrete X-rays, our generalized algorithm works best for images that are
relatively smooth. Any arbitrary (possibly partial) partition of the pixels can be used to define a projection. It is also possible
tomix projections from different projectionmodels, such as a combination of discrete X-rays with projections from a sliding
window.We restrict ourselves to the reconstruction of two-dimensional images. All methods described in this paper can be
easily generalized to a three- or higher-dimensional setting.
In each iteration of the algorithm, a subproblem is solved, corresponding to a subset of at most two of the available

projections. These subproblems are typically highly underdetermined and a large number of solutions may exist. Therefore,
a solution is sought that closely resembles the reconstruction computed in the previous iteration, in addition to satisfying
the current subset of projections. The comparison between the current reconstruction and the previous reconstruction is
performed pixel-by-pixel, assigning a weight to each pixel that represents the desirability of retaining the value from the
previous reconstruction. A preference for smooth regions is incorporated by assigning higher weights to pixels that are
surrounded by other pixels having the same value.
In Section 2, we introduce some basic concepts and notation and propose a general model for describing projections

of binary images. In Section 3, we describe how three different binary reconstruction problems can be formulated within
our general projection model. Section 4 describes two subproblems of the reconstruction problem and their solution by
network flow methods. The first subproblem uses only one of the available projections; the second problem uses a pair of
projections. These subproblems are used as building blocks in our iterative algorithm. In Section 5, an iterative algorithm
is described for reconstructing binary images from more than two projections. We performed simulation experiments for
various reconstruction problems, using different types of projections. Section 6 provides reconstruction results for a variety
of test images, based on the three reconstruction problems from Section 3. Section 7 concludes.

2. Preliminaries

Weconsider the problemof reconstructing a set F ⊂ Z2 fromanumber of projections, whichwewill definemore precisely
below. Let A ⊂ Z2 be a finite set, called the reconstruction area. For any instance of the reconstruction problem, A is a known
fixed set and we assume that F ⊂ A. In the discrete tomography literature, A is typically chosen to be the interior of an
m × n rectangle, such that any F ⊂ A can be represented as a binary matrix F̄ ∈ {0, 1}m×n, with F̄ij = 1 iff (i, j) ∈ A.
Alternatively, F can be represented as a function A→ {0, 1}. Throughout this paper, wewill use these three representations
interchangeably.
Put N0 = {k ∈ Z : k ≥ 0}. For any finite set S, we denote the number of elements of S by |S|.
Let k ∈ N0, S = {S1, . . . , Sk} ⊂ 2F . We call S a partition of A if all elements of S are pairwise disjoint and ∪S∈S S = A.
Define

PS
= {P : S→ N0 | P(S) ≤ |S| for all S ∈ S}.

For a binary image F ⊂ A and partition S, define the projection PSF ∈ PS of F along S by

PSF (S) = |F ∩ S|. (1)

We refer to the values PSF (S) as set sums. The set P
S contains exactly the projections along S of all binary images F ⊂ A. The

reconstruction problem consists of finding a binary image that has prescribed projections along several partitions:
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(a) Discrete X-rays. (b) Rectangular scan. (c) Continuous X-ray.

Fig. 1. Three different projection models. (a): discrete X-rays; (b): rectangular scan; (c): continuous X-rays along strips, discretized as discrete segments.

Problem 1. Let A ⊂ Z2. Let d > 0 and let S1, . . . , Sd be partitions of A. Let Q1 ∈ PS1 , . . . ,Qd ∈ PSd be given functions. Find
F ⊂ A such that PSiF = Qi for i = 1, . . . , d.

Problem 1 is not guaranteed to have a solution. For example, the same set S can occur in two different partitions, each
with a different set sum. In practical applications of tomography, the projections will typically contain noise or other errors,
leading to an inconsistent reconstruction problem. For i = 1, . . . , d, define the projection distance Di(F) by

Di(F) =
∑
S∈Si

|PSiF (S)− Qi(S)|. (2)

Define the total projection distance Dtot(F) by Dtot(F) =
∑d
i=1 Di(F). We reformulate the reconstruction problem as an

optimization problem:

Problem 2. Let A, S1, . . . , Sd,Q1, . . . ,Qd be as in Problem 1. Find F ⊂ A such that Dtot(F) is minimal.

Clearly, any solution of Problem 1 is also a solution of Problem 2. Conversely, if Problem 1 has a solution, then any solution
of Problem 2 is also a solution of Problem 1.
For each given projection Qi, define U(Qi) =

∑
S∈Si Qi(S). Note that if Problem 1 has a solution, then U(Qi) = |F | for

i = 1, . . . , d. If the given projections have been obtained by measuring some physical object F , but have been perturbed by
noise (without a bias), we can therefore estimate that |F | ≈ 1

d

∑d
i=1 U(Qi).

3. Three different reconstruction problems

Wewill now relate our general tomography model, based on arbitrary partitions, to three reconstruction problems from
the literature, each corresponding to a different choice of the partitions S1, . . . , Sd. This list is by no means exhaustive, but
serves as a basis for the experimental results in Section 6.

3.1. Discrete X-rays

The problem of reconstructing binary images from discrete X-rays has been studied extensively in the context of discrete
tomography. Using the model of partitions to define the projections of an image, each partition Si consists of sets of points
that correspond to parallel discrete lines, defined by a direction (a, b) ∈ Z2 (see Fig. 1a). Put T = {t : ay−bx = t, (x, y) ∈ A}.
The partition S = {St : t ∈ T } is now given by

St = {(x, y) ∈ A : ay− bx = t}.

The reconstruction problem for discrete X-rays can be solved in polynomial time for any set of at most two projections (see,
e.g., [15]), while it is NP-hard for any set of three or more distinct projections [4].

3.2. Rectangular scan

Another kind of binary tomography problem is obtained if the reconstruction area is scanned by moving a fixed
rectangular window across it, each time obtaining the total number of 1’s within the window. This problem was studied
in [7]. Put A = {(i, j) ∈ Z2 : 0 ≤ i < n, 0 ≤ j < m}. Let 1 ≤ p ≤ n, 1 ≤ q ≤ m. For 0 ≤ i < n, 0 ≤ j < m, define

Sp,qi,j = {(i+ c, j+ r) : 0 ≤ c < p, 0 ≤ r < q} ∩ A.

Note that this definition is slightly different from the one used in [7]. We allow the window to be partially outside the
boundary of the reconstruction area (see Fig. 1b).
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Fig. 2. Basic setting of transmission tomography with strips of fixed width.

For 0 ≤ a < p, 0 ≤ b < q, define

Sa,b = {Sp,qa+ip,b+jq : a+ ip < n, b+ jq < m}.

Each set Sa,b is a partition of A. In [7], it is assumed that the total number of 1s is given for each position of the window. We
consider a slightly different version of the problem, where the projections are only given for certain values of (a, b), but not
all. In Section 6, we show that if the image is sufficiently smooth, an accurate reconstruction can often be obtained from a
number of projections that is much smaller than the total number pq of possible projections.

3.3. Continuous X-rays

The third projection model is directly related to the practical application of X-ray tomography. Let f : R2 → {0, 1} be an
unknown function with bounded support. Let θ ∈ [−π

2 ,
π
2 ). For l, r ∈ R, l < r , define

P fθ (l, r) =
∫∫
l≤x cos θ+y sin θ<r

f (x, y) dx dy. (3)

In X-ray scanners, the value P fθ (l, r) is typically measured for consecutive strips of fixed width by an array of adjacent
detectors, see Fig. 2.
To model the reconstruction problem from continuous X-rays in the context of Problem 2, we approximate the

continuous strips by discrete segments. Suppose that θ ∈ [−π
4 ,

π
4 ]. For u ∈ Z, put

Suθ = {(x, y) ∈ A : u ≤ x+ y tan θ < u+ 1}.

Note that Suθ is nonempty for only finitely many values of u. Define

Sθ = {Suθ : u ∈ Z, Suθ 6= ∅}.

The partition Sθ partitions A into discrete segments such that any two adjacent horizontal pixels are contained in adjacent
segments, see Fig. 1c. Note that the width of each discrete segment corresponds to a strip of width u cos θ on the detector,
whereas the width of each physical detector cell is constant for all angles θ . Therefore, we measured projection data must
be interpolated to obtain the measured projection for each discrete segment. In the experiments from Section 6, we used
linear interpolation based on projections measured using a fixed strip width of 1 for all projection angles.
For projection angles θ ∈ [−π

2 ,−
π
4 ) ∪ (

π
4 ,

π
2 ), a corresponding partition can be defined similarly, exchanging the role

of x and y.

4. Basic subproblems

In the next section, wewill describe a generic iterative algorithm that can be used for any of the reconstruction problems
described in the previous section. In each iteration, a subproblem is solved, based on either one or two of the available
projections. In this section, we introduce both subproblems and describe how they can be solved efficiently.
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4.1. Reconstruction from one projection

We now define a reconstruction problem similar to Problem 2, but using only one projection. Clearly, Problem 2 can
have a huge number of solutions in that case. As we intend to use the reconstruction problem from one projection as a
building block in an iterative algorithm that uses information from all projections, we augment the projection difference
with an additional term, that allows for the incorporation of prior knowledge to select a particular reconstruction among all
solutions.

Problem 3. Let A ⊂ Z2. Let S be a partition of A. Let Q ∈ PS andW : A→ Z be given functions. Let α, t ∈ Z, 0 ≤ t ≤ |A|.
Find F ⊂ A such that |F | = t and

α
∑
S∈S
|PSF (S)− Q (S)| −

∑
(i,j)∈A

W (i, j)F(i, j)

is minimal.

For a pixel (i, j) ∈ A, we refer to the valueW (i, j) as its pixel weight. The pixel weights allow for the incorporation of prior
knowledge in the reconstruction problem.
We first consider a special case of Problem3,whereα >

∑
(i,j)∈A |W (i, j)|. In this case, for any solution F ⊂ A of Problem3,

the projection distance D(F) = |PSF (S) − Q (S)| must be minimal. For any z ∈ Z, define |z|+ = max(z, 0). For any F ⊂ A
with |F | = t we have

t = U(Q )+
∑
S∈S
(|PSF (S)− Q (S)|

+
− |Q (S)− PSF (S)|

+). (4)

Hence,

D(F) =
∑
S∈S
(|PSF (S)− Q (S)|

+
+ |Q (S)− PSF (S)|

+) = 2
∑
S∈S
|PSF (S)− P(S)|

+
+ U(Q )− t. (5)

Therefore, only the sets F ⊂ Awith |F | = t that minimize
∑
S∈S |P

S
F (S)− P(S)|

+ can be a solution of Problem 3.
Note that if t ≤ U(Q ), D(F) is minimal iff PSF (S) ≤ P(S) for all S ∈ S. In this case we can use a simple greedy algorithm

to solve Problem 3: order the elements (i, j) of A in decreasing order ofW (i, j). Starting with an empty set F , iteratively add
new elements to F , each time choosing the (i, j) ∈ Awith highest weightW (i, j) such that the set sum of its corresponding
set S does not become larger than Q (S).
If t > U(Q ), D(F) is minimal iff PSF (S) ≥ P(S) for all S ∈ S. Again, Problem 3 can be solved using a greedy algorithm, first

filling up all sets S ∈ S with elements using the highest total weight, and then adding t − U(Q ) additional elements to F
that have the highest pixel weight.
Sorting the elements of |A| in decreasing order ofW (i, j) takes timeO(n log n). Therefore, Problem 3 can be solved in time

O(n log n) if α >
∑

(i,j)∈A |W (i, j)|.
We will now describe how Problem 3 can be solved as a minimum cost flow problem in a graph, also if α ≤∑
(i,j)∈A |W (i, j)|. For an introduction to the theory of network flows, we refer to the book [16].
With a given instance of Problem 3, we associate a directed graph G = (V , E), called the associated graph. The basic

structure of this graph is shown in Fig. 3a. It contains a node S (the source), a node T (the sink) and one layer of nodes for
each set in Sa ∈ S, called set nodes. Put k = |S|. We label the set nodes as S1, . . . , Sk.
To each edge e ∈ E, we assign a cost c(e) and a capacity u(e). There are two edges from the source node S to each set

node Sa, labeled by (S, Sa)r and (S, Sa)e and having capacities Q (Sa) and |Sa| − Q (Sa) respectively.
The edge (S, Sa)r is called a regular set edge, whereas the edge (S, Sa)e is called an excess set edge. Each regular set edge is

assigned a cost of 0; each excess set edge is assigned a cost of 2α.
For every (i, j) ∈ A, there is exactly one edge eij = (Sa, T ) ∈ E connecting a set node to the sink node, corresponding to

the set Sa that contains (i, j). These edges are called the pixel edges (depicted as squares in Fig. 3). All pixel edges eij have a
capacity of 1 and a cost of−W (i, j).
A mapping Y : E → Z is called an integral flow in G if

∑
(v,w)∈E Y (v,w) =

∑
(w,v)∈E Y (w, v) for all w ∈ V \ {S, T }. The

flow Y is called admissable if 0 ≤ Y (e) ≤ u(e) for all e ∈ E and set optimal if

Y ((S, Sa)r) = min

(
Q (S),

∑
(i,j)∈Sa

Y (i, j)

)
for all Sa ∈ S.

A set optimal flow uses the excess set edges only in case the corresponding regular set edge is completely saturated. Let Y
be the set of all set optimal flows in G. We remark that any Y ∈ Y is completely determined by its value Y (i, j) in the pixel
edges of G. There is a 1-1 correspondence between the set A = 2A of all subsets of A and the set optimal flows in G, induced
by the mappingΦ : 2A → Y:

Φ(F)(eij) = F(i, j).
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Fig. 3. (a): Structure of the associated graph for Problem 3 (single projection); (b): Structure of the associated graph for Problem 4 (two projections).

Let F ⊂ A. The total cost of the flow YF = Φ(F) is given by

C(YF ) =
∑
e∈E

c(e) = −
∑
(i,j)∈F

W (i, j)+ 2α
∑
S∈S
|PSF (S)− Q (S)|

+. (6)

Using Eq. (5), we obtain

C(YF ) = −
∑
(i,j)∈F

W (i, j)+ α
∑
S∈S
|PSF (S)− Q (S)| − αU(Q )+ αt. (7)

Since both U(Q ) and t are constant, Problem 3 is equivalent to the problem of finding a minimum cost integral flow of
size t in the associated graph. The problem of finding a minimum cost flow of a predefined size in a graph can be solved in
polynomial time. A variety of algorithms are available for computing minimum cost flows, see [16] for an overview.

4.2. Reconstruction from two projections

Similar to Problem 3, we define a reconstruction problem using two of the available projections.

Problem 4. Let A ⊂ Z2. Let S1, S2 be partitions of A. Let Q1 ∈ PS1 ,Q2 ∈ PS2 andW : A→ Z be given functions. Let α, t ∈ Z,
0 ≤ t ≤ |A|. Find F ⊂ A such that |F | = t and∑

S∈S1

|PS1F (S)− Q1(S)| +
∑
S∈S2

|PS2F (S)− Q2(S)| −
∑
(i,j)∈A

WijF(i, j)

is minimal.

Problem 4 can be solved similarly to Problem 3, using an associated graph that contains an extra layer of set nodes (see
Fig. 3b). The basic idea of using network flowmethods for the reconstruction of binary images from two projectionswas first
described by Gale in 1957 [17], in the context of reconstructing binarymatrices from their row and column sums. Contrary
to Problem 3, a greedy approach cannot be used here, even if α is very large. The associated graph for Problem 4 contains an
additional layer of set nodes, corresponding to the sets in the second partition. Each set node Sb in the second layer contains
a regular set edge and an excess set edge to the sink node T , having capacities Q2(Sb) and |Sb| − Q2(Sb) respectively. Again,
any set optimal flow is completely determined by the flow through the pixel edges.
The cost of a set optimal flow YF = Φ(F) is given by

C(YF ) = −
∑
(i,j)∈F

W (i, j)+ α

(∑
S∈S1

|PS1F (S)− Q1(S)| +
∑
S∈S2

|PS2F (S)− Q2(S)|

)
− α(U(Q1)+ U(Q2)− 2t). (8)

Hence, Problem 4 can be solved by computing a minimum cost flow in the associated graph.
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Fig. 4. Basic steps of the generic iterative subset algorithm.

5. Reconstruction frommore than two projections

As described in the previous section, the reconstruction problem for one and two projections can be solved efficiently.
Unfortunately, the reconstruction problem for more than two projections is often NP-hard, depending on the particular
projection model used. The reconstruction problems for one and two projections are usually highly underdetermined and
a large number of solutions may exist. In [15], an iterative algorithm was proposed that uses a network flow algorithm for
the two-projection problem as a subroutine, solving a new problem in each iteration. The algorithm was specifically aimed
at discrete X-ray projections. We will now describe a generalization of this iterative approach, that can be used for arbitrary
projection models (i.e., induced by arbitrary partitions), and uses either an algorithm for the single projection problem or
the two-projection problem to solve the subproblems. Fig. 4 shows the basic steps of our algorithm. In the next subsections,
we describe each of the algorithmic steps in more detail.

5.1. Selection of projections

In every iteration of the algorithm a new subset of the projections (either one or two) is selected to be used as a
new subproblem. There are several sensible ways for choosing this subset. In [15], experiments were performed using a
fixed, predefined order for choosing the projections. For the experiments in Section 6, we repeatedly select the subset of
projections that has the largest projection distance. In this way, projections that have been used in recent iterations are
unlikely to be selected again.

5.2. Computing the pixel weights

In each iteration k, a one- or two-projection problem is solved, corresponding to a subset of the available projections. The
solution from the previous iteration is used to determine the pixel weightsW k(i, j) for the new reconstruction problem.
In the computation of the pixel weights, a preference for smooth local regions of pixels is incorporated. The weight of a

pixel depends not only on the corresponding pixel value in the previous solution F k−1, but also on the values of pixels in a
neighbourhood, assigning higher weights to pixels having a homogeneous neighbourhood. In our experiments, we used the
4-neighbourhood of each pixel for computing the pixel weights.
For any (i, j) 6∈ A, define F k−1(i, j) = 0. Let β > 0. Put

f (i, j) =
1

1+ 4β
(F k−1(i, j)+ β(F k−1(i− 1, j)+ F k−1(i+ 1, j)+ F k−1(i, j− 1)+ F k−1(i, j+ 1))). (9)

We used β = 1 for all experiments in Section 6, which corresponds to all pixels in the 4-neighbourhood (including the
central pixel) having the same influence on the pixel weight.
Put R>0 = {x ∈ R : x > 0}. Let g : [0, 1] → R>0 be a non-decreasing odd function (i.e., g(x) = −g(−x)), which we

call the local weight function. This function determines the preference for locally smooth regions. The pixel weightW (i, j) is
computed as an integer-valued approximation of the local weight function:

W k(i, j) = round
(
K · g

(
f (i, j)−

1
2

))
, (10)

where K is a large integer.
When we take g(f ) = 1 for all f ∈ [0, 1], there is no preference for local smoothness. In that case, the solution of the

new network flow problem will simply have the same value as F in as many pixels as possible. If no prior knowledge is
used at all in the reconstruction (i.e. no preference for smooth regions), the iterative algorithm generally produces very bad
reconstructions and does not converge.
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If we choose g to be an increasing function, pixels surrounded by other pixels having the same value are preferred to
retain their value in the next reconstruction. Wewill show in Section 6 that incorporating a preference for local smoothness
in the local weight function results in (empirically) good convergence for images that are relatively smooth. We used the
linear local weight function g(x) = x for all experiments in Section 6.

5.3. Termination

As we cannot evaluate how close the current reconstructed image is to the unknown original image, the only measure
for the distance between those two images is the total projection distance. Unfortunately, there may be different images
having the same, or almost the same projections, yet being very different. In all experiments described in Section 6, we
terminated the iterative algorithm if the minimal projection distance found so far has not decreased for 300 iterations.
Admittedly, this is quite a large number. However, as demonstrated in Section 6, the algorithm sometimes tends to remain
at an almost constant projection distance for a large number of iterations, before making substantial improvements again.
If the projection distance reaches 0, the algorithm always terminates immediately.

6. Experimental results

In this section, we present reconstruction results of our algorithm for the three reconstruction problems described in
Section 3.
In all subproblems, both for one and two projections, we use a value of α for which α >

∑
(i,j)∈A |W (i, j)|. For the iterative

algorithm that uses a single projection in each iteration, this means that we can use the fast greedy approach described in
Section 4.1. All experiments were performed using two different versions of the generic iterative algorithm. The first version
solves an instance of Problem 3 (i.e., using one projection) in each iteration. The second version repeatedly solves instances
of Problem 4 (i.e. using two projections).
Our experiments were performed using three phantom images, shown in Fig. 5a, b, c. The first image (simple) contains a

single homogeneous object which is not convex and has a rather complex boundary. The second image (turbine) represents a
turbine blade froma jet engine,which contains severalminor defects. It can be used to assess the ability of the reconstruction
algorithm to reconstruct small details. The third image (cylinder) represents a cross-section of a cylinder head from an
engine. All three phantom images have a size of 512× 512 pixels.
To compare our approach with a common method from continuous tomography, we implemented the Kaczmarz

algorithm as described in [1]. In this algorithm, the reconstruction problem is considered as a large system of real-valued
linear equations. Let F̃ ∈ R|A|, where the elements of the vector F̃ correspond 1-to-1 with the elements of A. We denote the
element of F̃ that corresponds to (i, j) ∈ A by F̃(i, j).
For each partition Si and each set S ∈ Si, the system contains the equation∑

(i,j)∈S

F̃(i, j) = Qi(S).

The Kaczmarz algorithm iteratively solves the system of equations, applying sequential update steps for all equations.When
solving a binary tomography problem as a real-valued problem, we may assume that F̃(i, j) ∈ [0, 1] for all (i, j) ∈ A.
Therefore, we set F̃(i, j) = 0 whenever the value for pixel (i, j) becomes less than 0 during the algorithm, and set F̃(i, j) = 1
whenever it becomes greater than 1. For binary images, this operation results in far better reconstructions compared to
the original Kaczmarz algorithm, where no such bounds are used. We define one iteration of the Kaczmarz algorithm as a
series of sequential updates corresponding to all sets in a single partition. In our experiments, the ordering of the sequence
of partitions is chosen randomly and the algorithm is terminated after 10000 iterations. The Kaczmarz algorithm has been
used in numerous variations in continuous tomography. Chapter 7 of [1] provides an overview of the more general class
of algebraic reconstruction algorithms. The most prominent example, which is widely used in practice, is the Algebraic
Reconstruction Technique (ART) [18].
For comparing the Kaczmarz algorithm with our iterative subset algorithms, the continuous reconstruction computed

by the Kaczmarz algorithm needs to be segmented to obtain a binary image. We used thresholding with a fixed threshold
of 0.5 in all experiments. One could argue that setting the threshold at 0.5 can introduce a bias in the segmentation results,
but we did not obtain better results using different values for the global threshold.
We implemented the iterative subset algorithm and the Kaczmarz algorithm in C++. For solving the network flow

problems we used the CS2-library by Andrew Goldberg; see [19] for a description of the network flow algorithm. All
experiments were performed on an Intel Core Duo E6700 PC using a single core (i.e., no parallelism).
In the next three subsections, we describe the experimental results for discrete X-rays, sliding window projections and

continuous X-rays, respectively.
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(a) Simple phantom. (b) Turbine phantom. (c) Cylinder phantom.

(d) Rectangular scan,
Kaczmarz.

(e) Rectangular scan, Kaczmarz. (f) Rectangular scan, Kaczmarz.

(g) Rectangular scan, GIS. (h) Rectangular scan, GIS. (i) Rectangular scan, GIS.

(j) Cont. X-rays, Kaczmarz. (k) Cont. X-rays, Kaczmarz. (l) Cont. X-rays, Kaczmarz.

(m) Cont. X-rays, GIS. (n) Cont. X-rays, GIS. (o) Cont. X-rays, GIS.

Fig. 5. Phantom images and magnified selections of their reconstructions. a, b, c: Three phantom images. d, e, f: Reconstructions computed using the
Kaczmarz algorithm from 16 sliding window projections. g, h, i: Reconstructions computed using our generic iterative subset algorithm (GIS) from 16
sliding window projections. j, k, l: Reconstructions computed using the Kaczmarz algorithm from 5, 7 and 10 continuous X-ray projections respectively.
m, n, o: Reconstructions computed using GIS from continuous X-rays.
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Fig. 6. Projection distance for the cylinder phantom using 9 discrete X-ray projections, as function of the iteration number.

6.1. Discrete X-rays

Table 1 shows the reconstruction results for the three phantom images, using discrete X-ray projections, as described in
Section 3.1. For each of the phantoms, a certain minimum number of projections is required to obtain a reasonably accurate
reconstruction. For each phantom and each algorithm, three experiments were performed using an increasing number of
projections.
For every experiment using k projections, the directions (a1, b1), . . . , (ak, bk) from the set

{(a1, b1), . . . , (a12, b12)}
= {(1, 0), (0, 1), (1, 1), (1,−1), (1, 2), (2, 1)(1,−2), (2,−1), (1, 3), (3, 1), (1,−3), (3,−1)}

were used.
The table shows results for the Kaczmarz algorithm and for our iterative subset algorithm, both using one and two

projections per iteration. For each experiment, the total number of iterations, the total number of pixel errors in the
reconstruction (i.e. different from the phantom image) and the projection distance of the reconstruction are shown.
For each phantom, the number k of projections that is needed for an accurate reconstruction is different. We determined

this number experimentally and performed experiments using k− 1, k and k+ 1 projections.
When a sufficient number of projections are used, the iterative algorithm computes highly accurate reconstructions,

both using one and two projections. The algorithm that uses two projections in each iteration is consistently capable of
finding a perfect reconstruction, identical to the phantom. The algorithm that uses only one projection in each iteration only
computes a perfect reconstruction for the ‘‘simple’’ phantom. If too few projections are used for the ‘‘simple’’ phantom (i.e., 4
projections), the pixel error of the Kaczmarz algorithm is even smaller than the pixel error for the iterative subset algorithms.
However, the projection distance for the Kaczmarz algorithm is much larger than for the iterative subset algorithms.
Fig. 6 shows the total projection error for the three methods, as a function of the iteration number. The graph indicates

that the iterative subset algorithmdoes not converge at a regular rate. It sometimes remains at an almost constant projection
distance for a large number of iterations, afterwhich improvement is again achieved.Weobserved similar behaviour inmany
of the experiments.
To compare the running times of the Kaczmarz algorithm and both iterative subset algorithms experimentally, additional

experiments were performed for the cylinder phantom, using scaled versions of the original phantom of various sizes. Fig. 7
shows the average time per iteration, as a function of the (square) phantom size. The iterative subset algorithm clearly does
not scale as well as the other two approaches, yet it can still be used effectively for images of sizes up to 1000× 1000 on a
modern computer. We remark that for larger images, the number of iterations may also increase.

6.2. Rectangular scan

Table 2 shows the reconstruction results for the three phantom images, using rectangular scan projections, as described
in Section 3.2.
All experiments were performed using a window of size (p, q) = (32, 32). The partitions Sa,b were selected randomly

from the 32 × 32 possible projections, using the same random sequence in all experiments. For every experiment using k



448 K.J. Batenburg, J. Sijbers / Discrete Applied Mathematics 157 (2009) 438–451

Table 1
Discrete X-ray projections

Phantom #projections Subproblem #iterations Pixel error Proj. dist.

4 Kaczmarz 10000 16138 10319
4 1 proj. 1 481 1476 11918
4 2 proj. 826 808 17528

5 Kaczmarz 10000 5863 2637
Simple 5 1 proj. 220 0 0

5 2 proj. 104 0 0

6 Kaczmarz 10000 3668 1113
6 1 proj. 102 0 0
6 2 proj. 37 0 0

8 Kaczmarz 10000 28212 16462
8 1 proj. 905 7334 19914
8 2 proj. 1 115 4856 18868

9 Kaczmarz 10000 22604 11420
Cylinder 9 1 proj. 1 861 1584 272

9 2 proj. 1 198 0 0

10 Kaczmarz 10000 22442 10051
10 1 proj. 1 146 1594 224
10 2 proj. 571 0 0

5 Kaczmarz 10000 8941 6239
5 1 proj. 1 133 1752 5756
5 2 proj. 2 042 938 7476

6 Kaczmarz 10000 5964 2977
Turbine 6 1 proj. 894 464 130

6 2 proj. 284 0 0

7 Kaczmarz 10000 4900 1644
7 1 proj. 922 318 60
7 2 proj. 76 0 0

Quantitative comparison between the threshold result of the Kaczmarz algorithm and the proposed reconstruction methods with subproblems based
on 1 and 2 projections. The table shows the number of projections used, the number of iterations, the total number of pixel differences between the
reconstruction and the original phantom (pixel error), and the projection distance of the reconstructed image (proj. dist.).

Fig. 7. Average time per iteration of the cylinder phantom using 12 discrete X-ray projections, as function of the phantom size n. For each size n, the
original 512× 512 phantom is scaled to size n× n.

projections, the window positions (a1, b1), . . . , (ak, bk) from the set

{(a1, b1), . . . , (a16, b16)} = {(6, 7), (19, 9), (31, 17), (12, 10), (13, 9), (11, 26), (27, 18), (6, 3), (2, 28), (24, 20),
(8, 27), (13, 7), (26, 22), (3, 14), (31, 19), (26, 9)}

were used.
Fig. 5d, e, f shows the reconstruction computed from 16 projections by the Kaczmarz algorithm, before thresholding is

applied. Fig. 5g, h, i, shows reconstructions computed from the same 16 projections by our iterative algorithm, using two
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Table 2
Rectangular scan (32× 32)

Phantom #projections Subproblem #iterations Proj. dist. Pixel error

8 Kaczmarz 10000 14926 3769
8 1 proj. 554 652 992
8 2 proj. 1 095 18 712

12 Kaczmarz 10000 12108 2562
Simple 12 1 proj. 1 230 1010 838

12 2 proj. 540 172 418

16 Kaczmarz 10000 13296 2133
16 1 proj. 805 1432 702
16 2 proj. 469 380 378

8 Kaczmarz 10000 33812 10129
8 1 proj. 2 043 1544 3248
8 2 proj. 1 025 368 2810

12 Kaczmarz 10000 31004 7286
Cylinder 12 1 proj. 1 163 2446 2454

12 2 proj. 1 092 804 1496

16 Kaczmarz 10000 31718 5898
16 1 proj. 697 3244 2082
16 2 proj. 601 1360 1478

8 Kaczmarz 10000 17032 6038
8 1 proj. 988 974 2286
8 2 proj. 848 258 1744

12 Kaczmarz 10000 14972 4494
Turbine 12 1 proj. 654 1480 1512

12 2 proj. 862 554 1032

16 Kaczmarz 10000 14934 3596
16 1 proj. 729 2158 1320
16 2 proj. 852 848 774

Quantitative comparison between the threshold result of the Kaczmarz algorithm and the proposed reconstruction methods with subproblems based
on 1 and 2 projections. The table shows the number of projections used, the number of iterations, the total number of pixel differences between the
reconstruction and the original phantom (pixel error), and the projection distance of the reconstructed image (proj. dist.).

projections in each iteration. It is quite remarkable that high quality reconstructions can be obtained based using only 16
out of the 1024 possible projections. For the turbine phantom, some of the fine details are reconstructed accurately, while
other details do not show up properly in the reconstruction.
The results show that the iterative subset algorithm, both for one and two projections per iteration, consistently

produce much better reconstructions compared to the Kaczmarz algorithm. In all experiments, the algorithm that uses two
projections in each iteration finds a reconstruction with fewer pixel errors than the algorithm based on a single projection
per iteration.

6.3. Continuous X-rays

Table 3 shows the reconstruction results for the three phantom images, using continuous X-ray projections, as described
in Section 3.3.
For each experiment, continuous X-ray projections were computed for an array of equally spaced detectors (having

a width equal to the pixel size), based on Eq. (3). The projections were computed by numerical integration, where the
phantoms are assumed to have a constant value (either 0 or 1) within each pixel. Note that the projections measured by
the detector array are real-valued. The integer-valued projections that are required for Problem 2 were computed from the
real-valued detector data by linear interpolation and rounding of the result. The resulting sequence of projections is very
likely to be inconsistent, due to rounding and interpolation errors when converting from continuous to discrete projection
data.
For every experiment using k projections, the projection angles {θ1, . . . , θk} are spaced equally within the interval [0, π]:

θi :=
(i−1)π
k .

Similar to the case of discrete X-rays, each phantom requires a certain minimum number k of projections to be
reconstructed with reasonable accuracy. We determined this number experimentally and performed experiments using
k− 1, k and k+ 1 projections.
Fig. 5j, k, l shows the reconstruction of the simple, turbine and cylinder phantom, computed from 5, 7 and 10 projections,

respectively by the Kaczmarz algorithm, before thresholding is applied. Fig. 5m, n, o shows reconstructions computed from
the same projections by our iterative algorithm, using two projections in each iteration.
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Table 3
Continuous X-ray projections

Phantom #projections Subproblem #iterations Proj. dist. Pixel error

4 Kaczmarz 10000 16324 10370
4 1 proj. 1 064 1424 15063
4 2 proj. 902 758 16109

5 Kaczmarz 10000 3436 1399
Simple 5 1 proj. 450 989 272

5 2 proj. 733 731 378

6 Kaczmarz 10000 2734 762
6 1 proj. 497 1158 268
6 2 proj. 338 780 38

9 Kaczmarz 10000 32375 16902
9 1 proj. 1 141 7930 20985
9 2 proj. 1 032 4838 20895

10 Kaczmarz 10000 16988 7191
Cylinder 10 1 proj. 953 4282 1164

10 2 proj. 608 3156 788

11 Kaczmarz 10000 16993 6495
11 1 proj. 789 4942 1186
11 2 proj. 629 3816 1024

5 Kaczmarz 10000 11837 6632
5 1 proj. 1 381 1707 9618
5 2 proj. 1 550 955 8244

6 Kaczmarz 10000 9500 4972
Turbine 6 1 proj. 1 847 1964 4278

6 2 proj. 1 639 862 316

7 Kaczmarz 10000 8911 3590
7 1 proj. 746 1775 640
7 2 proj. 584 1285 564

Quantitative comparison between the threshold result of the Kaczmarz algorithm and the proposed reconstruction methods with subproblems based
on 1 and 2 projections. The table shows the number of projections used, the number of iterations, the total number of pixel differences between the
reconstruction and the original phantom (pixel error), and the projection distance of the reconstructed image (proj. dist.).

When a sufficient number of projections are used, the iterative algorithm computes highly accurate reconstructions, both
using one and two projections. In most cases, the algorithm that uses two projections in each iteration computes a slightly
better reconstruction compared to the algorithm that uses only one projection per iteration. For the turbine phantom, the
difference is even substantial.

7. Conclusions

Wehave described an iterative algorithm for reconstructing binary images from their projections. The algorithm is based
on the approach from [15], but is much more general. A variety of tomographic reconstruction problems fit within the
proposed projection model, based on arbitrary partitions of the image pixels. For three of these problems, dealing with
discrete X-rays, continuous X-rays and sliding window projections, we performed experiments based on three phantom
images.
The results consistently show that a certain minimum number of projections is required to obtain an accurate

reconstruction using our iterative algorithm. The number of required projections depends on the image being reconstructed.
If sufficient projections are used, the iterative algorithm produces highly accurate reconstruction results for each of the
phantom images. The boundary between ‘‘too few’’ projections and ‘‘enough’’ projections appears to be fairly sharp in all
cases.
A natural question in these experiments concerns the relation between certain properties of the original image and the

number of projections that are required for an accurate reconstruction. So far, our research on this question has not resulted
in a simple model for predicting the required set of projections based on features of the original image.
When sufficiently many projections are used, the version of the iterative algorithm that uses two projections in each

iteration consistently produces more accurate reconstructions than the version that uses only a single projection. On the
other hand, the single projection problem can be solved much more efficiently than the two-projection problem and is
easier to implement. Both versions are capable of computing reconstructions that are far more accurate than the Kaczmarz
algorithm.
In this paper we have focused on the reconstruction of two-dimensional images. Our proposed model for iterative

network flow algorithms deals with general partitions of the set of image elements (i.e. pixels) and does not require
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the images to be two-dimensional: it can be used for three-dimensional reconstruction as well. In [20] it was already
demonstrated that for discrete X-rays, iterative network flow algorithms can be used effectively for the reconstruction of
three-dimensional binary images.
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