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The quantitative estimation of volumetric abundance of powder mixture is the basis of
quantitative remote sensing analysis. Here we propose to analyze a unique laboratory
measurements set, with precise composition, grain size, and volumetric abundance. We first
propose a method to estimate the optical constant of materials, knowing the pure endmember
spectra and their grain size. Then, we propose a method to transfer the measurement
uncertainties to the volumetric abundance, based on the Bayesian approach and the full
Hapke radiative transfer model. Using this approach, we are able to estimate grain size,
volumetric abundance, and surface roughness. The results show that this approach is able to well estimate the correct
volumetric abundance with an uncertainty of 23% and grain size with a ratio uncertainty of 3.0, i.e. uncertainties in
log10(grain size)=0.48. The numerical cost of the MCMC is quite large (a few minutes per spectra) but still reasonable
to treat a hyperspectral image with the gain of robust handling of non-linearities and propagating uncertainty.

Index Terms— radiative transfer, hyperspectral, intimate mixture

I. INTRODUCTION

DEPENDING on the scope, remote sensing spectroscopy
and hyperspectral images can be interpreted in multiple

ways, such as classification, segmentation, anomaly detection,
and quantification on surface or atmosphere medium character-
istics. This technique has been widely developed for the Earth
but also for exploration of the Solar System. Here, we will
focus on quantitatively estimating the microphysical param-
eters of materials such as their volumetric abundance, grain
size, roughness, grain shape, and porosity from the measured
spectral reflectances. The main difficulty arises because of the
non-linearity of the radiative transfer which makes the problem
difficult to solve with the usual gradient descent method.
Even though some strategies have been proposed in planetary
science to tackle this challenge, the scientific community lacks
validation on real data.

Usually, tests of the radiative transfer are done in a reverse
way. For instance, one common approach involves estimating
the spectral reflectance of spherical granular materials using
models and validating it by comparison with experimental data
[1]. In this work, we will test the ability of a quantitative spec-
troscopic analysis scheme to estimate the correct parameters
of interest (mainly abundances) by comparison with realistic
laboratory experiments.

The applied mathematician community developed many
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linear unmixing methods [2], including constraints, such as
positivity, sparsity, endmember variability. These classes of
methods are very interesting to provide a quick look at a com-
plex hyperspectral dataset with a relatively fast computation
time. Unfortunately, light-matter interaction is strongly non-
linear, preventing accurate abundance estimation. A second
generation of approximated non-linear methods have been
developed [3], [4], such as bilinear model, post-linear model,
kernel approach with simplification of the radiative transfer,
that would allow to approach the abundance estimation in
specific condition (constant grain size, no roughness, no il-
lumination condition effects) in relatively short computation
complexity. However, these classes of methods suffer from a
lack of generalization.

We will focus on the Hapke radiative transfer theory [5],
which has the main advantage of being semi-analytic and thus
very fast to compute. This model includes the photometrical
effect of the BRDF (Bi-directional Reflectance Distribution
Function) due to shadows produced by roughness. However,
this model has limitations in the description of the light-matter
interaction [6]. On the other hand, a more precise model
requires much more computation time.

The Hapke model is highly non-linear and thus challenging
to invert using traditional gradient descent methods [7]. To
tackle non-linearities and estimate robust uncertainties, in this
work, we will use a Monte Carlo Bayesian approach [8]. Such
an approach has been initially developed for multi-angular
photometric studies [9].

Some numerical validation tests of the Hapke theory have
been performed [10], [11] but a more appropriate validation
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TABLE I
DENSITY AND GRAIN SIZE (D50) OF THE MINERALS USED IN THIS

STUDY.

Mineral Density (g/cm3) Grain size (µm)
Al2O3 3.98 3.5
CaO 3.34 2.7

Fe2O3 5.26 0.8
SiO2 2.64 23
TiO2 3.89 0.5

test would be using real laboratory data. [12] proposes to
validate different kinds of intimate mixtures by comparing
observation and simulation spectra. The pioneering work of
validation of abundance using real data has been performed
by [13], [14] who found better than 5% error in weight %.
Nevertheless, this work did not take into account the natural
variability due to illumination, surface roughness and practical
absolute calibration limitation [15]. Some approximations have
been proposed to take into account the scaling effect of
illumination but neglecting the full non-linearities [16]. Here
instead, we choose to use the full Hapke model.

Only a few laboratory datasets are available to test the algo-
rithms in real conditions with extensive volumetric abundance
set [15], [17]. Unfortunately, the most complete one [17] lacks
information about the grain size, so it cannot be applied in a
quantitative validation case. We thus focused on a reduced but
extremely well-characterized dataset [15] that encompasses the
natural level variability.

In [18], [19], dedicated studies on quantitative validation
of the roughness have been performed. On the other hand, in
[20], the effect of roughness and grain shape on the spectral
reflectances have been studied. Our work mostly focuses on
the volumetric abundance, which is a crucial parameter for
characterizing surface materials.

The aim of this article is to:
• present a method to quantify the microphysical parame-

ters (volumetric abundance, grain size, and roughness).
• validate the approach on one of the most precise available

laboratory data including natural variability.

II. LABORATORY DATA

The laboratory data set contains N = 63 spectra, including
14 pure mineral powders and 49 binary mixtures of mineral
powders [15]. These mixtures were created using 5 selected
pure mineral powders: Aluminum oxide (Al2O3), Calcium
oxide (CaO), Iron oxide (Fe2O3), Silicon dioxide (SiO2), and
Titanium dioxide (TiO2). All mineral powders have a white
color in the visible (except for Iron oxide which is red).
Furthermore, they vary in densities and grain sizes (see Table
I).

Although there are 10 possible combinations of these pow-
ders, due to experimental constraints the dataset contains
exclusively seven binary mixture combinations of minerals,
namely: Al2O3-SiO2 (Al-Si), CaO-SiO2 (Ca-Si), CaO-TiO2

(Ca-Ti), Fe2O3-Al2O3 (Fe-Al), Fe2O3-CaO (Fe-Ca), Fe2O3-
SiO2 (Fe-Si), and SiO2-TiO2 (Si-Ti).

For each mineral combination, 7 distinct mixtures and the
2 pure endmembers were prepared. The total weight of each

mixture has been maintained at 10 g (with the scale accurate
to 0.001 g). The mass weight was systematically incremented
for the first mineral in the mixture by a fixed step of 1.25 g,
ranging from 1.25 to 8.75 g. The weight fraction has been then
converted to a volume fraction, based on the known density.

To ensure a homogeneous mixture, the mineral powders
were placed inside a glass container and mixed thoroughly
by rotating the container for approximately five minutes. To
measure the reflectance spectra, each powder was subsequently
transferred into a round black sample holder with an interior
diameter of 20 mm, a height of 5.5 mm, and an edge thickness
of approximately 3 mm. The sample holder was filled with the
mixture, compacted, and smoothed using a stamp compactor.

The samples were scanned using an AgriSpec spectrome-
ter manufactured by Analytical Spectral Devices (ASD) that
comprises 1500 spectral bands, ranging from 1000 to 2500 nm
with a step size of 1 nm. The wavelength range was adjusted
to match that of the hyperspectral camera, resulting in 537
bands. The full dataset was calibrated using a spectralon. All
details about this experimental dataset can be found in [15].

The spectral reflectance is vector noted R with a dimension
Nλ = 537. To estimate the uncertainties of measurements
from this data, the radiance of the Spectralon (white calibration
panel) measured throughout the experiments was considered.
In this work, the relative reflectance of the sample is deter-
mined by the ratio of the radiance of the sample to the radiance
of the white calibration panel. We found that the standard
deviation σR for this dataset is 0.7 %.

The provided dataset is particularly difficult to handle,
without renormalization [15] since several measurements of
the same pure endmember are reproduced with a significant
absolute level variability (see Figure 1 (h)). We attribute this
effect to the powder preparation and compaction which may
vary significantly despite the meticulous care of the operator.
In addition, the observation and illumination geometries may
have changed to produce this spurious effect. Last, even using
a Spectralon, the dataset may still include uncertainties due
to the absolute calibration process. In Figure 1, the spectral
reflectances of binary mixtures composed of Aluminum oxide,
Calcium oxide, Iron oxide, Silicon dioxide, and Titanium
dioxide are shown. As can be observed, the spectral features of
these minerals are clearly visible and gradually change when
the fractional abundance (mass ratios) of each mineral changes
in the mixture.

III. METHOD

A. Hapke radiative transfer model
1) Theory: We used the semi-analytical reflectance model

from [5], which is a good compromise between physical
realism and efficient computation time. Based on this model,
the spectral reflectance of the material Rs can be modeled as:

Rs(µ0, µ, g) =
ω

4π

µ0

(µ0 + µ)

(
(1 +B(g))P (g)+

H(µ0)H(µ)− 1
)
S(µ0, µ, g)

(1)

Where µ0 is the cosine of the incidence angle, µ is the
cosine of the emission angle, g is the phase angle, ω is the
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Fig. 1. Spectra of binary mixtures. a) Al-Si; b) Ca-Si; c) Ca-Ti; d) Fe-Al; e) Fe-Ca; f) Fe-Si; g) Si-Ti; and h) Endmembers.
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single-scattering albedo, P (g) is the particle phase function,
B(g) is the opposition effect, H represents the multiple
scattering effects and S the shadowing effect depending on
the macroscopic roughness θ0. To simplify the expression, we
assume that multiple scattering is isotropic.

The single scattering albedo of the material can be modeled
as the ratio of the mean scattering cross section < σs > and
the mean extinction cross-section < σe > :

ω =
< σs >

< σe >
(2)

with < σe > the mean geometrical cross-section of the grains
and

< σs >=
∑
k

X ′
kσsk (3)

Each type of grain k is present in the surface with the
numerical proportions X ′

k. Volumetric fractional abundances
Xk are computed by rescaling to the total volume of grain:

Xk =
X ′

kϕ
3
k∑

k X
′
kϕ

3
k

(4)

A type of grain is defined by its average particle diameter ϕk

and its chemical composition. For a type k grain, the scattering
cross section σsk is defined as:

σsk = σk

(
Se + (1− Se)

(1− Si)

(1−ΘkSi)

)
(5)

where σk = π × ϕ2
k/4 is the particle geometric cross-section,

and Se and Si are respectively the external and internal particle
reflection coefficients, which are obtained by integrating the
Fresnel reflection coefficients over the surface of the grain
from the optical constant n and κ (see section III-A.2). Θk is
the transmission coefficient of a type k grain, depending on
optical constant and grain size. All details can be found in [5].

As a summary, the Hapke model can be written as:

Rs = H(θ0, ϕ,X) (6)

where ϕ and X represent the grain-sizes and numerical propor-
tions of the different types of grains constituting the surface.

2) Optical constant: Shkuratov proposed a theory to esti-
mate the imaginary part κ of the optical constant (absorption
coefficient) from the reflectance spectra R. This theory as-
sumes that the real part n (refractive indices) and the grain
size ϕ of the material are known as priori. We assume that the
refractive index for minerals is n = 1.9, but we conduct the
same experiment for n = 1.5 in order to demonstrate the minor
effect of this assumption. The grain size ϕ is experimentally
known (see Table I).

κ = S(R,n, ϕs) (7)

This approach has been first proposed to estimate the
Martian dust properties [21], [22]. The complete benchmark
of the effects of the grain size (mean free path length), filling
factor, and real optical index on the final result is relatively
limited, as discussed in [21].

B. Bayesian MCMC inversion
We used a Bayesian approach to propagate the uncertainties

from the measurement (reflectance R) to the parameters. This
operation is sometimes called inversion or assimilation. In [7],
we demonstrated that the usual gradient-descent method is not
helpful because the non-linearities are so strong that the results
mainly depend on the initialization.

The MCMC approach consists of sampling the posterior
distribution using the Bayesian rules. The method not only
explores the parameter space and looks for all acceptable
solutions, but also determines the best set of parameters to fit
the data. From this collection of acceptable spectra/parameters,
we can look at the marginalized posterior distribution of each
parameter for a typical fit.

1) prior: The prior distribution of the parameters are :
• The volumetric fractional abundances Xk should be

positive and sum to one (
∑2

k=1 Xk = 1). We use the
parameter X = X1 = 1−X2 to describe a binary mixture
with its probability p(X) = 1 for X ∈ [0, 1].

• The grain-size diameter ϕk = 10Dk of each endmember
i is assumed to follow a log-uniform distribution, so
that Dk = log 10(ϕk) follows a uniform distribution
p(Dk) = 1/(Dmax −Dmin)) for Dk ∈ [Dmin, Dmax].
We set Dmin = −1 and Dmax = 3.

• The macroscopic surface roughness θ0 for which we
assume a uniform distribution p(θ0) =

1
45 for θ0 ∈ [0, 45]

2) MCMC sampling: We used the snooker algorithm [23]
implemented in the mc3 package [24] to sample the posterior
distribution, knowing the observation R and its uncertainties
σR.

Since the solution is a probability density function (PDF)
that may differ from a Gaussian, neither the best fit, nor
the maximum posterior, nor the the average PDF may be
representative of the full solution. We choose to summarize
the posterior PDF as the median (noted X̄ , D̄ and θ̄0) and the
68.3% quantiles low (noted X̌ , Ď and θ̌0) and high bounds
(noted X̂ , D̂ and θ̂0).

IV. RESULTS

The quantitative results are presented through the root mean
squared error (RMS) calculated between the estimated (X̄) and
the ground-truth abundance (X).

RMS =

√ ∑
(X̄ −X)2

N
× 100 (8)

The average over N can be either over the full dataset (N =
63) or restricted to the binary mixture including the pure
endmember (N = 9). The definition is trivially extended to
the grain size D = log 10(ϕ), except that the number of values
is doubled since two minerals are present for each experiment.

A. Example
Figure 2 presents a typical result. This particular one is for a

CaSi mixture with X=57.0% Ca. The best fit is extremely close
to the real observation. In addition, due to the uncertainties
on the reflectance spectra, a range of solutions is acceptable.
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Fig. 2. Example of a fit for CaSi mixture

Fig. 3. Posterior PDF of the same case as Fig. 2 for the four unknown
parameters: roughness θ0, volumetric proportion, XCa, grains size
log 10(ϕCa) and log 10(ϕSi). The median values are indicated by
a dashed line.

Figure 3 shows the corresponding posterior PDF for the
four parameters that are unknowns: roughness θ0, volumetric
proportion,XCa, grains size log 10(ϕCa) and log 10(ϕSi). All
marginal PDFs are well constrained with a bell shape, ex-
cept the log 10(ϕSi) which is less constrained. The bivariate
PDF indicates the relationship between the parameters. For
instance, roughness seems highly correlated with the XCa.

B. Results
Figure 4 shows the estimation of the abundance for all the

cases. It shows that the trend is well reproduced in all cases.
FeSi and SiTi have significantly higher errors in abundance
retrieval because neither Si nor Ti have strong spectral features.
The best results are obtained when both endmembers have a
strong specific spectral feature (such as Fe and Ca in FeCa).

Table II presents the RMS for volumetric abundance and
grain size. The departure from the volumetric abundance true
value depends on the binary mixture but the errors remain low
in general with 23% on average. Given the complexity of the
dataset, we consider that this value is acceptable. It is better
than the linear and the approximated Hapke manifold [15].
The geodesic supervised unmixing(GSU) [15] can reach less
than 1% uncertainties in abundances, but at the cost of fitting
this particular dataset. Here the model is set for whatever

TABLE II
RMS ERROR FOR VOLUMETRIC ABUNDANCE (IN %) AND GRAIN SIZE

(IN % D = log 10(ϕk)). THE GLOBAL RMS IS 23.0% (23.3%) FOR

X AND 48.9% (44.6%) FOR D. WHEN THE GRAIN SIZE IS KNOWN,
THE RMS FOR X REDUCES TO 21.1% (21.4%). ALL THE RESULTS

ARE WITH THE ASSUMPTION OF n = 1.9, EXCEPT IN PARENTHESIS

FOR n = 1.5

Mixture RMS X RMS D RMS X knowing D

AlSi 17.4 (18.7) 39.4 (33.7) 6.4 (6.7)
CaSi 12.6 (11.6) 39.9 (56.6) 23.9 (26.9)
CaTi 29.4 (29.9) 136.9 (113) 29.8 (31.4)
FeAl 35.8 (36.6) 73.6 (84.6) 31.0 (30.2)
FeCa 9.1 (10.2) 66.2 (80.4) 15.9 (15.5)
FeSi 32.8 (33.9) 65.8 (74.4) 25.8 (25.8)
SiTi 23.4 (20.1) 103.6 (76.2) 28.9 (23.0)

compositional mixture, abundance, grain size, roughness, and
illumination/acquisition geometry conditions. The only fitting
parameters are the optical constant κ and n spectra for each
pure endmember.

The largest error occurs in FeAl and FeSi because the
absolute level uncertainties of the reflectance are the worst
constrained in these cases. As seen in Fig. 1 (h) Fe, Al, and
Si have the highest pure endmembers variability.

For the grain size, the RMS in D is 48% on average. For
a single parameter, the error is simply the absolute difference
between the true and estimated values. Consequently, the error
in D results in a logarithmic ratio in the true and estimated ϕ.
The error in ϕ can then be computed by taking 100.48 = 3.0.
This implies that the estimated grain size ϕ̄ falls within the
range ϕ/3.0 < ϕ̄ < ϕ× 3.0, which is satisfactory considering
the extensive range of grain sizes.

The last column of Table II presents the RMS for volumetric
abundance assuming that the grain size is known (and thus
not estimated). The global RMS on abundance is only slightly
improving and on some binary mixtures, the values are getting
worse. This behavior is not expected because usually the more
information you provide, the better the results. This is not the
case here because of the lack of absolute-level calibration. In
other words, the effect of grain size can accommodate the
uncertainties in absolute levels.

Finally, Table II also presents the results for two assump-
tions of the real index of the optical constant n = 1.9 by
default, but also n = 1.5 in parenthesis. The results are very
similar, demonstrating that this parameter is minor for our
retrieval.

V. DISCUSSION

The methodology does not require the optical constant but
only pure endmember spectra. In real remote sensing data,
this is often not present in the scene. It may be possible
to estimate endmembers by utilizing blind spectral unmixing
methods such as the one presented in [25]. On the other hand,
the grain size of the material can be estimated by utilizing
thermal inertia [26]. Of course, if the optical constants are
available, this first step can be bypassed.

Remote sensing data on the field may not observe powders.
To evaluate the performance of the proposed method on real-
istic samples, an extensive hyperspectral dataset with accurate
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Fig. 4. True versus estimated volumetric abundance for all binary mixtures, estimating the four following parameters: roughness θ0, volumetric
proportion,X, grains size log 10(ϕ1) and log 10(ϕ2). The median and the 68.3% quantiles are plotted as the error bar.

ground truth information is required. The literature generally
lacks systematic ground truth experimental measurement to
validate the developed numerical approaches. In future works,
hyperspectral datasets obtained from extensive geological sam-
ples will be analyzed. In addition, the effect of grain size will
be considered with more attention.

VI. CONCLUSION

• We proposed a methodology to characterize powder sam-
ples from the shortwave infrared reflectance dataset. In
the first step, the optical constant of the pure mineral
was estimated by utilizing its spectral reflectance. We
then estimated the volumetric abundance, roughness, and
grain size using a Bayesian Monte Carlo.

• This approach is able to constrain abundance with an
RMS of 23% and a ratio on grain size error of around
3.0. Both errors in abundance and grain size are no-
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tably favorable compared to previous literature, especially
considering the challenges posed by non-linear radiative
transfer.

• The methodology is able to propagate the uncertain-
ties from the measured reflectance to the parameters
(volumetric abundance, grain size and roughness) in a
consistent manner.

• One of the limitations of the approach is the large
computation time. Nevertheless, since the Hapke radiative
transfer model is closed-form semi-analytical, the com-
putation time is reasonable to treat a full hyperspectral
cube (a few minutes per spectra).
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