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Abstract. In this paper, we describe a framework to build a combined statis-
tical shape model (SSM) of the outer surface of the scalp and the inner and outer
surface of the skull of the human head. Such an SSM is a valuable tool when
designing headgear, as it captures the variability of head geometry of a given
population, enabling detailed analysis of the relation between the shape of the
scalp and the skull. A combined SSM of the head may allow to work towards
population based Finite Element (FE) models e.g. for safety and comfort pre-
dictions when wearing headgear. Therefore, a correspondence between the skull
and scalp surfaces, originating from MRI scans, is determined using elastic
surface registration. The combined SSM shown to be compact, to be able to
generalize to unseen instances by adjusting the shape parameters and to be shape
specific. Therefore, we can assure that, by adjusting the shape parameters, a
broad range of realistic head shapes can be formed.

Keywords: Statistical shape model � Human head � Scalp � Skull � Headgear �
SSM

1 Introduction

A statistical shape model (SSM) of the human head is a valuable tool to design
headgear, because it captures the variability of head geometry of a population. SSMs
are built from 3D scans of a population of shapes. Therefore, they contain much more
information than traditional anthropometrical measurements. When designing head-
gear, SSMs can be employed for ergonomic optimization warranting an optimal fit of
the product to the geometry of the head, for a target population [1].

Insight in 3D skin and bone thickness of the human head for specific populations
may help to avoid local peak pressure on the head while wearing a helmet in future
helmets. Additionally, it may enhance the accuracy of Finite Element (FE) models of
the human head that aim at predicting brain damage. The soft tissue layer is expected to
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be a contributing parameter in the kinematics of head movement during head impact to
affect rotational acceleration and velocity of the human brain. The bone tissue layer is a
contributing parameter in the prediction of linear acceleration of the human brain
during head impact.

A combined SSM of the head may allow to work towards population based FE
models for safety and comfort predictions when wearing headgear. Such an FE head
model can be used in simulations, to predict the impact on the head in accidents that
cause trauma injuries to determine regional responses [2–5]. Typical FE head models
are based on one head shape or the average head, calculated from a population [6–8].
A typical example is the Strasbourg University Finite Element Head Model [9, 10].
This is a very detailed FE model of the human head, with many internal structures
included, and based on a single skull. By building an FE model from an SSM, it is
adjustable in shape [2, 11], what can lead to more accurate, customizable FE models.
Such a statistical FE model is especially useful when designing helmets [5, 12],
because the impact on the head in an accident can be studied on different shapes and
sizes of human heads, and thus improve the biofidelic characteristics of current FE head
models for impact.

Most SSMs of the head only describe the outer skin layer of the head and do not
contain information about the thickness of the scalp and the skull [1, 13, 14], while this
information is important for e.g. predicting local skin pressure on the head. Claes et al.
[15] constructed a combined SSM of the face shape and soft tissue depths for forensic
facial reconstruction on an unidentified person’s skull. Their technique is labor-
intensive, as the researchers had to place manually indicated anatomical landmarks on
the surface and measure soft tissue depths at 52 locations.

In this paper, we describe a technique for building a combined SSM of the human
head, more specifically, the outer surface of the scalp and the inner and outer surface of
the skull. The paper is organized as follows. First, the segmentation of the 3D surfaces
from the MRI scans is detailed. Second, the construction of a combined SSM is
explained. Next, in the results section, the SSM is subject to quality tests to evaluate the
model’s compactness, generalizability and shape specificity. Finally, the results are
discussed and a conclusion is formulated.

2 Methods

Scalp and skull surfaces are separately segmented from MRI datasets. A reference
mesh (a uniformly resampled surface from the dataset) is constructed for the scalp and
for the skull, and is registered to all input meshes of each layer, to obtain a homologous
point-to-point correspondence. Next, an average mesh is calculated for both the scalp
and skull and used as template to register the input scalp and skull meshes for the
second time to prevent a biased result. Then, the registered scalp and skull of each
subject are merged again.

A combined SSM is built using Principal Components Analysis (PCA) on the
corresponded heads. In this SSM, the average surface and skull thickness, and the main
variances are incorporated. The process is shown in Fig. 1.
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The training population consisted of 85 MRI T1-FFE-weighted scans (male and
female, aged between 20 and 40 years, Western Population) originating from the
International Consortium for Brain Mapping (ICBM) database [16]. The scans were
acquired using a Philips ACS III 1.5 T scanner in the sagittal acquisition plane, with a
slice thickness of 1 mm, an echo time of 10 ms, a repetition time of 18 ms and a flip
angle of 30°.

2.1 Segmentation

From magnetic resonance imaging (MRI) scans, the scalp and the skull are separately
segmented using the Statistical Parametric Mapping (SPM12) [17] package from
MATLAB and converting the outcome to 3D meshes. The skin corresponds with layer
3 and the skull corresponds with layer 4 in SPM12. Scalp and skull were constructed
separately by segmentation as different surfaces, because finding correspondences
between nearby components is error-prone.

MRI Scans
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Fig. 1. Framework for building a combined SSM of the skull and scalp.
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2.2 Statistical Shape Model (SSM)

In this section, the methodology to build a combined skull/scalp SSM is described. The
algorithm is based on a previously developed elastic surface registration algorithm [18].
The first part of the framework is surface registration. The registered surfaces are used
in the second part of the framework, where an SSM is built. The method is applicable
to other layered surfaces as well.

Surface Registration. The first step of surface registration is a rigid alignment.
Therefore, in both surfaces corresponding points are identified. This is done by casting
a normal ray from each vertex of the reference surface to the target surface. When the
normal of an intersection point is in the same direction (within a tolerance) as the
normal of the point on the reference surface, that point can be considered corre-
sponding. Another restriction for corresponding points is that the normal may not
intersect the surface multiple times before reaching the corresponding point. The
corresponding points serve as landmarks for a least-squares rigid alignment step.

In the elastic part of the registration the vertices are allowed to translate separately,
while motion is restricted by a stiffness parameter that regulates the strength of the
connection with the neighboring vertices and which decreases throughout the itera-
tions. In this way, the movement of neighboring vertices is constrained, resulting in
similar movements for nearby vertices. By applying weights to each vertex, the
importance of this vertex can be set. If a corresponding point is found, its weight is set
to 1.0. If no corresponding point for a vertex of the target mesh can be found, its weight
is set to zero. In that case, this vertex simply translates along with its neighboring
vertices.

Building a Statistical Shape Model. In the second part of our framework, an SSM is
built based on the correspondences of N shapes, with every shape consisting of n
vertices, that resulted from the surface registration [19]. To build an SSM, it is
important that the surfaces are superimposed by optimally translating and rotating the
surfaces to minimize the distance between corresponding points. In this way, shape
information is maximally compressed. The optimal poses are determined by Procrustes
analysis. The SSM is built by performing principal components analysis (PCA) on the
corresponding points of the population.

In this SSM, the mean surface �x 2 R
3n and the main variances or PC modes,

represented by P 2 R
3n�ðN�1Þ, are incorporated. The population of N shapes is rep-

resented by an 3n-dimensional point cloud, where each point represents a shape as a
3n-dimensional vector of vertices. This cloud can be represented by N � 1 eigenmode
vectors, where the first eigenmode is the largest variance in the population, the second
eigenmode is the second largest variance perpendicular to the first, etc. This means that
a new surface vector y 2 R

3n can be formed by adapting the SSM parameters as
follows

y ¼ �xþPb; ð1Þ

with b 2 R
N�1ð Þ the vector which contains the SSM parameters.
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3 Experiments and Results

In this section, the results of the framework are described.

3.1 Segmentation

In the dataset, none of the skulls were completely segmented, because the SPM12
package was constructed with a focus on brain mapping and works with a spatially
limited skull template. The dataset was sufficient for our research, because we work on
comfort of helmets and therefore focus on the upper part of the head. A slice of the
head of a test subject and the resulting skull and scalp surfaces are shown in Fig. 2.
Note that in some scans a bar is visible on the top of the head, because the heads of the
subjects from the ICBM are fixated. This bar is not visible in the model, because a
smooth template surface served as input for the elastic surface registration to reduce
protrusions and other irregularities. Remaining irregularities were averaged out by
calculating the SSM.

3.2 Statistical Shape Model (SSM)

The scalp and the skull were separately segmented from each head scan, and were both
registered by the same template surfaces. The skull template surface was uniformly
resampled to 100041 vertices, the scalp template surface was uniformly resampled to
89389 vertices. After the surface registration, both scalp and skull of the same subject
were merged to become a combined surface, as shown in Fig. 3.

In Fig. 4, the first three PC modes of the SSM, built from combined surfaces, are
shown. These shape modes describe the shape variations inside the population. The
first mode describes mainly the size of the head, the second mode describes the
width-length ratio of the head, and the third mode describes mainly the curvedness of
the skull.

Fig. 2. Slice of a head scan and a segmented scalp and skull. Note that the skull is not fully
segmented, because SPM12 focuses on the brain. A bar is noticeable on the top of the head.
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Fig. 3. Uniting the separate skull and scalp from Fig. 2 to result in a combined surface.

mean +3-3

mode 1 

mode 2 

mode 3 

Fig. 4. First three eigenmodes of the combined SSM of the human scalp and skull.
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3.3 Model Performance

Compactness, generalization ability, and specificity are widely used measures [20, 21]
for quantifying the correspondence quality of an SSM. In this section, the different
model performance measures were calculated for the combined SSM and the separate
SSMs of the skull and the head.

Compactness. Compactness of a shape model is a measure how well a shape from the
population is described by a limited amount of PC modes. Preferably, an SSM is
approximated well with few modes. The compactness is expressed as the sum of
variances of the SSM:

CðmÞ ¼
Xm

i¼1
ki; ð2Þ

where ki is the variance on the vertex locations in shape mode i, and CðmÞ is the
compactness using m modes.

The results are shown in Fig. 5. To describe over 80% of the shape variation inside
the population of combined head shapes, six shape modes were needed. Thirteen shape
modes describe over 90% of the shape variation. Therefore, our combined SSM is a
compact representation of the population.

An example of a surface represented by different numbers of modes is shown in
Fig. 6. Using more parameters led to a shape that looked more like the original shape.
The more parameters that are used to reconstruct a shape, the less difference is
noticeable.
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Fig. 5. Compactness graph. The average deviation from the mean shape to describe shapes with
a specific number of shape modes is shown.
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Generalizability. Generalizability relates to how well the SSM can generalize to a
formerly unseen head shape. The SSM should be able to describe all head shapes, not
only the head shapes of the training set. If an SSM is over-fitted to the training set, it
will not be able to generalize to unseen samples.

Generalizability GðmÞ was measured by performing leave-one-out tests, where an
SSM was built by using all training shapes but one. Next, the left-out shape was
described by adapting the shape parameters of the SSM. Generalizability was calcu-
lated as the mean error over all left out shapes,

GðmÞ ¼ 1
Nm

Xm

i¼1
kxi � x0i mð Þk2; ð3Þ

where xi is the left out shape and x0iðmÞ is the attempted description using the SSM with
m modes. The number of trials, or objects in the SSM, is represented by Nm.

In Fig. 7, the generalizability graph is shown. The generalizability error was cal-
culated in mm per vertex. The error of fitting a scalp and skull to an unseen instance

1 2 4 8 16 32original

Fig. 6. Shape generated with a different number of shape modes. Note the difference in shape of
the cheekbones and jaw. The difference between a surface reconstructed by 16 shape modes and
32 shape modes is minimal.
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Fig. 7. The generalizability measure, in mm per vertex. The error flags represent the standard
errors on the mean distance.
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was 2.2 mm from five shape modes. Using 20 shape modes, the error was smaller than
1.5 mm. Note that the error for the scalp and skull separately was smaller than the error
of the merged surface. This can be explained by the fact that the shape of both scalp
and skull were dependent on each other. In future work, we will improve this by
corresponding the scalp and skull together instead of corresponding them separately.

Specificity. A specific SSM can only represent instances of the object class that are
similar to those in the training set. This was measured by generating an amount of
shapes Nr ¼ 1000ð Þ by generating a random parameter vector with m modes. Each
sample was compared to the most similar shape in the training set. The specificity
measure can be expressed as

GðmÞ ¼ 1
Nm

Xm

i¼1
kxi � x0i mð Þk2; ð4Þ

with x0i a shape example generated by the SSM and xi the nearest member of the
training set.

In Fig. 8, the specificity graph is shown. The specificity error was calculated in mm
per vertex. The specificity test proved that our SSMs were able to generate shapes that
resemble those in the training set, even though they differ from the shapes in the
training set. The specificity error for the combined SSM is greater than the error for the
separate SSMs. This means that the combined SSM represented more shape variation.
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Fig. 8. The specificity measure, in mm per vertex. The error flags represent the standard errors
on the mean distance.
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4 Discussion

This combined SSM can be used as a virtual ergonomic 3D mannequin in Computer
Aided Design (CAD) environments or as input for Finite Element (FE) and Compu-
tational Fluid Dynamics (CFD) simulations, when designing headgear. For example, it
can be exploited in mass customization of all kinds of headgear systems that are built
from FE models predicting local pressure. Another application is the development
towards patient specific FE head impact models that may give more insight in brain
damage due to accidents and can guide medical staff members during brain surgery.

The SSM is a compact representation of the population, because only six shape
modes were needed to describe over 80% of the shape population. The model is able to
generalize to an unseen instance, as six modes were sufficient to describe the instance
with a mean error of 2.08 mm. A randomly generated shape using six shape modes is
object specific, but differs from the dataset, since the average distance between a
randomly generated object using six shape modes and the most similar object in the
dataset was 2.77 mm. For helmet designing, a generalizability error of less than 1 mm
is preferable. Our current model has a generalizability error of 1.1 mm when all shape
modes are used to deform the model to an unseen head shape.

5 Conclusion and Further Work

In this work, we proposed a technique to perform statistical shape analysis on com-
bined surfaces of the scalp and skull. Therefore, the relation between the scalp and skull
can be analyzed. The constructed combined SSM is compact, so it can represent heads
with a limited number of parameters with acceptable accuracy. Furthermore, we have
proven that the combined SSM is able to generalize to unseen instances and is shape
specific. Therefore, we can assure that by adjusting the shape parameters, a broad range
of realistic head shapes can be formed. Our presented method is also applicable to other
layered shapes.

The correspondences in the current SSM were split up in a skull part and a scalp
part and merged for building a PCA model. For future work, we envision corre-
sponding the combined surfaces, to assure a better correlation between skull and scalp.

Acknowledgements. This work was supported by the Agency for Innovation by Science and
Technology in Flanders (IWT-SB 141520 and IWT 140881).
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