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Abstract
Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside liv-

ing tissues. As such, it is useful for the investigation of human brain white matter (WM)

connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored resto-

ration techniques and FT algorithms have been developed. However, it is not clear how

accurately these methods reproduce the WM bundle characteristics in real-world condi-

tions, such as in the presence of noise, partial volume effect, and a limited spatial and angu-

lar resolution. The difficulty lies in the lack of a realistic brain phantom on the one hand, and

a sufficiently accurate way of modeling the acquisition-related degradation on the other.

This paper proposes a software phantom that approximates a human brain to a high degree

of realism and that can incorporate complex brain-like structural features. We refer to it as a

Diffusion BRAIN (D-BRAIN) phantom. Also, we propose an accurate model of a (DW) MRI

acquisition protocol to allow for validation of methods in realistic conditions with data imper-

fections. The phantom model simulates anatomical and diffusion properties for multiple

brain tissue components, and can serve as a ground-truth to evaluate FT algorithms,

among others. The simulation of the acquisition process allows one to include noise, partial

volume effects, and limited spatial and angular resolution in the images. In this way, the

effect of image artifacts on, for instance, fiber tractography can be investigated with great

detail. The proposed framework enables reliable and quantitative evaluation of DW-MR

image processing and FT algorithms at the level of large-scale WM structures. The effect of

noise levels and other data characteristics on cortico-cortical connectivity and tractography-

based grey matter parcellation can be investigated as well.

Introduction
One of the biggest challenges the neuroscientific community has been facing is the investiga-
tion of the living brain white matter (WM). The advent of diffusion weighted (DW) MRI in the
1980s [1] has made this investigation feasible. However, many technical limitations affect the
estimation of WM brain features. Acquisition artifacts due to mechanical vibrations [2], noise
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[3], and other imperfections degrade the estimation of WM features significantly. Given the
limited DWMRI scan time for clinical protocols, spatial resolution is often sacrificed to reduce
scan time in clinical protocols. This leads to image degradations such as the partial volume
effect [4–6] and the Gibbs Ringing effect [7, 8]. Patient head motion during acquisition [9, 10]
often causes additional image degradation. In diffusion tensor imaging (DTI, [11]), given the
lower diffusion gradient strength used, the influence of imperfect acquisition is less problem-
atic. However, the diffusion tensor is not suitable to model WM diffusivity at high diffusion
gradient attenuation, nor to detect multiple bundles in crossing fibers regions. In fact at the
voxel level, the WM diffusivity profile is geometrically very complex, which has resulted in the
development of many model-based [12] or model-free [13–16] methods. Consequently, esti-
mating this complex profile in the presence of the aforementioned artifacts is problematic. A
recent publication [17] extensively reviews these methods.

There are many fiber tractography methods that aim to reconstruct the WM fiber connec-
tivity in great detail [5, 18, 19]. However, intra voxel diffusion estimation is influenced by clini-
cal acquisition strategies, e.g., the number of acquired DW directions [20]. Additionally, some
of the streamlines estimated by such fiber tractography (FT) methods may be actually false pos-
itives, whereas smaller WM bundles may not be detected and tracked [21]. As a result, the inter
voxel streamline estimates produced by such (FT) methods are inaccurate. Moreover, FT
techniques are subject to integration [22, 23], termination [24], and over-fitting [25] errors.

Developing brain FT techniques which mitigate those limitations remains a big challenge,
as it is a proper evaluation of tractography. For instance, in [26], a comparison of FT algo-
rithms is presented based on human data acquired with a single b-value of 1000 s/mm2.
Although the results show good agreement between FT techniques, in the absence of a ground
truth data set, such results cannot be conclusive in an absolute sense.

So far, a number of different approaches have been developed to construct a gold-standard
diffusion MRI phantom which can be categorized as software phantoms, hardware phantoms,
and biological phantoms. The focus of this paper is on creating software phantom data. A first
reason is that a software phantom allows one to test the susceptibility of methods to acquisi-
tion-related degradation. This type of research is impossible with a biological [27–30] or a
hardware phantom [31–37] as in these cases the phantom images are acquired by an MR scan-
ner in the first place. Indeed, MR acquisition artifacts can not be simulated unambiguously as
the phantom data itself is not artifact-free to begin with. Instead, artifacts can be simulated
with frameworks like BrainWeb [38]. Additionally, manufacturing a hardware phantom of
adequate complexity can be a very challenging task, whereas the microstructural organization
and the ground-truth connectivity pattern of the biological case are generally unknown. Prior
knowledge of such characteristics is important as recently, neuroscientists have started to use
graph theory [39–41] as a new tool for analyzing human brain (network) disorders [42–52]
and differences in human brains [53, 54]. In neuroscience, connectome features are usually
compared by means of connectivity matrices (CMs). CMs are a compact and structured way
that allows to interpret brain connectomes as graphs. Parcellated (segmented) grey matter
(GM) regions represent vertices, while estimated streamlines connecting them are considered
as edges of a network. These studies are very promising in terms of gaining insight into certain
psychopathologies, and would benefit substantially from phantom data, which are more realis-
tic in terms of human brain structures, which have a perfectly known ground truth connectiv-
ity, and which allow for a more accurate simulation of MR acquisition in all its imperfections.

Tournier et al. [55] introduced phantoms based on apparent diffusion coefficient (ADC)
and fractional anisotropy (FA), while Leemans et al. simulated the cerebellum of a starling by
using realistic mean diffusivity (MD) and FA values [56]. Van Hecke et al. [57] simulated
brain-like DTI atlases. Close et al. [58] made available a phantom consisting of densely packed
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bundles of fibers featuring a more flexible geometrical complexity. In these works, however, the
diffusion attenuation is modeled with a tensor or a mixture of tensors but without including
geometrical properties of the brain itself, therefore partly limiting the use of the phantoms for
evaluating general processing methods.

In recent work, the intra-voxel diffusivity has been modeled with Monte-Carlo approaches
like the ones described in [29, 59]. Such methods try to mimic a realistic biological environ-
ment and are very demanding in terms of computing power. However, realistic brain-like WM
bundles geometries are not included in these frameworks either.

Recently, the Fiberfox phantom was proposed to tackle some of these limitations [60]. Fiber
strands are drawn in 3D by a user, the method then builds a phantom from this input. The
acquisition protocol model included in the Fiberfox phantom is realistic, and it uses diffusivity
models estimated from real data. It was shown that the approach can produce a realistic replica
of the FiberCup phantom [61], mimic the corticospinal tract [62], and produce realistic brain-
like diffusion MRI data in context of the ISMRM 2015 tractography challenge, using 26 manu-
ally delineated WM bundles. This manual operation could be impractical, time-consuming,
and requires expert neuroanatomical knowledge. Although existing software phantoms are
generally very flexible, most of them are currently not realistic in terms of spatial geometry,
microstructure modeling, WM bundle organization, or acquisition protocol in a unified frame-
work. As such, studies that make use of these methods may not be suitable for providing
reliable results in human connectomics [39, 63]. The goal of this paper is to complement
and extend existing methods. We take a Fiberfox-like approach, and we extend on it. In our
approach, the manually selected subset of bundles is replaced by a complete set of fiber data
obtained using state-of-the-art, high-quality and high-resolution data and reconstruction
methods, to obtain a phantom that features a more realistic level of complexity. This is
obtained without the need of manual intervention.

In this work, we present a simulation framework to construct ground-truth diffusion MRI
data that resemble the architecture of a human brain geometrically, microstructurally, and
spatially in a single model, while mimicking data characteristics of a real acquisition. The
resulting ground-truth simulation phantom basically represents a diffusion MRI brain, coined
D-BRAIN, and is composed of DWMRI data obtained from estimated WM tracts, is embed-
ded in a human brain-like anatomy with a realistic level of complexity, and includes several
brain tissue types. Specifically, it includes diffusion features based on microstructural models
with tissue characteristics derived from real data. A FT result obtained from a high quality
dataset of a real brain, and having a much higher complexity than existing software phantoms,
provides the WM geometric information for the model. The acquisition steps are also carefully
simulated to mimic realistic acquisition protocols. Our framework provides realism in terms of
acquisition and different brain tissues, while at the same time, it closely approximates WM
microstructure and complex fiber bundle organization, approaching a complete and realistic
whole brain acquisition simulation. It is very flexible and allows for a wide variety of parame-
ters to be specified: the intrinsic tissue parameters and the MR scanner parameter settings for
the simulated acquisition. As such, we propose a framework that allows one to investigate DW
MRI related algorithms in a realistic setting, and to analyze their results at the brain connectiv-
ity level. Preliminary results of this work have been presented at the Joint Annual Meeting
ISMRM-ESMRMB 2014 [64].

Materials and Methods
The goal of the presented work is to obtain a brain model that is rich in both anatomical and
diffusion-related details.
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To this end, a connectome and tissue volume fraction maps are first estimated from a high-
quality DWMRI scan of a brain. Afterwards, these estimates are used as input to insert a
brain-like complexity in the phantom. In combination with the simulated MR acquisition pro-
tocol, the proposed framework provides a realistic full-brain DWMR data sampling.

Fig 1 shows a schematic overview of the phantom simulation framework, whereas details
will be elucidated in present section. Specifically, in subsection Definition of anatomy and dif-
fusion architecture, we explain how the anatomical and diffusion structures that are used as
input are extracted from a DWMRI data set of the human brain. In the second subsection, we
present the tissue parameters that were used to give realistic features to the phantom DW data.
In subsection Diffusion modeling, we show how the tissue-dependent diffusion attenuation
was modeled and finally, in subsection Whole brain acquisition modeling, we explain how the
whole-brain simulated acquisition protocol is obtained. Lastly, in subsection Connectome esti-
mation, we illustrate the tools and parameters for a connectivity experiment we performed on
D-BRAIN data.

Definition of anatomy and diffusion architecture
The complex anatomical andWM structures that we incorporate in our phantom are estimated
based on volume fractions of the main tissue types and the related fiber tract pathways recon-
structed from high—quality DWMRI data.

Data was acquired on a customised Siemens Magnetom Skyra 3T MRI system equipped
with a 32-channel receiver head coil as part of the Human Connectome Project [65]. Diffusion
weightings of b = 0, 1000, 2000, 3000 s/mm2 were applied in 18, 90, 90 and 90 directions,
respectively. In addition, all images were acquired with reversed phase encoding, for the pur-
pose of EPI distortion correction. Other imaging parameters were: TR/TE: 5520/89.5 ms, voxel
size: 1.25 × 1.25 × 1.25 mm3, matrix: 145 × 145, slices: 174 and NEX: 1. T1-weighted structural
images were acquired, to aid identification of the different tissue types, with a spatial resolution
of 0.7 × 0.7 × 0.7 mm3. The detail about the DW EPI images preprocessing pipeline is docu-
mented in the paper of Jeurissen et al. [66]. The resulting DW images are aligned geometrically
to each other, and to the corresponding structural data.

The four tissue types (CSF, cortical GM (CGM), deep GM (DGM) and WM) were seg-
mented on the structural image using the state-of-the-art framework outlined in Smith et al.
[24]. The approach combines several tools from the FMRIB Software Library (FSL), to obtain a
reliable partial volume fraction map for all four tissue types. The estimated tissue volume frac-
tion (VF) maps have a resolution of 0.7 × 0.7 × 0.7 mm3. In the following sections, we will refer
to it as “input VF.”

In our pipeline, WM geometric information is obtained via the whole-brain, probabilistic
fibre tracking as implemented in MRtrix (https://github.com/MRtrix3/mrtrix3, [67]) using the
2nd order integration over fODFs (iFOD2) [23]. The fODFs are estimated using the multi-
tissue, multi-shell CSD approach developed by Jeurissen [66]. We used Anatomically Con-
strained Tractography (ACT, [24]) with GM-WM interface seeding based on the four tissue
types segmentation from above, to ensure anatomically plausible fibre reconstructions. The
final tractogram is composed by 5 × 107 streamlines with a mean step size of 0.7 mm. The sub-
voxel resolution allows to minimize voxel-quantization errors in the tract orientation, such
that these fibers smoothly cross the voxel borders following the main diffusivity orientations,
just like it is expected from the real WM connections. In addition, this set of streamlines was
further reduced to 5 × 106 streamlines using “spherical-deconvolution informed filtering of
tractograms” (SIFT) [25], to account for seeding biases and improve the correspondence of the
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Track Density [68] and the underlying Apparent Fibre Density [69] obtained with multi-tissue,
multi-shell CSD. In the following sections, we will refer to it as the “input connectome.”

These inputs correspond to the blocks “Tissue volume fractions” and “Tractogram” in Fig 1.

Tissues intrinsic parameters
Anatomical MR image contrast is determined by intrinsic parameters such as the tissue proton
density (PD) and the relaxations times (spin-lattice and spin-spin, commonly named as T1
and T2, respectively). These relaxation times depend on the scanner field strength. In our
framework, we allow one to choose among the constants already available in POSSUM [70] to
simulate the use of a 1.5-T scanner and a 3.0-T scanner (Table 1). Our method supports exten-
sions to higher field strength acquisitions, given the appropriate scanner/tissue parameters. In
Fig 1, these inputs correspond to the block “Tissue intrinsic MR parameters.”

In DW imaging, the MR scanner uses an additional gradient to image the direction-depen-
dent attenuation caused by the diffusion of water molecules inside the brain tissues. For the
(normalized) diffusion attenuation signal, a different analytical model was used to compute the

Fig 1. Brain like phantom creation. Proposed pipeline: from realistic inputs and a simulated DWMRI scanner to brain-like D-BRAIN data. The tissue
volume fractions have a resolution of 0.7 × 0.7 × 0.7 mm3, streamlines step-size is 0.7 mm.

doi:10.1371/journal.pone.0149778.g001

Table 1. D-BRAIN sensitivity to magnetic fields.

1.5T scanner WM GM CSF 3T scanner WM GM CSF

T1 [ms] 500 833 2569 T1 [ms] 832 1331 3700

T2 [ms] 70 83 329 T2 [ms] 44 51 500

PD 0.77 0.86 1 PD 0.77 0.86 1

Scanner dependent tissue parameters.

doi:10.1371/journal.pone.0149778.t001
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response provided by each tissue subject to the diffusion-sensitizing gradient pulse. In this
paper, the intra voxel diffusion models we used are an isotropic “tensor” for CSF and CGM,
while a “zeppelincylinder” was chosen for WM, because of its accuracy in describing the prop-
erties of WM [71]. DGM was modeled as a mixture of CGM andWM. We used intrinsic
parameters for these models that were inferred from in vivo human brain [72, 73]. In the fol-
lowing section, letting j be the index of the tissue types, we will generically refer to the diffusion
related intrinsic parameter set as pj. These are reported below:

• WM: cylinder (59% of the signal), diffusivity = 1.49 × 10−9 m2 s−1, radius = 4.8 × 10−6 m; zep-
pelin (41% of the signal) diffusivity, parallel = 1.49 × 10−9 m2 s−1, perpendicular = 0.72 ×
10−9 m2 s−1;

• CGM: isotropic tensor, constant FA = 0 and MD = 0.83 × 10−9 m2 s−1;

• CSF: isotropic tensor, constant FA = 0 and MD = 3.19 × 10−9 m2 s−1;

• DGM: mixture of WM (20% of the signal) and CGM (80% of the signal).

In Fig 1, these correspond to the blocks “WM diffusion model”and “Isotropic diffusion
contributions.”

Diffusion modeling
We can compactly write the generic, multi-tissue diffusion-weighted signal as:

SkðrÞ
S0ðrÞ

¼
XP
j¼1

vjðrÞAj;k: ð1Þ

In this equation, Sk(r) and S0(r) are the intensities of the DWMR signal acquired along a
specific direction k and the anatomical reference signal, respectively. The factors vj(r) are the
volume fractions of each tissue j and are stored in the “input VF” (see subsection Definition
of anatomy and diffusion architecture). Depending on the spatial position considered, there
could be up to P tissues in a voxel r.

The specific, tissue-dependent normalized diffusion weighted attenuation Aj, k (correspond-
ing to the block “Multi tissue signal attenuation” in Fig 1) depends on other diffusion sequence
(MR scanner) parameters q. In our method q is composed of the gradient duration δ, time
between two pulses Δ, gyromagnetic ratio γ, and diffusion gradient strength G. In addition to
the parameters q, the normalized diffusion weighted signal also depends on the acquisition
direction k (optimized as proposed in [74]) and on the tissue-dependent diffusion parameters
pj as defined in subsection Tissues intrinsic parameters.

Note that the definition of Aj, k is not unique. In fact, a distinction is needed between differ-
ent brain tissues. For GM and CSF, the normalized diffusion weighted attenuation has an iso-
tropic diffusion pattern that can be written as:

Aj;k ¼ Akðpj;qÞ: ð2Þ

In Fig 1, the equation above corresponds to the block “Isotropic diffusion contributions.”
For the WM tissue, the geometric information from the “input connectome” has to be included
as well. The WM normalized diffusion attenuation model requires an additional input, that is,
the orientation of the WM streamlines. In this work, we first assign each streamline segment, i,
of the “input connectome” to a specific voxel, depending on the spatial position considered.
There could be up to N(r) streamline segments in a voxel r. Afterwards, we compute the WM
normalized DW attenuation, depending on the direction d(i) of each of the connectome
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segments i in a voxel as:

Aj;k ¼
1

NðrÞ
XNðrÞ

i¼1

Akðpj;q;dðiÞÞ; ð3Þ

which corresponds to the block “WM attenuation” of Fig 1.

Whole brain acquisition modeling
In this work, the “simulated acquisition” step carefully accounts for the MR physics. MRI is
based on the measurements of the net magnetization of hydrogen nuclei in a volume, subject
to a static magnetic field B0. Each tissue j has its own proton density PDj (which is obtained as
described in subsection Tissues intrinsic parameters), such that the tissue-related magnetiza-
tionMj can be written as

Mj � PDj

gh
2p

� �2
1

4KbTs

B0; ð4Þ

where γ is the hydrogen gyromagnetic ratio, h is Planck’s constant, Kb is Boltzmann’s constant
and Ts is the sample temperature. Depending on the specific composition, each tissue returns
to the equilibrium state after T1j (spin-lattice) and T2j (spin-spin) relaxation times (again,
these parameters are obtained as described in subsection intrinsic parameters).

In case of a regular multislice 2D spin-echo (SE) sequence, T1j and T2j relate to the MR sig-
nal intensity with the following model:

S0;j ¼ Mj exp � TE
T2j

 !
1� exp � TR

T1j

 ! !
: ð5Þ

Therefore, in this case, the TE and the TR are the acquisition parameters which can be used
to maximise the contrast for specific tissue types.

Eq 5 applies to a single, specific tissue type. However, in reality, multiple tissue types—up to
P—may make up the area represented by a voxel r, as specified from the “input VF” (see sub-
section Definition of anatomy and diffusion architecture). In this case, once the equation is
evaluated for one tissue type j, the results are linearly combined using the factor vj(r) obtained
from the “input VF”, reflecting the physics of the scanning process. That is,

S0ðrÞ ¼
XP
j¼1

vjðrÞS0;j: ð6Þ

In Fig 1, this step corresponds to the block “T1/T2 weighted acquisition.” The “acquired”
brain images are simulated at the maximally available resolution, 0.7 × 0.7 × 0.7 mm3. This is a
key strength of the presented framework, because in clinical DWMRI protocols the standard
resolution is much lower. In addition, the spatial resolution can be adjusted by mimicking the
way the MR scanner operates. In case of a regular multislice 2D SE sequence, for instance, the
resolution along the axial dimension can be reduced by modeling the slice selection pulse as
an ideal rectangular function. Afterwards, each image k-space is downsampled and low-pass
filtered. According to [75], scanners often use Fermi and Hamming filters, which are also
included in our framework. For an even more realistic acquisition, noise can be added at k-
space level before the smoothing step. In this way, we can introduce noise, partial volume
effects, and truncation artifacts, therefore replicating the acquisition obtained with a real world
MR machine. Further physiologically related data conditions, such as pulsation and subject
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motion artifacts, can be added as well as described previously [10, 76]. These features are
included in the block “Simulated DW acquisition” in Fig 1.

To recap, our framework allows the user to choose extrinsic parameters such as the echo
time (TE), and the repetition time (TR), together with the voxel size, the noise level, the diffu-
sion attenuation strength, the gradient pulse duration δ, and the interval between the two of
them, Δ, as well as the number of DW gradient directions, therefore approaching a regular DW
MR acquisition and creating brain-like data as would be acquired with a real MRI acquisition
protocol (see the “User defined inputs” blocks in Fig 1).

Connectome estimation
The target of our paper is to create phantoms with brain-like complexity. To verify this com-
plexity, it makes sense to study FT results in terms of connectivity matrices (CMs).

We therefore investigated several connectivity metrics widely used in the research area of
connectomics, to assess their robustness with respect to noise and partial volume effect. Tensor
based deterministic tractography was performed using ExploreDTI [77] on D-BRAIN data
with different noise levels and different resolutions. 50 noisy realizations of D-BRAIN data
were simulated for each noise level and two different voxel sizes, while diffusion tensors were
estimated using the RESTORE method [78]. We extracted one fiber pathway per voxel, across
different resolutions. FA for seeding and terminating a tract was set to 0.1 and the maximum
curvature angle was set to 45. CGM and DGM were parcellated in 70 cortical and 12 subcorti-
cal regions using Freesurfer [79]. Connectivity matrices were estimated using ExploreDTI [77]
and the Brain Connectivity Toolbox [63] was used for the connectivity metrics estimation.

Results
In this section, we demonstrate the potential of the proposed framework, by showing its real-
ism in terms of WM geometry and its versatility in terms of simulated acquisition. We first
show how to simulate a D-BRAIN acquisition in subsection Simulated D-BRAIN acquisitions.
Secondly, we illustrate some of the geometrical features inferred in the phantom (subsection
D-BRAIN spatial and geometric features). Afterwards (subsection Effect of SNR, b-value, and
resolution), we show the phantom sensitivity to different acquisition parameters and lastly,
(subsection D-BRAIN for connectomics) we demonstrate the utility of the proposed phantom
from a connectivity point-of-view.

Simulated D-BRAIN acquisitions
Based on the inputs and the models explained in the sections above, we created different “simu-
lated D-BRAIN acquisitions” with the (DW) MR scanner parameters reported below.

• Field strength = 3T;

• Resolution = 0.7 × 0.7 × 0.7 mm3, 1.4 × 1.4 × 1.4 mm3 and 2.1 × 2.1 × 2.1 mm3;

• TR / TE = 8800 / 57 ms;

• 6 b = 0 s mm−2 and 60 directions with a b-value of 1000 s mm−2, 2500 s mm−2 and 10000 s
mm−2;

• Diffusion pulses duration δ = 12.9 ms;

• Interval between diffusion pulses Δ = 21.8 ms.
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Phantom data sets used for the connectivity metrics estimation have the following
parameters:

• 6 b = 0 s mm−2 and 60 directions with a b-value of 1000 s mm−2;

• Resolution = 1.4 × 1.4 × 1.4 mm3 and 2.1 × 2.1 × 2.1 mm3;

• SNR of 30, 25, 20, 15;

• 50 D-BRAIN datasets for each noise level.

We will use these data sets to assess the realism of the proposed phantom in the following
subsections.

D-BRAIN spatial and geometric features
We start our validation by visually investigating the images coming from the simulated diffu-
sion MRI acquisitions, we examine the output tractogram and some biomarker-related
properties.

Fig 2 shows images of the phantom DWMRI data at a resolution of 1.4 × 1.4 × 1.4 mm3

for b = 0 s mm−2, b = 1000 s mm−2, b = 2500 s mm−2 and b = 10000 s mm−2, The anatomical
image (a) shows that we are able to include realistically looking brain structures in the phantom
dataset, notably in terms of WM, CGM, DGM and CSF, and acquisition-related artifacts like
Gibbs ringing effect and partial voluming. Additionally, complex diffusivity features are seen in
WM regions (b-d), dipendent on the simulated diffusion attenuation.

Deterministic CSD-based tractography was performed using ExploreDTI [77] on noiseless
D-BRAIN data with voxel size of 1.4 × 1.4 × 1.4 mm3. Realistic streamlines are estimated (Fig
3), corresponding to the well-known pattern of the corticospinal tract (a), traversing the genu
of the corpus callosum (b), following the cingulum bundle (c), the fornix (d), and the uncinate
fasciculus (e). The tracts we show are color-encoded according to their FA: yellow areas reveal
high FA, whereas red areas indicate low FA. In deep WM, the reason for a low FA is usually the
presence of a region with crossing fibers. We find that the upper portion of the corticospinal
tract shows a lower FA, because other tracts coming from the body of the corpus callosum tra-
verse the same region, as elucidated in Fig 4.

Effect of SNR, b-value, and resolution
We now demonstrate the use of our phantom by performing a study on the influence of some
acquisition protocol parameters, i.e. the b-value, resolution, and SNR on biomarkers, such as
FA and the fiber orientation distribution functions (fODF).

In Fig 5 we investigated the behavior of phantom-derived fODFs with respect to noise. We
observe that, as the noise increases, the variance of the CSD peaks becomes higher, therefore
the estimated directions become less precise. In Fig 6, we compared D-BRAIN simulated scans
with different resolutions. The effect of reduced resolution in a crossing fiber region on the esti-
mated fODF can be appreciated from the enlarged regions. Introducing a lower resolution also
results in another artifact, as shown in Fig 7, which shows FA maps with a ground-truth resolu-
tion of 0.7 × 0.7 × 0.7 mm3, 1.4 × 1.4 × 1.4 mm3 and 2.1 × 2.1 × 2.1 mm3. The distorted FA
estimates indicated with the yellow arrows are manifestations of Gibbs ringing artifacts [7, 8]
due to our accurate simulation of limited acquisition band-width. In Fig 8, the sensitivity of
D-BRAIN with respect to the choice of b-value is demonstrated. Decreased precision and the
occurrence of spurious fODF peaks can be observed for lower b-values which can be attributed
to the lower angular diffusion contrast and the non-WM isotropic components that complicate
the optimization for CSD [6, 33].
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Fig 2. D-BRAIN. Anatomical MR image (a) and corresponding diffusion-weighted images for D-BRAIN data. B-values of 1000 s mm−2 (b), 2500 s mm−2 (c)
and 10000 s mm−2 (d). For each picture, the intensity values have been optimized for visual purposes.

doi:10.1371/journal.pone.0149778.g002
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D-BRAIN for connectomics
Lastly, we assessed the utility of the proposed phantom with a connectomics oriented compari-
son. In Fig 9, we show (a) the set of nodes used for the connectivity analysis, and (b) the CM
corresponding to a tractogram estimated from noiseless D-BRAIN data at a resolution of
1.4 × 1.4 × 1.4 mm3 and b = 1000 s mm−2, whose intensities represent the number of estimated
streamlines connecting each couple of nodes.

Concerning the experiment assessing the variability of connectivity metrics, we show the
results in Fig 10. The metrics have been derived from binary (unweighted) CMs, that have a
value of 1 if there is at least one streamline connecting each couple of nodes and a value of 0
otherwise. Under these acquisition and analysis settings, we observe that the degradation

Fig 3. PhantomWM bundles tractography. A portion of the corticospinal tract (a), pathways of the forceps minor (b), tracts following the cingulum (c),
streamlines belonging to the fornix (d), and part of the uncinate fasciculus (e).

doi:10.1371/journal.pone.0149778.g003
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introduced by partial voluming is in general larger than the bias introduced by noise. The net-
work assortativity seems to be less sensitive.

Interestingly, the network degree, global efficiency, and clustering coefficient metrics esti-
mated for the low resolution D-BRAIN data are in agreement with the ones reported in [80]
that were computed from binary CMs estimated from real data acquired with a resolution and
a diffusion weighted attenuation close to the one we simulated.

Discussion
DWMRI data acquisition settings or tractography performance should ideally be studied with
respect to phantom data with an adequate level of complexity. These considerations convinced
us to include complex sets of streamlines coming from a real data set into our phantom and to
use data driven analytical characterizations of the intra voxel diffusion models. Other phan-
toms have been extensively used as a test bench for FT algorithms comparison. An example is
the Fibercup phantom [81]. However, it has been also criticized for its quite low FA that privi-
leges a certain class of techniques [82], and, on top of that, it is geometrically much simpler
than a human connectome, as many other software phantoms are.

In fact, we show that our framework is able to simulate realistic FA and fODF maps, and
that tracking complex neural bundles in our phantom is possible. A good tractography method
should be able to trace the bundles correctly, and the proposed method allows those kind of
investigations, since it automatically includes a brain-like anatomy of high-level complexity.

Fig 4. PhantomWM bundles tractography. The upper portion of the corticospinal tract (a) has a lower FA in the region highlighted because of the
contribution of other fibers coming from the body of the corpus callosum. In (b), the crossing of the corticospinal tracts (blue) and the lateral projections of the
corpus callosum (red) are clearly visible.

doi:10.1371/journal.pone.0149778.g004
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Additionally, a variety of DWMRI related problems can be investigated with brain-like
D-BRAIN data in a realistic acquisition setting. The result of Fig 5, known from the literature,
is retained within our framework and reflects the physical realism of the proposed phantom. In
Fig 8, we show that a relistic relationship between the fODFs and the b-value is seen in regions
where fibers are expected to cross in a complex way for our phantom, and at the WM-GM
interface. This again emphasizes the level of realism of the proposed phantom. Also, Fig 6
shows that, by increasing the voxel size, the different compartment contributions cause
finer WM structures gradually disappear from the fODF. This outcome is coherent with the

Fig 5. Estimated phantom fODF for different SNR. Yellow boxes highlight the effect of noise level. Top left: ROI. ROI magnification for: SNR = 30 (a),
SNR = 20 (b), and SNR = 15 (c). B-value = 1000 s mm2.

doi:10.1371/journal.pone.0149778.g005
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established properties of WM features estimation via CSD. Because of our realistic acquisition
protocol simulation, the proposed phantom and MR scanner simulation combination allows
one to evaluate the robustness of methods with MR artifacts like partial voluming, angular res-
olution, angular contrast, and Gibbs ringing effect among others.

Fig 6. Estimated phantom fODF for different resolutions. Top left: ROI. ROI magnification for: voxel size = 1.4 × 1.4 × 1.4 mm3 (a), voxel
size = 2.1 × 2.1 × 2.1 mm3 (b). SNR = inf.

doi:10.1371/journal.pone.0149778.g006

Fig 7. D-BRAIN FAmaps before and after k-space downsampling. Voxel size is 0.7 × 0.7 × 0.7 mm3 (a), 1.4 × 1.4 × 1.4 mm3 (b) and 2.1 × 2.1 × 2.1 mm3

(c). Yellow arrows highlight the Gibbs ringing artifact.

doi:10.1371/journal.pone.0149778.g007
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Segmentation of realistic cortical and subcortical structures based on their connectivity pat-
tern was attempted in [83, 84]. However, it is not clear how these methods perform depending
on acquisition parameters. Studying the efficacy of these techniques is now made easier with
our method. As demonstrated in [85] for instance, the differentiation of specific bundles may
depend on the spatial resolution: this needs a phantom of variable resolution. Many other pos-
sible acquisition scenarios can be simulated. In fact, a wide class of algorithms can be tested on
D-BRAIN data, leading to conclusions that are coherent with established properties of real
brains, since it includes brain-like spatial and geometric information and a complete simula-
tion of the DWMRI acquisition process. Most importantly, we proposed a complete frame-
work that simplifies the study of connectivity measures with respect to acquisition protocol
parameters.

Fig 8. Estimated phantom fODF for different b-values. Yellow boxes highlight the effect of the b-value. Top left: ROI. ROI magnification for: b-
value = 1000 s mm2 (a), b-value = 2500 s mm2 (b), b-value = 10000 s mm2 (c). SNR = inf.

doi:10.1371/journal.pone.0149778.g008
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Fig 9. Connectivity analysis. The 82 GM parcels used as network nodes (a) superimposed to the FA map.
In (b), the corresponding connectivity matrix built counting the number of streamlines connecting each couple
of parcels (intensities displayed in logarithmic scale).

doi:10.1371/journal.pone.0149778.g009
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Lastly, we noticed that many connectivity-related measures from literature [63] require
hard thresholding and binarization of CMs as a pre processing step. This helps to exclude false
positive streamlines (that are therefore considered as noise) from analyses, and to reduce inter-
data variability at the same time. However, if these streamlines are estimated by a FT algorithm
that enforces a correspondance with the biological data, like SIFT does, this raw quantization
may lead to a loss of useful information, as also hypothesized in [86]. More extensive studies
on different realizations of our phantom may reveal the benefit of a different CM thresholding

Fig 10. Estimated network connectivity measures. Variability across different SNR and resolutions of D-BRAIN data. Ground truth: from noiseless data
whose voxel size is 1.4 × 1.4 × 1.4 mm3. High Resolution: from noisy data whose voxel size is 1.4 × 1.4 × 1.4 mm3. Low Resolution: from noisy data whose
voxel size is 2.1 × 2.1 × 2.1 mm3.

doi:10.1371/journal.pone.0149778.g010
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approach, if the target is to investigate the variability of graph theory related connectivity
measures.

Our assumption about homogeneity within each brain tissue is a simplification; the phan-
tom would become even more realistic if a greater number of tissue classes is included, like pro-
posed in [87]. We tested the possibility to use a more complex model to approximate the GM
diffusivity attenuation, the “astrocylinder” [71]. However, we found that it fits the GM diffu-
sion attenuation across multiple b-values only if a biologically unrealistic cylinder radius is
used, if compared to real dendrites size [88, 89].

The experiments performed by Dyrby et al. on post-mortem monkey data [90] and by
Huang et al. on in-vivo human data [91] point out that estimates of axon diameter in WM are
dependent on the gradient strength used for the acquisition and, in both studies, these esti-
mates are seen to become more accurate as the b-value increases. The parameter Δ affects the
estimated radius also. Diameter estimates obtained by Huang from data acquired at higher b-
values (G> 145 mT m−2) are realistic, and close to estimates coming from histologic studies of
the body of the corpus callosum. And they are also close to diameter for the “zeppelincylinder”
model we used for the WM, although it has been estimated from datasets with a maximum b-
value of G = 60 mT m−2[73]. Nonetheless, we remark that the other parameters we used for the
zeppelincylinder model can be of limited accuracy. Recent studies [92] showed the advantage
of using WM fiber dispersion models like [93, 94]. These models could be incorporated in the
proposed framework to improve the quality of the phantom data.

The streamlines we used as “input connectome”may be a biased representation of the true
brain connectivity diagram of the scanned volunteer. As a matter of fact, assessing the anatomi-
cal accuracy of results from any FT algorithm is currently a very challenging task. Fiber popula-
tions crossing at small angles [33] may have been not resolved. Additionally, CSD provides a
high angular resolution, but it is not able to make distictions between crossing and fanning
fibers inside a voxel, and it is challenged by fibers that follow narrow U-shaped patterns. Never-
theless, the pipeline we used reduces tractography biases, and iFOD2 allows an improved
estimation in regions with curve bundles. The tractography technique we used produces tracto-
grams that show a good intra-scan and inter-scan stability [86]. Besides, at voxel level, fiber
densities are biologically meaningful [25], and this convinced us to introduce Eq 3 in our
method.

A possible remark is that “fiber counting” is considered controversial as an analysis method
[95]. We recall that the FT algorithm used for the input tractogram is designed to establish a
relationship between the features of the estimated connectome and the ones of the DWMR
images, minimizing many known biases.

Conclusions
This paper proposes a method to generate phantom DWMRI data. The phantom consists of
DWMRI data generated fromWM streamlines estimated from real data. What sets our
method apart is that the bundles are arranged with a level of geometric complexity comparable
to what is expected in humanWM, and the other brain tissues are included in our model as
well. We included state-of-the-art attenuation models in order to get the most accurate “brain-
like”DWMR phantom, and we made our phantom fully tunable in terms of simulated acquisi-
tion on a virtual MRI scanner. We showed that fiber bundles estimated with FT techniques
exhibit a 3D structure similar to the one obtained by tractography on real datasets. We showed
that the FA maps and fODFs estimated from such a phantom have a realistic sensitivity with
respect to noise and other acquisition parameters. This is achieved without the need of human
intervention. Additionally, we provided a framework within which connectivity oriented DW
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MRI methods validation is possible, and the features of the estimated connectomes can be
investigated while many acquisition parameters are varied.
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