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Prof. dr. Knut Müller-Caspary, Forschungszentrum Jülich, Germany
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Samenvatting

Nanomaterialen ondervinden steeds meer wetenschappelijke interesse omdat hun precieze ato-
maire structuur kan leiden tot interessante en onverwachte fysische en chemische eigenschappen
die heel verschillend kunnen zijn van de eigenschappen van bulkmaterialen op een grotere schaal.
Daarom is het nodig om de relatie tussen de structuur en eigenschappen van deze materialen
volledig te begrijpen opdat nieuwe materialen met uitstekende eigenschappen kunnen ontwik-
keld worden op de nanoschaal. Door verschillende belangrijke ontwikkelingen in aberratie
correctie technologie is transmissie elektronenmicroscopische beeldvorming uitgegroeid tot een
uitstekende techniek om nanomaterialen te visualiseren met subangstrom resolutie waardoor
uitdagende problemen binnen materiaalonderzoek kunnen opgelost worden. Echter is het zo dat
slechts een visuele interpretatie van zulke beelden onvoldoende is om nauwkeurige structuur-
informatie te bekomen. Het nauwkeurig meten van de atomaire schikking van geprojecteerde
atoomkolommen of individuele atomen is wel degelijk belangrijk omdat kleine veranderingen
in de lokale atoomstructuur significante veranderingen kunnen teweegbrengen op het vlak van
de eigenschappen. Daarom is een kwantitatieve aanpak aanbevolen die op een betrouwbare
manier de structuurparameters, zoals de posities van de atomen, het type van de atomen, en het
aantal atomen, kan kwantificeren. Een belangrijke veronderstelling in deze kwantitatieve aanpak
is dat het aantal atoomkolommen gekend is. Gewoonlijk wordt dit aantal visueel bepaald wat
mogelijk is voor beelden met atomaire resolutie van bundelstabiele materialen waarvoor een
hoge inkomende elektronendosis kan gebruikt worden wat resulteert in beelden die een hoge
signaal-ruisverhouding (SNR) vertonen. Bundelgevoelige materialen en materialen bestaande uit
lichte elementen daarentegen moeten belicht worden met een voldoende lage elektronendosis om
schade door de elektronenbundel te voorkomen. Als gevolg hiervan vertonen deze beelden een
lage SNR en zwak contrast en dus ook een lage contrast-ruisverhouding (CNR). Dit veroorzaakt
een onbetrouwbare visuele bepaling van het aantal atoomkolommen in het beeld wat leidt tot
systematische fouten in de structuurbepaling. Om dit probleem te overwinnen wordt in deze
thesis een alternatieve, kwantitatieve methode voorgesteld die het aantal atoomkolommen bepaalt
waarvoor er het meeste bewijs is in de beeldgegevens.

Door de aanwezigheid van ruis fluctueren experimentele observaties rond hun verwachtingswaar-
den. De constructie van een parametrisch (fysisch gebaseerd) model dat de verwachtingswaarden
van de observaties beschrijft als functie van ongekende parameters vormt het startpunt van een
kwantitatieve analyse. Hierbij worden beelden met atomaire resolutie beschouwd als datavlakken
waar de observaties overeenkomen met de pixelwaarden van het beeld waaruit ongekende para-
meters geschat moeten worden. Op die manier is kwantitatieve structuurbepaling gereduceerd tot
een statistisch parameterschattingsprobleem. Omdat beeldintensiteiten scherp gepiekt zijn op de
atoomkolomposities kunnen de geprojecteerde atoomkolommen van beelden met atomaire resolu-
tie, die bekeken worden langsheen een belangrijke zone-as, gemodelleerd worden als Gaussische
pieken die gesuperponeerd zijn op een constante achtergrond. Nauwkeurige structuurinformatie
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iv Samenvatting

kan dan bekomen worden door dit model te fitten aan de geobserveerde beeldpixelwaarden met
betrekking tot de ongekende parameters waarbij een modelaanpassingscriterium gebruikt wordt
om de gelijkaardigheid tussen het beeld en het model te kwantificeren.

Bovendien is het mogelijk om parameterschattingstheorie te combineren met modelselectie.
Hierbij wordt naast het schatten van de ongekende parameters van het verwachtingswaarden-
model ook het aantal parameters bepaald, dat het dichtst het onderliggende proces dat de
experimentele observaties genereerde, benadert. Voor ringvormige donkerveld (ADF) raster
transmissie elektronenmicroscopie (STEM) is een methode die statistische parameterschattings-
theorie combineert met modelselectie volledig uitgewerkt in deze thesis gebruik makend van
Bayesiaanse waarschijnlijkheidstheorie. Naar deze methode wordt verwezen als de maximum a
posteriori (MAP) waarschijnlijkheidsregel die toestaat om atoomkolommen en zelfs individuele
atomen te detecteren uit ADF STEM beelden met atomaire resolutie op een automatische en
objectieve manier. De geldigheid en bruikbaarheid van deze methode voor beeldgegevens met
lage kwaliteit werd aangetoond door experimentele en gesimuleerde ADF STEM beelden te
analyseren van nanomaterialen van verschillende vorm, grootte, en atoomtype.

Naast het detecteren van atoomkolommen van ADF STEM beelden biedt de MAP waarschijn-
lijkheidsregel ook een manier aan om de relatie tussen beeldkwaliteitsmaten, zoals SNR and
CNR, te evalueren t.o.v. atoomdetecteerbaarheid welke gedefinieerd is als de waarschijnlijkheid
om een atoom te detecteren uit een beeld. In het algemeen is atoomdetecteerbaarheid inderdaad
gerelateerd aan beeldkwaliteit omdat men bijvoorbeeld verwacht dat de detecteerbaarheid van
atoomkolommen in een beeld toeneemt met toenemende beeldkwaliteit. Op deze manier is de
waarschijnlijkheid om een atoomkolom te detecteren uit ADF STEM beeldgegevens, welke
bepaald kan worden door de MAP waarschijnlijkheidsregel, gecorreleerd met de kwaliteit van
het beeld. Zo wordt in deze thesis een nieuwe beeldkwaliteitsmaat voor ADF STEM beelden
voorgesteld, de zogenaamde geı̈ntegreerde CNR (ICNR), die beter correleert met atoomdetec-
teerbaarheid dan conventionele beeldkwaliteitsmaten.

Verder wordt in deze thesis bevestigd dat de MAP waarschijnlijkheidsregel gerelateerd is
aan het concept van modelselectie. In het bijzonder is deze methode nauw verwant met het
Bayesiaans Informatie Criterium (BIC), omdat beide methoden afgeleid worden middels een
Bayesiaanse aanpak. Het interessante aan de MAP waarschijnlijkheidsregel is dat deze rekening
houdt met meer dimensies van modelcomplexiteit in vergelijking met andere veel gebruikte mo-
delselectie criteria. Dit laat een superieure prestatie toe voor het detecteren van het juiste aantal
atoomkolommen uit ADF STEM beelden. Bovendien zorgt de MAP waarschijnlijkheidsregel
voor een duidelijke en flexibele opname van voorafgaande kennis, wat vaak niet het geval is voor
andere modelselectie methodes.

Tot slot wordt in deze thesis getoond dat de methodologie van de MAP waarschijnlijkheidsre-
gel uitgebreid kan worden om simultaan verkregen ringvormige helderveld (ABF) en ADF STEM
beelden te analyseren. Deze techniek combineert de betere visualisatie van lichte elementen via
ABF STEM met het gemakkelijk interpreteerbare beeldconstrast van ADF STEM. Verder kan
ook voor ABF STEM beelden de ICNR worden gebruikt als een toereikende beeldkwaliteitsmaat
die goed correleert met atoomdetecteerbaarheid. De voordelen van simultaan model fitten in
vergelijking met het combineren van kwantitatieve metingen uit het apart analyseren van ABF
en ADF STEM beelden worden uitgebreid besproken als functie van ICNR. In deze thesis
wordt aangetoond dat een simultane analyse de atoomdetecteerbaarheid verbetert alsook de
nauwkeurigheid waarmee atoomposities geschat kunnen worden. Verder wordt geı̈llustreerd
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dat door gebruik te maken van de MAP waarschijnlijkheidsregel om experimentele ABF en
ADF STEM gegevens te onderzoeken een betrouwbare schatting van atoomkolomposities kan
bekomen worden zonder rekening te houden met voorafgaande kennis over de verwachte posities
van deze kolommen.

De ontwikkeling van de MAP waarschijnlijkheidsregel in deze thesis als een nieuwe kwantita-
tieve methode heeft kwantitatieve elektronenmicroscopie naar een meer objectieve interpretatie
gebracht. De methode veralgemeent de karakterisatie van nanomaterialen op de atomaire schaal
in STEM met het oog op het bekomen van nauwkeurige structuurinformatie van een materiaal.
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Summary

Nanomaterials have attracted increasing scientific interest, because their exact atomic structure
may lead to interesting and unexpected physical and chemical properties, which may be very
different than the properties that arise from bulk materials at a larger scale. Therefore, in order to
develop new materials with outstanding properties at the nanoscale, one needs to fully understand
the structure-properties relation of these nanomaterials. Because of several important develop-
ments in aberration correction technology, transmission electron microscopy imaging has become
an excellent technique to visualize nanomaterials down to sub-angstrom resolution and thereby
solving challenging problems in materials science. However, a merely visual interpretation
of such images is inadequate to obtain precise structure information. Precisely measuring the
atomic arrangement of projected atomic columns or individual atoms, though, is important since
small changes in the local atomic structure may induce significant changes in their properties.
Therefore, a quantitative approach is required which can reliably quantify structure parameters,
such as the positions of the atoms, the type of the atoms, and the number of atoms. An important
assumption in this quantitative approach is that the number of atomic columns is known. Usually,
this number is determined visually, which is possible for atomic-resolution images of beam-stable
materials where a high incoming electron dose can be used resulting in images exhibiting high
signal-to-noise ratio (SNR). However, beam-sensitive and light-element materials should be
imaged with a sufficiently low electron dose to avoid beam damage. As a consequence, these
images exhibit low SNR and low contrast, and hence low contrast-to-noise ratio (CNR). This
causes poor visual determination of the number of atomic columns in the image leading to biased
structure information. To overcome this problem, an alternative, quantitative method is proposed
in this thesis to determine the number of atomic columns for which there is most evidence in the
image data.

Due to the presence of noise, experimental observations fluctuate around their expectation values.
The starting point of a quantitative analysis is the construction of a parametric (physics-based)
model describing the expectations of the observations as a function of unknown parameters.
Here, atomic-resolution images are considered as data planes where the observations are the
pixel values of the image from which unknown structure parameters need to be estimated. In
this way, quantitative structure determination can be reduced to a statistical parameter estimation
problem. Since image intensities are sharply peaked at the atomic column positions, the projected
atomic columns of atomic-resolution images viewed along a major zone axis can be modelled
as Gaussian peaks superimposed on a constant background. Accurate and precise structure
information is then obtained by fitting this model to the observed image pixel values with respect
to the unknown parameters using a criterion of goodness of fit quantifying the similarity between
the image and the model.

Moreover, it is possible to combine parameter estimation with model-order selection. Hereby,
besides estimating the unknown parameters of the expectation model, also the number of pa-
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rameters that most closely represents the underlying process that generated the experimental
observations needs to be determined. For annular dark-field (ADF) scanning transmission
electron microscopy (STEM), a method which combines statistical parameter estimation and
model-order selection has been fully derived in this thesis by using Bayesian probability theory.
This method is referred to as the maximum a posteriori (MAP) probability rule, which allows to
detect atomic columns and even single atoms from atomic-resolution ADF STEM images in an
automatic and objective manner. The validity and usefulness of this method to low-quality image
data have been demonstrated by analyzing experimental and simulated ADF STEM images of
samples of different shape, size, and atom type.

Besides detecting atomic columns from ADF STEM images, the MAP probability rule also
offers a way to evaluate the relation between image quality measures, such as SNR and CNR,
and atom detectability, which is defined as the probability to detect an atom from an image.
In general, atom detectability is indeed related to image quality, as, for example, one expects
the detectability of atomic columns in an image to increase with increasing image quality. In
this way, the probability to detect an atomic column from ADF STEM image data, which can
be provided by the MAP probability rule, is correlated with the quality of the image. As such,
for ADF STEM images, a new image quality measure, the so-called integrated CNR (ICNR),
has been proposed in this thesis that better correlates with atom detectability than conventional
image quality measures.

Furthermore, in this thesis, it is confirmed that the MAP probability rule is related to the
concept of model selection. In particular, it is closely related to the Bayesian Information
Criterion (BIC), as both methods are derived using a Bayesian approach. Interestingly, the MAP
probability rule takes into account more dimensions of model complexity as compared to other
commonly used model-selection criteria. This allows for a superior performance to detect the
correct number of atomic columns from ADF STEM images. In addition, the MAP probability
rule allows for a clear and flexible incorporation of prior knowledge, which is often not the case
for other model-selection methods.

Finally, it is shown in this thesis that the methodology of the MAP probability rule can be
extended for analyzing simultaneously acquired annular bright-field (ABF) and ADF STEM im-
ages. This technique combines the improved light-element visualization of ABF STEM with the
easily interpretable image contrast of ADF STEM. Furthermore, also for ABF STEM images the
ICNR can be used as a valid image quality measure correlating well with atom detectability. The
advantages of simultaneous model fitting, as compared to combining quantitative measurements
from analyzing the ABF and ADF STEM images separately, have been thoroughly discussed as
a function of ICNR. It has been demonstrated in this thesis that a simultaneous analysis improves
atom detectability, as well as atom position accuracy and precision. Furthermore, it has been
illustrated that by using the MAP probability rule to investigate experimental ABF and ADF
STEM data, a reliable estimation of atomic column locations can be obtained without including
prior information about the expected positions of these columns.

The development of the MAP probability rule in this thesis as a new quantitative method has
pushed quantitative electron microscopy towards a more objective interpretation. The method
generalizes the characterization of nanomaterials at the atomic scale in STEM in order to obtain
accurate and precise structure information about a material.
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1
Introduction

1.1 The importance of data

Nowadays, data collection has become common practice due to the increased digitalisation
of our world. A new term of datafication has risen which covers the fact that almost every
phenomenon is now being observed and stored [Cukier 2013]. Devices and people are more than
ever constantly connected with each other through the web where every click and movement is
monitored. The information that is captured within this data can be considered as a new form of
value or resource [O’Neil 2013].

Data can be broadly defined as anything that is recorded and may exist in many different
forms [Maheshwari 2015]. Data could be an unordered collection of values, which means that
there exists no intrinsic ordering in the data. The available set of colors of shirts in a shop is an
example of such nominal data. On the other hand, the sizes of these shirts, like small, medium,
and large, possess a certain intrinsic ordering as one size is bigger than another. Such data is
called ordinal data. Often, people may immediately relate data to consist of numeric values.
The prices of the aforementioned shirts would be an example of such ratio data. This kind of
data allows for further advanced mathematical analysis. An example of this is the possibility to
combine measurements of temperature, air pressure, and humidity into a mathematical framework
to predict future weather. When the data is restricted to only discrete numeric values defined
in a certain range, like for example a 10-point scale measuring customer satisfaction, one can
speak of interval data. Another kind of data is data such as audio, video, and graphics files which
may be described based on emotions they evoke, which does not have a clear quantitative nature.
Data can originate from basically any source. It can come from records inside an organisation or
it can be collected by industry or government institutions. There exists even metadata, which is
data about data. This includes, for example, the time when a piece of data has been collected.
These days, one might automatically relate data with digital files on a computer or other device,
but data may appear as well in paper form of which numerous historical documents are examples.
In addition, data may be of public or private nature. Currently, there is an ongoing debate on
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2 Chapter 1. Introduction

whether the vast amounts of personal data which are available through social media can be
considered to be private and whether this personal data can be collected by large digital media
companies and used for commercial purposes.

The importance of data collection lies in the statement that there is hidden value in data. It is
the task of data science to extract knowledge and innovative insights from data. This can be done
by unifying statistical concepts and processing with data analysis [Hayashi 1998, Dhar 2013].
Hereby, it is required that relevant features, patterns, and information can be reliably detected
and extracted from the data. This is not a straightforward task and depends on the quality of the
data. In principle, one can consider data to consist of signal and noise [Silver 2012]. The goal of
data science is to find the signal which can be seen as the underlying truth. The noise, on the
other hand, is a nuisance that distracts from the truth. It is needless to say that nowadays data
collection and data analysis play an important role in many fields of science with a growing need
for methods which point out interesting and relevant features of the data.

1.2 Model selection

Statistical model selection is an essential part of data analysis. More information about model-
selection procedures and their applications can be found in [McQuarrie 1998, Zucchini 2000,
Burnham 2002, Claeskens 2008, Konishi 2008, Claeskens 2016]. Model selection consists of the
task of selecting a statistical model from a set of candidate models which most closely describes
the underlying process that generated the data. The constructed model should be complex enough
to explain relations that are hidden within the data, but, on the other hand, simple enough so
that no overinterpretation of the data occurs. Statistical model selection provides a framework
for handling this balance. It supports the search for good models and for determining which
variables are relevant and need to be included when analysing data.

There are some general concepts related with statistical model selection [Claeskens 2008].
Firstly, in almost all situations it is not possible to find the strictly correct or true model that
generated the data. This true model is often simply too complex and is almost always unknown. In
practice, one works with a slightly simpler model which is almost as good. Secondly, an important
concept in statistics is the balance and interplay between bias and variance [Geman 1992,
Sammut 2011]. When a model consists of parameters that need to be estimated from the data,
the bias-variance tradeoff manifests itself in the form of balancing simplicity against complexity
[Myung 2000]. A simple model, with for example a low number of estimated parameters,
is often associated with low variability and large bias. Increasing the number of parameters,
though, increases the complexity of the model which leads to a higher degree of variability but
smaller bias. The key of statistical model selection lies in this balance where both overfitting and
underfitting preferably need to be avoided [Burnham 2002, Everitt 2010, Lever 2016]. Overfitting
refers to the fact that a model consists of too many parameters, hereby overinterpreting the data.
Underfitting, on the other hand, is quite the opposite where a model has too few parameters,
which disables it from capturing relevant information. In addition, statistics often relies on the
principle of parsimony, or Ockham’s razor, which may be of relevance as well in other domains. It
states that when several theories exist to describe some phenomenon, the simplest one consistent
with the empirical evidence is preferred [Sivia 1992a, Hoffman 1997, Myung 1997, Gauch 2003,
Schaffer 2015]. In statistical modelling, this statement could be translated by claiming that
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only parameters that really matter should be included in the selected model. Furthermore,
data analysis is dependent on the scientific context and for what purpose it is investigated. In
statistics, it can also be that certain quantities or functions of parameters are more important than
others. Interestingly, model-selection methods have been developed that are aimed on focusing
specifically on the most important quantities [Claeskens 2003, Hjort 2006]. An important note on
model selection is that different selection methods might end up offering different results, even
when the data and list of candidate models is the same. These conflicting recommendations do
not necessarily form a contradiction, but indicate the importance of understanding the working
principle of model-selection methods and in what context and for what aim they are relevant.
Lastly, it is noted that most model-selection strategies work by assigning a score to each of
the candidate models. In certain cases, it might be advantageous to perform a multi-modal
approach where all fitted models are averaged in a weighted manner according to their scores
[Stoica 2004b].

An important application of model-selection procedures is to detect and extract relevant
features or peaks from noisy data [Knuth 2015]. As already stated in the previous section,
noise is a nuisance and the goal is to find the underlying signal in possibly heavily distorted
data. Model selection may, for example, be used to estimate the degree of a polynomial from
a noisy data sample [Mana 2014]. Furthermore, model selection can be applied as well on the
problem of signal detection where the question is whether a certain signal is present or absent
[Mubeen 2013]. In addition, model selection has been used to determine the model order of a
Gaussian mixture model of the spatial sensitivity function of a light sensor used in a robotics
application [Malakar 2013]. Further examples concern exoplanet detection by determining the
importance of various photometric effects in an exoplanetary system [Knuth 2012, Placek 2014]
and force field selection in biomolecular structure determination from nuclear magnetic resonance
(NMR) data [Habeck 2011]. In X-ray photoelectron spectroscopy (XPS), model selection has
been applied to detect spectral peaks from noisy data [Armstrong 2009]. In order to highlight
the importance and difficulty of correctly detecting peaks from noisy data, an example from

Figure 1.1: (a) Experimental neutron diffraction spectrum of lutidine. (b) Best estimate of peaks, including
amplitudes and positions, extracted from (a) [Sivia 1992a].
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Figure 1.2: Detection of oscillation peaks from the PSD of star KIC 9139163. Upper panel: model fit
consisting of one peak with angular degree equal to 0. Lower panel: favored model fit assessing the
presence of two peaks with angular degrees 2 and 0 [Corsaro 2014].

experimental molecular spectroscopy has been shown in Fig. 1.1. The spectrum of Fig. 1.1(a)
has been obtained by examining the sample being placed in a beam of neutrons, allowing the
recording of a diffraction pattern that provides information of the structure of the material
under investigation. The spectrum, though, consists of very noisy data which hampers a visual
determination of the locations of spectral peaks that are present. The technique of model selection
can be successfully applied to this spectrum, answering the question of how many peaks the
spectrum consists [Sivia 1992a, Sivia 1992b, Sivia 1993, Monserrat 2015]. Fig. 1.1(b) shows the
best estimate of the amplitudes and positions of the excitations peaks. The analysis by model
selection has revealed that there are 9 peaks present in the data shown in Fig. 1.1(a). This clearly
shows the importance of model selection since it is not straightforward to detect these peaks
from only visually interpreting the data of Fig. 1.1(a).

Another example of the importance of model selection is illustrated in Fig. 1.2 which
shows the power spectral density (PSD) of a star. The example stems from the domain of
asteroseismology where stellar physics and stellar evolution is investigated through oscillations
that occur in stars [Garcı́a 2013]. Since oscillations are related to the internal structure of a star,
information can be gained about a star’s interior. From the data in Fig. 1.2, oscillation peaks
need to be reliably detected in order to be able to extract stellar structural information. Two
competing models are shown in Fig. 1.2 where the upper one contains only one oscillation peak,
whereas the lower one contains two peaks. By applying model selection, it has been shown
that the model containing two peaks is strongly favored [Corsaro 2014]. As for the example of
neutron diffraction in Fig. 1.1, a visual interpretation of the noisy data in Fig. 1.2 is insufficient to
reliably detect the possible presence of peaks. Therefore, a quantitative model-selection method
is required which is able to disentangle signal from noise.
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1.3 Materials science and technology

Model selection is not restricted to the examples described in the previous section, but can
play an important role as well in materials science. Nowadays, the field of materials science
has evolved from micro-to nanoscience covering the study of objects, structures and phenom-
ena at dimensions of less than 100 nanometers [Demetzos 2004]. There exists a great variety
of nanomaterials, including metals, ceramics, polymers, semiconductors, magnetic materi-
als, biomaterials and energy materials for applications such as transistors, sensors, catalysts,
batteries, contrast agents, and biomedical drugs [Klabunde 2002, Liz-Marzán 2003, Callis-
ter 2007, Wang 2015, Wu 2015, Tan 2017]. During the last few decades, nanotechnology, which
is the branch of technology that deals with nanometer-scale dimensions and, in particular, with the
manipulation of individual atoms and molecules, has grown substantially in the field of materials
science for developing applications in physics, chemistry, biology, and engineering. Nanoma-
terials have gained great interest because their properties may vary significantly as compared
to the properties of their bulk counterparts [Nebel 2003, Roduner 2006, Huang 2010, Alsham-
mari 2012, Husain 2016]. This phenomenon can be traced back to the fact that the properties of
nanomaterials depend strongly on their size and shape, which is defined by their exact atomic ar-
rangement. Nanostructures may consist of only a few up to several millions of atoms or molecules
[Ferrando 2008]. Nanoparticles that consist of a very low amount of atoms and yield only very
few stable geometric configurations can be referred to as atomic clusters. Such nanoclusters can
be considered as a bridge between atoms and nanoparticles. Today, materials science is mainly
aimed on discovering new nanomaterials with outstanding properties. For this, one needs to fully
understand the relation between properties and structure [Yang 2012]. This is important since,
for example, the phycial properties of nanomaterials can already be significantly altered by only
small local changes in the structure [Zambelli 1996, Nørskov 2009, Qi 2010, Alem 2011, Maz-
zucco 2012, Van Aert 2012a, Tang 2014] or composition [Tedsree 2011, Huang 2012].

In particular, the concept of model selection can play a crucial role in reliably detecting the
presence of atoms of nanomaterials. This is important, since it is well known that the exact
surface morphology of nanomaterials can influence their physical properties. Also for ultrasmall
nanoclusters, the detection of single atoms is crucial. Such atomic clusters can be thought of as
fundamental building blocks leading to metamaterials with physical and chemical properties that
are not available in nature [Binns 2001, Claridge 2009]. The growth mechanisms for small nan-
oclusters are much more exotic than for bulk materials and, therefore, they possess more complex
structures, providing the need of applying model-selection techniques to study their exact atomic
arrangements. Model selection in materials science is not limited to detecting single atoms. It
may also be applied to detect signals of light elements that are present in materials. Light atoms,
such as hydrogen, lithium, and oxygen, play a key-role in modern technology. In hydrogen
storage applications, hydrogen is used as a medium to store energy [Schlapbach 2001, von
Colbe 2019]. For example, energy created by intermittent energy sources, such as wind and
solar energy, can be stored during periods of high availability and low demand. As such, the
fluctuating nature of intermittent energy sources can be addressed. An important application of
lithium is that of lithium batteries, which are commonly used for portable electronics and electric
vehicles. As compared to other types of batteries, lithium batteries are light weight and possess
higher energy densities [Tarascon 2001, Du Pasquier 2003, Lee 2011]. In order to develop
lithium-based batteries with improved charging rate, capacity, and life time, it is essential to
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study the movement of lithium ions during charging and discharging processes [Levi 1999, Mor-
crette 2003, Nishimura 2008]. Furthermore, oxygen appears in a wide range of technologically
interesting materials. Oxide materials have been reported to possess a whole range of fascinating
phenomena [Martin 2010, MacLaren 2014]. For example, at oxide interfaces novel electrical
transport properties may arise [Ohtomo 2002, Ohtomo 2004, Seidel 2009, Shah 2010, Yu 2010].
In all of the aforementioned examples, it is crucial that signals from light elements can be
detected in order to understand the role of the light atoms on the physical and chemical properties
of the material.

Through the years, different characterisation techniques have been developed to analyse
material structures down to the atomic level. X-ray and neutron diffraction techniques enable
revealing the lattice structure with high resolution [Zanchet 2001]. Such techniques typically only
provide spatially averaged structural information, losing information at the local scale. For this
reason, X-ray and neutron diffraction are applicable to characterise materials exhibiting a periodic
structure, whereas nanomaterials are usually aperiodic. Local scale structural information is
available through scanning probe techniques, such as scanning tunneling microscopy (STM), and
atomic force microscopy (AFM). However, these techniques only provide surface or near-surface
information [Wiesendanger 1994, Hofer 2003, Tseng 2011]. By using transmission electron
microscopy (TEM), though, both the local and internal structure of materials can be examined at
the atomic scale, because of the strong interaction of electrons with matter [Henderson 1995].
Interestingly, since electrons are also charged, observations in TEM are not only sensitive to
the atomic structure, but can also provide information about the type and the ionisation state of
the atoms. As such, TEM has become a widely used technique to visualise nanomaterials with
high resolution. Nowadays, electron microscopes can be operated in conventional transmission
electron microscopy (CTEM) mode, where the specimen is illuminated by a parallel incoming
electron beam, and in scanning transmission electron microscopy (STEM) mode, where the
beam is focused onto the specimen and scanned in a two-dimensional (2D) raster.

Ever since the construction of the first electron microscope, the field of TEM has been
mainly focused on the microscope itself for improving the image quality. For this, the quality
of the lenses and stability of the acceleration voltage and lens currents need to be sufficient in
order to obtain atomic-resolution electron microscopy images [De Graef 2003]. By increasing
the acceleration voltage, the point resolution, representing the smallest detail which is directly
interpretable from the recorded images, can be improved [Egerton 2014]. In this manner, a
resolution of 43 pm has been achieved by using a TEM working at 1.2 MV [Akashi 2015].
However, the downside of using such a high acceleration voltage is the occurence of radiation
damage, which is especially problematic for, for example, light-element nanostructures. The
introduction of aberration corrected electron optics [Haider 1995, Rose 2009, Hawkes 2015],
though, pushed the directly interpretable resolution down to the atomic level for moderate ac-
celeration voltages. State-of-the-art electron microscopes are often equipped with aberration
correctors, allowing for analysing materials down to the atomic level. In the CTEM mode,
a point resolution of about 75 to 100 pm can be achieved at moderate acceleration voltages
[Haider 1998a, Haider 1998b, Jia 2004, Ricolleau 2012]. The interpretable resolution can
be improved towards 50 pm by considering the image of the exit wave [Kisielowski 2001,
Kisielowski 2008, Haider 2010, Alem 2011], which can, for example, be obtained from a
focal or tilt series of CTEM images [Van Dyck 1993, Miedema 1994, Thust 1996, Zandber-
gen 2000, Hsieh 2004, Allen 2004]. Sub-angstrom resolution has been achieved earlier in
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STEM than in CTEM for intermediate accelerating voltages [Batson 2002, Nellist 2004]. The
directly interpretable resolution has reached sub-50 pm for aberration-corrected STEM imaging
[Kisielowski 2008, Erni 2009, Sawada 2009, Walther 2013, MacLaren 2014, Krivanek 2015].
The improved resolution of STEM as compared to CTEM is related to the fact that the resolu-
tion that is attainable is higher for incoherent imaging than for coherent imaging [Rayleigh 1896].

1.4 Electron beam damage

Nowadays, due to instrument developments, TEM enables to routinely image specimens at
atomic resolution with high signal-to-noise ratio (SNR). This is only viable for specimens
that can withstand high-energy electron irradiation meaning that they do not show significant
signs of damage due to the electron beam. For biological samples and for samples which are
composed predominantly of low atomic number elements, though, large radiation doses have a
destructive effect [Tach 1971, Egerton 2004]. The primary damage mechanisms from exposure
to high-energy electrons are knock-on damage and radiolysis [Ugurlu 2011, Williams 2009].
For both mechanisms, inelastic scattering occurs in which part of the incident electron energy is
transferred during the collision event. Knock-on damage manifests itself as the displacement
of atoms in the sample, due to a direct interaction with the nucleus where enough energy is
transferred from the incoming electrons that is able to even eject atoms from the specimen. In
general, knock-on damage is a significant damaging mechanism for inorganic samples, but is
less significant for biological samples. By using lower incident electron energies, knock-on
damage can be mitigated when the energy transferred during inelastic scattering events is below
the threshold energy for displacement of a certain kind of atom. Decreasing the incident energy
of the imaging electrons decreases the likelihood of a knock-on damage event, but can increase
the frequency of radiolysis [Csencsits 1987], which is an important damaging mechnism for
biological samples. Here, damage arises due to ionizations by the incident electrons interacting
with valence electrons and breaking chemical bonds.

In order to limit the occurence of beam damage due to the electron beam, beam-sensitive
materials, such as light-element nanostructures, need to be investigated with a limited incoming
electron dose. In this thesis, individual atomic-resolution STEM images have been imaged
using electron doses limited to the order of 103 - 105 e−/Å2. Several techniques are available
which reduce the incident dose on the sample in different imaging modes. A first example
is the possibility of acquiring TEM images at cryogenic temperatures since low temperatures
increase the tolerance to radiation damage [Knapek 1980, Newmark 1982, Chiu 1987]. Imaging
specimens at liquid nitrogen or liquid helium temperatures falls within the domain of transmission
electron cryomicroscopy (CryoTEM) [Adrian 1984]. Here, a specimen holder is used which
maintains the specimen at cryogenic temperatures. This allows one to study specimens prepared
in vitreous, or amorphous, ice, which is advantageous to image individual molecules or molecular
assemblies in the field of structural biology [Li 2009b, Wolf 2014, Callaway 2015], since it
preserves the internal structure of small tissue or cells, or to image materials that are prone to
sublimation at room temperature [Levin 2017]. Due to advances in detector technology and
software algorithms, CryoTEM has enabled structure determination with angstrom resolution of
molecules including enzyms, proteins, ribosomes and viruses [Dellisanti 2015, Campbell 2015,
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Bartesaghi 2015, Merk 2016, Sirohi 2016, Khoshouei 2017, Vonck 2017, Cheng 2018]. It is
noted that such resolutions are achieved by combining many individual particle images. As
a result, the resolution of the reconstruction of a particle depends on the homogeneity of the
sample and on the accuracy of the image alignment. Alternatively, electron diffraction can be
used, where bright spots corresponding to repetitive crystal spacings in Fourier or diffraction
space are recorded [Downing 2001, Hadermann 2011, Hadermann 2012, Karakulina 2018].
Since unit cell information within the crystal is amplified, enough signal can be generated
[Unwin 1975]. In real-space imaging, using a lower acceleration voltage limits the effect of
knock-on damage [Egerton 2004, Girit 2009]. In addition, in STEM, the effects of beam damage
can be further limited by reducing the pixel dwell time and beam current while recording the
image [Buban 2010]. Another interesting option to physically limit the amount of electrons
reaching the specimen is compressed sensing [Binev 2012, Saghi 2015, Béché 2016]. Here,
the electron dose is reduced by measuring image intensities for a few pixels only. In electron
tomography, the total dose can be reduced by acquiring the series of images in a fast way
[Migunov 2015, Koneti 2019], or by limiting the number of images in the series to only a few
number of projections, for example by performing discrete tomography [Herman 2007].

Since there is a direct relationship between the incident dose and detected signal, imaging
specimens in STEM with a limited incoming electron dose of around 103 - 105 e−/Å2 results

Figure 1.3: (a) Atomic-resolution electron microscopy image of SrTiO3 using a high incoming electron
dose of almost 106 e−/Å2. (b), (c), and (d) Images of SrTiO3, graphene, and a small Ge cluster, respectively,
using a limited incoming electron dose of the order of 104 - 105 e−/Å2, resulting into a detected electron
dose of the order of 102 e−/Å2.
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in images exhibiting low intensities of the order of 102 detected electrons/Å2. Recognising
structural features or even atomic columns from such images by just a visual inspection is
unreliable and might lead to biased structural information. Usually, for beam-stable materials,
the number of atomic columns can be determined visually due to the high incoming electron
dose, typically of the order of more than 106 - 108 e−/Å2 [Williams 2009], that can be used to
image these materials. This results into images containing a high number of detected electrons,
roughly of the order of 104 electrons/Å2, leading to images exhibiting high quality. This is
illustrated in Fig. 1.3(a) for an atomic-resolution image of SrTiO3 where the atomic columns
can be easily recognised. For beam-sensitive and light-element materials, though, the incoming
electron dose should be limited in order to avoid beam damage, resulting into low-quality
images. Visual inspection of such images may lead to biased results. Figs. 1.3(b), (c) and (d)
show images recorded with a limited incoming electron dose of the order of 104 - 105 e−/Å2

of SrTiO3, graphene, and a small Ge cluster, respectively [Fatermans 2018]. Although some
features can be recognised from these images, it is not straightforward to visually indicate the
presence or absence of atomic columns, especially when no prior knowledge about the material’s
structure is available. Therefore, often imaging processing techniques are necessary in order to
interpret low-dose images and to obtain reliable structural information. Several noise-reduction
techniques exist which are aimed to remove noise from images and to highlight relevant features
[Westin 2000, Vieira 2013]. Nowadays, deep-learning techniques making use of neural networks
are also being developed to remove noise or other image artefacts from images and to perform
image restoration [Madsen 2018]. In case of a series of low-dose images, a higher signal can
be obtained by combining the individual images in the series by using image registration or
image alignment algorithms [Goshtasby 2005, Jones 2015]. An alternative way is to use template
matching where parts of an image are matched with a template which can be a smaller area of
the image or a separate image [Brunelli 2009, Altantzis 2016]. A drawback of the techniques
of image registration and template matching is that only average structure information can be
obtained, losing information on the local level which might have an important effect on the
physical properties of nanomaterials. Alternatively, also statistical techniques are available
for detecting atoms or the number of atoms in a column and to recover information about the
structure of the material under investigation [Meyer 2014, Gonnissen 2014, De Backer 2015b,
Gonnissen 2016b, Kramberger 2016, Kramberger 2017, Van Aert 2019].

In this thesis, a new method, based on Bayesian model selection, will be developed and
applied which is capable of quantifying the available image information and detecting the atomic
columns that are present in STEM images. In this manner, the most probable atomic structure of
unknown nanomaterials can be determined in an automatic and objective manner.

1.5 What to expect in this thesis?

Nowadays, powerful image quantification procedures in atomic-resolution TEM are available
which enable the possibility to obtain structural information with high accuracy and precision.
Often, in such techniques, it is important that the atomic columns in the image can be recog-
nised. As discussed in the previous section, visually determining the number of columns is not
straightforward for materials which are sensitive to the electron beam. This is due to the use of
a limiting incoming electron dose which causes images to exhibit low intensities, hampering
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visual interpretation. Therefore, in this thesis, a new method is developed which brings both
image quantification and atom detection together in one framework.

After describing the image formation theory of TEM imaging, this thesis will start by intro-
ducing statistical parameter estimation theory. This framework is widely applicable in different
fields of science and consists of the estimation of unknown parameters from an available set of
experimental observations. The starting point is the construction of a parametric (physics-based)
model describing the expectations of the experimental observations as a function of the unknown
parameters. In TEM, atomic-resolution images are considered as data planes where the obser-
vations are characterised by a set of image pixel values from which unknown parameters need
to be estimated, such as the atomic column positions and their widths and heights, and image
background. Accurate and precise structure information is then obtained by fitting the parametric
model to the observed image pixel values with respect to the unknown structure parameters
using a criterion of goodness of fit, quantifying the similarity between the image and the model.
Recently, an open source program called StatSTEM has been developed to facilitate model-based
quantitative electron microscopy [De Backer 2016].

Interestingly, the framework of parameter estimation theory can be combined with model-
order selection. Hereby, besides estimating the unknown structure parameters of the expectation
model, also the number of parameters need to be determined, most closely representing the un-
derlying process that generated the experimental observations. Typical model-selection methods
perform a tradeoff between high goodness of fit and low model complexity, since model fit can
be easily improved by increased model complexity without necessarily bearing any interpretable
relationship with the underlying data-generating process. In this thesis, it will be shown that for
annular dark-field (ADF) STEM, model selection can be used to automatically and objectively
determine the number of atomic columns which are present in the image data. This method is
referred to as the maximum a posteriori (MAP) probability rule. As a result, atomic columns
and even single atoms can be reliably detected and the most probable atomic structure of un-
known nanomaterials can be determined. This is especially relevant for analysing the structure
of beam-sensitive nanomaterials, as such materials need to be imaged in STEM with limited
incoming electron doses, varying in this thesis from around 103 to around 105 e−/Å2 leading to
images consisting of low intensities, which makes visual inspection unreliable. The validity and
usefulness of this method will be demonstrated to experimental and simulated images of samples
of different shape, size, and atom type.

In principle, atom detection from STEM images can be performed with any model-selection
criterion. Therefore, the thesis continues with comparing the performance of the MAP probabil-
ity rule in correctly detecting atoms from ADF STEM images to that of other model-selection
criteria. It will be shown that the MAP probability rule takes into account more dimensions of
model complexity as compared to other commonly used model-selection criteria. This allows for
a superior performance to detect the correct number of atomic columns from ADF STEM images.
In addition, the MAP probability rule offers a more flexible way to detect atoms from images
than other criteria. This is due to the fact that the prior information can be tuned, resulting into a
different value for the complexity of the model under consideration. Moreover, by using the MAP
probability rule, it is clear what prior knowledge has been taken into account during the analysis,
which is not always straightforward for other model-selection criteria. Besides detecting atomic
columns from ADF STEM images, the MAP probability rule also offers a way to evaluate the
relation between STEM image quality measures, such as SNR and contrast-to-noise ratio (CNR),
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and atom detectability, which is defined as the probability to detect an atom from an image. In
general, atom detectability is indeed related to image quality, since, for example, one expects the
detectability of atomic columns in an image to increase with increasing image quality. In this
way, the probability to detect an atomic column from STEM image data, which can be provided
by the MAP probability rule, is correlated with the quality of the image. As such, for STEM
images, a new image quality measure, the so-called integrated CNR (ICNR), will be proposed
that better correlates with atom detectability than conventional image quality measures.

In the last part of this thesis, the concept of the MAP probability rule, which has initially
been developed for analysing ADF STEM images, is extended in order to analyse simultaneously
acquired ADF and annular bright-field (ABF) STEM images. Such a simultaneous acquisition
from these detector geometries is of relevance since this technique combines the improved
light-element visualisation of ABF STEM with the easily interpretable image contrast of ADF
STEM. Although a combined ADF and ABF STEM acquisition allows to better visualise atoms
of materials consisting of both light and heavy atoms, studying and interpreting such images in
a visual way is not necessarily straightforward since light-element nanostructures are typically
sensitive to the electron beam, limiting the incoming electron dose resulting into images with
low intensities. Therefore, a reliable quantitative method to detect the atomic columns from the
image data is required.

The outline of this thesis is as follows. In Chapter 2, the electron-specimen interaction in STEM
is described together with methods to characterise the number of electrons being collected by the
annular STEM detector. In Chapter 3, model-based parameter estimation theory, which aims
to extract structure parameters from the image data, and model-order selection, which aims
to determine the optimal number of parameters needed in a parametric model, are introduced.
Next, in Chapter 4, the combination of parameter estimation with model selection is discussed.
This method is referred to as the MAP probability rule and aims to detect atomic columns
and single atoms in an automatic and objective manner from ADF STEM images. This is
followed by Chapter 5, where the performance of the MAP probability rule is compared to other
selection criteria. In addition, it is shown that the MAP probability rule can also be used to
evaluate atom detectability as a function of image quality. In Chapter 6, the methodology of the
MAP probability rule for ADF STEM is extended to analyse simultaneously acquired ADF and
ABF STEM images. Finally, in Chapter 7, conclusions are drawn and future perspectives are
considered.
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2
Scanning transmission electron

microscopy

2.1 Introduction
In the beginning of the1930s, physicist Ernst Ruska and electrical engineer Max Knoll designed
the first electron microscope [Knoll 1932], an instrument capable of exceeding the resolution
attainable by an optical microscope. For this, in 1986, Ernst Ruska was awarded the Nobel
Prize. Although, the first electron microscopes were very primitive as compared to today’s highly
sophisticated machines, they still form the basis of modern-day electron illumination techniques.
The original design was similar to that of the optical microscope where a broad beam is used
to image the specimen. By the late 1930s, though, already alternative ways of illumination
were investigated by using a fine probe being scanned over the specimen [Knoll 1935, Von Ar-
denne 1938]. In principle, by using such a fine probe, the specimen is incoherently illuminated
[Cowley 1969], which results into a higher attainable resolution as compared to the coherent
illumination of a broad beam [Nellist 2000]. Only in the 1970s, the technique of STEM was
further developed [Crewe 1966, Crewe 1968], demonstrating the visualisation of single atoms
[Crewe 1970].

In Fig. 2.1, CTEM is schematically illustrated. More details on this imaging mode can
be found in [Van Dyck 2002, De Graef 2003, Williams 2009]. In CTEM, the specimen is
illuminated by a parallel incident electron beam. The electrons of the incident plane wave
propogate through the specimen while interacting with the electrostatic potential of the atoms,
resulting into a complex wave function that leaves the specimen, i.e. the exit wave. When the
specimen is oriented along a major zone axis and when the distance between neighbouring
atomic columns is not too small, there exists a one-to-one correspondence between the exit wave
and the projected atomic structure [Van Dyck 1996, Van Dyck 1999, Geuens 2002]. Through a
set of objective apertures and electromagnetic lenses, a virtual image of the exit wave is created,
which is further magnified by the projector lenses. Since, in practice, the electromagnetic lenses

13
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Figure 2.1: Schematic drawing of CTEM [Van Aert 2016], where the specimen is illuminated by a plane
wave after which an image is formed by using a set of electromagnetic lenses.

in the microscope are not perfect, the exit wave is distorted by aberrations [Rose 2009], such
as spherical aberration, defocus, and chromatic aberration. Finally, the wave is recorded in
the detector plane with a charge-coupled device (CCD) camera, detecting the electron counts
reaching the camera. In this process, only intensities are recorded, losing the information about
the phase of the exit wave. The technique of CTEM is a coherent imaging technique. As such,
contrast reversals may appear due to the specimen and lens aberrations, which causes CTEM
image interpretation to be not straightforward and possibly even complicated.

Details about the STEM technique, which is schematically displayed in Fig. 2.2, can
be found in [Nellist 2000, Pennycook 2011]. As shown in Fig. 2.2(a), in STEM, a focused
electron beam with convergence semi-angle α is scanned in a 2D raster across the specimen.
Hereby, for each probe position, the electrons propagate through and interact with the specimen,
causing them to scatter towards the detector which has an annular shape with inner and outer
collection angles β1 and β2, respectively. The detector integrates the collected electrons as a
function of probe position. As a result, an image is built up during the scanning of the specimen.
Nowadays, different detector geometries in STEM are available depending on the collection
angles of the annular detector [Shibata 2010, Hovden 2012, Yang 2015b]. These geometries
are depicted in Fig. 2.2(b). The atomic number dependence of the contrast and the SNR differs
depending on what collection angles are chosen. The most commonly used imaging mode
in STEM is ADF imaging, where the inner collection angle β1 of the detector is larger than
the probe convergence semi-angle α. The electrons scattered to the ADF detector are mainly
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Figure 2.2: (a) Schematic drawing of STEM [Van Aert 2016], where a focused electron beam with
convergence semi-angle α is scanned over the specimen. The scattered electrons are collected on an
annular detector with inner and outer angles β1 and β2, respectively. (b) Simplified schematic of STEM
[Korneychuk 2018], highlighting the different detector geometries and the ability of collecting EDX and
EELS signals simultaneously with STEM images.

inelastically scattered electrons [Hartel 1996, Pennycook 2011]. The image contrast in ADF
STEM is easily interpretable due to the fact that it is an incoherent imaging mode which strongly
depends on the atomic number Z. Especially for a high inner detector angle β1, the image
contrast is approximately proportional to Z2. Therefore, high-angle annular dark-field (HAADF)
STEM imaging is often referred to as Z-contrast imaging. Alternative ADF set-ups using smaller
inner collection angles are referred to as low-angle ADF (LAADF) and medium-angle ADF
(MAADF), respectively. Another configuration is bright-field (BF) imaging. Here, use is made of
a circular detector that lies within the illumination cone of the electon probe (β1 = 0 and β2 ≤ α).
Interestingly, by the concept of reciprocity, which states that the electron intensities and ray paths
in the microscope remain the same if their direction is reversed and the source and detector are
interchanged, it can be shown that BF STEM is equivalent with CTEM [Kirkland 2010]. Placing
an annular detector within the illumination cone of the electron probe results into ABF STEM
imaging, where β1 > 0 and β2 ≤ α. This imaging mode suffers less from contrast reversals
than BF STEM, resulting into images which are more easily interpretable over a large range of
thicknesses [Findlay 2009, Okunishi 2009, Findlay 2010]. As compared to ADF STEM imaging,
ABF STEM is more suitable to visualise both light and heavy elements simultaneously, since
image contrast is less dependent on atomic number Z. Recently, detectors have been developed
for STEM that enable to record a complete convergent beam electron diffraction (CBED) pattern
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at every pixel during the scanning of the sample. These detectors are referred to as pixelated
detectors [Ryll 2016, Tate 2016, Mir 2017, Faruqi 2018]. As such, four-dimensional (4D) STEM
data can be acquired, consisting of 2D diffraction patterns recorded at every 2D probe position.
From the 4D data, so-called synthetic STEM images can be obtained which are equivalent to
images obtained by the conventional annular geometry, but with the benefit that the detector
collection angles can be tuned in a flexible manner.

Currently, modern-day electron microscopes are also capable of simultaneously acquiring
STEM images and spectral signals. This allows for perfoming energy-dispersive X-ray spec-
troscopy (EDX) and electron energy loss spectroscopy (EELS), whose detector geometries are
schematically drawn in Fig. 2.2(b). The possibility of collecting spectral signals allows for more
robust chemical characterisation, especially for nanomaterials consisting of almost identical
atomic numbers. X-rays in the electron microscope occur due to the high energy of the electrons,
possibly exciting the atoms in the sample to a higher energy level followed by the emission
of X-rays when falling back to their ground states. The technique of recording such X-rays is
referred to as EDX. The EDX signal provides direct information about the atomic composition
of a material since the energy of the emitted X-ray is related to the electron shell structure of an
atom. Hereby, relative quantification methods have been developed for low-magnification images
[Cliff 1975, Watanabe 2006]. Recently, new methods have been proposed which have enabled to
perform a compositional determination at the atomic scale [MacArthur 2016a, MacArthur 2016b].
In order to be able to directly compare measured experimental EDX spectra with simulations, it is
crucial to describe the generation of X-rays correctly [Dwyer 2005, d’Alfonso 2010, Allen 2012]
and to take into account the detector geometry and efficiency in image simulations [Xu 2016]. As
a result, thickness and composition measurements can be performed in bulk materials [Kothleit-
ner 2014, Chen 2015]. Historically, EDX has suffered from low SNR, but due the implementation
of a new recording system composed of 4 detectors, improving the SNR significantly [Schloss-
macher 2010], interest in EDX has been regained. EELS, at the other hand, consists of measuring
the energy loss of the incident electrons due to interaction with the specimen. Such energy
losses are related to the energy transfer required to excite an electron in the atomic electron
shell to a higher energy level. When the excited electron falls back to a lower energy level
an X-ray might be produced. As such, EDX is a secondary process which only occurs after
an EELS event. The technique of EELS can be used to measure the atomic composition of a
specimen [Egerton 1996, Egerton 2008]. As compared to EDX, with EELS, also information
about chemical bonding, and valence and conduction band electronic properties can be obtained.
In order to optimise the analysis of EELS data, model-based methods have been developed
[Verbeeck 2004, Verbeeck 2006].

Lastly, it is noted that TEM images are typically acquired in a vacuum system to reduce the
collision frequency of the electrons with gas atoms to negligible levels. Nowadays, there is an
increasing interest in perfoming environmental, or in situ, TEM or STEM, where the sample
is brought in a liquid environment [de Jonge 2011, Ievlev 2015, Ross 2015, Unocic 2016] or
gaseous environment [Boyes 2013, Li 2015] by using specialised specimen holders. Conducting
in situ experiments is of great importance for studying nanoparticles, biological samples or
chemical reactions in their natural environment [Crozier 2014, Kosasih 2018].

Although TEM imaging has become a standard technique to study the structure of nanomateri-
als with atomic resolution, a TEM image merely provides a 2D projection of a three-dimensional
(3D) atomic structure which might be misleading. For example, as morphology is one of the
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Figure 2.3: Schematic showing the principle of electron tomography [Winckelmans 2018a], in which the
specimen is tilted over a large angular range while acquiring images at certain tilt increments. Then,
the series of projection images is aligned and reconstructed to a 3D representation of the object under
investigation.

main factors which influences the properties of a nanoparticle, different techniques which are
able to reveal the exact 3D structure have been suggested in the field of electron microscopy.
The best known method is electron tomography, where a series of 2D projection images are
acquired at different tilt angles, i.e. at incremental degrees of rotation around the specimen [Midg-
ley 2009, Bals 2013]. After carefully aligning the recorded images [Houben 2011, Scott 2012],
a 3D reconstruction of the specimen can be obtained. The principle of electron tomography is
schematically presented in Fig. 2.3. In order to successfully perform an electron tomography
experiment, it is important that the sample is sufficiently stable under illumination of the electron
beam during the acquisition of the tilt series. Also, it is assumed that image intensities show
a monotonic relationship with the thickness or density of the structure [Weyland 2004]. In
addition, electron tomography suffers from the so-called missing wedge problem which causes
artefacts in the 3D reconstruction [Midgley 2003]. This is due to the design of the electron
microscope where the tilt range of the specimen holder is limited, restricting the acquisition
of images from certain tilt angles. Electron tomography reconstructions used to be obtained
at the nanoscale [Bals 2007, Ke 2010, Biermans 2010], but the development of new advanced
reconstruction algorithms [Goris 2012b, Leary 2013, Goris 2013b] has enabled 3D characteri-
sation to evolve from the nanoscale to the atomic scale [Scott 2012, Goris 2012a, Goris 2013a,
Xu 2015, Goris 2015, Yang 2017]. Recently, multimodal tomography has been introduced
where spectral imaging by EDX and EELS have been introduced in a tomographic framework
[Möbus 2003, Bals 2014, Goris 2014b, Goris 2014a, Yedra 2014, Slater 2016, Zanaga 2016]
or where multiple STEM detector geometries are combined [Winckelmans 2018b]. A sim-
ilar technique to electron tomography is discrete tomography. Here, atom-counting results
are obtained from only a few zone-axis orientations. By combining the results from differ-
ent viewing directions, a 3D reconstruction of the material at the atomic level is achievable
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[Van Aert 2011, Bals 2011, van den Bos 2016]. Even from a single projection image, 3D atomic
models can be obtained [De Backer 2017]. Furthermore, the 3D dynamical behaviour could
be investigated from a single viewing direction by performing ab initio or molecular dynam-
ics calculations [Bals 2012, Jones 2014]. The benefit of discrete tomography as compared to
conventional electron tomography is that the sample is less exposed to the electron beam as no
large series of images is recorded, which offers a more optimal way of imaging beam-sensitive
nanoparticles that might otherwise be damaged. Another possible technique for 3D structure
characterisation is depth-sectioning by HAADF STEM [van Benthem 2005, Einspahr 2006, van
Benthem 2006]. In this technique, it is possible to slice through the specimen from a single
viewing direction by acquiring a focal series of images [Van den Broek 2010]. Depth sectioning
is useful for obtaining information about 3D surface morphology, thickness, top/surface atomic
structures or dislocations [Hirsch 2013, Yang 2015a, Alania 2017b]. Despite advances in aber-
ration correction technology, the resolution obtained by depth sectioning remains insufficient
to reach atomic-depth resolution [Borisevich 2006, Cosgriff 2007, Alania 2017b]. In CTEM, a
3D reconstruction at the atomic scale can be provided by an advanced analysis of the exit wave,
which is closely related to the object structure. The exit wave can be reconstructed by a series of
CTEM images acquired at different focal values [Wang 2010, Wang 2012].

In this chapter, the image formation process of STEM will be described. More details
concerning the topic can be found in [Van Dyck 1989, Broeckx 1995, Van Dyck 1996, Kirk-
land 2010]. In particular, the derivations in this chapter have been based on [Kirkland 2010].
The description of the electron interactions in the electron microscope is important for under-
standing the observed image contrast in images. Furthermore, knowledge about the image
formation process can be used to simulate realistic electron microscopy images which can be
directly compared to experimental images. In STEM, the electron probe is focused onto the
specimen by a set of lenses and scanned in a 2D raster across the specimen, as depicted in
Fig. 2.2. When the electrons interact with the sample, many types of reactions such as electron
backscattering, production of X-rays and Auger electrons, and cathodoluminescence can occur,
whose signals can be captured to gain information about the specimen under investigation. In
this thesis, the focus will lie on the transmitted electrons which, in STEM, are collected by an
annular detector. In section 2.2, the electron-specimen interaction is discussed, which forms the
most important part of the image formation process. Mathematically describing this interaction
involves introducing the Schrödinger equation. The remaining of this chapter discusses the
electron interactions according to their trajectory in the electron microscope, as shown in Fig.
2.2, starting with the mathematical description of the electron-probe formation in section 2.3,
including the aberrations and compensations of the magnetic lenses. Then, in section 2.4, the
specimen potential is introduced. In order to understand the mechanisms behind the interactions
of the electrons with the specimen, the Schrödinger equation needs to be solved. In principle, this
comes down to describing a dynamical scattering process, in which the electrons are scattered
multiple times while propagating through the specimen [Van Dyck 1985, Cowley 1995]. When
a scattering event occurs only once, the scattering is referred to as being kinematical. The
dynamical scattering problem can be solved from an optics point of view [Cowley 1957]. In
this method, which is referred to as the multislice method [Lynch 1972, Allpress 1972, All-
press 1973], the specimen is divided into thin 2D slices along the propagation direction of the
electron beam. Hereby, the electron beam alternately transverses a slice and propagates then to
the next slice. The multislice method is thoroughly described in section 2.5. Hereby, in order
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to obtain realistic quantitative image simulations, it is also important to take into account the
thermal behaviour of the atoms in the specimen. Nowadays, the multislice method has been
incorporated in several software packages for the simulation of high-resolution images of which
STEMsim [Rosenauer 2008b] and MULTEM [Lobato 2015, Lobato 2016] are two examples.
After interaction with the specimen, it can be seen from Fig. 2.2 that the transmitted electrons
are transferred to the detector plane forming an image of the specimen which is described in
section 2.6. In section 2.7, the behaviour of the detector is discussed and methods for converting
the recorded intensities into physical electron counts are described. Finally, conclusions will be
drawn in section 2.8.

2.2 Electron-specimen interaction
In the electron microscope, electrons should be treated relativistically as they are travelling at
high speeds with energies ranging typically from 50-300 keV. For example, an electron with an
energy of 100 keV travels approximately with half the speed of light. This means that quantities
such as mass, velocity, and wavelength need to be calculated relativistically. The total energy E0

of a charged particle with charge e and rest mass m0 accelerated through a potential V0 is given
by

E2
0 = (m0c2 + eV0)2 = p2c2 + m2

0c4 = m2c4, (2.1)

where c is the speed of light in vacuum (299792458 m/s), p = mv the particle’s momentum
where v is its velocity and m its mass. Hereby, m0c2 = 511 keV. From Eq. (2.1), it follows that
the ratio of the electron’s mass to its rest mass becomes

m
m0

= γ =
1√

1 − v2/c2
= 1 +

eV0

m0c2 . (2.2)

From this expression, it follows that the velocity of the electron relative to the velocity of light is
given by

v
c

=

√
1 −

( m0c2

m0c2 + eV0

)2

. (2.3)

The movement of the electrons in the electron microscope and their interaction with the specimen
under investigation is a quantum mechanical process. Under such conditions, the electrons can be
described not only as particles, but also as waves. This phenomenon is called the wave-particle
duality. As a result, the de-Broglie wavelength of the electron can be calculated as:

λ = h/p, (2.4)

where h is Planck’s constant being 6.62607015 · 10−34 J·s. Substituting Eq. (2.4) into Eq. (2.1)
yields

(m0c2 + eV0)2 =

(hc
λ

)2

+ m2
0c4, (2.5)

from which follows that
λ =

hc√
eV0(2m0c2 + eV0)

. (2.6)
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The wave-particle duality invokes that all the information about an electron in the electron micro-
scope is encoded in a wavefunction. During the electron-specimen interaction, the wavefunction
evolves according to the Schrödinger equation. Due to the beam energies in electron microscopy,
typically 50-300 keV, the electrons behave in a relativistic way. In principle, the Schrödinger
equation is not the correct wave equation for relativistic electrons. Instead, the relativistic Dirac
equation should be used. This equation, though, is mathematically significantly more difficult
to work with. Traditionally, the Schrödinger equation is still applied using the relativistically
correct electron mass and wavelength, as given by Eqs. (2.2) and (2.6), respectively. For the
range of energies of the electrons in the microscope, this approach is accurate enough to describe
electron scattering [Fujiwara 1961, Ferwerda 1986b, Ferwerda 1986a, Jagannathan 1989, Ja-
gannathan 1990]. Only at energies of the order of 1000 keV or higher, small errors may be
introduced [Kirkland 2010].

For describing the electron-specimen interaction the time-independent Schrödinger equation
may be used since the electrons move very fast through the specimen which causes the interaction
with the crystal to be extremely short. Therefore, the electrons only see a snapshot of the crystal,
validating the approximation of using a stationary potential. As such, the Schrödinger equation
for the full wave function ψ f (x, y, z) as a function of three spatial coordinates (x, y, z) in the
electrostatic potential V(x, y, z) of the specimen is:[

−
~2

2m
∆ − eV (x, y, z)

]
ψ f (x, y, z) = Eψ f (x, y, z) , (2.7)

where ~ = h/2π and m is the relativistic mass of the electron, which can be derived from Eq.
(2.2). The 3D Laplace operator is given by ∆ = ∂2/∂x2 +∂2/∂y2 +∂2/∂z2 and e denotes the charge
of the electron. The total kinetic energy of the electron is denoted by E . Since in the electron
microscope the energy of the incident electrons is much larger than the additional energy they
gain inside the specimen, the electron motion will be predominantly in the forward z direction,
thus along the optic axis of the microscope. Therefore, it is useful to separate the large velocity
in the z direction from other small effects due to the specimen [Kirkland 2010, Lobato 2014]:

ψ f (x, y, z) = ψ (x, y, z) e2πiz/λ. (2.8)

Hereby, the full wave function ψ f (x, y, z) has been written as the product of two factors, one of
which is a plane wave traveling in the z direction, whereas the other factor ψ(x, y, z) is the portion
of the wave function that varies slowly with position z. In Eq. (2.8), λ is the electron wavelength
given by Eq. (2.6), for which holds that k2 = k2

x + k2
y + k2

z = 1/λ2, where k2 denotes the squared
magnitude of the wave vector k. For elastic processes, the kinetic energy of the electron is given
by

E =
h2k2

2m
=

h2

2mλ2 . (2.9)

From Eq. (2.7), it follows that the following derivative needs to be calculated:

∆ψ f (x, y, z) =

[
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

]
ψ f (x, y, z)

=

[
∆x,y +

∂2

∂z2

]
ψ f (x, y, z) ,

(2.10)
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where ∆x,y is the 2D Laplace operator in x and y. Substituting Eq. (2.8) into Eq. (2.10) gives the
following expression:

∆ψ f (x, y, z) = e2πiz/λ∆x,yψ (x, y, z) +
∂2

∂z2 [ψ (x, y, z) e2πiz/λ]. (2.11)

An expression for the second term at the right-hand side of Eq. (2.11) can be found. The first
derivative with respect to z becomes

∂

∂z
[ψe2πiz/λ] = e2πiz/λ

[
∂ψ

∂z
+

2πi
λ
ψ
]
. (2.12)

From this, it follows that the second derivative is:

∂2

∂z2 [ψe2πiz/λ] = e2πiz/λ
[
∂2ψ

∂z2 +
4πi
λ

∂ψ

∂z

]
−

4π2

λ2 ψ f . (2.13)

By substitution of Eqs. (2.11) and (2.13) in Eq. (2.7), the Schrödinger equation can be written
as:

−
~2

2m

[
∆x,y +

∂2

∂z2 +
4πi
λ

∂

∂z
+

2meV (x, y, z)
~2

]
ψ (x, y, z) = 0. (2.14)

Since the electrons have high energies, the specimen will only give a minor perturbation on the
electron’s motion which is predominantly in the forward z direction. This means that ψ changes
slowly with z and λ is very small [Kirkland 2010, Lobato 2014]. Therefore,∣∣∣∣∣∣∂2ψ (x, y, z)

∂z2

∣∣∣∣∣∣ <<
∣∣∣∣∣4πi
λ

∂ψ (x, y, z)
∂z

∣∣∣∣∣ , (2.15)

which means that the Schrödinger equation in Eq. (2.14) can be reduced to:[
∆x,y +

4πi
λ

∂

∂z
+

2meV (x, y, z)
~2

]
ψ (x, y, z) = 0. (2.16)

The error introduced by neglecting the second order derivative term consists of two parts. The
first part arises from the omission of backscattered electrons, which is shown to be negligable
[Van Dyck 1975]. The second part is due to a slight modification of the wave vector of the
transmitted electrons which becomes important for highly dynamical diffraction in thicker
crystals. As a consequence of the latter, the approximation is only valid for relatively thin
crystals, not exceeding thicknesses of a few tens of nanometers [Lobato 2014]. It follows from
Eq. (2.16) that the Schrödinger equation for fast electrons traveling in the z direction may be
written as a first order differential equation in z as:

∂ψ (x, y, z)
∂z

=

[ iλ
4π

∆x,y + iσiV (x, y, z)
]
ψ (x, y, z) , (2.17)

where
σi =

2πmeλ
h2 (2.18)

is called the interaction parameter which describes the amount of interaction between the
specimen and the incident electrons. It is noted that the interaction parameter drops rapidly with
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increasing electron energy. In computational electron microscopy, the first order differential
equation in Eq. (2.17) is solved in order to determine the electron wave function after interaction
with the specimen. Before being able to solve the time-independent Schrödinger equation, the
entrance wave function and the specimen potential are described as they are necessary inputs in
Eq. (2.17) for determining the exit wave function.

2.3 Electron probe
In STEM, the objective lens is situated before the specimen and forms a focused probe on
the specimen, as illustrated by Fig. 2.2. An image is built up by scanning this focused probe
over the specimen and by recording the transmitted intensity at each position of the probe. In
order to solve the differential equation given by Eq. (2.17), the incident wave function of the
probe that interacts with the specimen needs to be introduced. This wave function is given by
ψ (x, y, 0) = ψ0 (x), where x = (x, y) is the 2D coordinate vector. In the ideal case, when no
aberrations are present, this wave function is given by an integration over the objective aperture
as:

ψ0 (x, x0) = A0

∫ kMAX

0
e2πik·(x−x0)dk, (2.19)

where x0 = (x0, y0) is the electron probe position and where k = (kx,ky) is the 2D wave vector,
λ|kMAX | = αMAX is the maximum angle in the objective aperture, and A0 is a normalisation
constant chosen to yield ∫

|ψ0 (x, x0)|2 dx = 1. (2.20)

With this normalization, the total incident intensity in the electron probe is equal to unity. By
making use of the fact that the forward and inverse 2D Fourier transform of the arbitrary functions
g(x) and g(k) are given by

FT [g(x)] =

∫
g(x)e−2πik·xdx (2.21)

and
FT−1[g(k)] =

∫
g(k)e2πik·xdk, (2.22)

respectively, Eq. (2.19) can be written as

ψ0 (x, x0) = A0FT−1
[
A (k) e−2πik·x0

]
, (2.23)

where A (k) is the aperture function given by

A (k) =

{
1, λ|k| ≤ αMAX

0, otherwise (2.24)

defining the opening of the aperture through which the electrons travel.
In reality, though, lens aberrations are present which characterise the deviation of the electron

wave function from an ideal spherical incoming wave [Kirkland 2011]. As compared to their
optical counterparts, magnetic lenses suffer from much larger aberrations, limiting them to the
use of only small aperture angles. As a result, aberrations cause the wave function of the incident
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Figure 2.4: Qualitative illustration of various single aberrations by images of an electron probe [Kirk-
land 2010]. (a) no aberrations (scale bar 5 Å), (b) defocus, (c) twofold astigmatism, (d) threefold
astigmatism, (e) coma, and (f) spherical aberation.

electrons to be modified by the transfer function H0 (k) of the objective lens. As a result, Eq.
(2.23) can be written as:

ψ0 (x, x0) = A0FT−1
[
A (k) H0 (k) e−2πik·x0

]
= A0FT−1

[
A (k) e−iχ(k)−2πik·x0

]
= A0

∫ kMAX

0
e−iχ(k)+2πik·(x−x0)dk,

(2.25)
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where H0 (k) = e−iχ(k), containing the aberration function χ (k) defined by:

χ (k) = πλC1k2 +
π

2
λ3C3k4 +

π

3
λ5C5k6 + . . . . (2.26)

In Eq. (2.26), Cn indicates the nth-order spherical aberration expressed in units of length. The
1st-order spherical aberration is equal to the defocus value, C1 = −ε, and the 3rd-order spherical
aberration is often denoted as C3 = Cs. The 5th-order spherical aberration is indicated by C5. In
principle, Eq. (2.26) consists further of an infinite number of higher-order terms. It should be
noted that in Eq. (2.26) also non-spherical aberrations can be included [Kirkland 2010]. These
kind of aberrations can be related to deviations of rotational symmetry which are inevitable due
to small errors in the magnetic lenses and small mis-alignment between the lenses. The lowest
order effect is the additional aberration of astigmatism and possibly coma. In Fig. 2.4, the typical
forms of aberrations are illustrated and compared to the situation of the absence of aberrations.
Typically, aberration correctors involve a rather sophisticated combination of multipole focussing
elements aimed for correcting the unavoidable 3rd-order spherical aberration C3 of a rotationally
symmetric round lens. Unfortunately, in this process, the multipoles at their turn produce new
aberrations, which, ideally, should also be corrected [Kirkland 2016]. As such, one can never
fully get rid of aberrations, as removing one aberration invokes another.

2.4 Specimen potential
In electron microscopy, the primary interaction between the specimen and the incident electrons
arises from the electrostatic Coulomb potential of the specimen and the charge of the electron.
As the incoming electrons have high velocities, their relativistic wavelengths are given by Eq.
(2.6), from which it follows that

1
λ

=

√
eV0

(
2m0c2 + eV0

)
hc

. (2.27)

Typically, the incident electrons pass through the specimen with only a small deviation in their
path, which can be described as a small change in wavelength. Since the positive electrostatic
potential of the specimen, V(x, y, z), accelerates the incident electrons, their wavelength while
inside the specimen becomes:

1
λs

=

√
(eV0 + eV(x, y, z))

(
2m0c2 + eV0 + eV(x, y, z)

)
hc

=
1
λ

√
1 +

eV(x, y, z)
(
2m0c2 + 2eV0 + eV(x, y, z)

)
eV0

(
2m0c2 + eV0

) ≈
1
λ

[
1 +

λσiV(x, y, z)
2π

]
,

(2.28)

where, in the last step, the square root is approximated by a first order Taylor expansion where
only the lowest order terms in V(x, y, z)/V0 are kept. This approximation is validated by the large
kinetic energy of the incident electrons as compared to the electrostatic potential of the specimen.
In Eq. (2.28), σi represents the interaction parameter as given by Eq. (2.18) [Kirkland 2010].
As a changing wavelength is equivalent with a phase shift in the electron wave function, an
approximation of the electron wave function while passing through the specimen is:

ψt (x) = ψ0 (x) e2πiz/λeiσiV(x,y,z)z. (2.29)



2.5. Multislice method 25

In case the specimen is very thin, neglecting the effect of dynamical scattering, then the electron
wave function accumulates a total phase change while passing through the specimen that is just
the integral of the specimen potential along the optical axis z [Cowley 1972], which is given by:

vz (x) = vz (x, y) =

∫ ∞

−∞

V (x, y, z) dz. (2.30)

As a result, the electron wave function in Eq. (2.29) can be written as

ψt (x) = ψ0 (x) e2πiz/λeiσivz(x). (2.31)

Here, the total potential of the specimen can be obtained by combining the atomic potentials of
the individual atoms which are contained in the specimen:

vz (x) =

N∑
n=1

vz,n (x − xn) , (2.32)

where vz,n (x − xn) is the projected potential of the nth atom at position xn = (xn, yn) in a plane
perpendicular to the optical axis of the microscope. For single atoms separated by a distance
that is large as compared to the atom size, the interaction between the atoms is negligable. As
such, the potential of each atom can be approximated as being equal to the potential of an
isolated atom and, in this case, the linear superposition approximation in Eq. (2.32) would
be exact. For obtaining the potential of an isolated atom, numerical methods can be used
[Coulthard 1967, Fischer 1977], where the potential and the charge distribution of a single atom
is found by determining the wave functions of all electrons of an atom. However, in reality, atoms
in a solid specimen are bound together, causing their outer valence electrons to be rearranged
slightly. The interaction resulting in the scattering of the electrons to high angles is mainly due to
the interaction between the atomic nuclei and the incident electrons. The bonding effect, though,
primarily affects electrons that are scattered to relatively low angles.

2.5 Multislice method
In order to find the scattered wave function, given the incident wave function and the specimen’s
potential, the Schrödinger equation given by Eq. (2.17) needs to be solved. A solution for
this equation is provided by the multislice approach [Cowley 1957]. The starting point of
this approach states that the 3D atomic potential of the specimen can be approximated by a
set of 2D projections. Hereby, the specimen’s potential is divided into many slices along the
beam-propagation direction in which the atomic potentials of the different atoms in each slice
are projected. As such, each slice only modifies the phase of the electron wave. For calculating
the exit wave function, the electron wave function gets alternately transmitted through a slice
and propagated to the next slice. This process continues until the electron wave function reaches
the specified thickness of the specimen. In Fig. 2.5, the multislice decomposition of a thick
specimen is illustrated. In the multislice method, the wave function after interaction with a slice
of the specimen of thickness dz is found by using the general solution to Eq. (2.17):

ψ (x, y, z + dz) = exp
[∫ z+dz

z

( iλ
4π

∆x,y + iσiV (x, y, z')
)

dz'
]
ψ (x, y, z) . (2.33)
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When the projected potential of the specimen between z and z + dz is written as:

vdz (x, y, z) =

∫ z+dz

z
V (x, y, z') dz', (2.34)

Eq. (2.35) becomes:

ψ (x, y, z + dz) = exp
[ iλ
4π

dz∆x,y + iσivdz (x, y, z)
]
ψ (x, y, z) . (2.35)

By making use of the fact that dz is small, this expression can be rewritten by making use of a
Taylor expansion and factorisation [Goodman 1974, Kirkland 2010] :

ψ (x, y, z + dz) = exp
[ iλ
4π

dz∆x,y

]
exp

[
iσivdz (x, y, z)

]
ψ (x, y, z) + O

(
dz2

)
, (2.36)

where O
(
dz2

)
denotes the higher order terms in the Taylor expansion. The second exponential

term at the right-hand side of Eq. (2.36) may be regarded as the transmision function t (x, y, z)
for the portion of the specimen between z and z + dz, which is defined as:

t (x, y, z) = exp
[
iσi

∫ z+dz

z
V (x, y, z') dz'

]
. (2.37)

Note that t (x, y, z) is equal to the phase change of the electron wave function while passing
through the specimen in the phase object approximation presented in Eq. (2.31). From Eqs.

Figure 2.5: Schematic illustration of the multislice decomposition of a thick specimen [Alania 2017a].
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(2.34) and (2.37), Eq. (2.36) can be written as:

ψ (x, y, z + dz) = exp
[ iλ
4π

dz∆x,y

]
t (x, y, z)ψ (x, y, z) + O

(
dz2

)
. (2.38)

In order to provide an interpretation for the first exponential term in Eq. (2.38) a 2D Fourier
transform is performed [Kirkland 2010]:

FT
[
exp

[ iλ
4π

dz∆x,y

]
t(x, y, z)ψ(x, y, z)

]
= exp

[
−iπλdz

(
k2

x + k2
y

)]
FT

[
t(x, y, z)ψ(x, y, z)

]
= P

(
kx, ky, dz

)
FT

[
t(x, y, z)ψ(x, y, z)

]
.

(2.39)

The function P
(
kx, ky, dz

)
is the propagator function of the electron wave for a distance dz. Since

a multiplication in Fourier space is equal to a convolution in real space, where a convolution
between two functions is defined as

f (r) ⊗ g(r) =

∫
f (r')h(r − r')dr', (2.40)

it follows from Eqs. (2.38) and (2.39) that the wave function after interaction with a slice of
thickness dz becomes

ψ (x, y, z + dz) = p (x, y, dz) ⊗ t (x, y, z)ψ (x, y, z) + O
(
dz2

)
, (2.41)

in which p (x, y, dz) is the propagator function in real space. The multislice equation given by
Eq. (2.41) can still be written in a more compact form. For this, the slices in the specimen
are labeled n = 0, 1, 2, . . . with a corresponding depth zn. When slices of equal thickness dz
are considered, it holds that zn = ndz. The wave function at the top of each slice is labeled
ψn (x, y) and the propagator and transmission functions for each slice are labeled as pn (x, y, dz)
and tn (x, y), respectively. Then, it follows that Eq. (2.41) becomes:

ψn+1 (x, y) = pn (x, y, dz) ⊗ tn (x, y)ψn (x, y) + O
(
dz2

)
. (2.42)

In order to solve this equation, the initial wave function as defined in section 2.3 can be used
together with the projected specimen potential discussed in section 2.4. The higher order terms
denoted by O(dz2) in Eq. (2.42) are usually neglected to speed up calculations. As such, when
calculating the wave function after one slice, small errors of the order dz2 may be present. This
error is referred to as the local error. The multislice equation, though, needs to be applied for
every slice while advancing all the way through the specimen. The number of slices typically
scales with 1/dz. Therefore, the error term of the final result is of the order dz, which is around
one order of magnitude less than the local error. This final error is referred to as the global
error. Since this error depends on the slice thickness, decreasing this thickness will improve the
accuracy of the calculated exit wave function.

In the derivation of the multislice equation, the specimen has been treated to be completely
static and rigid with the atoms located at their ideal positions. In reality, though, atoms are
thermally vibrating which causes them to be displaced. The thermal movements of the atoms,
although much smaller than the typical interatomic distances [Kirkland 2010], cause the in-
tensities of the diffracted beams to change. In addition, these movements can also lead to a
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small diffuse background in between the Bragg peaks, which is referred to as thermal diffuse
scattering (TDS). This effect is related to the fact that, due to the thermal vibrations, the crys-
tal lattice is slightly disordered, causing some electrons to be scattered away from the Bragg
reflections, which only appear at certain angles and which give rise to a specimen dependent
diffraction pattern [De Graef 2003, Williams 2009]. The appearance of a diffuse background
mainly influences the recorded intensities in ADF STEM images. Therefore, it is important
that TDS is incorporated into multislice calculations. Scattering due to thermal vibrations can
be taken into account by considering that the atomic vibrations are quantised in a quantum
of energy, which is referred to as a phonon [Kirkland 2010]. As such, scattering by thermal
vibrations is also called electron-phonon scattering. In principle, electron-phonon scattering
should be treated by a many-body quantum mechanical framework, which treats the thermal
scattering as a quantum excitation of the crystal [Yoshioka 1957]. It has been shown, though,
that such a rigorous quantum mechanical description is equivalent to the so-called frozen phonon
model [Van Dyck 2009]. This model is based on the idea that the time that the electrons in
the microscope interact with the specimen is much shorter than the vibration period of an
atom. Typically, the frequency of the phonons will not exceed 1012 − 1013 Hz [Kittel 2004].
For example, for a typical acceleration voltage of 300 kV, resulting in electrons travelling at
almost 80% of the speed of light [De Graef 2003], it takes about 4 · 10−16 seconds to traverse a
specimen of 100 nm thickness, which is relatively thick in TEM. As such, the time of interaction
between the incident electrons and the specimen is much smaller than the phonon oscillations.
Therefore, when the imaging electron is inside the specimen, it sees only a snapshot of the
specimen where the atoms are frozen at their displaced positions. In addition, the current in the
microscope is small enough such that the time between two successive incident electrons passing
through the specimen is long as compared to the oscillation period of the thermal phonons in the
specimen. For example, for an electron current of around 50 pA, 1 electron is emitted per 3 ns.
Therefore, each successive imaging electron sees a different atom displacement configuration
in the specimen. Since the different phonon configurations are uncorrelated, the resulting exit
wave function should be obtained by adding all different configurations incoherently. When
enough random uncorrelated phonon configurations are taken into account, a representative
equilibrium potential can be obtained [Loane 1991, Muller 2001]. In most multislice based image
simulation software packages, the frozen lattice approach is implemented in order to account
for TDS. Although, the frozen-phonon approach is an accurate way of including TDS in image
simulations, it is computationally demanding since for each configuration a full calculation of the
wave propagation through the specimen is required. This is especially the case for STEM where
the calculation of the exit wave function needs to be repeated for each scanned probe position.
A computationally less demanding technique is provided by the so-called absorptive potential
method [Pennycook 1991, Ishizuka 2002, Allen 2003, Croitoru 2006, Rosenauer 2008b]. The
absorptive potential approach is based on the concept that the intensity produced by the TDS,
corresponding to the scattering of electrons away from the Bragg angles, can be explained
by an absorption effect in the imaging of the Bragg reflected electrons. Hereby, an important
assumption is that the electrons scattered by TDS directly propagate towards the detector without
further interaction with the specimen. For relatively thin specimens and for specimens consisting
of light atoms, the absorptive potential method is quite accurate, showing good agreement with
the frozen-phonon method [Rosenauer 2008a].

Another manner, besides the multislice approach, is to solve the differential Schrödinger
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Figure 2.6: Illustration of the concept of channelling [van den Bos 2017a]. The electrostatic potential
of each atom acts as a lens focussing the incident electrons on the atomic column. The electron wave
function is focused at periodic distances.

equation, given by Eq. (2.17), by channelling theory [Broeckx 1995, Op de Beeck 1995,
Van Dyck 1996, Van Aert 2007]. Here, the electron-specimen interaction is described for spec-
imens viewed along a major zone-axis orientation, meaning that the atoms in a column are
aligned along the propagation direction of the electron beam. When the columns are sufficiently
separated, each incoming electron mainly interacts with one specific atomic column which is
caused by the interaction between the positive electrostatic potential of the atoms and the incident
electrons. As a result, the atomic potentials attract the electrons towards the atoms, keeping the
electrons in their close proximity. To some extent, this effect can be described as a lensing effect
where each atom acts as a lens focussing the electrons on the column, providing a sort of pathway
or channel in which the incident electrons are trapped. When electrons are propagating through
the specimen, they pass successive atoms, or equivalently lenses, which focus them at periodic
distances. This effect is controlled by the atomic numbers, spacing and vibrations of the atoms in
the column [Van Dyck 1999]. In Fig. 2.6, an illustraton of the concept of channelling has been
depicted. Interestingly, channelling theory suggests that the phase of the electrons leaving the
specimen is related to the thickness of the specimen, enabling to count the number of atoms in a
column and reconstruct the 3D structure of the object under investigation [Van Dyck 2012].

2.6 Image formation

In STEM imaging, after the electron beam passed through the specimen, the scattered electrons
propagate further towards the annular detector. Since the detector is placed in the diffraction
plane, it is the Fourier transform of the electron exit wave function [Goodman 2005], represented
by ψe (x, x0), that reaches the detector. As such, the final electron wave function that is recorded
in STEM is given by:

ψ f inal (k, x0) = FT
[
ψe (x, x0)

]
. (2.43)

For each probe position, the intensity is obtained by integrating the magnitude squared of the
final wave function, given by Eq. (2.43). Therefore, the intensity in a pixel located at x0 = (x0, y0)
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follows from:
Iideal (x0) =

∫
D (k)

∣∣∣ψ f inal (k, x0)
∣∣∣2 dk, (2.44)

where D (k) is the detector function:

D (k) =

{
1, for kDmin ≤ k ≤ kDmax

0, otherwise (2.45)

with kDmin = sin(Rin)/λ and kDmax = sin(Rout)/λ. These are the minimum and maximum spatial
frequency of the recorded electrons by the STEM detector, respectively, and Rin and Rout are the
inner and outer angle of the STEM detector in radians. The final STEM image is obtained by
calculating the pixel value for each probe position. The detector function D(k) in Eq. (2.45)
assumes a perfect circular annular detector with homogeneous sensitivity. In real experiments,
though, this is not completely true since experimental detectors exhibit a non-uniform sensitivity
[Rosenauer 2009, Findlay 2013, Martinez 2015a]. In addition, the field-emission sources that
are used in the microscope show a minor energy spread of the electrons which decreases with
increasing acceleration voltage [Mast 1983]. These fluctuations, though, are usually relatively
low as compared to fluctuations due to inelastic scattering [Pennycook 2011]. Therefore, it is
justified to neglect fluctuations in the energy of the incident electrons in the image simulations.
Furthermore, ideally, the electron probe in STEM is a point source. In practice, though, the
electron gun emits radiation from a finite-size source. In order to take this effect into account
in image simulations, it is assumed that electrons emitted from one point do not interfere with
electons emitted from any neighbouring point [Pennycook 2011]. As such, the detected image
intensities follow from a set of probe positions that are added incoherently, described by a
convolution:

I (x0) = S (x0) ⊗ Iideal (x0) , (2.46)

where S (x0) is the source size distribution, which can be approximated as a normalised 2D
Gaussian distribution [Mory 1985, Nellist 1994, Klenov 2007]:

S (x0) =
1

2πσ2
r

exp
(
−

x2
0

2σ2
r

)
, (2.47)

where σr corresponds to the radius containing 39% of the total electron probe intensity. Precise
measurements have shown that the shape of the source size distribution corresponds better
to a linear combination of a Gaussian and a bivariate Cauchy, or Lorentzian, distribution
[Verbeeck 2012]. Although the tails of this distribution are considerably wider as compared to
those of a Gaussian shaped source size distribution, the full width at half maximum (FWHM)
remains similar.

The full image simulation process for STEM using an ADF detector by the multislice
approach as described in section 2.5 has been summarised in Fig. 2.7 for a SrTiO3 crystal. The
imaging process starts with the incident electron wave function interacting with the specimen’s
potential. Hereby, the specimen potential of SrTiO3 has been subdivided into several slices,
where each slice contains a projected atomic potential. In a first step, the incident wave function
transmits through the first slice while interacting with the corresponding projected atomic
potentials. Then, the wave propagates to the next slice where the same process is repeated. These
succeeding steps of propagation and transmission or interaction continue until the electron wave
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Figure 2.7: Schematic overview of the image simulation process for ADF STEM imaging of a SrTiO3 unit
cell [Martinez 2015a]. The multislice method is used to calculate the electron-specimen interaction.



32 Chapter 2. Scanning transmission electron microscopy

function reaches the exit plane of the specimen. The resulting exit wave function carries the
information of the electron-specimen interaction to the detector, where eventually the intensities
for each probe position are recorded, building up a full STEM image of the specimen.

In this thesis, when image simulations are performed, the MULTEM program is used
[Lobato 2015, Lobato 2016]. MULTEM is an open source code which provides accurate and fast
multislice calculations of the Schrödinger equation. One of the benefits of using MULTEM is
the computation time and the availability of performing a variety of other simulations besides
CTEM and STEM, including EELS and electron diffraction. An interesting feature of MULTEM
is the availability of performing the calculations with graphical processor units (GPUs) instead
of central processor units (CPUs), attaining impoved time efficiency.

2.7 STEM detector

The usual way how electrons are detected in STEM imaging is by means of a scintillator coupled
to a photomultiplier tube (PMT) with a mirror or reflective tube [Kirkland 1996]. When electrons
scattered from the specimen hit the scintillator, photons are emitted. These photons illuminate
the photocathode of the PMT, causing photoelectrons to be produced. This process is followed
by a series of multiplying stages that amplify the signal such that the resulting current from the
photoelectrons can be measured by a so-called analogue-to-digital converter (ADC) [Grillo 2011].
The output units of recorded STEM images are often displayed in arbitrary counts which should
not be confused with electron counts. The hole through the scintillator allows BF electrons to
pass to another detector or spectrometer whose signals can be acquired simultaneously with
a STEM image. Beside the presence of Poisson noise in STEM images due to the particle
nature of electrons hitting the detector, there are some other sources of background counts that
might arise [Ishikawa 2014a]. Firstly, the scintillator randomly emits photons and similarly the
photocathode randomly emits photoelectrons. In addition to these, also stray electrons and light,
and electrical noise, associated with the conversion of photons to an amplified electronic signal,
might contribute to the background intensity. As a result, there is some dark level present, even
in the absence of electrons hitting the detector, on top of which the experimental signal is added.
Nevertheless, because of the rapid progress in detector technology, the dominant noise factor in
STEM images is statistical noise [Seki 2018], which is Poisson noise related to the process of
electrons hitting the detector and which is unavoidable in finite dose conditions. It is noted that
even single electron detection is possible with present-day detection systems with a scintillator
coupled to a photomultiplier [Ishikawa 2014a, Sang 2016, Krause 2016] or with state-of-the-art
pixelated detectors [Ryll 2016, Tate 2016, Mir 2017, Faruqi 2018].

Quantitative STEM imaging has become one of the standard tools for structural and compo-
sitional investigations in electron microscopy. Hereby, in order to extract as much information
as possible, it is important that experimental images can be accurately matched with simulated
ones, taking into account the experimental microscope settings [Krause 2016]. An important
aspect is that the detector linearly amplifies the signal while maintaining a sufficient dynamical
range. Furthermore, a correct calibration of the STEM detector is needed [LeBeau 2008, Rose-
nauer 2009]. The sensitivity of the detector is usually measured by providing a so-called detector
scan. In Fig. 2.8, such a detector scan is shown, acquired by K. Müller-Caspary, which is
obtained by creating a sharp image of the probe in the detector plane without a specimen present
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Figure 2.8: Example of a detector scan of an ADF detector in STEM in (a) gray scale values and (b)
color values.

in the electron path. By scanning the image of the probe over the detector, an image is created
whose intensities are proportional to the local sensitivity of the detector, since the intensity of
the probe itself remains constant during the scan. From Fig. 2.8, it can be directly seen that an
experimental detector exhibits a non-uniform sensitivity. In order to make a comparison with
simulated STEM images, experimental images need to be normalised. For this, the detector
scan can be used. From this scan, the averaged image intensity in vacuum, Ivac, corresponding
to the area next to the detector, and the averaged detector intensity, Idet, can be measured. This
is done by segmenting the image of the detector scan by appropriate thresholding, separating
the intensities of the detector area from the intensities of the vacuum area. As such, an ac-
quired image of the sample under investigation, or the detector scan itself, can be normalised by
[LeBeau 2008, Rosenauer 2009, Krause 2016]:

Inorm =
Iraw − Ivac

Idet − Ivac
, (2.48)

where Iraw is the image before normalisation. Interestingly, given the time during which a single
pixel of the image is illuminated, the pixel dwell time, and the beam current, the number of
electrons detected in a certain pixel can be determined given the normalised image intensities,
providing an image of the sample in absolute electron counts.

Alternatively, there is also another way of calibrating STEM images to absolute dose, or
electron counts. This method relies on the determination of the signal of a single electron on
the detector [Ishikawa 2014a, Sang 2016, Krause 2016]. This signal can be either obtained
by acquiring an image of the specimen using a very low incoming electron dose of less than
the order of 102 e−/Å2 resulting into a very low amount of electrons reaching the detector. As
such, individual electron peaks can be distinguished in the histogram of the image. Another
way of determining the signal generated by a single electron is by scanning the detector with a
very low beam current of around 8 fA with a very fast pixel dwell time of 0.2 µs [Sang 2016].
Alternatively, by acquiring a so-called vacuum image, which is an image recorded under the
settings of imaging a specimen, but without the presence of a sample, also single electrons can
be detected [Ishikawa 2014a, Krause 2016]. In such a setting, no scattering takes place and
one would expect that the complete probe passes the detector undetected. However, it has been
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observed that some electrons can still reach the detector due to imperfections in the condenser
system [Ishikawa 2014a]. These electrons have been referred to as accidental electrons, whose
individual signals can be measured. A vacuum image also offers a way of verifying the Poisson
nature of the noise in STEM images since a signal in such an image can be reliably related with
a single electron impact. Alternatively, verifying whether the noise is Poisson distributed can
also be achieved from a known constant background or from the residuals of the intensities of a
known sample. The absolute number of scattered electrons that impinge on the detector during
the dwell time of each pixel can be determined by [Krause 2016]:

Ie−counts =
Iraw − Ivac

∆I1e−

traw

tvac
, (2.49)

where the signal generated by a single electron is depicted as ∆I1e− , and the pixel dwell times of
the image of a specimen before normalisation and the vacuum image as traw and tvac, respectively.
Interestingly, this methodology also allows to derive the number of electrons that are in the
incident probe when a detector scan, such as the one given in Fig. 2.8, is available. Then, the
number Np of electrons in the probe during a pixel dwell time of the scan can be determined by
[Krause 2016]:

Np =
Idet − Ivac

∆I1e−

tdet

tvac
, (2.50)

where tdet is the pixel dwell time used for acquiring the detector scan. From Eq. (2.50), the beam
current can be derived. It has been shown that this approach is in good agreement with values
measured with a Faraday cup and provides a much better estimate for the probe current in terms
of both accuracy and precision as compared to the results that follow from the amperemeter
connected to the viewing screen of the microscope [Krause 2016].

2.8 Conclusions
In this chapter, the most important aspects of the physics of the STEM image formation process
have been explained. First, the electron-specimen interaction has been mathematically described
by the time-independent Schrödinger equation. Then, the wave function of the incident electron
beam and the specimen potential have been introduced. It has been shown that a solution for the
Schrödinger equation can be provided by the multislice method, where the specimen’s potential
is divided into thin slices containing the projected atomic potentials. Hereby, it is important to
take into account the effect of atomic vibrations in the specimen in order to reliably describe the
image formation process. Finally, when experimental images need to be compared to simulated
ones, it is important that the STEM detector is correctly calibrated. In this process, experimental
images can also be converted from the arbitrary units, in which they are typically recorded, to
absolute electron counts. This conversion is important for accurately describing the statistical
fluctuations in the image and for, eventually, accurately detecting atomic columns from STEM
images.
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Quantitative atomic-resolution

electron microscopy

3.1 Introduction
Nowadays, as materials can be visualised with atomic resolution, also image processing tech-
niques play an important role in order to obtain accurate and precise structural information
[Van Aert 2016]. Since the physical properties of nanomaterials are strongly related to their exact
atomic arrangement and chemical composition, structural information needs to be extracted
down to the atomic level [Voyles 2002, Tedsree 2011, Huang 2012, Fujita 2012]. This is because
small changes in the local atomic structure of nanomaterials may already induce significant
changes in their properties [Locquet 1998, Muller 1999, Kisielowski 2001, Wang 2003, Ur-
ban 2008, Qi 2010, Alem 2011, Van Aert 2012a, Tang 2014, Lee 2016, van der Stam 2017].
Therefore, precisely measuring the atomic arrangement of projected atomic columns or individual
atoms, with picometer precision, is important in order to fully understand the structure-properties
relation of nanomaterials. For this, a quantitative approach is required which can be pro-
vided by statistical parameter estimation theory [den Dekker 2005, Van Aert 2005, van den
Bos 2007, Van Aert 2012b, den Dekker 2013, De Backer 2016]. This methodology is becoming
recognised as the optimal method for quantitative electron microscopy.

Statistical parameter estimation theory is widely applicable in different fields of science and
consists of the estimation of unknown parameters from an available set of experimental observa-
tions. Due to the presence of noise, these observations fluctuate around their expectation values,
which means that the observations can be modelled as random variables. The starting point of
statistical parameter estimation theory is the construction of a parametric (physics-based) model
describing the expectations of the experimental observations as a function of the unknown param-
eters. In TEM, an atomic-resolution image is considered as a data plane where the observations
are the pixel values of the image from which unknown structure parameters need to be estimated.
Since image intensities are peaked at the atomic column positions, the projected atomic columns

35
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of atomic-resolution TEM images viewed along a major zone axis can be modelled as Gaussian
peaks superimposed on a constant background [Van Dyck 2002, Nellist 2007]. Accurate and
precise structure information is then obtained by fitting this model to the observed image pixel
values with respect to the unknown parameters using a criterion of goodness of fit, quantifying
the similarity between the image and the model.

In practice, the unknown structure parameters are often estimated from the available set of
observations using an ordinary least squares estimator. If the observations are considered to be
independent and normally distributed with equal variance then the maximum likelihood estimator
is identical to this uniformly weighted least squares estimator [van den Bos 2001]. Although
atomic-resolution TEM images are disturbed by Poisson noise, the assumption of normally
distributed observations remains valid for a sufficiently high number of detected electrons since
the Poisson distribution tends to be a normal distribution for increasing expectations of the image
pixel values [Papoulis 2002]. A direct implementation of the least squares estimator where all
the parameters are estimated at the same time is only feasible for images with a limited number
of projected atomic columns. For images with a wide field of view such an implementation is
computationally very intensive. Since for certain applications it is important to be able to perform
a quantitative analysis of a large field of view, a more efficient algorithm has been proposed
for obtaining the unknown structure parameters [De Backer 2015a, van den Bos 2017a]. The
basic idea of this algorithm consists of segmenting the image into smaller sections containing
individual atomic columns [den Dekker 2013]. In this way, only the parameters corresponding to
a single atomic column are estimated at the same time, instead of all parameters of the parametric
model. The freely available StatSTEM software, developed to facilitate model-based quantitative
electron microscopy, is based on this efficient implementation [De Backer 2016].

In addition, statistical parameter estimation theory offers a way of calculating the intrinsic
precisions that can be obtained about the parameters present in the expectation model which
describes the experimental observations. This follows from the construction of the Fisher in-
formation matrix which quantitatively expresses the amount of information that is available
about the unknown structure parameters [van den Bos 2001]. From this matrix, lower bounds
on the variances of the parameters of the model, representing the attainable precisions, can
be calculated. This lower limit is known as the Cramér-Rao lower bound (CRLB). It is noted
that when atomic-resolution images are available, which may be interpreted quantitatively, the
evaluation of an imaging system by statistical precision is considered to be more optimal than the
classical concept of resolution [Van Aert 2006]. Precision should not be mistaken with resolution.
Resolution defines the ability to visually distinguish neighbouring components, while precision
corresponds to the variance, or standard deviation being the square root of the variance, with
which structure parameters can be measured.

Moreover, it is possible to combine parameter estimation with model-order selection. Hereby,
besides estimating the unknown parameters of the expectation model, also the number of pa-
rameters that most closely represents the underlying process that generated the experimental
observations needs to be determined. Typical model-selection methods perform a tradeoff be-
tween high goodness of fit and low model complexity, since model fit can be easily improved by
increased model complexity without necessarily bearing any interpretable relationship with the
underlying data-generating process [Myung 2000, Stoica 2004a, Claeskens 2008, Corsaro 2014].
In TEM, model selection can be used to automatically and objectively determine the number of
atomic columns present in the image data [Fatermans 2018, Fatermans 2019]. This is especially
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relevant for analysing the structure of beam-sensitive nanomaterials, as such materials need to
be imaged in STEM with a limited incoming electron dose of only 103 - 105 e−/Å2, leading to
images exhibiting low SNR and low contrast, and hence low CNR, which makes visual inspection
unreliable.

This chapter is organised as follows. In section 3.2, the principles of model-based param-
eter estimation will be reviewed and commonly used parametric models will be discussed for
analysing STEM images. In section 3.3, the maximum likelihood estimator will be introduced,
discussing its properties and its connection to the least squares estimator. Relevant quantities
such as bias and variance are introduced in section 3.4, followed by a discussion on the attainable
precision for the estimation of structure parameters, introducing Fisher information in subsection
3.4.1 and the CRLB in subsection 3.4.2. The working principle of model-order selection is
described in detail in section 3.5. Finally, in section 3.6, conclusions will be drawn. It is noted
that the derivations in this chapter have been based on [van den Bos 2007].

3.2 Model-based parameter estimation
In science, often careful instrumentation and measurements are necessary in order to reduce
errors that occur in the observations of a certain phenomenon. However, even if such measures
have been taken, unavoidable and unpredictable fluctuations remain present. As a result of these
fluctuations, the observations will differ when an experiment is repeated. Of course, this effect
manifests itself as well when recording atomic-resolution STEM images. Images recorded under
the same conditions will differ from experiment to experiment. The description of observations
including errors is covered by parametric model-based statistics. In a parametric model-based
statistical method, the observations are modelled as stochastic variables. In a STEM image, the
expectation of the observed image pixel value wkl at position (xk, yl) is supposed to be equal to
the value of the parametric model at this position. This can be mathematically stated by the
following expression:

E[wkl] = fkl(θ), (3.1)

where E denotes the mathematical expectation. The function fkl(θ) describes the expectation
of the observation at position (xk, yl) as a function of the vector of unknown parameters θ,
represented by an M×1 parameter vector:

θ = (θ1, θ2, . . . , θM)T . (3.2)

In general, the observed pixel values of an image of W = K × L pixels are represented by

w = (w11,w12, . . . ,w1L,w21,w22, . . . ,w2L, . . . ,wK1,wK2, . . . ,wKL)T . (3.3)

In order to extract reliable quantitative structure information from STEM images, the parametric
model should describe the image intensities accurately. Ideally, this model describes the image
formation process based on a physics-based approach, including dynamical electron diffraction
effects, TDS, electron-sample interaction, microscope transfer function and detector efficiency.
However, since model parameters are estimated by an iterative optimisation scheme, using
this type of complex models becomes very time consuming. In addition, since a large number
of unknown parameters, including unknown microscope parameters, need to be taken into
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account, the optimisation has an increased chance of ending up in a local minimum if appropriate
starting values for the parameters cannot be provided. Furthermore, the precision decreases
when more parameters need to be estimated. Therefore, often a simplified empirical model
with a reduced number of unknown parameters is used, capturing the most important aspects
of the image formation process. For STEM images viewed along a major zone axis, the image
intensity is sharply peaked at the atomic column positions [Broeckx 1995, Op de Beeck 1995,
Van Dyck 1996, Van Dyck 2002, Nellist 2007, Van Aert 2007] and may, as such, be modelled
as a superposition of Gaussian peaks. Although this model does not describe the full physical
image formation process, its validity for describing atomic-resolution STEM images has been
proven [den Dekker 2005, Van Aert 2005]. The assumption of Gaussian peaks describing the
atomic columns in STEM image data is mainly based on the source size distribution being well
approximated as a Gaussian distribution [Mory 1985, Nellist 1994, Klenov 2007] and on the fact
that the projected potential of an atomic column is well described by considering the 1s-state
[Broeckx 1995, Van Dyck 1999, Van Aert 2002], which is also well approximated by a Gaussian
function [Geuens 2002]. As such, the atomic columns in atomic-resolution STEM images can
be well described by a parametric model of Gaussian peaks. Fig. 3.1 visualises the working
principle of model-based parameter estimation in STEM, where the height, width, and position
of a Gaussian peak in the model are adjusted in such a way in order to find the best match with
an observed Poisson disturbed atomic column.

When a different width is assumed for each estimated Gaussian peak, the expectation fkl(θ)
at position (xk, yl) can then be described as:

fkl(θ) = ζ +

N∑
n=1

ηn exp
(
−

(xk − βxn)
2 + (yl − βyn)

2

2ρ2
n

)
(3.4)

where ζ is a constant background, and ρn, ηn, βxn , and βyn are the width, the height and x- and
y-coordinates of the nth atomic column described by a Gaussian peak, respectively, and N is the
total number of atomic columns. The unknown parameters of this expectation model are then
represented by the parameter vector:

θ = (βx1 , . . . , βxN , βy1 , . . . , βyN , ρ1, . . . , ρN , η1, . . . , ηN , ζ)T (3.5)

containing M = 4N + 1 parameters. Parameter estimation theory in atomic-resolution STEM is
not restricted to the model given by Eq. (3.4). For example, for a model where the Gaussian
peaks describing the atomic columns are assumed to have equal widths, the expectation model
fkl(θ) is given by

fkl(θ) = ζ +

N∑
n=1

exp
(
−

(xk − βxn)
2 + (yl − βyn)

2

2ρ2

)
(3.6)

with M = 3N + 2 unknown parameters:

θ = (βx1 , . . . , βxN , βy1 , . . . , βyN , η1, . . . , ηN , ρ, ζ)T . (3.7)

Even if the material consists of columns of different atom types, the model assuming Gaussian
peaks with equal widths, given by Eq. (3.6), is acceptable since the width of an atomic column is
mainly determined by the finite source size and to a lesser extent by the atom type [LeBeau 2008].
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Figure 3.1: Visualisation of modelling a Gaussian peak to an observed atomic column by adjusting the
height, width and position.

This model contains a lower number of parameters that needs to be estimated as compared to
the model in Eq. (3.4) assuming Gaussian peaks with different widths. This reduction of the
number of parameters is not only interesting as it enhances the precision with which structure
parameters can be measured, it also makes the optimisation more robust, reducing the chance of
converging to a local minimum. Nevertheless, the models given by Eqs. (3.4) and (3.6), or a
combination of both where atomic columns of the same type are assigned Gaussian peaks with
equal widths, are of great use for extracting precise and accurate quantitative structure infor-
mation from atomic-resolution STEM images. They form the core of the StatSTEM software
package [De Backer 2016] developed to facilitate model-based quantitative electron microscopy.
This software enables the analysis of images containing a large number of projected atomic
columns, i.e. large fields of view. This can be achieved by an efficient model-estimation al-
gorithm [De Backer 2015a, van den Bos 2017a] whose basic idea is the segmentation of the
image into smaller sections containing individual columns [den Dekker 2013]. Hereby, overlap
between neighbouring Gaussian peaks is taken into account. In this way, only the parameters
corresponding to a single atomic column are estimated at the same time, instead of all the
parameters of the parametric model. In order to avoid ending up in local minima during the
model-estimation procedure, it is important to provide good starting values for the parameters.
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Figure 3.2: Experimental images (top part) analysed by parametric modelling describing the atomic
columns by Gaussian peaks (bottom part) in a region around a La0.67Sr0.33MnO3-NdGaO3 inter-
face, marked by the white dotted line, in (a) HAADF, (b) LAADF and (c) ABF STEM imaging mode
[Gauquelin 2017]. The estimated column positions are shown as an overlay.

For example, starting coordinates of the positions βxn and βyn of the projected atomic columns in
the image can be provided by visual inspection or by using a peak-finding routine. Both methods,
however, require a high-resolution and good-quality image in which the individual columns can
be resolved in order to avoid bias. Prior knowledge on the structure of the material under study
can also be used to provide starting values, which is helpful when the resolution is only just
sufficient to resolve individual columns at the atomic scale.

Statistical parameter estimation has enabled to determine atomic column positions with
high precision from CTEM images, reconstructed exit waves, ADF STEM images, and ABF
STEM images [Van Aert 2005, Bals 2006, Houben 2006, Jia 2008, Urban 2008, Van Aert 2009b,
De Backer 2011, Huijben 2006, Kimoto 2010, Klingstedt 2012, Van Aert 2012b, Kundu 2014,
Yankovich 2014, Perez 2016, Liao 2016a, van den Bos 2017a, van den Bos 2017b]. As a
result, by using statistical parameter estimation for measuring the atomic column locations, local
interatomic distances can be reliably quantified. This information is important for different
applications such as strain measurements [Galindo 2007, Llordés 2012, Fujita 2012, Jones 2017],
the characterisation of crystalline defects [Van Aert 2012b, Lubk 2012, Polking 2012, Gonnis-
sen 2016a] and the characterisation of interfaces [Jia 2009, Liao 2016a, Liao 2016b, van den
Bos 2017b]. An example of the application of statistical parameter estimation is provided in
Fig. 3.2. It shows the estimated atomic column positions of a region around a La0.67Sr0.33MnO3-
NdGaO3 interface in HAADF, LAADF and ABF STEM mode [Gauquelin 2017]. Characterisa-
tion of such an interface at the atomic level is required in order to understand the exotic electronic
properties that can arise [Mannhart 2010, Hwang 2012].

Beside measuring atomic column positions, statistical parameter estimation can also be
used as a technique to quantify atomic column intensities [Huijben 2006, Van Aert 2009a, Ki-
moto 2010, Kim 2012, Yankovich 2014]. These intensities can provide information about the
thickness of the specimen. As such, the number of atoms in a column may be determined. In
CTEM, this can be achieved by acquiring an image by tuning the spherical aberration of the
objective lens to a negative value [Jia 2014]. However, CTEM shows contrast oscillations as a
function of thickness which limits the applicability of counting atoms in columns to relatively
thin structures [Gonnissen 2017]. Exit wave reconstruction offers another way of retreiving thick-
ness information. Here, the phase at the atomic column positions in a reconstructed exit wave
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function is measured [Wang 2010, Wang 2012] since each atom shifts the phase of the incident
electrons by a certain amount, allowing to obtain the number of atoms in each atomic column. By
this procedure, information about surface morphology [Van Dyck 2012] and thickness has been
retreived [Yu 2016]. The atom counting methods in CTEM and exit wave reconstruction are both
not straightforward. In CTEM, contrast reversals are present, and in exit wave reconstruction the
phase shift also depends on the 3D atom positions.

A more straightforward technique is to perform atom counting using HAADF STEM. In
this imaging mode, typically, the so-called scattering cross section of each column is calcu-
lated since it monotonically increases with thickness, making it a suitable measure to count
the number of atoms in a column [Bals 2011, Bals 2012, E 2013, Van Aert 2013, Mar-
tinez 2015b, De Backer 2017]. The scattering cross-section is defined as the total inten-
sity of scattered electrons by a single atomic column [Retsky 1974, Isaacson 1979, Sing-
hal 1997, Van Aert 2009b, Van Aert 2013, E 2013, De Backer 2016]. When atomic columns are
described by Gaussian peaks, the scattering cross-section of a column equals the volume under
the Gaussian peak describing the column. Then, the scattering cross-section Θ for a column with
height η and width ρ is given by

Θ = 2πηρ2. (3.8)

The benefit of using the scattering cross-section as compared to using peak intensities is that it is
robust to small sample mis-tilts, magnification, defocus, astigmatism and source size broadening
[E 2013, Martinez 2014a, MacArthur 2015]. Nowadays, several approaches are available for de-
termining the number of atoms in an atomic column. There is a simulation-based method, where
first the intensities in the image should be normalised with respect to the incident electron beam
[LeBeau 2008, Rosenauer 2009]. In section 2.7 of chapter 2, a method for normalising image in-
tensities has been described. Then, in order to perform atom counting, experimentally measured
image intensities can be directly compared to simulated values [LeBeau 2010, Jones 2014] or,
alternatively, measured scattering cross-sections to simulated ones. A drawback of this method is
its sensitivity to possible errors in the simulation parameters, caused by inaccuracies in measuring
the microscope parameters, such as for example the detector angles. This can lead to biased
atom counting results since the simulation-based approach will always find a match between the
experimentally measured values and the simulated ones, despite the probability of errors in the
image simulations. Another approach is a statistics-based method. Here, the scattering cross-
sections are evaluated in a statistical framework, identifying columns with the same thickness
[Van Aert 2011, Van Aert 2013, De Backer 2013, De Backer 2015c]. Making use of the property
that scattering cross-sections increase monotonically with thickness, the number of atoms in each
column can be obtained without the need for image simulations. The statistics-based method does
require, though, that a sufficient amount of atomic columns is present, in order to obtain reliable
statistical results. This is something that is not required for the simulation-based approach. As
compared to the simulated-based method, the statistical method is more robust to inaccuaries
in the measured microscope parameters and, in addition, it can measure the precision of the
atom-counting results. It has been suggested that the most reliable approach for atom counting is
by matching results obtained by both methods [Van Aert 2013, De Backer 2015b]. A combination
of both techniques is offered by a hybrid approach where scattering cross-sections, obtained by
image simulations, are used as prior knowledge in the statistical framework [De wael 2017].

Interestingly, HAADF STEM image contrast strongly depends on the atomic number Z, which
enables a chemical analysis of the specimen as well. Besides obtaining thickness information,
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HAADF STEM may also be used for identifying different column types in a heterogeneous com-
plex structure of constant thickness [Van Aert 2009b, Martinez 2014b, Akamine 2015, Jany 2017].
By directly comparing experimental images that are normalised with respect to the incident
electron beam, with simulated images performed under the experimental microscope settings
for a range of different sample conditions, including thickness and composition, the material’s
composition can be quantified [Rosenauer 2009, Rosenauer 2011, Grieb 2012, Kauko 2013a,
Mehrtens 2013a, Mehrtens 2013b, Kauko 2013b, Martinez 2014b, van den Bos 2016]. Also
other simulation-based approaches are available for determining the locations of dopant atoms
in the structure where both the scattering cross-section and peak intensity of an atomic column
is measured [Ishikawa 2014b] or STEM images are simultaneously recorded under different
imaging conditions [Zhang 2015, Müller-Caspary 2016].

3.3 Maximum likelihood estimator
In statistical parametric models, the expectations of the observations are values of the parametric
function underlying the observations. The joint probability (density) function describes the
fluctuations of the observations around these expectation values. The joint probability (density)
function of the observations is given by

p(ω) = p(ω11, ω12, . . . , ω1L, ω21, ω22, . . . , ω2L, . . . , ωK1, ωK2, . . . , ωKL), (3.9)

where ω denotes independent variables corresponding to the vector of observations w, given by
Eq. (3.3). An explicit expression for the joint probability function can be derived by taking into
account knowledge about the statistical properties of the errors in the experimental measurements.
Since a high-resolution STEM image is formed by counting electrons scattered to the detector,
the pixel values are inevitably subject to Poisson noise causing each observed image pixel value
to be Poisson distributed [Haight 1967, Mood 1974, van den Bos 2001]. As briefly discussed
in section 2.7 of chapter 2, also other noise sources arise related to the detector system and
electronics [Ishikawa 2014a]. Nevertheless, the statistical Poisson noise associated with the
particle nature of electrons impinging onto the detector remains the dominant noise source in
STEM imaging [Seki 2018]. Hereby, the time between subsequent single electron impacts fits
a Poisson random process [Sang 2016], confirming the validity of modelling the observations
in STEM as Poisson distributed random variables. This results into the following probability
distribution [Herrmann 1997, Papoulis 2002]:

p(ωkl) =
(λkl)ωkl

ωkl!
exp(−λkl), (3.10)

where λkl denotes the expected value of the stochastic variable wkl at position (xk, yl). Since for
Poisson distributed variables the expected value equals the variance, it follows from Eq. (3.1)
that the expected value of wkl can be written as

E[wkl] = var(wkl) = λkl = fkl(θ). (3.11)

Under the assumption of statistical independent electron counting results, which holds in STEM
because the electron probe is focussed on only one pixel location at the same time, the product
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of Eq. (3.10) for all pixels equals the joint probability function for a set of observations being
modelled as Poisson distributed random variables:

p(ω) =

K∏
k=1

L∏
l=1

p(ωkl) =

K∏
k=1

L∏
l=1

(λkl)ωkl

ωkl!
exp(−λkl). (3.12)

The unknown parameters θ are included in this expression through the expectation values λkl,
which are described by a suitable parametric model as noted in Eq. (3.11).

Maximum likelihood estimation is a way of estimating the unknown parameters of an
expectation model. The general idea is to find the set of parameters which maximises a likelihood
function so that the observations are most probable under the assumed statistical model. The
maximum likelihood estimator follows from the parameterised probability (density) function and
can be derived following the steps below, which have been based on [van den Bos 2007]. The
joint probability (density) function of the observations for Poisson distributed random variables
is dependent on the unknown parameter vector θ. This follows from Eq. (3.12) since λkl is
equal to fkl(θ), as stated by Eq. (3.11). As such, the joint probability (density) function can be
explicitly written as

p(ω; θ). (3.13)

The likelihood function L(t) of the vector of parameters t given the observations w is defined as:

L(t) := p(w; t). (3.14)

This expression follows from Eq. (3.13) by substituting the observations w for ω and the
independent variables t for θ. Then, the estimate θ̂ of the parameter vector θ is defined by the
value of t that maximises the likelihood function:

θ̂ = arg max
t

L(t). (3.15)

Equivalently, in Eq. (3.15), one may also make use of the log-likelihood function, log L(t),
since the logarithmic function is monotonic. An interesting property of the maximum likelihood
estimator is its invariance [van den Bos 2001]. If θ̂ is the maximum likelihood estimate of the
parameter vector θ, and γ(θ) is a vector of functions of θ, then the maximum likelihood estimate
of γ(θ) is given by γ̂ = γ(θ̂).

For an atomic-resolution STEM image, the observed image pixel values can be considered to
be statistically independent electron counting results, and therefore, they are Poisson distributed.
This has lead to the expression given by Eq. (3.12) for the joint probability function. For an
increasing number of electron counts per pixel, i.e. an increasing expectation value λkl, the
Poisson distribution tends to be a normal distribution with both mean and variance equal to λkl

[Papoulis 2002]. This behaviour has been illustrated in Fig. 3.3. If the standard deviations of the
Poisson distributed observations are supposed to be equal, it can be written that for each position
(xk, yl),

√
λkl = σkl ≈ cte = σ [Miedema 1994]. Hereby, σ is considered to be a constant,

independent of the parameters to be estimated. Under these assumptions, the joint probability
function given by Eq. (3.12) can be approximated as

p(ω) ≈
K∏

k=1

L∏
l=1

1
√

2πσ2
exp

(
−

(ωkl − λkl)2

2σ2

)
, (3.16)
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Figure 3.3: Comparison of Poisson and normal distribution with equal mean and variance for increasing
mean.

describing the probability of a set of statistically independent normally distributed observations
with equal variance. The joint probability function can be explicitly written as a function of the
parameters θ by making use of Eq. (3.11) where λkl = fkl(θ):

p(ω; θ) ≈
K∏

k=1

L∏
l=1

1
√

2πσ2
exp

(
−

(ωkl − fkl(θ))2

2σ2

)
. (3.17)

As described earlier in this section, the likelihood function follows from p(ω; θ) by replacing the
variables ω by the observations w, and the true parameters θ by the independent variables t. As
a result, the log-likelihood function, given the joint probability function of Eq. (3.17), can be
written as:

log L(t) = −
W
2

log(2π) −W log(σ) −
1
2

K∑
k=1

L∑
l=1

(wkl − fkl(t)
σ

)2

, (3.18)

where W = K × L. Then, the maximum likelihood estimator equals

θ̂ = arg max
t

log L(t) = arg min
t

K∑
k=1

L∑
l=1

(wkl − fkl(t))2. (3.19)

The right-hand side of Eq. (3.19) depicts the uniformly weighted least squares estimator, which
quantifies the similarity between the observations and the expectation model. As such, it has been
shown that for statistically independent normally distributed observations with equal variance
the maximum likelihood estimator equals the uniformly weighted least squares estimator.

More generally, the condition of normally distributed observations with equal variance can
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Figure 3.4: (a) Simulated STEM image of 15.60 Å by 15.60 Å of SrTiO3. (b) Computation time needed to
fit columns from (a) using a parametric model with Gaussian peaks of equal widths as a function of the
number of parameters.

be dropped and one can consider the deviations of the observations from their expectations to be
normally distributed with a different standard deviation σkl for each pixel, independent of the
parameters to be estimated. As such, the joint probability function of Eq. (3.12) becomes:

p(ω; θ) ≈
K∏

k=1

L∏
l=1

1√
2πσ2

kl

exp
(
−

(ωkl − fkl(θ))2

2σ2
kl

)
. (3.20)

Then, the log-likelihood function and the maximum likelihood estimator equal

log L(t) = −
W
2

log(2π) −
K∑

k=1

L∑
l=1

log(σkl) −
1
2

K∑
k=1

L∑
l=1

(wkl − fkl(t)
σkl

)2

, (3.21)

and

θ̂ = arg max
t

log L(t) = arg min
t

K∑
k=1

L∑
l=1

(wkl − fkl(t)
σkl

)2

, (3.22)

respectively. The term at the right-hand side of Eq. (3.22) is a weighted least squares estimator,
being a generalisation of the aforementioned uniformly weighted least squares estimator.

In this work, the estimate θ̂ of the parameter vector θ is determined by the weighted
least squares estimator. This is achieved by solving a nonlinear data-fitting problem where
the aim is to numerically deduce the parameter values which minimise the objective function
[Levenberg 1944, Marquardt 1963, Coleman 1994, Coleman 1996], as stated by Eq. (3.22).
The minimisation procedure is started by providing initial estimates of the parameter vector.
These estimates are updated in an iterative manner according to a gradient descent. Convergence
is reached when the size of an iteration step or when the change of the value of the objective
function becomes smaller than some set lower bound, or tolerance. Here, both the step tolerance
and function tolerance have been put to an absolute value of 10−6. In case multiple minima are
present, it is important that the initial starting values of the parameters are already close to the
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final solution in order for the algorithm to converge to the global minimum. As the location
of the global minimum is typically a priori unknown, many different sets of initial parameter
vectors are used in order to increase the probability of converging towards the optimal parameter
values of a given model related to the global minimum. It is difficult to unambiguously determine
how many of these starting configurations are required to reliably reach the global minimum.
This will depend on the atomic structure of the material and on the level of noise in the image. In
this thesis, the number of sets of initial parameter vectors for fitting a given model to the image
data has been based on the dimensions of the image. When an image consists of K × L pixels,
around (K + L)/2 starting configurations have been used. This number has shown to exhibit
good performance in converging towards the global minimum. The computation time needed to
optimise the parameters of a given model has been investigated. For this, an ADF STEM image
of SrTiO3, which is depicted in Fig. 3.4(a), of 15.60 Å by 15.60 Å with a pixel size of 0.195 Å
has been simulated using MULTEM [Lobato 2015, Lobato 2016] with an acceleration voltage of
300 kV, a semiconvergence angle of 21.3 mrad, a detector collection range of 58-197 mrad, and
an incoming electron dose of 106 e−/Å. The atomic columns in Fig. 3.4(a) have been described
using a parametric model assuming the columns to have equal widths, as given in Eq. (3.6). The
time required to optimise the parameters of the model has been measured as a function of the
number of parameters. Hereby, the optimisation procedure has been initialised from only one set
of initial parameter values in order to reduce computation time and has been repeated for 100
random Poisson noise configurations of the simulated SrTiO3 image data. Fig. 3.4(b) shows the
average computation time as a function of the number of parameters M. The computation time
increases for an increasing number of parameters and reaches around 25 s for 100 parameters.
Calculations were performed using a single workstation with an Intel Core i7-2600 processor.
It is noted that the calculation time may differ based on the capabilities of the computer that is
used. In addition, also the size of the image, the noise level, and atomic ordening of the material
may influence computation time.

3.4 Bias and variance
Relevant quantities associated with a parameter estimator are bias and variance, which are
associated with accuracy and precision, respectively. The bias of the estimator θ̂m of one of the
parameters θm of the parameter vector θ is given by:

bias(θ̂m) = E
[
θ̂m

]
− θm (3.23)

and describes the difference between the estimator’s expected value and the true value of
the parameter being estimated. Interestingly, the maximum likelihood estimator is consistent
meaning that it converges toward the true value of the parameters for an increasing number of
observations [van den Bos 2001]. The variance of θ̂m at the other hand is defined as:

var(θ̂m) = E
[(
θ̂m − E

[
θ̂m

])2
]

(3.24)

and indicates the spread around the expected value. As an example, the bias and variance of
the estimated value of the x-coordinate, β̂x, of a gold atom have been estimated from a set of
simulated 12.5 Å by 12.5 Å ADF STEM images as a function of incoming electron dose varying
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Figure 3.5: (a) Bias of the estimated x-coordinate β̂x of a gold atom from simulated ADF STEM images
as a function of electron dose. (b) Variance of β̂x as a function of dose. The 95 % confidence intervals
have been included. The insets below show examples of the simulated images disturbed by Poisson noise
for several incoming electron doses.

between 103 e−/Å2 and 107 e−/Å2. The simulation has been performed by using MULTEM
[Lobato 2015, Lobato 2016] with an acceleration voltage of 120 kV, a semiconvergence angle
of 21.3 mrad, and a detector collection range of 28-172 mrad. For each value of the incoming
electron dose, 1000 random Poisson noise configurations have been generated and for each one
the parameters of the model have been optimised using Eq. (3.22). The results are shown in Fig.
3.5 where the insets below show examples of the Poisson noise disturbed simulated images of
the gold atom for several values of the incoming electron dose. Fig. 3.5(a) shows the bias, along
with the 95 % confidence intervals, of the estimated x-coordinate β̂x of the atom. It can be seen
that unbiased estimates for the x-coordinate of the atom are obtained. The confidence intervals,
though, become smaller when the incident electron dose is increased. This can also be seen in Fig.
3.5(b) which shows the variance of β̂x as a function of incoming electron dose. For an increasing
dose, the variance decreases which leads to a more precise estimation of the x-coordinate of the
gold atom. The dependence of precision on the incident electron dose is an unavoidable effect in
parameter estimation. It is noted that in the analysis of Fig. 3.5 only Poisson noise has been taken
into account, whereas in real experiments environmental or instrumental disturbances of acoustic,
mechanical, or electromagnetic nature can cause additional distortions in images recorded by
STEM [von Harrach 1995, Jones 2013]. Scan noise in STEM originates from unwanted lateral
movements of the electron probe wile scanning the specimen [Recnik 2005, Muller 2006]. It
manifests itself as the slicing of atoms or atomic columns in STEM images [Buban 2010]. Scan
noise may have a considerable effect on the precision that can be attained of quantities of interest
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[Van Aert 2019]. In addition, also the effect of sample or stage drift may contribute to distortions
as images can appear warped. Image reconstruction methods have been developed to correct
microscopy images, mitigating the occurence of scan and drift distortions [Anguiano 1999,
Salmons 2010, Jones 2013, Sang 2013, Berkels 2014, Jones 2015, Ophus 2016].

3.4.1 Fisher information

Theoretically, there exists a lower bound on the variance of unbiased estimators of parameters.
The CRLB determines the attainable precision for the estimation of structure parameters from
electron microscopy images. More information on the topic can be found in [van den Bos 1982,
Frieden 1998, van den Bos 2001, van den Bos 2007].

The concept of the CRLB follows from the Fisher information matrix which is derived from
the joint probability (density) function. The joint probability (density) function describes the
probability of a set of observations w. Hereby, the expectation values of the observations are
described by an expectation model containing an M × 1 unknown parameter vector θ, as given
by Eq. (3.11). As such, the joint probability (density) function can be explicitly expressed as
p(ω; θ). The so-called Fisher information matrix of the observations w follows from the joint
probability (density) function and is defined by

Fθ = −E
[
∂2 log p(w; θ)

∂θ∂θT

]
, (3.25)

where the vector of independent variables ω has been replaced by the corresponding vector of
observations w. The expression between square brackets at the right-hand side of Eq. (3.25)
represents the Hessian matrix of the logarithm of the joint probability (density) function. The
Fisher information measures the amount of information that an observable random variable
carries about an unknown parameter. For the observed image pixel values in an electron
microscopy image, p(w; θ) is given by Eq. (3.12). It follows from this expression and Eq. (3.11),
where it is explicitly mentioned that E[wkl] = λkl and that λkl is dependent on θ, that the (r, s)th
element of Fθ given by Eq. (3.25) can be written as:

Frs =

K∑
k=1

L∑
l=1

1
λkl

∂λkl

∂θr

∂λkl

∂θs
. (3.26)

3.4.2 Cramér-Rao lower bound

From the concept of Fisher information, the highest precision, or equivalently the lowest variance,
can be determined with which a parameter can be estimated unbiasedly. The Cramér-Rao
inequality, with θ̂ an unbiased estimator of θ meaning that E[θ̂] = θ, equals

cov(θ̂, θ̂) ≥ F−1
θ , (3.27)

where cov(θ̂, θ̂) is the M × M covariance matrix of θ̂ given by

cov(θ̂, θ̂) = E
[
(θ̂ − θ)(θ̂ − θ)T

]
. (3.28)
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From the inequality expression in Eq. (3.27), it follows that the difference of the covariance
matrix and F−1

θ is a positive semi-definite matrix, meaning that its diagonal elements are non-
negative. Since the diagonal elements of cov(θ̂, θ̂) represent the variances of the estimated
parameters θ̂m, it follows that these variances are larger than or equal to the corresponding
diagonal elements of the F−1

θ matrix:

var(θ̂m) ≥
[
F−1
θ

]
mm. (3.29)

As such, the diagonal of F−1
θ forms a lower bound on the variances of unbiased estimators,

determining the attainable precision. Interestingly, the maximum likelihood estimator achieves
the CRLB asymptotically, i.e. for an increasing number of observations. This property is
referred to as asymptotic efficiency [van den Bos 2001]. This means that its covariance matrix is
asymptotically equal to the CRLB:

cov(θ̂, θ̂)→ CRLB. (3.30)

In this sense, the maximum likelihood estimator is most precise. Another interesting property
of the maximum likelihood estimator is its asymptotic normality [van den Bos 2001] meaning
that the probability (density) function of the maximum likelihood estimator tends to be a normal
distribution for an increasing number of observations having the true parameter vector θ as
expection values and the CRLB matrix as covariance matrix:

p(ω; θ̂) ≈ N(θ; CRLB). (3.31)

Since the number of observations in electron micrsocopy images is usually sufficiently high
for the asymptotic properties to apply, the maximum likelihood estimator is recommended for
quantitative electron microscopy [den Dekker 2005]. In addition, the CRLB can be generalised
when one is interested in a new quantity which is a function of the parameters θ. When a G × 1
vector γ(θ) = (γ1(θ), γ2(θ), . . . , γG(θ))T is considered which depends on the M × 1 parameter
vector θ = (θ1, θ2, . . . , θM)T , the Cramér-Rao inequality, with γ̂ an unbiased estimator of γ, can
be written as

cov(γ̂, γ̂) ≥
(
∂γ(θ)
∂θ

)
F−1
θ

(
∂γ(θ)
∂θ

)T

, (3.32)

where cov(γ̂, γ̂) is the G ×G covariance matrix of γ̂ and ∂γ(θ)
∂θ

is the G × M Jacobian matrix of
which the elements are given by 

∂γ1(θ)
∂θ1

∂γ1(θ)
∂θ2

. . .
∂γ1(θ)
∂θM

∂γ2(θ)
∂θ1

∂γ2(θ)
∂θ2

. . .
∂γ2(θ)
∂θM

...
...

. . .
...

∂γG(θ)
∂θ1

∂γG(θ)
∂θ2

. . .
∂γG(θ)
∂θM

 . (3.33)

It should be noted that the CRLB can only be computed when the joint probability (density)
function p(ω; θ) of the observations is known. This requires knowledge of the true parameter
vector θ. In general, though, the true parameters are unknown and only estimated parameter
values are available. Nevertheless, a lower bound for the variances can be quantified by using
the estimated values [Van Aert 2005]. These computed Cramér-Rao variances may be used to
compare different experimental designs in order to perform the experiment using the optimal
settings, achieving parameter estimates with the highest possible precision [Gonnissen 2014,
Gonnissen 2016b].
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3.5 Model-order selection
In order to extract reliable structure information of nanomaterials from STEM images using
parametric models such as in Eqs. (3.4) and (3.6), the number of atomic columns N present
in the image should be known. Usually, this number is provided by visual inspection or by
using a peak-finding routine. Both methods, however, require a high-quality image in which
the individual columns can be resolved in order to avoid biased structure information. For
beam-sensitive and light-element materials, though, acquiring such a high-quality image is, in
general, not feasible as these materials are easily damaged by the electron beam. As a result, the
incoming electron dose needs to be limited in order to avoid beam damage leading to images
exhibiting low SNR and low contrast, and hence low CNR. To overcome this problem, the
principles of model-based parameter estimation can be combined with model-order selection.
Hereby, besides estimating the parameters of interest, also the number of parameters need to
be determined. For STEM images, this approach may be used to detect atomic columns, and
even single atoms, which allows for an automatic and objective evaluation of the structure of the
material under investigation [Fatermans 2018, Fatermans 2019].

The heart of model selection consists of selecting one model from a set of competing models
that represents most closely the underlying process that generated the experimental data. For
this purpose, a criterion measuring how well the model fits the data is required. Such a criterion
of goodness of fit quantifies the descriptive adequacy of a model, which is possible by, for
example, a maximum likelihood evaluation. However, a model-selection criterion based solely
on goodness of fit automatically selects the model which fits best to the data. This is undesired,
since model fit can be easily improved by increased model complexity, referring to the flexibility
of a model to fit the observed data. In this way, a model might be selected without necessarily
bearing any interpretable relationship with the underlying data-generating process. For this
reason, typical model-selection methods take into account both the goodness of fit and the
complexity of the models under investigation [Myung 2000].

There are at least three important factors that contribute to the complexity of a model
[Myung 1997]. The first one is the number of parameters. In general, a model with many
parameters describes data better than a model with few parameters due to its higher flexibility,
and hence complexity. Next, model complexity is also related to functional form, which is
described as the way in which the parameters are combined in the model. A model with a more
complex functional form is able to describe a wider range of data and can be considered to be
more flexible than a model with a less complex functional form. The last dimension of model
complexity is covered by the extension of the parameter space. A model of which the parameters
can fluctuate over a wide range of values can describe a wider range of data. Therefore, such
a model is considered to be more complex than a model of which the parameters can fluctuate
over only a small range. All of these three aspects can significantly and independently influence
model fit.

Typically, model-selection criteria are written as twice the negative log-likelihood function,
accounting for the goodness of fit, plus a penalty term that accounts for model complexity C
[Claeskens 2008]:

− 2 log(L̂) + 2C, (3.34)

with
L̂ = L(θ̂), (3.35)
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where θ̂ denotes the maximum likelihood estimator. Different criteria have been proposed in
the literature and describe the complexity of the model in a different way, often taking only one
dimension of model complexity into account, i.e. the number of parameters [Stoica 2004a]. Some
common criteria have been listed below. The Akaike Information Criterion (AIC) [Akaike 1974]
can be written as

AIC = −2 log(L̂) + 2M (3.36)

with M the number of parameters in the model. A very similar criterion is the Generalised
Information Criterion (GIC) [Broersen 1993], where the contribution of the penalty term can be
modified by the parameter d:

GIC = −2 log(L̂) + dM. (3.37)

A clear guideline on how to choose the value of d is lacking. Different choices of d = 3
[Broersen 1996] and d = 4 [Stoica 2004a] are reported in the literature. These choices cause the
GIC to penalise more heavily for the complexity of the model as compared to the AIC. Another
common criterion is the Bayesian Information Criterion (BIC) [Schwarz 1978]:

BIC = −2 log(L̂) + M log(W) (3.38)

with W the sample size, i.e. the number of datapoints. For a STEM image, W is equal to K × L
pixels. As opposed to the AIC and GIC, the penalty term is dependent on the sample size. When
W > 8, the BIC accounts more for the complexity of the model than the AIC. An alternative
criterion is the Hannan-Quinn Information Criterion (HQC) [Hannan 1979] which replaces the
log(W) factor in the BIC by the slower diverging quantity log[log(W)]:

HQC = −2 log(L̂) + M log[log(W)]. (3.39)

It is noted that many other model-selection criteria are available. In chapter 5, the performances
to detect atomic column from ADF STEM images of the different model-selection criteria
introduced in this section will be investigated.

3.6 Conclusions
In this chapter, the principles of statistical parameter estimation theory have been introduced. Due
to the presence of noise, image pixel values or observations fluctuate around their expectation
values, which means that they can be modelled as random variables. Within the framework of
statistical parameter estimation theory, the expectations of the observations are described by a
parametric statistical model as a function of unknown parameters. The projected atomic columns
of high-resolution STEM images viewed along a major zone-axis are commonly modelled as
Gaussian peaks superimposed on a constant background which allows to estimate structure
parameters such as column locations and scattering cross-sections accurately and precisely.
Moreover, statistical parameter estimation theory provides a theoretical lower bound, i.e. the
CRLB, following from the Fisher information matrix, on the variance of any unbiased estimator,
allowing for the calculation of the attainable precision. Interestingly, this lower bound can be
reached asymptotically by the maximum likelihood estimator, which makes it a recommended
estimator for an adequate quantitative analysis. In case of normally distributed observations, it is
noted that the maximum likelihood estimator is equal to the well-known least squares estimator,
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which is commonly used for evaluating the goodness of fit, quantifying the similarity between
the observations and the model. Interestingly, parameter estimation theory can be generalised by
combining its principles with model-order selection. Hereby, besides estimating the parameters
of the model, also the number of parameters needs to be determined, allowing for an automatic
and objective analysis of the experimental observations.



4
Atom column detection from ADF

STEM images

4.1 Introduction
Reliable detection of atoms is of key importance to solve a wide range of scientific and techno-
logical problems. For this, electron microscopy is one of the most promising techniques because
of the strong interaction of electrons with matter. In particular, because of several important
developments in aberration correction technology [Krivanek 2009, Rose 2009, Hawkes 2015],
STEM has become an excellent technique to visualise nanomaterials down to sub-angstrom
resolution [Urban 2008, Erni 2009, Sawada 2009, Krivanek 2010, Oltalan 2010], enabling the de-
tection of even single atoms, and hereby solving challenging problems in materials science, such
as detecting Au catalysts in a Si nanowire, reconstructing oxygen octahedrons in heterointerfaces,
or directly observing dopant atoms [Allen 2008, Jia 2009, Hwang 2013, Ishikawa 2014b].

Detection of an atomic column or single atom, in case the column consists of only one
atom, from STEM images is often performed by means of a visual interpretation of the image.
Materials that are stable under the electron beam can be imaged with a sufficiently high electron
dose, typically of the order of more than 106 - 108 e−/Å2, resulting into high-quality STEM
images exhibiting high SNR and high contrast. This allows one to resolve the individual atomic
columns and so, for such beam-stable materials, the atomic columns can be detected in a merely
visual manner. However, some materials, especially light-element nanomaterials, are sensitive to
the electron beam and, as a result, they cannot withstand a high incoming electron dose. In order
to avoid beam damage to occur, such beam-sensitive materials can only be imaged in STEM
using a limited electron dose of the order of 103 - 105 e−/Å2. This leads to recording images
exhibiting low SNR and weak contrast, and hence low CNR [Findlay 2014]. Visually inspecting
these images, trying to resolve the individual atomic columns, can be unreliable and may lead to
biased results, especially when no prior knowledge about the structure of the material is available.
To overcome this problem, an objective and quantitative approach is needed.

53
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A possible solution is offered by Bayes’ theorem, which enables the calculation of the
probability of a certain event in terms of conditions that can be related to that event [Stu-
art 1994, Jaynes 2003, Sivia 2006]. In principle, this allows one to compare the probability of
a certain number of atomic columns present in the image data to the probability of any other
number of columns. In this way, the most probable result from the data under unvestigation can
be selected. The idea of using Bayesian probability theory, aiming to obtain relevant information
from image data, has been applied in the technique of maximum entropy reconstruction, where
use is made of an entropy prior [Jaynes 1957, Gull 1984, Skilling 1984]. The maximum entropy
method has been useful for image processing in several physical domains including radio astron-
omy and X-ray diffraction [Gull 1978]. In electron microscopy, maximum entropy reconstruction
has been used as a deconvolution or noise reduction technique on the level of single pixels
[Nellist 1998, McGibbon 1999, Watanabe 2002, Nakanishi 2002, Nakanishi 2006, Sang 2009].
The number of unknowns in such a reconstruction, though, can be drastically reduced if some
prior knowledge is available about the projected structure. In such a case, a model describing
the image pixel values of an electron microscopy image should be constructed as a function
of a number of relevant parameters, reducing the number of unknowns. In the previous chap-
ter, it was explained that such parametric models, describing the projected atomic columns of
atomic-resolution STEM images as Gaussian peaks superimposed on a constant background
[den Dekker 2005, Van Aert 2005], are available due to the fact that image intensities are sharply
peaked at the atomic column locations [Van Dyck 2002, Nellist 2007]. It has been explained that
by using model-based parameter estimation accurate and precise structure information can be
obtained about the material under study. A danger in the approach of model-based parameter
estimation, though, is the use of an incorrect model or parameterisation, because it lacks a mech-
anism to provide information about the most optimal model describing the experimental data.
This may lead to biased results as the correct parameterisation may not have been considered in
the analysis.

The idea of using Bayesian probability theory can be applied to model-based parameter
estimation. The working principle of such a technique is the same as for typical model-selection
criteria, of which a few were briefly introduced in the previous chapter in section 3.5. Such an ap-
proach allows for selecting the optimal model from a set of competing models by comparing their
probabilities of describing the experimental data. Interestingly, Bayesian selection techniques
have been used in a wide variety of applications [Knuth 2015] covering fields such as chemistry
[Bermejo 2004, Armstrong 2009, Shashilov 2010, Holmes 2014, Vispa 2016, Vispa 2017],
nuclear and particle physics [De Cruz 2011, Bergstrom 2012], and astronomy and astrophysics
[Pounds 2006, Trotta 2008, Feroz 2011, Debono 2014, Corsaro 2014]. In electron microscopy,
the MAP probability rule has been developed as an objective and quantitative method to detect
atom columns and even single atoms from high-resolution STEM images [Fatermans 2018, Fater-
mans 2019], which is also the topic of this thesis. The principles of the MAP probability rule
are based on earlier work of [Sivia 1992a, Sivia 1992b, Sivia 1993] in the field of molecular
spectroscopy. The method combines statistical parameter estimation theory and model-order
selection using a Bayesian framework.

This chapter is organised as follows. In section 4.2, Bayes’ theorem will be introduced.
In section 4.3, the methodology of the MAP probability rule to determine the most probable
number of atomic columns from ADF STEM images is described in detail. Hereby, approximate
analytical expressions are derived in subsection 4.3.1. In addition, the algorithm of the MAP
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probability rule is explained in subsection 4.3.2. In section 4.4, the MAP probability rule is ap-
plied to experimental ADF STEM images of SrTiO3 in subsection 4.4.1, graphene in subsection
4.4.2, a gold nanorod in subsection 4.4.3, and ultrasmall nanoclusters in 4.4.4. Finally, in section
4.5, conclusions will be drawn.

4.2 Bayes’ theorem
In principle, probability theory consists of a number of rules quantifying logical and consistent
reasoning to express a belief of truth about a certain proposition [Cox 1946]. Hereby, a real
number, or probability, is assigned to each of the propositions in such a manner that a larger
numerical value associated with a proposition, the more we believe it. In this sense, probability
is defined as a degree of belief or plausibility that a given proposition is true [D’Agostini 2003,
Jaynes 2003, Gregory 2005, Sivia 2006]. Consistency is preserved if the probabilities describing
our beliefs obey the rules of probability theory.

An important property of probabilities is that they are bounded below by 0 and above by 1,
such that the probability of a proposition X to be true given some background information I can
be written as

0 ≤ p(X|I) ≤ 1. (4.1)

The symbol ”|” depicts a conditional statement, meaning that the probability of anything to the
left of ”|” is conditional on anything to the right of it. It is noted that Eq. (4.1) is conditional
on the background information I. This is important because assigning a probability to a certain
proposition will always depend on the available background information as there is no such
thing as an absolute probability. Often, though, the term depicting the background information is
omitted from equations in Bayesian theory. More properties of probability theory can be derived
by the requirement of logical consistency. When the probability of a certain proposition X to be
true is known, this automatically implies that also the probability of X to be false, X̄, is known.
In combination with Eq. (4.1), this gives rise to the following property:

p(X|I) + p(X̄|I) = 1, (4.2)

which is referred to as the sum rule. More generally, for a set of K propositions X =

(X1, X2, . . . , XK)T , we expect the probabilities to be normalised, such that

K∑
k=1

p(Xk|I) = 1. (4.3)

Another quantitative statement following from logical consistency is the product rule, defining
the joint probability of two or more propositions. Here, when the probability of a proposition
X to be true is known and, in addition, the probability of a proposition Y to be true, given the
truth of X, is also known, then the probability that both X and Y are true can be calculated. This
statement can be formulated by the following expression:

p(X,Y |I) = p(Y |X, I)p(X|I). (4.4)

Since X and Y are interchangeable, Eq. (4.4) can also be written as

p(X,Y |I) = p(X|Y, I)p(Y |I). (4.5)
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Furthermore, from Eq. (4.4), it follows that

p(X,Y |I) + p(X, Ȳ |I) = [p(Y |X, I) + p(Ȳ |X, I)]p(X|I). (4.6)

Since the expression between square brackets at the right-hand side of Eq. (4.6) is equal to unity,
following Eq. (4.2), we can write that

p(X|I) = p(X,Y |I) + p(X, Ȳ |I). (4.7)

For a set of L propositions Y = (Y1,Y2, . . . ,YL)T , Eq. (4.7) can be generalised by making use of
the property of Eq. (4.3):

p(X|I) =

L∑
l=1

p(X,Yl|I). (4.8)

By symmetry, we also have that for a set of K propositions X = (X1, X2, . . . , XK)T

p(Y |I) =

K∑
k=1

p(Y, Xk|I). (4.9)

In Eqs. (4.8) and (4.9), a general form of so-called marginalisation of joint probabilities for a
discrete set of variables has been defined. In case of continuous variables, the summation is
replaced by an integration.

The rules presented above form the basic algebra of probability theory as many other results
can be derived from them. An important result following from these fundamental rules is
Bayes’ theorem, offering a way of calculating the probability of a certain proposition in terms
of conditions that can be related to that proposition [Stuart 1994, Jaynes 2003, Sivia 2006]. By
equating the expressions given in Eqs. (4.4) and (4.5), Bayes’ theorem can be obtained:

p(X|Y, I) =
p(Y |X, I)p(X|I)

p(Y |I)
. (4.10)

Typically, the background information I is explicitly omitted from Eq. (4.10) resulting into a
simplified expression:

p(X|Y) =
p(Y |X)p(X)

p(Y)
. (4.11)

The relevance of Bayes’ theorem for data analysis becomes more apparent when the proposition
X is replaced by a quantity of interest Q and the proposition Y by the available data D:

p(Q|D) =
p(D|Q)p(Q)

p(D)
. (4.12)

The power of Eq. (4.12) lies in the fact that the probability of the quantity Q given the available
data D, p(Q|D), can be calculated from a more accessible term p(D|Q), which depicts the
probability of observing the data D given the quantity Q. The various terms in Bayes’ theorem
have some formal names. The term on the left-hand side of Eq. (4.12) depicts the posterior
probability of Q conditional on D and represents the state of knowledge after performing the
experiment and obtaining the data. The term p(D|Q) reflects the evidence that the available data
D was observed given the quantity Q. Furthermore, the prior information is defined by p(Q)
which asserts the plausibility of Q before conducting the experiment. Finally, the denominator
of Eq. (4.12) is a normalisation constant since it is independent of the quantity of interest Q.
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4.3 Maximum a posteriori probability

In this section, the methodology of the maximum a posteriori (MAP) probability rule to detect
single atoms from atomic-resolution STEM images is explained in detail1. The method is built
upon a combination of parameter estimation and model-order selection using the principles of
Bayesian probability theory, as discussed in the previous section. The MAP probability rule
allows for determining the structure of unknown nanomaterials in an automatic and objective
manner and proves to be especially useful for the analysis of the structure of beam-sensitive and
light-element nanomaterials [Fatermans 2018]. In subsection 4.3.1, it is shown that approximate
analytical expressions can be derived for the probability of the presence of a certain number of
atomic columns in ADF STEM image data. The way of how these probabilities can be obtained
and compared to each other is discussed in subsection 4.3.2.

4.3.1 Bayesian approach

In the previous chapter, commonly used parametric expectation models were discussed to
describe STEM images. In Eq. (3.4), such an expectation model fkl(θ), describing the expectation
of the observed pixel value wkl at position (xk, yl) with θ = (θ1, . . . , θM)T the vector of unknown
structure parameters, was given. For this model, θ consists of M = 4N +1 parameters. In order to
extract reliable structure information of nanomaterials from ADF STEM images using parametric
models, such as the one presented by Eq. (3.4), the number of atomic columns N present in the
image should be known, as each Gaussian peak in the model should correspond to a column in
the image. Usually, for beam-stable materials, this number can be determined visually due to
the high incoming electron dose that can be used to image these materials, leading to images
exhibiting high SNR. For beam-sensitive nanostructures, though, the incoming electron dose
is limited in order to avoid beam damage and, as a result, the images exhibit low SNR and
weak contrast, and hence low CNR. Visual inspection of such images may lead to biased results.
To overcome this problem, the number of atomic columns N can be reliably quantified by the
MAP probability rule. It selects the number of columns N of which the probability given the
observed image pixel values w, p(N|w), is maximal. The probability p(N |w) depicts the posterior
probability term in Bayes’ theorem, given by Eq. (4.12). As such, for our purpose, p(N|w) can
be written as:

p(N|w) =
p(w|N)p(N)

p(w)
. (4.13)

The term p(w|N) reflects the evidence that the image data w is generated by N atomic columns.
The probability p(N) expresses prior knowledge of the number of atomic columns N in the
image, which, in what follows, has been chosen to be a uniform distribution, reflecting no a
priori preference for any number of columns. The denominator in Eq. (4.13) can be explicitly
written as

p(w) =
∑

N

p(w|N)p(N) (4.14)

1The results of this section have been published in J. Fatermans, S. Van Aert, and A.J. den Dekker, The maximum
a posteriori probability rule for atom column detection from HAADF STEM images, Ultramicroscopy 201 (2019), p.
81-91.
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and is a normalisation constant, which is independent of the number of columns N as a summation
over N is performed. Therefore, this term cancels out when comparing posterior probabilities as
a function of N. As a result, Eq. (4.13) reduces to

p(N|w) ∝ p(w|N). (4.15)

By making use of the marginalisation property of probability theory, given by Eq. (4.8), the
right-hand side of Eq. (4.15) can be written as

p(w|N) =

∫
p(w, θ|N)dMθ, (4.16)

where the marginalised variables are the parameters θ of the expectation model. Then, by
following the product rule of Eq. (4.5), this expression becomes

p(w|N) =

∫
p(w|θ,N)p(θ|N)dMθ. (4.17)

The first term in the integral, p(w|θ,N), is the likelihood function which describes the probability
of the observed image pixel values w for particular values of the parameters θ of a model
with N atomic columns. Therefore, it is an explicit function of the parameters θ. In essence,
the likelihood function is a measure of the goodness of fit of the model with the experimental
measurements or image pixel values. The other term in the integral, p(θ|N), is the prior density of
the parameters θ for a model with N columns. In practice, calculation of the posterior probability
p(N|w), given by Eq. (4.15), can be reduced to calculating the marginal likelihood p(w|N)
described by Eq. (4.17). In order to do so, explicit expressions for the likelihood function
p(w|θ,N) and the prior density p(θ|N) are required.

An expression for the likelihood function, p(w|θ,N), can be derived by taking into account
knowledge about the statistical properties of the errors in the experimental measurements. In
essence, this is covered by the joint probability (density) function, introduced in the previous
chapter, describing the probability of a set of given observations. Since a STEM image of K × L
pixels is formed by counting electrons scattered to the detector, the pixel values are inevitably
subject to Poisson noise causing each observed image pixel value wkl at position (xk, yl) to be
Poisson distributed [Haight 1967, Mood 1974, van den Bos 2001]. For an increasing expectation
value fkl(θ) of wkl, the Poisson distribution tends to be a normal distribution with mean µkl = fkl(θ)
and standard deviation σkl =

√
fkl(θ) [Papoulis 2002]. Under the assumption that the pixel values

are statistically independent, the likelihood function can be expressed as follows:

p(w|θ,N) =
e−χ

2(θ)/2∏K
k=1

∏L
l=1

√
2πσ2

kl

, (4.18)

where

χ2(θ) =

K∑
k=1

L∑
l=1

(wkl − µkl

σkl

)2

. (4.19)

For simplicity, it can be assumed that σkl ≈
√

wkl, so that σkl is independent of the parameters θ.
The likelihood function then becomes

p(w|θ,N) =
e−χ

2(θ)/2∏K
k=1

∏L
l=1

√
2πwkl

, (4.20)
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Figure 4.1: Plot of uniform prior distribution p(θ|N), given by Eq. (4.22), for a single parameter θm.

where

χ2(θ) =

K∑
k=1

L∑
l=1

(
wkl − fkl(θ)

)2

wkl
(4.21)

is a weighted sum-of-squared-residuals misfit between the data and the parametric model.
For the term p(θ|N) in Eq. (4.17), different prior density functions can be constructed

reflecting different types of prior knowledge. Here, p(θ|N) is expressed as a product of uniform
distributions over a predefined range for each parameter θm:

p(θ|N) =


∏M

m=1
1

θmmax−θmmin
for m = 1, ...,M: θmmin 6 θm 6 θmmax

0 otherwise
(4.22)

where the subscripts max and min refer to a predefined maximum and minimum value, respec-
tively. The expression in Eq. (4.22) has been depicted in Fig. 4.1 for a single parameter θm. In
case of θmmin 6 θm 6 θmmax for m = 1, ...,M, p(θ|N) for the parameter vector in Eq. (3.5) of the
model given by Eq. (3.4) can be explicitly written as:

1
[(βxmax − βxmin)(βymax − βymin)(ρmax − ρmin)(ηmax − ηmin)]N(ζmax − ζmin)

, (4.23)

assuming that the predefined maximum and minimum values are the same for βxn , βyn , ρn, and ηn

for each n. The choice for this type of prior simplifies the subsequent algebra significantly. More
importantly, the amount of prior knowledge that is introduced can be kept minimal by using this
uniform prior combined with a conservative choice of the predefined parameter ranges, thus
avoiding biased results due to the incorporation of possibly invalid prior knowledge. Moreover,
this form of prior can also be used in a flexible way since the predefined parameter ranges can
easily be adapted depending on the available prior knowledge.

Given the assumption of an a priori equiprobable number of atomic columns N, the evaluation
of the MAP probability rule through Eq. (4.15) comes down to calculating the marginal likelihood
p(w|N) in Eq. (4.17) and determining the number of columns N with the highest posterior
probability p(N |w). Approximating the likelihood function p(w|θ,N) by a normal distribution,
given by Eq. (4.20), in combination with the choice of a uniformly distributed prior density
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function p(θ|N), given by Eq. (4.22), allows one to derive an approximate analytical expression.
Substituting Eq. (4.20) and Eq. (4.22) in Eq. (4.17) results into Eq. (4.15) being written as:

p(N |w) ∝ N! ·
( M∏

m=1

1
θmmax − θmmin

) ∫
D

e−χ
2(θ)/2∏K

k=1
∏L

l=1

√
2πwkl

dMθ, (4.24)

where
D = {(θ1, ..., θM) ∈ RM for m = 1, ...,M: θmmin 6 θm 6 θmmax}. (4.25)

The factor N! arises from the number of combinations the parameters of the Gaussian peaks
can be permuted, as labelling of the N peaks is arbitrary. Therefore, there are N! equivalent
maxima of the likelihood function [Sivia 2006]. The expression in Eq. (4.24) can be calculated
by expanding the likelihood function by a second order Taylor series around the parameter vector
θ̂ that maximises the likelihood function, known as the maximum likelihood estimate:

e−χ
2(θ)/2 ≈ e−χ

2(θ̂)/2 × e
−(θ−θ̂)T

[
∂χ2(θ)
∂θ

∣∣∣
θ=θ̂

]
/2
× e

−(θ−θ̂)T

[
∂2χ2(θ)
∂θ∂θT

∣∣∣
θ=θ̂

]
(θ−θ̂)/4

.
(4.26)

Since ∂χ2(θ)
∂θ

∣∣∣
θ=θ̂

= 0, as θ̂ minimises χ2(θ), the second term in Eq. (4.26) is equal to one. Then, by

writing χ2(θ̂) as χ2
min and ∂2χ2(θ)

∂θ∂θT

∣∣∣
θ=θ̂

as ∇∇χ2, which depicts the Hessian matrix of χ(θ) at θ̂, Eq.
(4.26) becomes:

e−χ
2(θ)/2 ≈ e−χ

2
min/2 × e−(θ−θ̂)T∇∇χ2(θ−θ̂)/4, (4.27)

which means that Eq. (4.24) is given by

p(N|w) ∝ N! · e−χ
2
min/2 ·

( M∏
m=1

1
θmmax − θmmin

) ∫
D

e−(θ−θ̂)T∇∇χ2(θ−θ̂)/4∏K
k=1

∏L
l=1

√
2πwkl

dMθ. (4.28)

This expression contains a Gaussian multiple integral which can be solved analytically under the
assumptions that i) the maximum likelihood estimate θ̂ lies well within the support of the prior
density function, described by Eq. (4.22), and ii) the likelihood function has only one significant
maximum [Sivia 1992a]. Then, the integral in Eq. (4.28) is well approximated by an integral
over RM, resulting in the following expression for the posterior probability of the presence of N
atomic columns in the image, given the observed image pixel values w, for the model described
by Eq. (3.4) with M = 4N + 1 parameters, including Eq. (4.23):

p(N|w) ∝
N!(4π)M/2e−χ

2
min/2[det(∇∇χ2)]−1/2

[(βxmax − βxmin)(βymax − βymin)(ρmax − ρmin)(ηmax − ηmin)]N(ζmax − ζmin)
∏K

k=1
∏L

l=1

√
2πwkl

.

(4.29)
When the terms which are independent of N are dropped, the expression for p(N|w) reduces to

p(N|w) ∝
N!(4π)2Ne−χ

2
min/2[det(∇∇χ2)]−1/2

[(βxmax − βxmin)(βymax − βymin)(ρmax − ρmin)(ηmax − ηmin)]N . (4.30)

The importance of Eq. (4.30) is that it allows one to compute the posterior probability of a
certain number of atomic columns present in an ADF STEM image, for a model where the
columns are assumed to be Gaussian shaped and to have different widths. It relies, in particular,
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on the assumption that σkl ≈
√

wkl, as stated below Eq. (4.19). By an iterative procedure, better
approximations of σkl can be obtained, but no significant effect on p(N |w) could be observed,
validating the approximation of σkl ≈

√
wkl. The MAP probability rule compares the calculated

posterior probabilities and selects the number of columns N with the highest probability. Similar
expressions can be derived for other types of models. For example, for a model where the atomic
columns are assumed to be Gaussian shaped and to have equal widths [De Backer 2016], the
expectation model fkl(θ) of pixel (k,l) at position (xk, yl) is given by:

fkl(θ) = ζ +

N∑
n=1

ηnexp
(
−

(xk − βxn)
2 + (yl − βyn)

2

2ρ2

)
(4.31)

where the unknown parameter vector can be written as:

θ = (βx1 , . . . , βxN , βy1 , . . . , βyN , η1, . . . , ηN , ρ, ζ)T (4.32)

containing M = 3N + 2 parameters. For such a model, the posterior probability becomes

p(N|w) ∝
N!(4π)1.5Ne−χ

2
min/2[det(∇∇χ2)]−1/2

[(βxmax − βxmin)(βymax − βymin)(ηmax − ηmin)]N . (4.33)

As another example, for an expectation model given by

fkl(θ) = ζ +

N∑
n=1

ηexp
(
−

(xk − βxn)
2 + (yl − βyn)

2

2ρ2

)
, (4.34)

where the columns are assumed to be Gaussian shaped with equal widths and equal heights, with
unknown parameter vector

θ = (βx1 , . . . , βxN , βy1 , . . . , βyN , η, ρ, ζ)T (4.35)

containing M = 2N + 3 parameters, the posterior probability becomes

p(N|w) ∝
N!(4π)Ne−χ

2
min/2[det(∇∇χ2)]−1/2

[(βxmax − βxmin)(βymax − βymin)]N . (4.36)

The methodology of the MAP probability rule can be extended to models where other shapes
of atomic columns are assumed beside a Gaussian function. In these cases, an expression
for the posterior probability as a function of the number of atomic columns can be derived
in a similar way. Alternative shapes may be Lorentzian functions or a mixture of Lorentzian
and Gaussian distributions, which has been revealed to be a better description of the source
size distribution [Verbeeck 2012]. Such a linear combination possesses a similar FWHM as
a Gaussian distribution, but considerably longer tails. It should be noted that the analytical
expressions for p(N |w) were derived under the assumption that the Poisson distribution that
governs the image pixel values can be approximated by a normal distribution. The accuracy of
this approximation, and therefore the accuracy of the expressions given by Eqs. (4.30), (4.33)
and (4.36), increases with an increasing amount of detected electrons. The expressions will be
most accurate if all image pixel values fully satisfy the normality assumption, but have shown
to be robust to small violations of this assumption. Therefore, the MAP probability rule is an
adequate method allowing to decide the number of atomic columns present in a STEM image.
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4.3.2 Algorithm

As stated in the previous subsection, the MAP probability rule selects the most probable number
of atomic columns by comparing posterior probabilities as a function of N, i.e. for different
numbers of Gaussian peaks in the model describing the atomic columns in the image. The
analysis is performed starting from an initial model containing N0 peaks up to and including a
model containing a value of Nmax peaks. The parameters θ of the initial model are optimised by
minimising the weighted sum-of-squared-residuals misfit χ2(θ), given by Eq. (4.21), subject
to the constraint that θ should belong to the support of the prior density function described by
Eq. (4.22). Next, an extra peak is added to the initial configuration, so a model is constructed
containing N0 + 1 peaks. Again, the parameters of this model are optimised by minimising χ2(θ)
subject to the constraint that θ belongs to the support of the prior density function. To avoid
ending up in a local minimum of χ2(θ), many different starting positions for the extra added
peak need to be tested. To optimise the parameters associated with the other peaks, the estimated
parameter values of the previous optimisation, in this case of a model with N0 peaks, are used
as starting values. Next, another peak is added, in the same way as described above, in order
to obtain the optimal parameter values of a model containing N0 + 2 peaks. This procedure
continues until the parameters of a model with Nmax peaks are optimised. In order to determine
the most probable number of atomic columns present in a STEM image, the posterior probability
of N = N0, ...,Nmax columns is computed relatively to the posterior probability of Nmax columns
as follows

prel(N |w) =
p(N |w)/p(Nmax|w)

maxN

[
p(N|w)/p(Nmax|w)

] , (4.37)

where the denominator is a normalisation constant so that the maximum value of prel(N|w)
corresponds to one. The most probable number of atomic columns is then given by the value N
that maximises Eq. (4.37). Direct visualisation of the probability of the number of columns in
the image is possible by plotting prel(N|w) on a logarithmic scale as a function of N resulting in
a relative probability curve. The approach described above has been implemented in the freely
available StatSTEM software [De Backer 2016].

The procedure has been illustrated based on a simulated image of graphene, shown in Fig.
4.2(a). The image has been simulated using the MULTEM software [Lobato 2015, Lobato 2016]
and the simulation parameters are listed in Table 4.1. The MAP probability rule is applied to

Table 4.1: Microscope parameter values for simulation of a STEM image of graphene using MULTEM.

Parameter Symbol Value
Acceleration voltage V0 (kV) 80
Defocus ε (Å) -20.0
Spherical aberration Cs (mm) 0.0037
Spherical aberration of 5th order C5 (mm) 0
Semiconvergence angle α (mrad) 24.8
Detector inner radius β1 (mrad) 26
Detector outer radius β2 (mrad) 50
Pixel size ∆x=∆y (Å) 0.20
Number of scanned pixels K × L 40 × 40
FWHM of the source image FWHM (Å) 0.7
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Figure 4.2: (a) Simulated ADF STEM image of graphene. (b) Image in (a) disturbed by Poisson noise
with an incoming electron dose of 3·105 e−/Å2. The number of detected electrons equals an average of
276 e−/Å2. (c) MAP probability rule evaluated for the data shown in (b). Refined models with optimised
parameters are shown in the inset taking into account 20, 24, and 32 atomic columns. (d) Most probable
parametric model of the data in (b) containing 28 atomic columns as indicated by the MAP probability
rule in (c).

detect the carbon atoms of graphene from a Poisson disturbed simulated STEM image shown in
Fig. 4.2(b), using a parametric model described by a superposition of Gaussian peaks with equal
widths and equal heights given by Eq. (4.34). Such a model is acceptable since the simulated
graphene consists of a monolayer of only carbon atoms. Fig. 4.2(c) shows the relative probability
curve as a function of the number of columns N calculated by the decimal logarithm of Eq.
(4.37). For certain values of N, the corresponding optimised models are shown. The logarithmic
scale is necessary in order to plot the relative probabilities over a wide range of values for the
number of columns N. It is noted that the relative probability curve, as shown in Fig. 4.2(c),
is merely a way of visualising the relative probabilities. In order to decide the most probable
number of atomic columns in an image one should be aware of the logarithmic scale and should
consider the underlying probabilities of the curve. In this manner, the most probable structure
found by the MAP probability rule from Fig. 4.2(b) is shown in Fig. 4.2(d), corresponding to the
expected hexagonal lattice of graphene, as visually perceived by the noise-free simulated image
in Fig. 4.2(a). Interestingly, besides determining the most probable atomic structure from the
image data, the MAP probability rule also provides a quantitative statement of how much more
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probable a certain number of columns is as compared to another number. This information allows
to make an optimal decision of the number of atomic columns that are present in the image
and with what confidence. For example, from Fig. 4.2(c) it can be derived that the probability
of the presence of 28 atomic columns is around 23 orders of magnitude larger than 27 atomic
columns and around 72 times larger than 29 atomic columns. This clearly shows that, for the
image data of Fig. 4.2(b), the distinction between 27 and 28 carbon atoms is much clearer than
the distinction between 28 and 29 atoms. It is noted that it is not possible to provide such a
quantitative statement of the probabilities of the number atomic columns from merely visually
interpreting the image.

4.4 Experimental examples

The technique of STEM has become a widely used technique to visualise nanomaterials with sub-
angstrrom resolution due to improvements in aberration correction technology [Krivanek 2009,
Rose 2009, Hawkes 2015]. Yet, this does not guarantee visually easily interpretable images
as for some materials the incoming electron dose should be limited in order to avoid beam
damage. In this section, the validity and usefulness of the MAP probability rule is demonstrated
to experimental ADF STEM images of samples of different shape, size, and atom type2. The
examples include SrTiO3 in subsection 4.4.1, graphene in subsection 4.4.2, a gold nanorod in
subsection 4.4.3, and ultrasmall nanoclusters in subsection 4.4.4.

4.4.1 SrTiO3

At room temparature, SrTiO3 adapts the perovskite structure whose general chemical formula is
ABX3, where ”A” and ”B” are cations of different sizes. In the perovskite structure, SrTiO3 is
an attractive material for applications in microelectronics because of its high storage capacity,
good insulating properties and excellent optical transparency in the visible region [Higuchi 1998,
Luo 2004, Kolodiazhnyi 2005]. In addition, SrTiO3 has been used as a substrate for epitaxial
growth of high temparature superconducting films [Rehn 1992].

Experimental ADF images of SrTiO3, imaged along the [100] direction, have been recorded
by K. Müller-Caspary by using a probe corrected FEI Titan, operated at an acceleration voltage
of 300 kV. The ADF regime has been selected by using a semiconvergence angle of 21.3 mrad
and a detector collection range of 58-197 mrad. Since SrTiO3 is a beam-stable material, it can be
imaged using a high incoming electron dose of around 106 e−/Å2. As a result, acquiring an image
exhibiting high quality is feasible and may be used as a reference to verify the result obtained
from applying the MAP probability rule to an image with low quality. A high CNR image is
shown in Fig. 4.3(a) with an incoming electron dose of (9.1 ± 0.4) · 105 e−/Å2. From this image,
the brighter Sr columns and darker Ti-O columns are easily recognisable. The inset indicates
the locations of both types of columns. Fig. 4.3(b) shows a noisier counterpart of the inset of
Fig. 4.3(a) with an approximately 100 times lower electron dose. Hereby, the dose was varied by
defocusing the monochromator. The MAP probability rule has been applied to the image data

2The results of this section have been published in J. Fatermans, A.J. den Dekker, K. Müller-Caspary, I. Lobato,
C.M. O’Leary, P.D. Nellist, and S. Van Aert, Single atom detection from low contrast-to-noise ratio electron
microscopy images, Physical Review Letters 121 (2018), 056101.
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Figure 4.3: (a) Experimental ADF STEM image of SrTiO3 [100] with an incoming electron dose of (9.1 ±
0.4) ·105 e−/Å2. The region indicated by the square has been magnified in the inset where the Sr columns
and Ti-O columns are indicated in red and green, respectively. (b) Noisier counterpart of the inset in (a)
with an incoming electron dose of (1.08 ± 0.05) ·104 e−/Å2 and an average number of detected electrons
of 410 e−/Å2. (c) MAP probability rule evaluated for the experimental data shown in (b). Refined models
with optimised parameters are shown in the inset taking into account 12 and 14 atomic columns. (d) Most
probable parametric model of the data in (b) containing 13 atomic columns as indicated by the MAP
probability rule in (c).

shown in Fig. 4.3(b) in order to verify whether the expected crystal structure of SrTiO3 in [100]
direction can be retreived from such low-quality data. The evaluation of the MAP probability
rule is shown in Fig. 4.3(c) for an increasing number of atomic columns. Since the width of an
atomic column is mainly determined by the finite source size and to a lesser extent by the atom
type [LeBeau 2008], a parametric model described by a superposition of Gaussian peaks with
equal widths, given by Eq. (4.31), has been used in this analysis. Calculations were performed
using a single workstation by using the algorithm described in subsection 4.3.2 resulting in a
calculation time of approximately 1 hour in order to obtain Fig. 4.3(c). The most time consuming
step is not the optimisation of the parameters of a single model, but the many different starting
positions that are required for the optimisation process to avoid ending up in a local minimum
when adding a new peak during the execution of the algorithm. It is noted that computation
time can be reduced by taking into account knowledge about the expected locations of atomic
columns in the material under investigation, which has not been done in this case. Alternatively,
in order to speed up calculations one might consider not optimising the entire set of parameters
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when searching for a new column, since to some extent the parameters of the peaks that have
been detected already do not vary greatly when an extra peak is added to the parametric model.
Hereby, one needs to consider a balance between good fit and speed. From Fig. 4.3(c), it follows
that the presence of 13 atomic columns in Fig. 4.3(b) is most probable. The refined model
with optimised parameters, taking into account 13 atomic columns, is shown in Fig. 4.3(d),
corresponding to the expected crystal structure. It has been shown in section 3.4 of chapter 3
that imprecisions of the estimated atomic column positions can be expected due to the limited
dose conditions of Fig. 4.3(b). As stated in subsection 4.3.2, the MAP probability provides a
quantitative statement of how much more probable a certain number of columns is as compared
to another number. Here, from Fig. 4.3(c), it can be derived that the probability of the presence
of 13 atomic columns is around 63 times larger than 12 columns and around 3 times larger than
14 columns. The refined models containing 12 and 13 atomic columns are shown in the inset of
Fig. 4.3(c). It is noted that in this analysis the MAP probability rule has been applied without
introducing any prior knowledge concerning the atomic structure or chemical composition of
SrTiO3. In principle, also an ordinary peak finding routine, which searches for local maxima
by choosing an arbitrary threshold [De Backer 2016], can be used to determine the number of
atomic columns. This technique, though, failed to detect the expected crystal structure of SrTiO3

from the image data shown in Fig. 4.3(b). By changing the threshold, one might obtain a better
result, but this approach relies heavily on visual inspection which will lead to biased structure
information.

4.4.2 Graphene

As shown earlier in the simulated image of Fig. 4.2(a), graphene consists of a single layer of
carbon atoms arranged in a hexagonal lattice. In essence, it is a single layer of the most common
allotrope of carbon, graphite, which can be regarded as a stack of graphene layers. With the
isolation of graphene from graphite, the first 2D material was discovered [Novoselov 2004]. This
has lead to the discovery of a whole family of 2D materials, including hexagonal boron nitride (h-
BN) and molybdenum disulphide (MoS2). As graphene possesses outstanding properties, it plays
an important role in developing future applications in a wide variety of domains. Graphene is
reported to be many times stronger than steel, yet incredibily lightweight and flexible [Lee 2008].
In addition, it is an efficient conductor of heat and electricity [Balandin 2008] and also optical
transparent [Sheehy 2009, Zhu 2014].

Fig. 4.4(a) shows a synthetic ADF image of graphene obtained by C.M. O’Leary of the
University of Oxford from an experimental 4D STEM dataset with an acceleration voltage of
80 kV, semiconvergence angle of 24.8 mrad and a detector collection range of 26-50 mrad. A
synthetic image is obtained with a pixelated detector where the intensities of the pixels within a
certain detector collection range are integrated. It is equivalent to a STEM image obtained with a
conventional annular detector with the same collection angles. Graphene, which consists of light
elements, carbon, cannot withstand a high incoming electron dose as it can easily be damaged
by the electron beam. For this reason, acquiring images of graphene exhibiting high CNR is
challenging as the electron dose needs to be limited. The property of beam sensitivity leads to
typical rather low-quality ADF STEM images of graphene, such as the one shown in Fig. 4.4(a).
Quantitative structure information though, can still be extracted from such images by using
the MAP probability rule for determining the most probable atomic arrangement. Fig. 4.4(b)
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Figure 4.4: (a) Synthetic ADF image of graphene obtained from an experimental 4D STEM dataset with
an incoming electron dose of around 3 ·105 e−/Å2 and an average detected electron dose of around 304
e−/Å2. (b) MAP probability rule evaluated for the experimental data shown in (a). (c) Most probable
parametric model of the experimental data in (a) as indicated by the MAP probability rule in (b).

shows the evaluation of the MAP probability rule to detect the carbon atoms of graphene from
the low contrast data in Fig. 4.4(a), using a parametric model described by a superposition of
Gaussian peaks with equal widths, given by Eq. (4.31). Hereby, the fact that graphene consists of
a monolayer of carbon atoms has not been taken into account in the analysis, limiting the amount
of prior knowledge concerning the atomic structure of graphene. This is opposed to the example
of the simulated graphene in Fig. 4.2, where the model given by Eq. (4.34), with equal widths
and equal heights, has been used in the analysis. The most probable parametric model that can be
obtained by the MAP probability rule from the image data in Fig. 4.4(a) is shown in Fig. 4.4(c),
detecting 64 carbon atoms and clearly resolving the hexagonal lattice of graphene. Hereby,
imprecisions in the estimated atom positions may arise because of the finite dose conditions of
Fig. 4.4(a). Moreover, for the atoms located at the edge of the image, additional imprecisions
can be expected. This is related to the fact that these atoms are only partly present in the image
data, causing a loss of information. The problem of imprecise estimations for atomic columns
located at the edge of an image is often unavoidable since, for example, for large crystallographic
structures there might always be atomic columns in the border region of the recorded images.
Estimations of atomic columns located close to the border of an image are less precise and can,
therefore, be considered to be less reliable. The calculation time needed to obtain the relative
probability curve in Fig. 4.4(b) was approximately 11 hours using a single working station
following the algorithm as described in subsection 4.3.2. Similar as for the example of SrTiO3 in
the previous subsection, it is noted that this is mainly due to the many different starting positions
that have been used to avoid the optimisation process to end up in a local minimum when adding
an extra peak to the model. The considerations to reduce computation time which were discussed
in the previous subsection also apply in this example of graphene. In addition, it is noted that, as
for the image data of SrTiO3 in Fig. 4.3(a), an ordinary peak finding routine failed to obtain the
expected atomic arrangement of graphene from the image data shown in Fig. 4.4(a).
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4.4.3 Gold nanorod

Metal nanorods hold some interesting optical properties which strongly depend on both the
particle size and shape and which are not observed in the bulk material [Pérez-Juste 2005]. The
possibility to tune their optical response by adjusting size and shape makes these nanorods excel-
lent building blocks for electro-optical devices and contrast agents in biomedical applications
[Henglein 2000, Liu 2004, Chen 2005, Becker 2008, Gómez-Graña 2013, Goris 2013a].

An experimental ADF STEM image of a gold nanorod is shown in Fig. 4.5(a) which was
obtained by a double-aberration corrected FEI Titan operated at 300 kV with a semiconvergence
angle of 21.8 mrad and a detector collection range of 62-190 mrad [Van Aert 2013]. It is noted
that, due to the electron beam, especially surface atoms might not stay in the same position during
the image acquisition [Williams 2009]. The MAP probability rule has been used to identify the
presence of atoms near the edge of the nanorod, which are difficult to detect visually. In this
region, the rod is only a few atoms thick which, in combination with the relatively low incoming
electron dose of around 2 ·105 e−/Å2, leads to a low CNR. The following two-step procedure

Figure 4.5: (a) Experimental ADF STEM image of a gold nanorod with an incoming electron dose of
around 2 ·105 e−/Å2. (b) Same image as in (a) with adjusted contrast to highlight the variability of the
carbon background. (c) Variogram of the background in (a). (d). Most probable atomic columns detected
from (a) by a combination of an ordinary peak-finding routine and the MAP probability rule near the edge
of the rod, where columns in red have been detected by the ordinary peak-finding routine, columns in
yellow by both the ordinary peak-finding routine and the MAP probability rule, and columns in green by
the MAP probability rule only. Hereby, the variability of the background has been taken into account. (e)
Most probable atomic columns detected from (a) by the same procedure as in (d), but, hereby, neglecting
the variability of the background. Regions where extra atoms have been detected as compared to (d).
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is suggested to determine the most probable structure of the gold nanorod. First, an ordinary
peak-finding routine is applied on the image. This routine is able to quickly detect most of the
thicker columns, but has difficulties in correctly detecting atoms near the edge of the particle.
Therefore, the MAP probability rule is applied to investigate the presence of atomic columns
near the edge. For this, the edge has been divided into different subregions. In each of these
subregions, the MAP probability rule has been applied. Dividing the edge into subregions has
been done in a manual way taking into account some overlap between neighbouring subregions
in order to avoid artefacts and imprecisions arising from atoms that are located right at the
border of a subregion, as discussed in the previous subsection. When a column located in an
overlap region is detected from different subregions, the average of the estimations is taken.
Note that it can be seen from Fig. 4.5(a) that, at the left-hand side, there are columns located
right on the border of the image. For these columns, it is unavoidable that the estimations
will be less precise. Alternatively, one might consider dividing the region of the edge of the
nanorod in a more automated way by using edge detection [Kook 2016, Meng 2018]. During
the analysis of the subregions, influence from atomic columns located in the inner part of the
nanorod in the neighbourhood of the edge has been taken into account. Hereby, the image
data has been modelled by a superposition of Gaussian peaks with equal widths, given by Eq.
(4.31), and the total intensity under a Gaussian peak has been chosen to be at least the total
intensity scattered by a single gold atom, obtained from simulation with the MULTEM software
[Lobato 2015, Lobato 2016]. In order to take thickness fluctuations in the carbon support into
account, the background in each of the subregions is allowed to deviate from each other. As
such, local fluctuations in the carbon support can be modelled more accurately. From Fig. 4.5(a),
it is not directly apparent that the carbon support is fluctuating, but by simply changing the
contrast, though, as shown in Fig. 4.5(b), it is clear that the carbon support does not remain
constant over the entire image. In order to acquire reliable structure information, the sizes of
the defined subregions should be selected in such a way that the background in each subregion
can adequately be modelled as a constant. This is the case when the size of a subregion is not
larger than a certain maximum distance upon which the variability of the background does not
affect atom detection. The so-called variogram, which was originally introduced in geology
[Matheron 1963], enables measuring the variability γ of the background as a function of distance
hd between pixels. This quantity is defined as

γ(hd) =
1

2Z(hd)

Z(hd)∑
z(hd)=1

(∆sz(hd))2, (4.38)

where Z(hd) denotes the number of paired observations separated by a distance hd. The difference
between the z(hd)th pair of observations is depicted as ∆sz(hd). The variogram of the carbon
background in the image of the gold nanorod is shown in Fig. 4.5(c). It can be seen that the
variability of the background γ increases as a function of distance. This indicates that, as the
distance between pixels grows, the corresponding pixel values tend to become less similar. In
Fig. 4.5(c), it is indicated that the measurements follow a linear trend. In order to determine the
maximum size of the defined subregions, ensuring adequate modelling of these regions with a
constant background, a threshold value on the variability of the carbon background needs to be
chosen. This threshold is indicated by the horizontal line in Fig. 4.5(c) and defines the maximum
variability which does not affect atom detection. A mathematical expression for this threshold
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can be defined by considering an area consisting of K × L pixels, where, besides a background ζ,
no atomic columns are present. Here, the data is considered to be free of noise. If, due to, for
example, surrounding areas with lower backgrounds, a background ζ̂ is fitted to the area under
investigation, for which ζ̂ < ζ, there is a possibility of detecting a false atomic column. Detecting
such a false column is avoided when adding a peak to the model does not improve the fit to the
data. In this case, this means that the uniform sum-of squared-residuals misfit of zero columns,
χ2

0, is smaller than or equal to the misfit of one column, χ2
1, including the fitted background ζ̂:

χ2
0 ≤ χ

2
1. (4.39)

When an atomic column at position (xk, yl) is described as a Gaussian peak g with height η and
width ρ:

g = η exp
(
−

(xk − βx)2 + (yl − βy)2

2ρ2

)
, (4.40)

Eq. (4.39) can be explicitly written as

K∑
k=1

L∑
l=1

(ζkl − ζ̂kl)2 ≤

K∑
k=1

L∑
l=1

(ζkl − (ζ̂kl + ĝkl))2 =

K∑
k=1

L∑
l=1

(ζkl − ζ̂kl − ĝkl)2. (4.41)

When it is defined that ζkl − ζ̂kl = ∆ζkl = ∆ζ, as this difference is the same for all pixel values,
since ζ and ζ̂ are both constant for all positions (xk, yl), Eq. (4.41) becomes

KL(∆ζ)2 ≤

K∑
k=1

L∑
l=1

(∆ζ − ĝkl)2. (4.42)

From this, it follows that

∆ζ ≤
1
2

∑K
k=1

∑L
l=1 ĝ2

kl∑K
k=1

∑L
l=1 ĝkl

. (4.43)

In a continuous form, Eq (4.43) can be written as

∆ζ ≤
1
2

∫ ∫
ĝ2dxdy∫ ∫
ĝdxdy

=
1
2
·
πη̂2ρ̂2

2πη̂ρ̂2 =
η̂

4
. (4.44)

As the variability γ is calculated by half the average squared difference between pixel values, as
given by Eq. (4.38), it can be written, in combination with Eq. (4.44), that

∆γ =
1
2

(∆ζ)2 ≤
1
2

(
η̂

4

)2

=
η̂2

32
. (4.45)

Following from Eq. (4.45), as a rule of thumb, the size of each subregion should obey

∆γ ≤
η2

min

32
, (4.46)

where ηmin denotes the minimum height of a Gaussian peak in the model. It is noted that Eq.
(4.46) can also be obtained, in an analogous way as described above, by considering an area of
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K × L pixels where an atomic column is present, positioned on top of a background ζ. When
a background ζ̂ is fitted, for which ζ̂ > ζ, there is a possibility that the atomic column cannot
be detected. For such a situation, detecting the column happens when the misfit of one column
is smaller than or equal to the misfit of zero columns, given by χ2

1 ≤ χ
2
0. It follows from the

threshold in Fig. 4.5(c) given by Eq. (4.46) that the maximum distance hdmax upon which the
variability γ of the background does not affect atom detection is given by 271 pixels, which
corresponds to around 49 Å. As the size of each subregion has been chosen to be 10 Å by 10 Å,
Eq. (4.46) holds and, as a result, the background in each subregion can adequately be modelled
as a constant. The result of the analysis is shown in Fig. 4.5(d). Columns in red have been
found by the ordinary peak-finding routine. Columns in yellow have been detected by both
the ordinary peak-finding routine and the MAP probability rule. Columns in green have been
detected by the MAP probability rule only. It is noted that at the edge of the gold nanorod there
were no columns found by the ordinary peak-finding procedure which were not detected by the
MAP probability rule. To illustrate the importance of adequately modelling the background,
the analysis by the MAP probability rule has also been performed by assuming the constant
background of all subregions to be equal. As a result, the background is modelled in a less
accurate way. Fig. 4.5(e) shows the result of this analysis. As compared to Fig. 4.5(d), extra
atoms, which seem to be detached from the rod, have been detected in the indicated regions.
These extra detected atoms appear in regions where there is an increased background intensity,
as apparent in Fig. 4.5(b). As such, they do not correspond to actual atoms, but are the result of
estimating a too low background in these regions.

For radiation-sensitive materials, the incoming electron dose should be kept as low as
possible. To illustrate the possibilities of the MAP probability rule when applied to low-dose
images, a 10 nm thick gold nanorod has been simulated, which is shown in Fig. 4.6(a), using
MULTEM by I. Lobato with an incoming electron dose of merely 5000 e−/Å2. The simulation
parameters are listed in Table 4.2. In order to make the simulation more realistic, the structure

Figure 4.6: (a) Simulated ADF STEM image of a gold nanorod with the presence of Poisson noise with
an incoming electron dose of 5000 e−/Å2. (b) Most probable atomic columns detected from (a), where
the MAP probability rule has been applied to the border region of the nanorod. Columns in red have
been detected by the ordinary peak-finding routine, columns in yellow by both the ordinary peak-finding
routine and the MAP probability rule, and columns in green by the MAP probability rule only. The arrow
indicates an atom detected at a position where no atom was present.
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Table 4.2: Microscope parameter values for simulation of a STEM image of a gold nanorod using
MULTEM.

Parameter Symbol Value
Acceleration voltage V0 (kV) 200
Defocus ε (Å) 15.8
Spherical aberration Cs (mm) 0.001
Spherical aberration of 5th order C5 (mm) 0
Semiconvergence angle α (mrad) 24.0
Detector inner radius β1 (mrad) 60
Detector outer radius β2 (mrad) 165
Pixel size ∆x=∆y (Å) 0.125
FWHM of the source image FWHM (Å) 0.7

has been fully relaxed by using molecular dynamics simulations employing the embedded
atom method (EAM) potential [Foiles 1986] with the GPU Lammps package [Brown 2011,
Brown 2012, Brown 2013]. For the analysis, the background has been put to zero since no
carbon support is present in the simulation and the edge of the rod has been divided into 49 equal
subregions to speed up the calculations. Fig. 4.6(b) shows the detected atomic columns from
Fig. 4.6(a). From this analysis, it follows that all present atomic columns have been detected
and that only one extra atom has been found at a position where the simulation did not include
an atom. This atom is indicated by the blue arrow shown in Fig. 4.6(b). This probability for
over- or underfitting is an inherent limitation of model-order selection methods and will, in
general, increase with decreasing CNR. However, the present example demonstrates the good
performance of the MAP probability rule when analysing a low CNR image. Moreover, it can be
seen from Fig. 4.6(b) that a substantial amount of atomic columns would not have been detected
in the absence of the MAP probability rule. This is an important result since it is well known
that the exact surface morphology of nanoparticles can influence their physical properties.

4.4.4 Ultrasmall nanoclusters

The MAP probability rule is also of great importance to detect single atoms in ultrasmall nanoclus-
ters. Such clusters can be thought of as fundamental building blocks leading to metamaterials
with physical and chemical properties that are not available in nature [Binns 2001, Claridge 2009].
The growth mechanisms for small nanoclusters are much more exotic than for bulk materials
and therefore have a more complex structure.

As a first example, a series of experimental ADF STEM images of a small germanium cluster
is shown in Figs. 4.7(a)-(c). The clusters have been imaged using a double aberration-corrected
FEI Titan operated at 120 kV and the beam current was set to 40 pA [Bals 2012]. The MAP
probability rule, in combination with atom counting [De Backer 2013], can be used to verify
whether there is no loss of atoms during the acquisition of the series of the images. In this
analysis, one should, however, take into consideration that displacements of individual atoms
are possible due to the interaction with the electron beam [Williams 2009]. This may cause
atoms to move in or out of the field of view. The MAP probability rule is used to determine the
most probable structure of the cluster, using the intensity of a single germanium atom as prior
knowledge, obtained from an image simulation with MULTEM. The evaluation of the MAP
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Figure 4.7: (a)-(c) Sequence of ADF STEM images of a germanium cluster with an incoming electron
dose of around 6.8 · 104e−/Å2. (d)-(f) MAP probability rule evaluated for the experimental data shown
in (a)-(c). (g)-(i) Most probable parametric model of the experimental data in (a)-(c) as indicated by
the MAP probability rule in (d)-(f) with atom counting results added in which green, red and blue dots
correspond to one, two or three atoms, respectively.

probability rule is shown in Figs. 4.7(d)-(f) for an increasing number of atomic columns. The
most probable parametric models are shown in Figs. 4.7(g)-(i), where the dots refer to estimated
column positions. The scattering cross sections of the columns, which are equal to the volumes
under the estimated Gaussian peaks, have been calculated to count the number of atoms in a
column [De Backer 2013]. Hereby, the size of the cluster in Fig. 4.7 has been estimated to be
26 ± 2 atoms. As compared to earlier results obtained by detecting atomic columns by visual
inspection of the images [Bals 2012], the MAP probability rule detects more peaks, whereas the
total number of atoms in each of the individual frames remains almost constant. The extra peaks
correspond to atoms which are not perfectly aligned along the beam direction. This suggests that
the MAP probability rule is able to disentangle strongly overlapping peaks resulting into more
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Figure 4.8: (a)-(d) Sequence of ADF STEM images of a gold cluster with an incoming electron dose of
around 4500 e−/Å2. (e)-(h) MAP probability rule evaluated for the experimental data shown in (a)-(d).
(i)-(l) Most probable parametric model of the experimental data in (a)-(d) as indicated by the MAP
probability rule in (e)-(h) with atom counting results added in which green and red dots correspond to
one or two atoms, respectively.
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accurate structure information as compared to visual inspection. This is of great importance to
fully understand the dynamics of such a small nanocluster.

As a second example, a time series of experimental ADF STEM images of a small gold
nanocluster is shown in Figs. 4.8(a)-(d), which were obtained by T. Altantzis from a double
aberration-corrected FEI Titan operated at 120 kV using a detector range of 28-172 mrad. Gold
particles are often investigated because of their tunable properties, such as optical behaviour
and catalytic activity [Daniel 2004, Alshammari 2012]. Interestingly, the structure of small gold
nanoclusters deviates from the common gold cubic structure. The clusters tend to congregate
to stable structures with a specific number of atoms determined by so-called magic numbers
[Mackay 1962]. In order to confirm that the size of the nanocluster in Fig. 4.8 is determined by a
magic number, the number of atoms needs to be counted. Similar as for the small germanium
cluster in Fig. 4.7, the beam sensitivity hinders a visual interpretation since the individual atoms
are not clearly distinguishable. In addition, the nanocluster changes shape during the acquisition.
In order to obtain a reliable estimation of the structure of the nanocluster, the MAP probability
rule has been used, in an analogous way as for the germanium cluster in Fig. 4.7, including the
intensity of a single gold atom as prior knowledge obtained from simulation with MULTEM.
The evaluation of the MAP probability rule is shown in Figs. 4.8(e)-(h) as a function of the
number of columns N. The most probable parametric models are shown in Figs. 4.8(i)-(l). It
follows from this analysis that the size of the cluster in Fig. 4.8 has been estimated to be 32 ± 2
atoms, corresponding to a magic number of 34 atoms.

4.5 Conclusions
In this chapter, the methodology of the MAP probability rule to detect single atoms from atomic-
resolution ADF STEM images has been explained in detail. The method is built upon model-
based parameter estimation, which was the topic of the previous chapter, and Bayesian probability
theory, whose basic algebraic calculation rules have been thoroughly elaborated. The combination
of statistical parameter estimation and model-order selection allows the MAP probability rule
to perform automatic and objective structure quantification of unknown nanomaterials and to
detect atomic columns and even single atoms with high reliability. For this purpose, it has
been shown that, for a variety of parametric models, approximate analytical expressions can
be derived for the probability of the presence of a certain number of atomic columns in ADF
STEM image data. The MAP probability rule selects the number of columns that maximises
this probability. Furthermore, the MAP probability rule also enables one to quantify how more
likely a certain atomic structure is as compared to other structures. Obtaining automatic and
objective structure information is especially useful for the analysis of radiation-sensitive and
light-element nanostructures. Typically, images of such materials exhibit low CNR due to the
use of a limited incoming electron dose in STEM of merely 103 - 105 e−/Å2 in order to avoid
beam damage. Visual inspection of such images is unreliable, as it is challenging to distinguish
individual atomic columns, and might lead to biased results. The validity and usefulness of
applying the MAP probability rule to images exhibiting low CNR have been demonstrated by
analysing experimental and simulated ADF STEM images of samples of different shape, size,
and atom type. Hereby, it has been shown that important structural information can be obtained
by using the MAP probability rule, which would otherwise not have been available.
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5
The maximum a posteriori probability

rule for atom column detection

5.1 Introduction
In the previous chapter, the MAP probability rule has been introduced as a quantitative method
to determine the number of atomic columns for which there is most evidence in the ADF
STEM image data. The method is based on a combination of statistical parameter estimation
[den Dekker 2005, Van Aert 2005, van den Bos 2007, Van Aert 2012b, den Dekker 2013,
De Backer 2016] and model-order selection [Myung 2000, Stoica 2004a, Claeskens 2008] from
which analytical expressions could be derived using a Bayesian approach [Fatermans 2019].
It was shown that the MAP robability rule is able to automatically and objectively determine
the most probable structure of unknown nanomaterials and to detect single atoms with high
reliability [Fatermans 2018]. Moreover, the proposed method quantifies how more likely an
obtained atomic structure is as compared to other structures.

Since the MAP probability rule can be used to quantify how more likely a certain number of
atomic columns is as compared to another number, it offers a way to determine atom detectability,
which is defined as the probability to detect an atom from an image. The relation of atom
detectability with STEM image quality measures, such as SNR and CNR [Welvaert 2013], can be
evaluated. In general, atom detectability is indeed related to image quality, as, for example, one
expects the detectability of atomic columns in an image to increase with increasing image quality.
In this manner, the probability to detect an atomic column from STEM image data, which can be
provided by the MAP probability rule, is correlated with the quality of the image. As such, for
STEM images, a new image quality measure, the ICNR, has been proposed that better correlates
with atom detectability than conventional image quality measures [Fatermans 2019].

Moreover, the MAP probability rule is related to the concept of model selection, where one
aims to select the best model from a set of candidate models given experimental data. Hereby,
a tradeoff between both goodness of fit and the complexity of the models under investigation

77
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needs to be performed [Myung 2000]. The working principle of model selection has been
briefly described in chapter 3 in section 3.5. The MAP probability rule can be considered as a
model-selection criterion, such as the AIC [Akaike 1974] and BIC [Schwarz 1978]. In particular,
the MAP probability rule is closely related to the BIC, since both methods are derived from a
Bayesian approach. In principle, atom detection from STEM images can be performed with
any model-selection criterion, but, interestingly, the MAP probability rule takes into account
more dimensions of model complexity as compared to other commonly used model-selection
criteria. This allows for a superior performance to detect the correct number of atomic columns
from ADF STEM images [Fatermans 2019]. In addition, the MAP probability rule offers a more
flexible way to detect atoms from images than other criteria. This is due to the fact that the prior
can be tuned, resulting into a different value for the complexity of the model under consideration.
Moreover, by using the MAP probability rule, it is clear what prior knowledge has been taken
into account during the analysis, which is not always straightforward for other model-selection
criteria.

This chapter is organised as follows3. In section 5.2, it is explained how the MAP probability
rule can be used to evaluate the correlation between measures of image quality and atom
detectability. In subsection 5.2.1, the correlation with conventional measures, such as SNR
and CNR, is investigated, whereas in subsection 5.2.2 a new image-quality measure which
correlates better with atom detectability is introduced. In section 5.3, the relation of the MAP
probability rule to model selection is investigated. Hereby, subsection 5.3.1 compares the
performance of the MAP probability rule in correctly detecting atoms from STEM images to
that of other model-selection criteria. This is followed in subsection 5.3.2 by explicitly showing
the connection between the MAP probability rule and the BIC. In subsection 5.3.3, the effect
of incorporating a certain amount of prior knowledge in the analysis is explained. Finally, in
section 5.4, conclusions will be drawn.

5.2 Atom detectability

In general, one expects that the detectability of atomic columns in images will increase with
increasing image quality. Fig. 5.1 depicts a set of Poisson noise disturbed simulated ADF STEM
images of a single atom with varying background and incoming electron dose. Intuitively, it
is clear that detecting the atom will be easiest from high-quality images with a high electron
dose and low background, and most difficult from low-quality images with low dose and high
background. In this section, the MAP probability rule will be used as a tool to evaluate the relation
between image quality and atom detectability. Hereby, it is noted that when only the value of the
incoming electron dose is available no information is provided about the detectability of atomic
columns in an image. Depending on the sample, the number of electrons that reaches the detector
can be very different for the same incoming dose. This is shown by the horizontal lines of Fig.
5.1 where the same incoming electron dose is used, but due to the different backgrounds that
are present in the images, the perceived atom detectability may vary significantly. Alternatively,
one might consider using detected electron dose instead to evaluate the relation with atom

3The results in this chapter have been published in J. Fatermans, S. Van Aert, and A.J. den Dekker, The maximum
a posteriori probability rule for atom column detection from HAADF STEM images, Ultramicroscopy 201 (2019), p.
81-91
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Figure 5.1: Set of simulated Poisson noise disturbed ADF STEM images of a single atom with varying
incoming electron dose and background.

detectability. Unfortunately, also the detected number of electrons does not provide information
about the probability of detecting atomic columns from an image. In Fig. 5.1, the number of
detected electrons increases while moving to the right-hand side, but, as visually perceived,
this does not guarantee better atom detectability. In addition, a disadvantage of using detected
electron dose is that it typically only provides an averaged value, losing information about
variations in the detected number of electrons in the image. Therefore, other measures than
incoming or detected electron dose are required to evaluate the relation between image quality
and atom detectability. In subsection 5.2.1, SNR and CNR are investigated. This is followed by
subsection 5.2.2 where a new image-quality measure is proposed that correlates better with atom
detectability.
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5.2.1 SNR and CNR
In this section, the relation of SNR and CNR as image-quality measures to atom detectability is
evaluated by using the MAP probability rule. First, SNR is investigated. As local fluctuations
of the background or differences in atomic column thicknesses or composition can occur, each
column in a STEM image can possess a different SNR value. When the background in the image
can be considered to be constant, the SNR of a column at position (βx, βy) can be written as

S NR =
η + ζ

[η + ζ]1/2 , (5.1)

where η and ζ denote the height of the atomic column and the background of the image,
respectively, for a parametric model based on a superposition of Gaussian peaks, such as the ones
discussed in section 3.2 of chapter 3. It is noted that the definition in Eq. (5.1) provides a rather
simple description of SNR. There exist several alternative ways of defining SNR [Welvaert 2013].
To investigate the relation of SNR to atom detectability, a set of ADF STEM images of 12.5
Å by 12.5 Å with a pixel size of 0.25 Å has been simulated of an individual Au atom using
MULTEM [Lobato 2015, Lobato 2016] to which an arbitrary constant background has been
added accounting for the contribution of electrons scattered by an amorphous substrate. The
remaining simulation parameters are listed in Table 5.1. Each simulated image has been generated
1000 times containing random Poisson noise. The SNR of the atom in the image has been altered
by changing the incoming electron dose ranging from 103 e−/Å2 to 105 e−/Å2 resulting in a
higher SNR value for a higher incoming electron dose. For detecting the Au atom from the
noise disturbed images by the MAP probability rule, a model assuming the image of the atom to
be Gaussian shaped has been used, where a constant background ζ and width ρ, height η and
x- and y-coordinate βx and βy of the atom need to be estimated. The prior density p(θ|N) has
been chosen as a product of uniform distributions for each parameter, in correspondence with
subsection 4.3.1 of chapter 4, where the parameters ζ and η range from 0 up to the maximum
pixel intensity in the simulated image, whereas the parameters ρ, βx and βy range according
to the field of view of the image, i.e. from 0 Å up to 12.5 Å. Fig 5.2(a) shows the observed
detection rates of the MAP probability rule as a function of SNR. The error bars show the
95 % confidence Wilson score intervals of a binomial distribution [Wilson 1927]. Below the
graph, simulated STEM images containing Poisson noise for different SNR values are depicted.
Alternatively, the SNR value of the Au atom in the simulated image can be altered by changing
the added constant background independently of the incoming electron dose, simulating the

Table 5.1: Microscope parameter values for simulation of a set of ADF STEM images of 12.5 Å by 12.5
Å using MULTEM.

Parameter Symbol Value
Acceleration voltage V0 (kV) 120
Defocus ε (Å) 0
Spherical aberration Cs (mm) 0.001
Spherical aberration of 5th order C5 (mm) 0
Semiconvergence angle α (mrad) 21.3
Detector inner radius β1 (mrad) 28
Detector outer radius β2 (mrad) 172
FWHM of the source image FWHM (Å) 0.7



5.2. Atom detectability 81

Figure 5.2: (a) Observed detection rate of a Au atom by the MAP probability rule from simulated ADF
STEM images of 12.5 Å by 12.5 Å with a pixel size of 0.25 Å as a function of SNR using the simulation
parameters listed in Table 5.1 where the SNR has been altered by changing the incoming electron dose
ranging from 103 e−/Å2 to 105 e−/Å2 and (b) by changing the constant background for a fixed incoming
electron dose of 104 e−/Å2. (c) Detection rate from the same set of images as in (b) as a function of CNR.
Below the figures the simulated images disturbed by Poisson noise for different values of SNR and CNR
are shown.

effect of the atom to be positioned on a substrate with varying thickness. By altering the SNR by
this procedure for a fixed incoming electron dose of 104 e−/Å2 and by using the same approach
for the MAP probability rule as for Fig. 5.2(a), Fig. 5.2(b) shows that the detection rate decreases
with increasing SNR value, as opposed to Fig. 5.2(a). Apparently, a high SNR value does not
guarantee high atom detectability. This is also visually perceived by the images below Fig. 5.2(b)
showing Poisson disturbed simulated STEM images for different SNR values. The reason for
this behaviour lies in the fact that the SNR measure given by Eq. (5.1) only considers the total
sum of the height of the atomic column η and the background of the image ζ. Therefore, SNR
does not take image contrast into account and it is possible that the SNR of an image is high
while contrast is low. Contrast, however, also affects the visual perception and detectability of
objects in an image, as is apparent from Fig. 5.1. An alternative measure to describe the quality
of an image is given by the CNR [Welvaert 2013]. When a parametric model is used to describe
the background and atomic columns in an ADF STEM image, the CNR of a column can be
defined as

CNR =
η

[η + ζ]1/2 . (5.2)

Note that the definition of CNR in Eq. (5.2) is closely related to the definition of SNR in Eq.
(5.1), but in case of CNR the background ζ is subtracted before taking the ratio. As such, the
CNR also takes image contrast into account. Therefore, CNR relates better to atom detectability
than SNR. This is confirmed by Fig. 5.2(c) where the observed detection rate is shown as a
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function of the CNR for the same set of images as for Fig. 5.2(b). From this, it is seen that the
detection rate increases with increasing CNR. It is noted that the same behaviour is observed for
the set of images of Fig. 5.2(a).

5.2.2 Integrated CNR

As followed from the previous section, CNR is a more intuitive image quality measure than SNR
when it comes to detecting atoms from ADF STEM images. In this section, the relation between
the CNR measure and atom detectability is investigated for variations of atom type, incoming
electron dose and image pixel size. First, the detection rate of the MAP probability rule for
different types of individual atoms as a function of CNR is shown in Fig. 5.3(a) for simulated
ADF STEM images of 12.5 Å by 12.5 Å with a pixel size of 0.25 Å, using MULTEM with an
incoming electron dose of 106 e−/Å2, where each simulated image has been generated 1000
times containing Poisson noise. The remaining simulation parameters can be found in Table 5.1
in subsection 5.2.1. The CNR of the atom in the image has been altered by adding a constant
background. For detecting the atom from the noise disturbed images by the MAP probability
rule, the same approach as in Fig. 5.2 has been followed with an equivalent choice for the prior

Figure 5.3: Observed detection rate of an individual atom by the MAP probability rule from simulated
HAADF STEM images of 12.5 Å by 12.5 Å with a pixel size of 0.25 Å for varying atom types with an
incoming electron dose of 106 e−/Å2 as a function of (a) CNR and (d) ICNR. Detection rate of a Au atom
from simulated HAADF STEM images of 12.5 Å by 12.5 Å with a pixel size of 0.25 Å for varying incoming
electron dose as a function of (b) CNR and (e) ICNR and from images with an incoming electron dose of
105 e−/Å2 for varying pixel size as a function of (c) CNR and (f) ICNR.



5.3. Relation to model selection 83

density p(θ|N). It follows from Fig. 5.3(a) that the relation between CNR and detection rate
depends hardly, yet slightly, on the atom type. Next, the relation between CNR and detection
rate to varying incoming electron dose is investigated. For this, images of 12.5 Å by 12.5 Å with
a pixel size of 0.25 Å of an individual Au atom have been simulated with different incoming
electron doses. Fig. 5.3(b) shows that the relation between CNR and the atom detection rate is
rather robust to incoming electron dose. On the other hand, a different pixel size influences the
detection rate as a function of CNR significantly, as shown in Fig. 5.3(c) for images of a Au
atom with an incoming electron dose of 105 e−/Å2 and varying pixel size. This is due to the fact
that, for a fixed incoming electron dose/Å2, an increased image pixel size leads to an increased
electron dose/pixel. The increased value for electron dose/pixel results into a higher value for the
background ζ and height η of the Au atom, since both ζ and η scale with electron dose/pixel, and
hence into a higher CNR given by Eq. (5.2) and vice versa. For this reason, the ICNR is proposed
whose relationship with atom detectability is independent of atom type, incoming electron dose
and, in particular, the pixel size of the image. The ICNR of an atomic column in ADF STEM
images is defined as the ratio of the total intensity of electrons scattered by the column, the
so-called scattering cross section [Van Aert 2009b, Van Aert 2013, E 2013, De Backer 2016], to
the square root of the sum of the scattering cross section and the integrated background under
the column. When a parametric model based on a superposition of Gaussian peaks is used to
describe the background and atomic columns, the ICNR of a column can be calculated as

ICNR =
2πηρ2

[2πηρ2 + π(3ρ)2ζ]1/2 , (5.3)

where ρ denotes the estimated width of the atomic column. In this work, ICNR values are
calculated by expressing ρ in units of pixels. In order to estimate the integrated background
under the column, the area under the column has been considered to be a circle with a radius of
3ρ, since 99.46 % of the volume under the Gaussian peak describing the column is contained
within this distance. It should be noted that Eq. (5.3) is only valid for individual atomic columns
that are well separated in the image. For denser crystallographic structures, the contrast of a
column depends, not only on the height of the column η and on the background in the image ζ,
but also on the heights of and the distances from the surrounding columns. For the investigation
of the relation between ICNR and atom detectability to varying atom type, incoming electron
dose and pixel size, the same procedure for the simulated images has been followed as for the
investigation of CNR. It is shown in Figs. 5.3(d) and (e) that the detection rate does not change
with atom type or incoming electron dose, respectively, as long as the ICNR value remains
unchanged. The functional relationship between detection rate and ICNR is also independent
of pixel size, as shown in Fig. 5.3(f), as opposed to the relationship between detection rate and
CNR, as shown in Fig. 5.3(c). The results indicate that ICNR is a more robust measure for atom
detectability from high-resolution HAADF STEM images than CNR.

5.3 Relation to model selection

Model selection methods consider a tradeoff between high goodness of fit and low model
complexity in order to select the model which most closely describes the underlying process that
generated the experimental data. In essence, the MAP probability rule is also a model-selection
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method where the posterior probability of the presence of N atomic columns in a STEM image
of W = K × L pixels can be written in general terms as

p(N|w) ∝
goodness of fit

model complexity
. (5.4)

The numerator, goodness of fit, is the likelihood function evaluated at the maximum likelihood
estimate θ̂, as explained in subsection 4.3.1 of chapter 4:

p(w|θ̂,N) =
e−χ

2(θ̂)/2∏K
k=1

∏L
l=1

√
2πwkl

, (5.5)

with

χ2(θ̂) =

K∑
k=1

L∑
l=1

(
wkl − fkl(θ̂)

)2

wkl
. (5.6)

The full expression for the posterior probability p(N|w) for a model with M parameters describing
the atomic columns in a STEM image by Gaussian peaks with different widths is given in
subsection 4.3.1 of chapter 4 as

p(N|w) ∝
N!(4π)M/2e−χ

2
min/2[det(∇∇χ2)]−1/2

[(βxmax − βxmin)(βymax − βymin)(ρmax − ρmin)(ηmax − ηmin)]N(ζmax − ζmin)
∏K

k=1
∏L

l=1

√
2πwkl

.

(5.7)
The prior density p(θ|N) for such a model is given in subsection 4.3.1 as

p(θ|N) =
1

[(βxmax − βxmin)(βymax − βymin)(ρmax − ρmin)(ηmax − ηmin)]N(ζmax − ζmin)
, (5.8)

By considering Eq. (5.7), a mathematical expression for the model complexity in Eq. (5.4) can
be provided. From Eq. (5.5), where χ2(θ̂) = χ2

min, and from the expression for the prior density
in Eq. (5.8), it follows that the posterior probability in Eq. (5.7) can be written as

p(N|w) ∝
p(w|θ̂,N)

[det(∇∇χ2)]1/2/[N!(4π)M/2 p(θ|N)]
. (5.9)

Since the goodness of fit is given by p(w|θ̂,N), the model complexity in Eq. (5.4) for the MAP
probability rule is given by

model complexity =
[det(∇∇χ2)]1/2

N!(4π)M/2 p(θ|N)
. (5.10)

The term ∇∇χ2 in Eq. (5.10) is related to the observed Fisher information matrix Ĵ [Dodge 2003],
as described in subsection 3.4.1 of chapter 3, which holds the information that is contained by
the observed data about the unknown parameters θ. It is described by the Hessian matrix of
minus the logarithm of the likelihood function p(w|θ,N), given by Eq. (5.5), evaluated at the
maximum likelihood estimate θ̂. As such,

Ĵ = −
∂2log[p(w|θ,N)]

∂θ∂θT

∣∣∣∣∣
θ=θ̂

=
∂2[χ2(θ)/2]
∂θ∂θT

∣∣∣∣∣
θ=θ̂

(5.11)
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where ∂2χ2(θ)
∂θ∂θT

∣∣∣
θ=θ̂

can be written in short as ∇∇χ2. The term ∇∇χ2 is an M×M dimensional matrix
and, therefore, it depends on the number of parameters. In addition, it explicitly contains the
expectation model fkl, describing the intensity of pixel (k, l) at position (xk, yl), as follows from
Eq. (5.6). Therefore, the term ∇∇χ2 in Eq. (5.10) takes into account two dimensions of model
complexity, which are the number of parameters on the one hand and the functional form of the
model on the other hand. The third dimension of model complexity, which is the extension of the
parameter space, is described by the prior density p(θ|N). By choosing p(θ|N) as a product of
uniform distributions for each parameter individually, large ranges for the possible values of the
parameters correspond with a small value for p(θ|N). Since the model complexity in Eq. (5.10)
is inversely proportional to p(θ|N), model complexity increases as the extension of the parameter
space increases. As a result, the complexity term of the MAP probability rule depends on three
dimensions of model complexity as opposed to other more common criteria, such as the AIC
[Akaike 1974], the GIC [Broersen 1993], which is an extension of AIC by introducing a general
parameter d , the BIC [Schwarz 1978] and the HQC [Hannan 1979], whose mathematical forms
are given by:

AIC = −2log(L̂) + 2M

GIC = −2log(L̂) + dM.

BIC = −2log(L̂) + Mlog(W)

HQC = −2log(L̂) + Mlog[log(W)],

(5.12)

where the first term denotes the goodness of fit and the second term accounts for model complexity
[Stoica 2004a, Claeskens 2008]. It is clear from Eq. (5.12) that the complexity terms of these
criteria only depend on the number of parameters M. By taking the logarithm of Eq. (5.9)
multiplied by -2, the posterior probability p(N|w) can be written in the same form as the model-
selection criteria in Eq. (5.12):

−2log[p(N|w)] = −2log(L̂) + log[det(∇∇χ2)] − 2log(N!)
− Mlog(4π) − 2log[p(θ|N)] + cst,

(5.13)

where p(w|θ̂,N) has been written as L̂. The term cst in Eq. (5.13) refers to a constant coming
from the proportionality of Eq. (5.9). From this expression, it can be directly seen that the MAP
probability rule holds a more complex penalty term than the criteria given in Eq. (5.12).

The remainder of this section is organised as follows. In subsection 5.3.1, the performance
of the MAP probability rule in detecting atoms from STEM images is compared to that of other
selection criteria. This is followed by subsection 5.3.2 where the relation between the MAP
probability rule and the BIC is explicitly shown. In subsection 5.3.3, the effect of the prior
density on atom detection is discussed.

5.3.1 Performance in detecting atoms
In this section, the performance of the MAP probability rule in detecting atoms from ADF STEM
images is compared to the AIC, GIC, BIC and HQC, which were introduced in Eq. (5.12). For
the GIC, d = 3 [Broersen 1996] and d = 4 [Stoica 2004a] are considered, which are referred
to, in what follows, as GIC3 and GIC4, respectively. A set of 1000 images of Au atoms has



86 Chapter 5. The MAP probability rule for atom column detection

Figure 5.4: Average frequency of various selected orders for different model selection-criteria for
detecting the number of Au atoms from a set of simulated HAADF STEM images of 12.5 Å by 12.5 Å with
a pixel size of 0.25 Å and with (a) an ICNR value of 3.0, (b) an ICNR value of 4.0, and (c) an ICNR value
of 5.0. At the right-hand side, randomly generated simulated images of 5 atoms disturbed by Poisson
noise with the noise-free images as references are shown for each ICNR value.

been simulated by MULTEM with dimensions of 12.5 Å by 12.5 Å and a pixel size of 0.25 Å.
The remaining simulation parameters are listed in Table 5.1 in subsection 5.2.1. Hereby, the
number of Au atoms in an individual image is uniformly distributed between 1 and 5 atoms. The
atoms are randomly positioned within the field of view of the image according to a uniform
distribution and the incoming electron dose of the image can uniformly fluctuate between 5 · 103

e−/Å2 and 105 e−/Å2, affecting the peak intensities of the atoms. Depending on the incoming
electron dose, a constant background has been added to an individual image such that all 1000
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simulated images have the same ICNR value. Hereby, each simulated image has been disturbed
by Poisson noise. The performances of the model-selection criteria are evaluated by comparing
the detected number of atoms in the image with the true number of atoms by calculating the
average frequency of various selected orders [Stoica 2004b]. For the analysis, a superposition of
Gaussian peaks with equal widths and equal intensities has been used to model the Au atoms
in the image. Since the width ρ has been considered to be a fixed value, the parameters to be
estimated are the background ζ, height η and x- and y-coordinates βxn and βyn . For the MAP
probability rule, the prior density p(θ|N) was chosen as a product of uniform distributions where
the background ζ ranges from 0 up to the maximum pixel intensity in the simulated image and
where the distributions for the height η and x- and y-coordinates βxn and βyn exactly correspond
with the uniform distributions that were used to generate these parameters. The performances of
the model-selection criteria are shown in Fig. 5.4 for three different ICNR values, defined by Eq.
(5.3). A positive value of the detection error refers to the detection of too many atoms, whereas a
negative value refers to the detection of too few atoms. Next to the graphs, randomly generated
simulated images of 5 atoms disturbed by Poisson noise with the noise-free images as references
are shown for each ICNR value. From Fig. 5.4(a), it can be seen that the MAP probability rule
outperforms the other criteria for an ICNR value of 3.0. The AIC, GIC3, GIC4 and HQC have a
tendency to detect too many atoms, whereas the BIC often detects too few atoms. This behaviour
is related to the different ways the model-selection criteria penalize the complexity of the model.
From subsection 5.2.2, showing that the detection rate increases when the ICNR of an image
increases, it is expected that the frequency of detecting the correct number of atoms increases
for increasing ICNR. This is confirmed in Fig. 5.4(b) and (c) for an ICNR value of 4.0 and 5.0,
respectively. Moreover, in these cases, the performances of the different criteria tend to become
more equal.

5.3.2 Relation between MAP and BIC
Previously, it has been explained that the MAP probability rule is related to the concept of
model selection. In particular, it can be expected that the MAP probability rule has a close
correspondence with the BIC as they both follow from Bayesian probability theory. The relation
between the MAP probability rule and the BIC can be indicated starting from Eq. (5.13). The
second term at the right-hand side of this expression can be written as

log[det(∇∇χ2)] = log[det(W ·
1
W
∇∇χ2)]

= Mlog(W) + log[det(
1
W
∇∇χ2)],

(5.14)

where use is made of the fact that det(sAM) = sMdet(AM) for a scalar s and M × M matrix AM.
As such, Eq. (5.13) can be rewritten as

−2log[p(N |w)] = −2log(L̂) + Mlog(W) + log[det(
1
W
∇∇χ2)]

− 2log(N!) − Mlog(4π) − 2log[p(θ|N)] + cst.
(5.15)

Interestingly , the first two terms of Eq. (5.15) correspond to the BIC given in Eq. (5.12). This
indicates a relation between the MAP probability rule and the BIC, which is not surpising as both
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Figure 5.5: Behaviour of the individual terms of the MAP probability rule in function of the number of
pixels W for a set of simulated ADF STEM images of 12.5 Å by 12.5 Å of a single Au atom with a pixel
size ranging from 0.5 Å until 0.05 Å and an incoming electron dose of 625 e−/pixel. For clarity, the term
−2log(L̂) has not been visualised. Three different parameterisations of the model describing the STEM
images have been used. In (a), the background ζ and height η have been fitted in electron counts and the
width ρ and x- and y-coordinate βx and βy in Å, in (b), the parameters have been normalised between 0
and 1, and in (c), ζ and η have been fitted in electron counts and ρ, βx and βy in pixels.

techniques are based on a Bayesian approach. In order to understand this relation, the behaviour
of the terms in Eq. (5.15) has been investigated as a function of the sample size by simulating a
set of ADF STEM images of 12.5 Å by 12.5 Å of a single Au atom. The STEM simulations have
been obtained from MULTEM and the simulation parameters are listed in Table 5.1 in subsection
5.2.1. In order to acquire a set of simulated images containing an increasing number of pixels W,
the pixel size has been decreased starting from 0.5 Å up to and including 0.05 Å. As such, 50
images have been simulated where for each image 20 random Poisson noise configurations have
been applied. Hereby, the incoming electron dose has been set to 625 e−/pixel to keep the amount
of detected electrons per pixel constant, irrespective of the pixel size, so that the behaviour of
the terms of the MAP probability rule is only dependent on the number of pixels W. Note that
since the number of e−/pixel is kept constant throughout the analysis this means that the electron
dose/Å2 increases when the image pixel size decreases. For the analysis of the MAP probability
rule, a model where the atom is assumed to be Gaussian shaped has been used consisting of
M = 5 parameters: a constant background ζ, width ρ, height η and x- and y-coordinate βx and
βy. The prior density p(θ|N) has been chosen to be a product of uniform distributions where
the parameters ζ and η range from 0 up to the maximum pixel intensity in the simulated image,
whereas the parameters ρ, βx and βy range according to the field of view of the image, i.e. from
0 Å up to 12.5 Å. The different terms contributing to the MAP probability rule given by Eq.
(5.15) are shown in Fig. 5.5. The term −2log(L̂) depends on W and increases with an increasing
number of pixels, but, for clarity, it has not been visualised since it would dominate the graphs
as it has values up to three orders of magnitude larger than the other terms. It can be seen from
Fig. 5.5(a) that the term Mlog(W) increases as the number of pixels W increases, as expected.
The terms log[det( 1

W∇∇χ
2)], −2log(N!), −Mlog(4π) and −2log[p(θ|N)] remain constant as W

increases. As such, also the sum of these terms remains constant for more pixels. This sum has
been depicted as O(1) in Fig. 5.5, denoting a term that tends to a constant as W → ∞. In this
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way, Eq. (5.15) can be written for W → ∞ as

−2log[p(N|w)] = −2log(L̂) + Mlog(W) + O(1)

≈ −2log(L̂) + Mlog(W)
(5.16)

implying that the MAP probability rule is asymptotically equivalent with the BIC since −2log(L̂)
and Mlog(W) are the dominant terms when W → ∞. Interestingly, the behaviour of the Hessian
matrix of χ2(θ) evaluated at θ̂, ∇∇χ2, and of the prior density, p(θ|N), chosen as a product of
uniform distributions for each parameter, is dependent on the parameterisation of the model. Fig.
5.5(a) results from fitting the parameters ζ and η in pixel intensities, depicted in electron counts,
and ρ, βx and βy in Å. A different parameterisation of θ might be to use a normalised model where
the parameters can fluctuate between 0 and 1. Fig. 5.5(b) shows the behaviour of the various
terms of Eq. (5.15) of such a model. Here, the terms log[det( 1

W∇∇χ
2)] and −2log[p(θ|N)] have

been shifted as compared to Fig. 5.5(a). Yet, they show the same constant behaviour as a function
of the number of pixels W. The behaviour of these terms does not necessarily remain constant as
a function of W under all parameterisations of θ as shown in Fig. 5.5(c). Here, the parameters ζ
and η have been fitted in electron counts and ρ, βx and βy in pixels. From Fig. 5.5(c), it is apparent
that both log[det( 1

W∇∇χ
2)] and −2log[p(θ|N)] depend on the number of pixels W. Although

∇∇χ2 and p(θ|N) are not invariant under reparameterisation of θ, yet the term O(1), which is the
sum of log[det( 1

W∇∇χ
2)], −2log(N!), −Mlog(4π) and −2log[p(θ|N)], remains invariant under all

presented parameterisations, as shown in Fig. 5.5. Therefore, the model complexity of Eq. (5.10)
as described by the MAP probability rule remains unchanged under different parameterisations
of the model. Moreover, as the goodness of fit is also independent of the model description,
the MAP probability rule, given by the evaluation of the posterior probability p(N|w), remains
invariant under reparameterisation of θ. It is noted that in general the MAP estimate following
from p(N |w) is not invariant.

5.3.3 Influence of prior density

Since the prior density p(θ|N) is part of how the MAP probability rule determines model
complexity, as shown in Eq. (5.10), atom detection in ADF STEM images depends on the
predefined parameter ranges when p(θ|N) is defined as a product of uniform distributions for
each parameter individually, as given by Eq. (5.8). Ideally, the result of a robust detection method
should not depend strongly on the prior. In this section, the influence of different a priori chosen
parameter ranges to atom detection is investigated as a function of ICNR. For this, ADF STEM
images of 12.5 Å by 12.5 Å with a pixel size of 0.25 Å with different ICNR values have been
simulated of an individual Au atom using MULTEM, where the atom is located in the middle of
each simulated image, i.e. βx = βy = 6.25 Å. The remaining simulation parameters can be found
in Table 5.1 in subsection 5.2.1. Each image has been generated 1000 times containing random
Poisson noise and the ICNR of the atom in the image has been altered by adding a constant
background while keeping the incoming electron dose fixed to 104 e−/Å2. For detecting the Au
atom from the noise disturbed images by the MAP probability rule, a model assuming the atom
to be Gaussian shaped has been used, where a constant background ζ and width ρ, height η and x-
and y-coordinate βx and βy of the atom need to be estimated. First, the parameters ζ and η have
been chosen to range from 0 up to the maximum pixel intensity in the simulated images, whereas
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Figure 5.6: Detection rate of a Au atom from simulated ADF STEM images of 12.5 Å by 12.5 Å with
a pixel size of 0.25 Å and an incoming electron dose of 104 e−/Å2 as a function of ICNR for different
predefined ranges of βx and βy.

the parameters ρ, βx and βy range according to the field of view of the image, i.e. from 0 Å up to
12.5 Å. In order to investigate the effect of a different choice of the predefined parameter ranges,
the ranges of βx and βy have been reduced, corresponding to taking into account more and more
informative prior knowledge about the location of the Au atom. Fig. 5.6 shows that the detection
rate as a function of ICNR is not influenced by different predefined ranges on βx and βy when the
ICNR is high. For lower ICNR values, though, the detection rate of the Au atom increases for
smaller predefined ranges on βx and βy. This shows that when more correct prior knowledge can
be taken into account, it is beneficial to do so since it increases the chance of detecting atoms
from low ICNR STEM images. As compared to the other model-selection criteria considered
in this chapter, the MAP probability rule offers a more flexible way to detect atoms from ADF
STEM images due to the fact that the prior can be tuned, resulting into a different value for the
complexity of the model under consideration. Moreover, by using the MAP probability rule, it is
clear what prior knowledge has been taken into account during the analysis, which is not always
straightforward for other model-selection criteria.

5.4 Conclusions

In this chapter, it has been shown that the MAP probability rule can be effectively used as a
tool to evaluate the relation between STEM image-quality measures and atom detectability.
This has resulted into the introduction of the ICNR as a new image-quality measure that better
correlates with atom detectability than conventional measures such as SNR and CNR. Atomic
columns resulting from images with ICNR values of less than around 5.0 become challenging to
accurately detect since typically the detection rate of 100 % drops rapidly starting from this value.
In addition, the relation of the MAP probability rule with model selection has been thoroughly
investigated. Hereby, it has been explicitly shown that the MAP probability is asymptotically
equivalent with the BIC. Interestingly, the complexity term of the MAP probability rule depends
on three dimensions of model complexity, namely the number of parameters, the functional form
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of the model and the extension of the parameter space, as opposed to other model-selection
criteria which typically depend on the number of parameters only. This extended complexity
term allows the MAP probability rule to perform more accurately in detecting atoms from STEM
images, especially from images exhibiting low ICNR values. Furthermore, the MAP probability
rule allows for a clear and flexible incorporation of prior knowledge, which is often not the case
for other model-selection methods.
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6
Atom column detection from ABF-ADF

STEM images

6.1 Introduction
In STEM, a well-established imaging mode is that of ADF imaging, in which the collection
range of the annular detector lies outside of the illumination cone of the focussed electron beam
[Crewe 1970, Pennycook 1988]. The ADF STEM mode allows to obtain images with high
resolution and easily interpretable image contrast, which is strongly dependent on the atomic
number [Jesson 1995, Nellist 2000]. The visualisation of light-element atomic columns from
ADF STEM images is challenging, though, since light elements only scatter electrons weakly to
high detector angles leading to low intensities in ADF images. As a result, in combination with
the strong dependence on atomic number, light elements are barely visible and especially difficult
to detect in the presence of heavy elements [Varela 2005, Mkhoyan 2006, Fatermans 2018].
For certain materials, it is important to be able to directly visualise the light-element atomic
columns, as their exact locations might influence the physical properties of the material. Direct
visualisation of light elements has been enabled by the ABF mode in STEM where an annular
detector spanning a range within the illumination cone of the electron beam is used [Okun-
ishi 2009, Findlay 2009]. Due to the fact that ABF image contrast is less dependent on atomic
number than ADF contrast [Findlay 2010, Brydson 2011], light elements can be visualised better
in the presence of heavy elements. This reduced dependence on atomic number, though, makes
differentiating between atomic columns with close atomic numbers more difficult. In addition,
due to coherent scattering, there is a non-monotonic intensity relationship with atomic number
at all thicknesses. As a result, identifying the atom types of columns in an ABF image is not
straightforward. Therefore, a simultaneous acquisition of both ABF and ADF STEM images, by
using ABF and ADF detectors operating at the same time, is an interesting option to visualise
atoms of a large range of atomic numbers for studying and interpreting materials at the atomic
scale consisting of both light and heavy atoms.

93
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Merely visually interpreting acquired high-resolution STEM images is insufficient to obtain
precise structure information, which is crucial to fully understand the structure-properties relation
of nanomaterials since their physical and chemical properties are strongly dependent on their
exact structural and chemical composition. As such, a quantitative approach is required which is
provided by statistical parameter estimation theory [den Dekker 2005, Van Aert 2005, van den
Bos 2007, Van Aert 2012b, den Dekker 2013, De Backer 2016], which has been described in
chapter 3. Extracting reliable structure information requires knowledge about the number of
atomic columns in the image. For beam-sensitive nanostructures, though, the incoming electron
dose needs to be limited in order to avoid beam damage. Therefore, images of such materials
typically exhibit low SNR and low contrast, and hence low CNR. As a result, a visual determi-
nation of the number of columns in such images is unreliable and may lead to biased structure
information. To overcome this problem, statistical parameter estimation has been combined with
model-order selection, leading to the MAP probability rule [Fatermans 2018, Fatermans 2019],
in order to determine the structure of unknown nanomaterials in an automatic and objective
manner and to detect atomic columns and even single atoms from high-resolution STEM images
with high reliability. This technique has been introduced and described in chapter 4 for analysing
ADF STEM images.

Although, the ABF imaging mode allows for better visualisation of light elements as
compared to ADF imaging, it is, in general, not straightforward to visually detect light-
element atomic columns. Light-element nanomaterials are typically sensitive to the electron
beam, limiting the incoming electron dose and leading to images exhibiting low CNR [Find-
lay 2014]. The MAP probability rule, introduced for ADF STEM images, can be extended
to determine the number of atomic columns for which there is most evidence in the simul-
taneously acquired ABF and ADF image data. In atomic-resolution STEM images, the pro-
jected atomic columns are typically modelled as Gaussian peaks superimposed on a constant
background [Van Dyck 2002, Nellist 2007, De Backer 2016]. This methodology has been
applied predominantly in the analysis of ADF STEM images [Van Aert 2009b, Van Aert 2011,
Bals 2011, Bals 2012, Van Aert 2013, Martinez 2014b, Kundu 2014, Akamine 2015, van den
Bos 2016, Gonnissen 2016a, De Backer 2017], but has also been used for obtaining quantita-
tive information from ABF STEM images [Gauquelin 2017]. In order to quantify simultane-
ously acquired ABF and ADF STEM images, an extension of the commonly used parametric
models in STEM is required. Hereby, it is important to take the effect of specimen tilt into
account, since small tilts from the crystal zone axis affect especially ABF STEM intensities
[Zhou 2016, Brown 2017, Gao 2018]. The proposed methodology not only improves the proba-
bility of detecting an atom by the MAP probability rule from simulated ABF and ADF image
data, it also improves the accuracy and precision of locating this atom as compared to analysing
the ABF and ADF images separately.

This chapter is organised as follows4. In section 6.2, the current commonly used parametric
models to describe STEM images are extended in order to quantitatively analyse ABF and
ADF STEM images simultaneously. Using these models, analytical expressions for the MAP
probability rule are derived in section 6.3. In section 6.4, the advantages of analysing ABF and
ADF STEM images simultaneously as compared to a separate analysis are highlighted. This

4The results in this chapter are being prepared for publication in J. Fatermans, A.J. den Dekker, N. Gauquelin,
K. Müller-Caspary, and S. Van Aert, Atom column detection from simultaneously acquired ABF and ADF STEM
images, Ultramicroscopy.
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includes the effect on atom detecatbility in section 6.4.1 and atom position accuracy and precision
in section 6.4.2. Then, in section 6.5, the proposed methodology is applied to simultaneously
acquired experimental ABF and ADF STEM images of SrTiO3 in section 6.5.1 and LiMn2O4 in
section 6.5.2. Finally, in section 6.6, conclusions are drawn.

6.2 Model-based parameter estimation

In statistical parameter estimation theory, which has been thoroughly discussed in chapter 3,
STEM images are considered as data planes from which unknown structure parameters need to
be estimated. The starting point of this procedure is the construction of a parametric model that
describes the expectations of the image pixel values or observations as a function of unknown
parameters. Then, quantitative structure information is obtained by fitting the model to the
observed experimental data with respect to the unknown parameters using a criterion of goodness
of fit. For atomic-resolution STEM images, the projected atomic columns can be described as
a superposition of Gaussian peaks [De Backer 2016], as discussed in chapter 3. Examples of
expectation models fkl(θ) describing the expectation of the observed pixel value wkl at position
(xk, yl) have been stated in Eq. (3.4) for a model where a different width is assumed for each
estimated Gaussian peak, and in Eq. (3.6) assuming equal widths, respectively.

For analysing materials containing both light and heavy atoms, an interesting option is to
acquire ABF and ADF STEM images simultaneously. Hereby, two annular detectors are used.
One collects the electrons scattered toward high scattering angles, whereas the other is placed
within the illumination cone of the electron probe. This technique combines the improved
light-element visualisation of ABF STEM with the easily interpretable image contrast of ADF
STEM. In addition, due to the simultaneous acquisition, a pixel at location (xk, yl) possesses both
an ABF and ADF intensity. In order to obtain quantitative measurements from the ABF and ADF
image data, statistical parameter estimation theory may be applied using a parametric model such
as, for example, the one given in Eq. (3.4), as well as other similar models [De Backer 2016].
Although this methodology has been predominantly applied to quantify ADF STEM images, it
can be used to describe both ABF and ADF image data. For ADF STEM images, the atomic
columns are fitted by Gaussian peaks with a positive height η as columns in ADF STEM are
depicted as bright spots on a dark background. Atomic columns in ABF STEM, though, are
depicted as dark spots on a bright background. As a result, they are fitted by Gaussian peaks with
a negative height η. Nevertheless, models such as the one given by Eq. (3.4) are not optimal for
quantifying simultaneously acquired ABF and ADF STEM images since the correlation between
the images is neglected. To overcome this problem, the currently used models for quantifying
STEM images need to be extended to fit both the ABF and ADF images simultaneously. This
can be done by assuming that the Gaussian peaks describing a particular atomic column, one
with negative height for the ABF image and one with positive height for the ADF image, are
located at the same position, corresponding to the actual position of the projected atomic column.
When the observed STEM pixel values of the ABF and ADF image are depicted as wABF and
wADF , respectively, and under the assumption that each estimated Gaussian peak has a different
width, the expectation model f kl(θ), describing simultaneously acquired ABF and ADF STEM
images, gives the expectation of the observed pixel values wkl = (wABF

kl ,wADF
kl ) at position (xk, yl):
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f kl(θ) = ( f ABF
kl , f ADF

kl )

=

(
ζABF +

N∑
n=1

ηABF
n exp

(
−

(xk − βxn)
2 + (yl − βyn)

2

2(ρABF
n )2

)
,

ζADF +

N∑
n=1

ηADF
n exp

(
−

(xk − βxn)
2 + (yl − βyn)

2

2(ρADF
n )2

)) (6.1)

where f ABF
kl and f ADF

kl denote the expectation models describing the ABF and ADF image,
respectively. The parameters ζABF and ζADF describe the constant background and ρABF

n , ρADF
n ,

ηABF
n , ηADF

n depict the widths and heights of the nth atomic column described by two Gaussian
peaks, respectively, in both the ABF and ADF images. For the model given by Eq. (6.1), the
unknown parameters are represented by the parameter vector:

θ = (βx1 , . . . , βxN , βy1 , . . . , βyN , ρ
ABF
1 , . . . , ρABF

N , ρADF
1 , . . . , ρADF

N ,

ηABF
1 , . . . , ηABF

N , ηADF
1 , . . . , ηADF

N , ζABF , ζADF)T .
(6.2)

However , it is well known that the observed atomic column positions in ABF STEM images
are sensitive to specimen tilt [Zhou 2016, Brown 2017, Gao 2018]. This causes a deviation of
the observed positions from the actual positions of the projected atomic columns. The observed
locations of the atomic columns in ADF STEM images, though, are less sensitive to specimen
tilt and can be considered to be reliable indicators of the true column positions even in the
presence of some tilt [Maccagnano-Zacher 2008, Findlay 2010, So 2012]. Thus, due to the effect
of specimen tilt, the observed column positions in ABF STEM can be shifted as compared to
the observed positions in ADF STEM. Since small tilts of the electron beam with respect to
the crystal zone axis can easily be present in STEM experiments, it is important to take into
account the effect of the shifted observed column positions in ABF images in statistical parameter
estimation theory in order to obtain accurate quantitative measurements. For this purpose, the
expectation model proposed in Eq. (6.1) can be altered by allowing the ABF peak locations to

Parameter Symbol Value
Acceleration voltage V0 (kV) 300
Defocus ε (Å) 0
Spherical aberration Cs (mm) 0.001
Spherical aberration of 5th order C5 (mm) 0
Semiconvergence angle α (mrad) 22.9
ABF detector inner radius βABF

1 (mrad) 12
ABF detector outer radius βABF

2 (mrad) 22
ADF detector inner radius βADF

1 (mrad) 88
ADF detector outer radius βADF

2 (mrad) 98
Pixel size ∆x = ∆y (Å) 0.23
Number of scanned pixels K×L 27×27
FWHM of the source image FWHM (Å) 0.7

Table 6.1: Microscope parameter values for simulation of an ABF and ADF STEM image of a 10 nm
thick SrTiO3 unit cell using MULTEM including 5 mrad specimen tilt.
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deviate from the ADF peak locations along the tilting direction:

f kl(θ) = ( f ABF
kl , f ADF

kl )

=

(
ζABF +

N∑
n=1

ηABF
n exp

(
−

(xk − γxn)
2 + (yl − γyn)

2

2(ρABF
n )2

)
,

ζADF +

N∑
n=1

ηADF
n exp

(
−

(xk − βxn)
2 + (yl − βyn)

2

2(ρADF
n )2

)) (6.3)

with
(γxn , γyn) = (βxn + αncosφ, βyn + αnsinφ) (6.4)

where φ and αn indicate the direction and amplitude of the shift of the nth Gaussian peak in
the ABF image with respect to the corresponding peak in the ADF image, respectively. The
amplitude of the shift is not necessarily equal for all atomic columns in the image, but depends
on atom type and orientation [Zhou 2016, Brown 2017, Gao 2018]. This is due to the coherent
image formation process in ABF STEM. In Eqs. (6.3) and (6.4), a general approach has been
followed where no prior knowledge about the atom types and orientations are considered. Note
that the shift of the ABF peaks only occurs along the tilting direction, as no atom position shift is
observed in a direction perpendicular to this direction [Zhou 2016]. For the model given by Eq.
(6.3) the parameter vector containing the unknown parameters is given by

θ = (βx1 , . . . , βxN , βy1 , . . . , βyN , ρ
ABF
1 , . . . , ρABF

N , ρADF
1 , . . . , ρADF

N ,

ηABF
1 , . . . , ηABF

N , ηADF
1 , . . . , ηADF

N , α1, . . . , αN , φ, ζ
ABF , ζADF)T .

(6.5)

In order to verify whether the proposed parametric model in Eq. (6.3) is a valid model to
describe images in the presence of tilt, a simulation of a SrTiO3 unit cell with a thickness of
10 nm has been performed using MULTEM [Lobato 2015, Lobato 2016] with a specimen tilt
of 5 mrad. The parameters of this simulation are included in Table 6.1. The simulated ADF
and ABF STEM images are shown in Figs. 6.1(a) and (b), respectively. First, these images

Figure 6.1: (a) Simulated ADF and (b) ABF STEM image of a 10 nm thick SrTiO3 unit cell with a tilt
angle of 5 mrad where the highlighted areas have been enlarged in the insets. The green crosses depict
the true atomic column positions. The estimated atomic column positions obtained by performing model
fitting including specimen tilt are shown by red dots, whereas for neglecting specimen tilt the estimated
column positions are depicted by yellow dots.
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have been analysed using the parametric model including the effect of specimen tilt given by Eq.
(6.3), where equal widths for the Gaussian peaks in the ABF image, ρABF , and ADF image, ρADF ,
have been used. The estimated column positions that follow from this approach are shown in
Figs. 6.1(a) and (b) by red dots. From Figs. 6.1(a) and (b), it can be seen that there is a close
correspondence between the estimated column positions and the true column positions, shown
by green crosses, which have been determined by the atom positions of the top plane of the
tilted specimen. In case the analysis is, instead, performed using a parametric model neglecting
the effect of specimen tilt, such as the one given by Eq. (6.1), the estimated column positions
deviate further from the true positions. This is shown in Figs. 6.1(a) and (b) where the estimated
column positions using a model without taking specimen tilt into account are shown by yellow
dots. Quantitatively, the average deviation of the 9 estimated atomic column positions in the
simulated image from their true column positions including the effect of specimen tilt is 8 ± 3
pm, whereas for neglecting tilt this is 18± 3 pm. This indicates that the estimated atomic column
locations, obtained from analysing simultaneously acquired ABF and ADF STEM image data
by the parametric model proposed in Eq. (6.3) including the effect of specimen tilt, correspond
better with the true atomic column locations than for analysing the image data by a model
neglecting the effect of specimen tilt.

6.3 Maximum a posteriori probability

In order to extract reliable structure information from simultaneously acquired ABF and ADF
STEM images using a model neglecting specimen tilt, such as in Eq. (6.1), or including tilt,
such as in Eq. (6.3), knowledge about the number of atomic columns N present in the images
is required. For beam-stable materials this number can be determined visually due to the high
incoming electron dose, typically of the order of more than 106 - 108 e−/Å2, that can be used
to image these materials. Beam-sensitive nanostructures, such as specimens containing light
elements, though, do not withstand a high incoming electron dose and, consequently, the dose
should be limited in order to avoid beam damage resulting into images exhibiting low CNR.
Since a simultaneous acquisition of ABF and ADF STEM images is, in particular, interesting for
characterising materials containing light elements, which are typically beam sensitive, a visual
inspection of such images may lead to biased results. To overcome this problem, the number of
atomic columns N can be reliably quantified by the MAP probability rule, introduced in chapter
4 for detecting atomic columns from ADF STEM images, which is a combination of statistical
parameter estimation and model-order selection [Fatermans 2018, Fatermans 2019], derived
from Bayes’ theorem [Sivia 2006]:

p(N|w) =
p(w|N)p(N)

p(w)
(6.6)

where p(N|w) denotes the posterior probability of the presence of N atomic columns given the
observed image pixel values w. For a simultaneous aquisition of ABF and ADF images, w can
be considered as the ensemble of the observed image pixel values of both images, {wABF ,wADF}.
The MAP probability rule aims to select the number of columns N that maximizes p(N |w). The
term p(w|N) reflects the evidence that the image data w is generated by N atomic columns. The
probability p(N) expresses prior knowledge of the number of atomic columns present in the
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image data. Assuming that there is no a piori preference for any number of columns, p(N) can
be described as a uniform distribution. The term in the denominator of Eq. (6.6) is merely
a normalisation constant, which is independent of the number of columns N, and, therefore,
cancels out when comparing posterior probabilities as a function of N.

In chapter 4, it has been shown that Eq. (6.6) can be reduced to

p(N|w) ∝
∫

p(w|θ,N)p(θ|N)dMθ, (6.7)

where the first term in the integral, p(w|θ,N), is the likelihood function which describes the
probability of the observed image pixel values w for particular values of the parameters θ of a
model with N atomic columns. In essence, the likelihood function is a measure of the goodness
of fit of the model with the experimental measurements or image pixel values. For simultaneously
acquired ABF and ADF STEM image data, the likelihood function can be expressed in a similar
way as described in chapter 4:

p(w|θ,N) =
e−χ

2(θ)/2∏K
k=1

∏L
l=1 2π

√
wABF

kl wADF
kl

, (6.8)

where

χ2(θ) =

K∑
k=1

L∑
l=1

[
[wABF

kl − f ABF
kl ]2

wABF
kl

+
[wADF

kl − f ADF
kl ]2

wADF
kl

]
(6.9)

is a weighted sum-of-squared residuals misfit between the data and the parametric model.
This expression follows from the fact that the noise can be considered to be uncorrelated
in simultanenously acquired STEM images with different detector geometries [Rose 1974,
Hammel 1995, Brown 2016]. The other term in the integral in Eq. (6.7), p(θ|N), is the prior
density of the parameters θ for a model with N columns. Different expressions for the prior
density function can be constructed reflecting different types of prior knowledge. Here, similarly
as in chapter 4, p(θ|N) is expressed as a product of uniform distributions over a predefined range
for each parameter θm:

p(θ|N) =


∏M

m=1
1

θmmax−θmmin
for m = 1, ...,M: θmmin 6 θm 6 θmmax

0 otherwise
(6.10)

where the subscripts max and min refer to a predefined maximum and minimum value for each
parameter, respectively. As described in chapter 4, approximate analytical expressions for p(N|w)
can be derived for several parametric models to determine the number of atomic columns for
which there is most evidence in ADF image data [Fatermans 2019]. From Eqs. (6.7), (6.8) and
(6.10), following the same methodology, p(N|w) for simultaneously acquired ABF and ADF
STEM images using the model given by Eq. (6.1), neglecting the effect of specimen tilt, results
into

p(N |w) ∝
N!

[(βxmax − βxmin)(βymax − βymin)(ρABF
max − ρ

ABF
min )]N

×
e−χ

2
min/2(4π)3N[det(∇∇χ2)]−1/2

[(ρADF
max − ρ

ADF
min )(ηABF

max − η
ABF
min )(ηADF

max − η
ADF
min )]N

,

(6.11)
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where χ2
min = χ2(θ̂), with θ̂ the parameter vector that minimizes χ2(θ) given by Eq. (6.9) and

where the term det(∇∇χ2) = det
(
∂2χ2(θ)
∂θ∂θT

∣∣∣
θ=θ̂

)
represents the determinant of the Hessian matrix of

χ2(θ) evaluated at θ̂. For the model given by Eq. (6.3), including the effect of tilt, the posterior
probability becomes

p(N|w) ∝
N!(αmax − αmin)−N

[(βxmax − βxmin)(βymax − βymin)(ρABF
max − ρ

ABF
min )]N

×
e−χ

2
min/2(4π)3.5N[det(∇∇χ2)]−1/2

[(ρADF
max − ρ

ADF
min )(ηABF

max − η
ABF
min )(ηADF

max − η
ADF
min )]N

.

(6.12)

By using Eqs. (6.11) or (6.12), depending on the underlying parametric model, the MAP proba-
bility rule allows to select the most probable number of atomic columns present in simultaneously
acquired ABF and ADF STEM images, and hence the most probable atomic structure, by evalu-
ating p(N |w) as a function of N. It should be noted that the MAP probability rule is not limited
to the models given by Eqs. (6.1) and (6.3). Similar expressions as Eqs. (6.11) and (6.12) can be
derived for other types of models as well.

6.4 Advantages of simultaneous model fitting
In this section, the quantitative information that can be obtained by simultaneously fitting the
ABF and ADF STEM image data, as introduced in the previous section, is compared with the
quantitative information that is attainable by combining the measurements of the parameters
from two separate models describing the ABF and ADF images independently of each other.
More specifically, the probability of detecting an atom as well as the accuracy and precision
of locating this atom from Poisson noise disturbed simulated ABF and ADF STEM images is
investigated in section 6.4.1 and section 6.4.2, respectively.

6.4.1 Atom detectability
In chapter 5, an alternative ADF STEM image quality measure, ICNR, has been introduced
correlating better with atom detectability than conventional measures such as SNR and CNR
[Fatermans 2019]. This measure is defined for an individual atomic column as follows

ICNR =
2πηADF(ρADF)2

[2πηADF(ρADF)2 + π(3ρADF)2ζADF]1/2 , (6.13)

where ηADF , ρADF , and ζADF denote the estimated height and width of the column, and the
background in the ADF image, respectively. A similar expression for ICNR can also be defined
for ABF STEM images:

ICNR =
2π|ηABF |(ρABF)2

[2π|ηABF |(ρABF)2 + π(3ρABF)2(ζABF + ηABF)]1/2 , (6.14)

where, similarly as for Eq. (6.13), ηABF , ρABF , and ζABF denote the estimated height and width of
the column, and the background in the ABF image, respectively. Note that ηABF in Eq. (6.14)
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has a negative value, because columns in ABF images are displayed as dark spots on a bright
background. Although, at first sight, Eqs. (6.13) and (6.14) calculate the ICNR in a different
way, they, in fact, represent the same formula. This can be better understood by considering the
maximum pixel values, wADF

max and wABF
max , and minimum pixel values, wADF

min and wABF
min , of an ADF

and ABF image, respectively, in the area around the column. As such, the following expressions
hold:

wADF
max − wADF

min ≈ η
ADF

wABF
max − wABF

min ≈ |η
ABF |

wADF
min ≈ ζ

ADF

wABF
min ≈ ζ

ABF + ηABF .

(6.15)

From Eq. (6.15), Eqs. (6.13) and (6.14) can be rewritten in one expression as

ICNR ≈
2π(wmax − wmin)ρ2

[2π(wmax − wmin)ρ2 + π(3ρ)2wmin]1/2 , (6.16)

where wmax represents either wADF
max or wABF

max , wmin either wADF
min or wABF

min , and ρ either ρADF or ρABF

depending on what type of image is being analysed.
For investigating atom detectability, an ABF and ADF image of an individual Si atom,

deposited on a 5 nm thick amorphous C support, have been simulated using MULTEM. The
amorphous C support has been obtained by placing C atoms on random positions within the
volume of the layer, reaching a density of 2.2 g × cm−3 [Ricolleau 2013]. During this procedure
a new C atom is only included if its distance with the other atoms is above a chosen minimal
distance of 0.14 nm, which is slightly lower than the C-C bond length in graphene. The
parameters of this simulation are listed in Table 6.2. A varying incoming electron dose has been
applied to the simulated images in order to obtain a set of images containing different ICNR
values, where a higher electron dose results into a higher ICNR value and a lower dose into a
lower ICNR value. It is noted that in this procedure the simulated ABF and ADF STEM data are
not necessarily subject to the same incoming electron dose. In this way, a great variety of ICNR
values for the ABF and ADF images can be obtained. The ICNR of the ADF STEM images has

Parameter Symbol Value
Acceleration voltage V0 (kV) 120
Defocus ε (Å) 0
Spherical aberration Cs (mm) 0.001
Spherical aberration of 5th order C5 (mm) 0
Semiconvergence angle α (mrad) 21.0
ABF detector inner radius βABF

1 (mrad) 10
ABF detector outer radius βABF

2 (mrad) 20
ADF detector inner radius βADF

1 (mrad) 25
ADF detector outer radius βADF

2 (mrad) 100
Pixel size ∆x = ∆y (Å) 0.25
Number of scanned pixels K×L 50×50
FWHM of the source image FWHM (Å) 0.7

Table 6.2: Microscope parameter values for simulation of an ABF and ADF STEM image of an individual
Si atom on a 5 nm thick C support using MULTEM.
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Figure 6.2: (a) Observed detection rate of a Si atom by the MAP probability rule from Poisson noise
disturbed simulated ADF and ABF STEM images as a function of ICNRADF and ICNRABF by simultaneous
model fitting. (b) Top view of (a). (c) Observed detection rate by separate model fitting. (d) Top view of
(c). (e) Difference of detection between (b) and (d), where the inset shows the Poisson noise disturbed
ABF and ADF images for which the largest difference between (b) and (d) is attained.

been calculated using Eq. (6.13), whereas Eq. (6.14) has been used for the ABF STEM images.
Each image obtained in this manner has been generated 100 times containing random Poisson
noise. Figs. 6.2(a) and (b) show the observed detection rate of the Si atom, i.e. the number
of times the atom can be successfully detected from the noise disturbed simulated images by
simultaneously analysing the ABF and ADF STEM image data. The detection rate is displayed
as a function of the ICNR of the ADF and ABF images, depicted as ICNRADF and ICNRABF,
respectively, and is calculated by the MAP probability rule given by Eq. (6.11) evaluated for
N = 0 and N = 1 atomic columns using a parametric model assuming the images of the atom to
be Gaussian shaped, where the backgrounds ζADF and ζABF , and widths ρADF and ρABF , heights
ηADF and ηABF and x- and y-coordinate βx and βy of the atom need to be estimated. It is clear from
Figs. 6.2(a) and (b) that the detection rate decreases with decreasing ICNR values. Moreover,
the circular symmetry indicates that atom detectability is independent of the exact ICNRADF and
ICNRABF values as long as the square root of their quadratic sum remains unchanged. As a result,
an alternative ICNR expression, directly correlating with atom detectability, can be proposed for
determining the combined quality of atomic columns in ABF and ADF STEM images:

ICNR =
√

(ICNRADF)2 + (ICNRABF)2. (6.17)

Figs. 6.2(c) and (d) show the observed detection rate of the Si atom from the noise disturbed
images by analysing the ABF and ADF image data without taking into account that both images
depict the same atom. Hereby, a model is used, such as the one given by Eq. (6.1), where ζADF ,
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ζABF , ρADF , ρABF , ηADF , ηABF , βADF
x , βADF

y , βABF
x and βABF

y need to be estimated, where βADF
x and

βADF
y , and βABF

x and βABF
y denote the x- and y-coordinate of the fitted Gaussian in the ADF and

ABF images, respectively. Note that this model contains two extra parameters as compared to
the model used to obtain Figs. 6.2(a) and (b). Qualitatively, Figs. 6.2(c) and (d) show the same
behavior as Figs. 6.2(a) and (b), but the overall detection rate of the Si atom is lower. This has
been explicitly shown in Fig. 6.2(e) depicting the difference between Figs. 6.2(b) and (d). The
positive values for the difference of detection indicate that the detection rate can be up to 40 %
higher for simultaneous model fitting. The inset of Fig. 6.2(e) shows the Poisson noise disturbed
ABF and ADF STEM images for which there is the largest difference between the simultaneous
and separate analysis. From this investigation, it follows that simultaneously analysing ABF
and ADF STEM images is advantageous, as compared to a separate analysis, since it positively
affects atom detectability.

6.4.2 Spatial deviation and precision

Beside comparing the atom detectability for a simultaneous and separate analysis of ABF and
ADF STEM images, also the deviation from the true atom position and precision can be evaluated.
For this, the set of images of the Si atom on a 5 nm amorphous C support is used and analysed in
the same way as described in section 6.4.1. Hereby, a model containing one atomic column has
been considered. The deviation di of the estimated position of the Si atom (β̂x, β̂y) from the true
atom position (βx, βy) for the ith pair of noise disturbed simulated ABF and ADF STEM images
for a certain ICNRADF and ICNRABF value from simultaneously fitting the ABF and ADF image
data is investigated. The expression for di is given by

di =

√
(β̂x − βx)2 + (β̂y − βy)2. (6.18)

Fig. 6.3(a) shows a top view image of the average deviation d as a function of ICNRADF and
ICNRABF. As such,

d =
1
I

I∑
i=1

di, (6.19)

with I = 100 for each combination of ICNRADF and ICNRABF. The standard deviation of d, σd,
is given by

σd =
σ
√

I
, (6.20)

with

σ =

√∑I
i=1(di − d)2

I − 1
, (6.21)

denoting the standard deviation of di. It can be concluded from Fig. 6.3(a) that for high ICNR
values the deviation of the estimated location from the true position of the Si atom is small. For
decreasing ICNR values, the deviation increases. Fig 6.3(b) shows the results obtained from a
separate analysis of the ABF and ADF image data. Here, d has been calculated using a weighted
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Figure 6.3: (a) Deviation of locating a simulated Si atom from its true position from Poisson noise
disturbed simulated ADF and ABF STEM images as a function of ICNRADF and ICNRABF by simultaneous
model fitting. (b) Deviation by separate model fitting. (c) Difference of deviation between (a) and (b).
(d) Standard deviation of locating the Si atom by simultaneous model fitting. (e) Standard deviation by
separate model fitting. (f) Difference of standard deviation between (d) and (e).

average where the weights have been chosen to be equal to the reciprocal of the variances,

d =

dABF

(σ
dABF )2 + dADF

(σ
dADF )2

1
(σ

dABF )2 + 1
(σ

dADF )2

. (6.22)

The expression in Eq. (6.19) has been used to compute dABF and dADF , where di, given by Eq.
(6.18), represents either dABF

i or dADF
i , corresponding to the deviation from the true atom position

(βx, βy) of the estimated position of the Si atom obtained from the ABF image, (β̂ABF
x , β̂ABF

y ), or
ADF image, (β̂ADF

x , β̂ADF
y ), respectively. The standard deviations σdABF and σdADF are calculated

from Eq. (6.20). Fig. 6.3(b) shows the same qualitative behavior as Fig. 6.3(a), but the overall
deviation from the true atom position is smaller for Fig. 6.3(a). This is illustrated in Fig. 6.3(c)
showing the difference of deviation between Figs. 6.3(a) and (b). The negative differences
indicate that the deviation from the true atom position is smaller for simultaneously analysing the
ABF and ADF STEM images as compared to analysing these images in a separate manner. For
investigating the precision of locating the Si atom from ABF and ADF image data, the standard
deviations of d have been displayed in Fig. 6.3(d) and (e) for simultaneously and separately
modelling the ABF and ADF images, respectively. For Fig. 6.3(d), the standard deviation σd is
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given by Eq. (6.20). The standard deviation for Fig. 6.3(e) is calculated using

σd =

√√
1

1
(σ

dABF )2 + 1
(σ

dADF )2

, (6.23)

corresponding to the standard error of a weighted mean. It can be seen from Figs. 6.3(d) and
(e) that σd increases, or, in other words, the precision decreases, for decreasing ICNR values
and vice versa. The difference between Figs. 6.3(d) and (e) is shown in Fig. 6.3(f), where the
negative values indicate that the standard deviation of locating the atom is, in general, smaller, or
that the precision is higher, for a simultaneous analysis as compared to a separate analysis of
ABF and ADF images. This shows that, beside a smaller spatial deviation, also the precision
improves by simultaneously analysing ABF and ADF STEM images.

6.5 Experimental examples

In this section, the proposed methodology to detect atomic columns by the MAP probability
rule from simultaneously acquired ABF and ADF STEM images is applied to two experimental
examples exhibiting low CNR. In section 6.5.1, SrTiO3 is analysed, whereas, in section 6.5.2,
LiMn2O4 is investigated. Hereby, the effect of specimen tilt has been taken into account as small
tilts might be present causing a possible shift of the measured atomic column locations in the
ABF image as compared to the locations in the ADF image.

6.5.1 SrTiO3

Figs. 6.4(a) and (b) show a synthetic ADF and ABF STEM image of SrTiO3, respectively,
obtained by K. Müller-Caspary from an experimental 4D STEM dataset using a Medipix3 Merlin
camera attached to a probe-corrected FEI Titan, where the Sr, Ti-O and O columns have been
indicated. The detector collection range for the ADF image has been chosen to be equal to 88-98
mrad, whereas the collection range for the ABF image is 12-22 mrad. The MAP probability rule
for simultaneously acquired ABF and ADF STEM data has been applied to these images in order
to obtain the number of atomic columns for which there is most evidence in the image data, and,
as a result, the most probable atomic structure. For this, the parametric model including the effect
of specimen tilt given by Eq. (6.3) has been used, since tilt might be present, where equal widths
for the Gaussian peaks in the ABF image, ρABF , and ADF image, ρADF , have been used. Hereby,
it has been assumed that the shift of the ABF peaks from the ADF peak locations cannot exceed
50 pm, which is already a high value for typical shifts due to specimen tilt [Zhou 2016, Gao 2018].
Figs. 6.4(c) and (d) show the most probable parametric models indicated by the MAP probability
rule by simultaneously analysing the ADF and ABF STEM image data of Figs. 6.4(a) and (b),
respectively, consisting of 35 atomic columns corresponding to the expected number of columns
of SrTiO3 in [100] direction. As compared to the detection of the atomic columns of SrTiO3 from
only an ADF STEM image in subsection 4.4.1, the O columns can, in this case, also be detected
due to the simultaneous acquisition of an ABF STEM image. It is noted that in the analysis no
prior knowledge about the expected locations of the atomic columns in SrTiO3 have been taken
into account. The MAP probability rule is able to retreive the atomic columns present in the



106 Chapter 6. Atom column detection from ABF-ADF STEM images

Figure 6.4: (a) Synthetic ADF and (b) ABF STEM image of SrTiO3 obtained from an experimental 4D
STEM dataset. (c) and (d) Most probable refined models of the experimental ADF data in (a) and the
ABF data in (b), respectively, obtained from the MAP probability rule by analysing the data in (a) and (b)
simultaneously taking into account specimen tilt. The red dots indicate the estimated column locations
corresponding to the fitted ADF peak positions. (e) and (f) Most probable refined models by separately
analysing (a) and (b), where the red dots correspond to the fitted peak positions in the image data. The
arrow in (f) indicates the detection of an extra column at a position where no column is expected.

image data because the ICNR values of the columns are sufficiently high. The average ICNR
values of each column type have been calculated, using Eq. (6.17), to be around 8.7, 6.0, and 7.4
for the Sr, Ti-O, and O columns, respectively. From the analysis given in Fig. 6.2, it followed
that for such ICNR values the MAP probability rule can reliably detect atomic columns from
ABF and ADF STEM data. The estimated column positions which are shown in Figs. 6.4(c)
and (d) by red dots correspond to the fitted ADF peak positions since measured atomic column
locations in ADF STEM are considered to be reliable indicators of the true column positions
because of the insensitivity to specimen tilt [Maccagnano-Zacher 2008, So 2012]. In Figs. 6.4(e)
and (f), the most probable refined models of the image data in Figs. 6.4(a) and (b), respectively,
are shown, obtained by the MAP probability rule by separately analysing the ADF and ABF
image data. For this, a parametric model such as given by Eq. (3.10) has been used, where equal
widths for the estimated Gaussian peaks have been assumed. From Fig. 6.4(e), it can be seen that
from only analysing the ADF STEM image only some of the Sr columns can be detected. This
is due to the fact that the average ICNR value of the Sr columns in the ADF image, calculated
from Eq. (6.13), is around 4.0, which typically restricts a 100 % detection rate. The average
ICNR values in the ADF image of the other types of columns in SrTiO3 are even lower, around
1.9 for the Ti-O and 0.6 for the O columns, restricting detection of these columns even further.
The average ICNR values of the atomic columns in the ABF image, though, calculated from
Eq. (6.14), are higher, around 7.7, 5.7, and 7.4 for the Sr, Ti-O, and O columns, respectively,
improving their detectability. It can be seen from Fig. 6.4(f) that the expected atomic columns in
SrTiO3 are found. In this process, though, one atomic column, which has been indicated by the
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red arrow in Fig. 6.4(f), has been detected at a position where no column is expected. Although
from analysing the ABF image data independently of the ADF image data the atomic columns
can be detected quite reliably, it followed from the analysis, performed in section 6.4.2 and
shown in Fig. 6.3, that simultaneously analysing the ADF and ABF image data improves atom
position accuracy and precision. Furthermore, the ABF peak locations are sensitive to specimen
tilt, which causes them to shift from their true column positions. When only analysing an ABF
STEM image, the estimated column positions are prone to this effect, which may lead to biased
structure information.

6.5.2 LiMn2O4

As another example, simultaneous ADF and ABF STEM images of LiMn2O4 have been acquired
which are shown in Figs. 6.5(a) and (b), respectively, together with the spinel structure of
LiMn2O4. The images have been obtained by N. Gauquelin from a probe-corrected FEI Titan
operated at 300 kV with a semiconvergence angle of 19.8 mrad. The detector collection ranges
for the ABF and ADF images are 8-17 mrad and 44-190 mrad, respectively. The average ICNR

Figure 6.5: (a) Experimental ADF and (b) ABF STEM image of LiMn2O4 overlain with the spinel atomic
arrangement. (c) Most probable refined model of the experimental ADF data in (a) and (d) most probable
model of the ABF data in (b) obtained from the MAP probability rule by analysing the data in (a) and (b)
simultaneously taking into account specimen tilt. The red dots indicate the estimated column locations
corresponding to the fitted ADF peak positions. The arrows in (c) and (d) indicate the expected locations
of two columns that were not detected and the detection of an extra column at a position where no column
is expected.
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values of the Li, Mn, and O columns have been estimated by Eq. (6.17) to be around 7.7, 15.0,
and 7.8, respectively. Analysing Li-containing materials is of relevance since they have great
technological interest because of their importance in battery devices [Li 2009a, Nitta 2015].
Therefore, the direct visualisation of the Li atoms has been an important research topic in STEM
and has been achieved by imaging in the ABF mode [Oshima 2010, Huang 2011, Gu 2011,
He 2011, Lee 2011]. Nevertheless, materials containing light elements, such as Li, are sensitive
to the electron beam. For such materials, beam damage is limited by imaging the specimen with
a low incoming electron dose, typically varying between around 103 to around 105 e−/Å2 in
atomic-resolution STEM leading to images exhibiting low CNR. This is also the case for the
images shown in Figs. 6.5(a) and (b) where the determination of the number of atomic columns
and their positions is not straightforward by merely visually interpreting the image data. In order
to overcome this problem, the MAP probability rule for simultaneously acquired ABF and ADF
STEM images is applied to Figs. 6.5(a) and (b) by using the parametric model given by Eq.
(6.3) including the effect of specimen tilt, since some tilt might have been present during the
acquisition of the images. Similarly as for the example of SrTiO3 in Fig. 6.4, equal widths for
the Gaussian peaks in the ABF and ADF image have been used and the shift of the ABF peaks
from the ADF peak locations has been chosen not to be larger than 50 pm. Figs. 6.5(c) and
(d) show the most probable parametric models indicated by the MAP probability rule for the
ADF and ABF STEM image data of Figs. 6.5(a) and (b), respectively, consisting of 46 atomic
columns. The estimated column locations, shown by red dots, correspond to the fitted ADF peak
positions. The detected number of atomic columns is slightly less than the expected 47 columns
considering the spinel structure of LiMn2O4 since two columns were not detected and one extra
column position was found in the experimental data. These columns have been indicated in Figs.
6.5(c) and (d) by red arrows. The reason why two atomic columns were not detected by the MAP
probability rule, although expected by the spinel structure of LiMn2O4, is related to their ICNR
values. It has been estimated by Eq. (6.17) that these columns exhibit ICNR values of around
5.4. From the analysis performed in section 6.4.1, shown in Fig. 6.2, it followed that for such
ICNR values typically a 100 % detection rate cannot be attained. The probability for over-or
underfitting is an inherent limitation of model-order selection methods, like the MAP probability
rule, and will generally increase with decreasing CNR. Despite this, the MAP probability rule
has been able to retreive a reliable representation of the atomic column locations in LiMn2O4

without including any prior information about the expected spinel atomic arrangement.

6.6 Conclusions

In this chapter, a new method for analysing simultaneously acquired ABF and ADF STEM images
using statistical parameter estimation has been introduced. For this, the existing parametric
models have been extended enabling the possibility to simultaneously analyse ABF and ADF
image data. Hereby, the effect of specimen tilt, which shifts the ABF peak locations from the true
atomic column locations, has been taken into account since small tilts of the electron beam with
respect to the crystal zone axis can easily be present in STEM experiments. The advantages of
simultaneous model fitting, as compared to combining quantitative measurements from analysing
the ABF and ADF STEM images separately, has been thoroughly discussed as a function of
ICNR. It has been demonstrated that a simultaneous analysis improves atom detectability, as
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well as atom position accuracy and precision especially for ICNR values of less than around 5.0.
In addition, it has been shown that the MAP probability rule [Fatermans 2018, Fatermans 2019],
which aims to determine the most probable atomic structure from images of beam-sensitive
materials, can also be applied to the proposed framework of simultaneously fitting the ABF and
ADF image data. This has been illustrated by using the MAP probability rule to investigate
experimental STEM data, allowing to obtain a reliable estimation of atomic column locations
without including prior information about the expected positions of these columns.
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7
General conclusions and future

perspectives

In this thesis, quantitative atomic-resolution STEM is pushed forward by the introduction of
a new method which enables to obtain structure information of unknown nanomaterials in an
automatic and objective manner and to detect atomic columns and even single atoms with high
reliability. The foundation of this technique is a model-based analysis using statistical parameter
estimation theory which consists of the estimation of unknown parameters from an available
set of experimental observations. Due to the presence of noise, these observations fluctuate
around their expectation values. The starting point of statistical parameter estimation theory
is the construction of a parametric (physics-based) model describing the expectations of the
experimental observations as a function of the unknown parameters. Here, atomic-resolution
electron microscopy images are considered as data planes where the observations are the pixel
values of the image from which unknown structure parameters need to be estimated. Since image
intensities are sharply peaked at the atomic column positions, the projected atomic columns of
atomic-resolution STEM images viewed along a major zone axis can be modelled as Gaussian
peaks superimposed on a constant background. Accurate and precise structure information
is then obtained by fitting this model to the observed image pixel values with respect to the
unknown parameters using a criterion of goodness of fit quantifying the similarity between the
image and the model.

In order to extract reliable structure information of nanomaterials from atomic-resolution
STEM images using model-based parameter estimation, the number of atomic columns in the
image should be known. The detection of an atomic column or single atom, in case the column
consists of only one atom, from STEM images often depends on a visual interpretation of the
image. Materials that are stable under the electron beam can be imaged with a sufficiently high
electron dose, typically of the order of more than 106 - 108 e−/Å2, resulting into high-quality
images exhibiting high SNR and high contrast. This allows one to resolve the individual atomic
columns and, therefore, for such beam-stable materials, the atomic columns can be detected in
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a merely visual manner. However, some materials, especially light-element nanomaterials, are
sensitive to the electron beam and, as a result, they cannot withstand a high incoming electron
dose, since the high-energy electrons in the beam cause damage to the material. In order to avoid
this beam damage to occur, such beam-sensitive materials can only be imaged in STEM using a
limited electron dose of around 103 - 105 e−/Å2. This leads to recording images exhibiting low
SNR and weak contrast, and hence low CNR. Visually inspecting these images, trying to resolve
the individual atomic columns, can be unreliable and may lead to biased results, especially when
no prior knowledge about the structure of the material is available. To overcome this problem, an
objective and quantitative approach is needed for detecting atomic columns from STEM images.

Interestingly, parameter estimation theory can be generalised by combining its principles
with model-order selection. Hereby, besides estimating the unknown parameters of the expecta-
tion model, also the number of parameters that most closely represents the underlying process
that generated the experimental observations needs to be determined. Typical model-selection
methods perform a tradeoff between high goodness of fit and low model complexity, since
model fit can be easily improved by increased model complexity without necessarily bearing
any interpretable relationship with the underlying data-generating process. In STEM, model
selection can be used to automatically and objectively determine the number of atomic columns
which are present in the image data.

In the first part of this thesis, the MAP probability rule has been proposed as a quantitative
method to detect atomic columns from atomic-resolution ADF STEM images. The method is
built upon model-based parameter estimation and Bayesian probability theory. This combination
of statistical parameter estimation and model-order selection allows the MAP probability rule
to perform automatic and objective structure quantification of unknown nanomaterials and to
detect atomic columns and even single atoms with high reliability. For this purpose, it has
been shown that, for a variety of parametric models, approximate analytical expressions can
be derived for the probability of the presence of a certain number of atomic columns in ADF
STEM image data. The MAP probability rule selects the number of columns that maximises
this probability. Furthermore, the MAP probability rule also enables one to quantify how more
likely a certain atomic structure is as compared to other structures. The validity and usefulness
of applying the MAP probability rule to low-quality image data have been demonstrated by
analysing experimental and simulated ADF STEM images of samples of different shape, size,
and atom type. Hereby, it has been shown that important structural information can be obtained
by using the MAP probability rule, which would otherwise have been lost.

Furthermore, besides detecting atomic columns from ADF STEM images, it has been shown
in this thesis that the MAP probability rule can be effectively used as a way to evaluate the
relation between STEM image quality measures, such as SNR and CNR, and atom detectability,
which is defined as the probability to detect an atom from an image. In general, atom detectability
is indeed related to image quality, since, for example, one expects the detectability of atomic
columns in an image to increase with increasing image quality. In this way, the probability to
detect an atomic column from STEM image data, which can be provided by the MAP probability
rule, is correlated with the quality of the image. As such, for ADF STEM images, a new image-
quality measure, the ICNR, has been proposed that better correlates with atom detectability than
conventional image-quality measures. Atomic columns resulting from images with ICNR values
of less than around 5.0 become challenging to accurately detect since, typically, the detection
rate of 100 % drops rapidly starting from this value.
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Moreover, the relation of the MAP probability rule with model selection has been thoroughly
investigated. In particular, the MAP probability rule is closely related to the BIC, since both
methods are derived using a Bayesian approach. In principle, atom detection from STEM images
can be performed with any model-selection criterion, but, interestingly, the MAP probability
rule takes into account more dimensions of model complexity as compared to other commonly
used model-selection criteria. More specifically, the complexity term of the MAP probability
rule depends on three dimensions of model complexity, namely the number of parameters, the
functional form of the model, and the extension of the parameter space, as opposed to other
model-selection criteria which typically depend on the number of parameters only. This extended
complexity term allows the MAP probability rule to more accurately detect atoms from STEM
images, especially from images exhibiting low ICNR values. Furthermore, the MAP probability
rule allows for a clear and flexible incorporation of prior knowledge, which is often not the case
for other model-selection methods.

In the last part of this thesis, the methodology of the MAP probability rule has been extended
for detecting atomic columns from simultaneously acquired ABF and ADF STEM images. A
simultaneous acquisition of ABF and ADF STEM image data combines the improved light-
element visualisation of ABF STEM with the easily interpretable image contrast of ADF STEM,
allowing to visualise atoms of a large range of atomic numbers for studying and interpreting
materials at the atomic scale consisting of both light and heavy atoms. Although, the ABF
imaging mode allows for better visualisation of light elements as compared to ADF imaging, it
is, in general, not straightforward to visually detect light-element atomic columns since light-
element nanomaterials are typically sensitive to the electron beam, limiting the incoming electron
dose and leading to images exhibiting low CNR. In order to use the MAP probability rule for
detecting atomic columns by simultaneously analysing ABF and ADF STEM image data, the
existing parametric models for describing STEM images need to be extended. Hereby, it is
important to take into account the effect of specimen tilt, which shifts the ABF peak locations
from the true atomic column locations, since small tilts of the electron beam with respect to the
crystal zone axis can easily be present in STEM experiments. The advantages of simultaneous
model fitting, as compared to combining quantitative measurements from analysing the ABF
and ADF STEM images separately, has been thoroughly investigated as a function of ICNR. It
has been demonstrated that a simultaneous analysis improves atom detectability, as well as atom
position accuracy and precision especially for ICNR values of less than around 5.0. In addition,
it has been illustrated that by using the MAP probability rule to analyse simultaneously acquired
experimental ABF and ADF STEM data, a reliable estimation of atomic column locations can
be obtained without including prior information about the expected positions of these columns.

Overall, in this thesis, the MAP probability rule has been presented as a new quantitative method
which enables to determine the structure of unknown nanomaterials in an automatic and objective
manner and to detect atomic columns and even single atoms from atomic-resolution STEM
images with high reliability. This technique allows to obtain accurate and precise measurements
of the atomic arrangement of the projected atomic columns or individual atoms which plays
an important role for fully understanding the structure-properties relation of nanomaterials.
Nowadays, a software package, called StatSTEM, is freely available which aims to facilitate
quantitative electron microscopy. Currently, the MAP probability rule is available in this software
for analysing images with a small field of view containing a limited number of projected atomic



114 Chapter 7. General conclusions and future perspectives

columns. Furthermore, although in this thesis the proposed technique has only been applied to
STEM, it is not limited to this imaging mode as the foundations of the MAP probability rule
are very general and applicable to different domains. Therefore, it may be possible to apply the
MAP probability rule also to other signals that can be collected in the electron microscope such
as EELS and EDX signals. In this way, more optimal quantitative information can be obtained
about the specimen under investigation.

The development of a new quantitative method in this thesis, which generalises the char-
actarisation of nanomaterials at the atomic scale in STEM, has pushed quantitative electron
microscopy towards a more objective interpretation. Future developments of novel quantification
methods will continue to appear step by step for further unravelling the link between the structure
and the properties at the atomic level of nanomaterials.
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List of Symbols and Abbreviations

Roman characters

Character Page Explanation

A 64 arbitrary cation
A (k) 22 aperture function
A0 22 normalisation constant
AM 87 arbitrary M × M matrix
B 64 arbitrary cation
bias(θ̂m) 46 bias of estimator of mth element of parameter vector
C 50 model complexity
C1 24 1st order spherical aberration
C3 24 3rd order spherical aberration
C5 24 5th order spherical aberration
Cn 24 nth order spherical aberration
Cs 24 3th order spherical aberration
c 19 speed of light in vacuum
cov(θ̂, θ̂) 48 covariance matrix of parameter estimator
cov(γ̂, γ̂) 49 covariance matrix of function of parameter estimator
cst 85 arbitrary constant
D 56 experimental data
D (k) 30 detector function
D 60 domain of integration
d 51 modifying parameter in GIC
det(∇∇χ2) 60 determinant of Hessian matrix
di 103 ith deviation between estimated and true column position
dABF

i 104 ith deviation between estimated and true ABF column position
dADF

i 104 ith deviation between estimated and true ADF column position
dz 25 thickness of slice through specimen
d 103 average deviation between estimated and true column position
dABF 104 average deviation between estimated and true ABF column position
dADF 104 average deviation between estimated and true ADF column position
E 20 total kinetic energy of an electron
E0 19 kinetic energy of an electron accelerated by a potential
E 37 mathematical expectation
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146 List of Symbols and Abbreviations

e 19 elementary charge
Frs 48 (r, s)th element of Fisher information matrix
Fθ 48 Fisher information matrix
f (r) 27 arbitrary function in real space
fkl(θ) 37 expectation model at position (xk, yl)
fkl(θ̂) 84 optimal expectation model at position (xk, yl)
f ABF
kl 96 ABF expectation model at position (xk, yl)

f ADF
kl 96 ADF expectation model at position (xk, yl)

f kl(θ) 95 simultaneous ABF and ADF expectation model at position (xk, yl)
G 49 number of elements in vector γ(θ)
g 70 arbitrary Gaussian peak
g(r) 27 arbitrary function in real space
g(k) 22 arbitrary two-dimensional function in reciprocal space
g(x) 22 arbitrary two-dimensional function in real space
gkl 70 intensity of gaussian peak at position (xk, yl)
ĝ 70 estimated arbitrary Gaussian peak
ĝkl 70 intensity of estimated gaussian peak at position (xk, yl)
H0 (k) 23 transfer function of objective lens
h 19 Planck’s constant
hd 69 distance in pixels
hdmax 71 maximum distance in pixels
~ 20 Planck’s constant divided by 2π
I 55 background information
I (x0) 30 recorded image intensity
Idet 33 averaged detector intensity
Ie−counts 34 image intensity in electron counts
Iideal (x0) 30 recorded image intensity with ideal detector
Inorm 33 normalised image intensity
Iraw 33 image intensity before normalisation
Ivac 33 image intensity in vacuum
i 103 index
Ĵ 84 observed Fisher information matrix
K 37 number of pixels in x-direction
k 37 index
kDmax 30 maximum spatial frequency of recorded electrons
kDmin 30 minimum spatial frequency of recorded electrons
kx 20 component of wave vector perpendicular to optical axis
ky 20 component of wave vector perpendicular to optical axis
kz 20 component of wave vector parallel to optical axis
k 20 electron wave vector
kMAX 22 maximum spatial frequency of recorded electrons
L 37 number of pixels in y-direction
L(t) 43 likelihood function
L̂ 50 maximum likelihood estimate
l 37 index
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M 37 number of parameters in expectation model
m 19 relativistic mass of the electron
mo 19 mass of the electron
N 38 number of atomic columns
N(θ; CRLB) 49 normal distribution with θ as expectation values and CRLB matrix as

covariance matrix
N0 62 initial number of Gaussian peaks
Nmax 62 maximum number of Gaussian peaks
Np 34 number of electrons in probe
n 25 index
O(1) 88 constant for increasing number of pixels
O(dz2) 26 error term
P

(
kx, ky, dz

)
27 propagator function for a distance dz in reciprocal space

p 19 momentum of accelerated electron
p(D|Q) 56 probability of observing data D given quantity Q
p(N) 57 prior probability of number of columns N
p(N |w) 57 posterior probability of number of columns N in observed image pixel

values w
p(Q) 56 prior information about quantity Q
p(Q|D) 56 probability of quantity Q given data D
p (x, y, dz) 27 propagator function for a distance dz in real space
p(w) 57 normalization constant
p(w; t) 43 joint probability (density) function as a function of the observations

w and independent variables t
p(w|N) 57 evidence that the image data w is generated by N columns
p(w|θ,N) 58 likelihood function describing probability of observed image data w

for parameter vector θ of a model with N columns
p(w|θ̂,N) 84 likelihood function describing probability of observed image data w

for parameter vector θ̂ of a model with N columns
p(θ|N) 58 prior density of the parameters vector θ for a model with N columns
p(ωkl) 42 probability distribution for observation at position (xk, yl)
p(ω) 42 joint probability (density) function
p(ω; θ) 48 joint probability (density) function explicitly written as a function of

parameter vector θ
pn (x, y, dz) 27 propagator function for a distance dz in real space for nth slice
prel(N |w) 62 relative posterior probability
Q 56 arbitrary quantity of interest
Rin 30 inner angle of STEM detector in radians
Rout 30 outer angle of STEM detector in radians
S (x0) 30 source size distribution of electron probe function
s 87 arbitrary scalar
t (x, y, z) 26 transmission function between z and z + dz
tdet 34 pixel dwell time of detector scan
tn (x, y, z) 27 transmission function between z and z + dz for nth slice
traw 34 pixel dwell time of raw image



148 List of Symbols and Abbreviations

tvac 34 pixel dwell time of vacuum image
t 43 vector of independent variables
V(x, y, z) 20 electrostatic specimen potential
V0 19 acceleration voltage
v 19 velocity of accelerated electron
var(θ̂m) 46 variance of estimate of mth element of parameter vector
vdz (x, y, z) 26 projected electrostatic specimen potential in slice through specimen
vz(x) 25 projected electrostatic specimen potential along optical axis
vz,n (x − xn) 25 projected potential of the nth atom at position xn

W 37 number of pixels in image
wmax 101 maximum observed pixel value
wABF

max 101 maximum observed ABF pixel value
wADF

max 101 maximum observed ADF pixel value
wmin 101 minimum observed pixel value
wABF

min 101 minimum observed ABF pixel value
wADF

min 101 minimum observed ADF pixel value
wkl 37 image pixel value observed at position (xk, yl)
wABF

kl 95 ABF image pixel value observed at position (xk, yl)
wADF

kl 95 ADF image pixel value observed at position (xk, yl)
w 37 observed image pixel values
wABF 95 observed ABF image pixel values
wADF 95 observed ADF image pixel values
wkl 95 observed ABF and ADF image pixel values at position (xk, yl)
X 55 arbitrary proposition
X̄ 55 probability of proposition X
x 20 spatial coordinate
xk 37 x-coordinate at the pixel value (k, l)
x 22 two-dimensional coordinate vector
x0 22 two-dimensional coordinate vector of electron probe function
xn 25 two-dimensional coordinate vector of nth atom
Y 55 arbitrary proposition
y 20 spatial coordinate
yl 37 y-coordinate at the pixel value (k, l)
Z 15 atomic number
Z(hd) 69 number of paired observations separated by distance hd

z 20 spatial coordinate
zn 27 depth of nth slice through specimen
{wABF ,wADF} 98 ensemble of observed ABF and ADF pixel values

Greek characters

Character Page Explanation

α 14 convergence semi angle of STEM electron probe



149

αmax 100 maximum predefined value of magnitude of deviation between ABF
and ADF column position

αmin 100 minimum predefined value of magnitude of deviation between ABF
and ADF column position

αMAX 22 maximum angle in STEM objective aperture
αn 97 magnitude of deviation between nth ABF and ADF column position
β1 14 inner STEM detector collection angle
βABF

1 96 inner ABF STEM detector collection angle
βADF

1 96 inner ADF STEM detector collection angle
β2 14 outer STEM detector collection angle
βABF

2 96 outer ABF STEM detector collection angle
βADF

2 96 outer ADF STEM detector collection angle
βx 80 x-coordinate of atomic column
βABF

x 103 x-coordinate of ABF atomic column
βADF

x 103 x-coordinate of ADF atomic column
βxmax 59 maximum predefined value of x-coordinate of atomic column
βxmin 59 minimum predefined value of x-coordinate of atomic column
βxn 38 x-coordinate of nth atomic column
βy 80 y-coordinate of atomic column
βABF

y 103 y-coordinate of ABF atomic column
βADF

y 103 y-coordinate of ADF atomic column
βymax 59 maximum predefined value of y-coordinate of atomic column
βymin 59 minimum predefined value of y-coordinate of atomic column
βyn 38 y-coordinate of nth atomic column
β̂x 46 estimated x-coordinate of atomic column
β̂ABF

x 104 estimated x-coordinate of ABF atomic column
β̂ADF

x 104 estimated x-coordinate of ADF atomic column
β̂y 103 estimated y-coordinate of atomic column
β̂ABF

y 104 estimated y-coordinate of ABF atomic column
β̂ADF

y 104 estimated y-coordinate of ADF atomic column
γ(hd) 69 variability of background as a function of distance
γxn 97 x-coordinate of nth ABF atomic column depending on x-coordinate

of nth ADF atomic column
γyn 97 y-coordinate of nth ABF atomic column depending on y-coordinate

of nth ADF atomic column
γ(θ) 43 arbitrary function of parameter vector
γ̂ 43 unbiased estimator of γ
∆ 20 three-dimensional Laplace operator
∆I1e− 34 intensity generated by single electron
∆sz(hd) 69 difference between z(hd)th pair of observations
∆x 62 pixel size in x-direction
∆x,y 21 two-dimensional Laplace operator in x and y
∆y 62 pixel size in y-direction
∆γ 70 difference of variability
∆ζ 70 difference between true and estimated background
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∆ζkl 70 difference between true and estimated background at position (xk, yl)
ε 24 defocus
ζ 38 constant background
ζABF 96 constant ABF background
ζADF 96 constant ADF background
ζkl 70 constant background at position (xk, yl)
ζmax 59 maximum predefined value of constant background
ζmin 59 minimum predefined value of constant background
ζ̂ 70 estimated constant background
ζ̂kl 70 estimated constant background at position (xk, yl)
η 41 intensity of atomic column
ηABF 100 intensity of ABF atomic column
ηADF 100 intensity of ADF atomic column
ηmax 59 maximum predefined value of intensity of atomic column
ηABF

max 99 maximum predefined value of intensity of ABF atomic column
ηADF

max 99 maximum predefined value of intensity of ADF atomic column
ηmin 59 minimum predefined value of intensity of atomic column
ηABF

min 99 minimum predefined value of intensity of ABF atomic column
ηADF

min 99 minimum predefined value of intensity of ADF atomic column
ηn 38 intensity of nth atomic column
ηABF

n 96 intensity of nth ABF atomic column
ηADF

n 96 intensity of nth ADF atomic column
η̂ 70 estimated intensity of atomic column
Θ 41 scattering cross section of atomic column
θm 46 mth element of parameter vector
θmmax 59 maximum predefined value of mth element of parameter vector
θmmin 59 minimum predefined value of mth element of parameter vector
θr 48 rth element of parameter vector
θs 48 sth element of parameter vector
θ̂m 46 estimate of mth element of parameter vector
θ 37 parameter vector
θ̂ 43 estimate of θ
λ 19 electron wavelength
λkl 42 expected value of stochastic variable at position (xk, yl)
µkl 58 expectation value at position (xk, yl)
ρ 38 width of atomic column
ρABF 98 width of ABF atomic column
ρADF 98 width of ADF atomic column
ρmax 59 maximum predefined value of width of atomic column
ρABF

max 99 maximum predefined value of width of ABF atomic column
ρADF

max 99 maximum predefined value of width of ADF atomic column
ρmin 59 minimum predefined value of width of atomic column
ρABF

min 99 minimum predefined value of width of ABF atomic column
ρADF

min 99 minimum predefined value of width of ADF atomic column
ρn 38 width of nth atomic column
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ρABF
n 96 width of nth ABF atomic column
ρADF

n 96 width of nth ADF atomic column
ρ̂ 70 estimated width of atomic column
σ 43 standard deviation of expected pixel values
σd 103 standard deviation of d
σdABF 104 standard deviation of dABF

σdADF 104 standard deviation of dADF

σi 21 interaction parameter
σkl 43 standard deviation of expected pixel value at position (xk, yl)
σr 30 radius containing 39% of total STEM electron probe intensity
φ 97 direction of deviation between ABF and ADF column position
χ (k) 24 lens aberration function
χ2(θ) 59 weighted sum-of-squared-residuals misfit between data and paramet-

ric model
χ2(θ̂) 60 χ2(θ) evaluated at θ̂
χ2

0 70 uniform sum-of squared-residuals misfit of zero columns
χ2

1 70 uniform sum-of squared-residuals misfit of one column
χ2

min 60 χ2(θ) evaluated at θ̂
ψ (x, y, z) 20 electron wave function
ψ0 (x) 22 initial electron wave function
ψe (x) 29 exit electron wave function
ψ f (x, y, z) 20 full electron wave function
ψ f inal (k, x0) 29 final electron wave function
ψn (x, y) 27 electron wave function through nth slice
ψn+1 (x, y) 27 electron wave function through (n + 1)th slice
ψt (x) 25 transmission electron wave function
ωkl 42 independent variable of observation at position (xk, yl)
ω 37 independent variables corresponding to observations

Abbreviations

Character Page Explanation

2D 6 two-dimensional
3D 16 three-dimensional
4D 16 four-dimensional
ABF 11 annular bright-field
ADC 32 analogue-to-digital converter
ADF 10 annular dark-field
AFM 6 atomic force microscopy
AIC 51 Akaike Information Criterion
BF 15 bright-field
BIC 51 Bayesian Information Criterion
CBED 15 convergent beam electron diffraction
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CCD 14 charge-coupled device
CNR 10 contrast-to-noise ratio
CPU 32 central processor unit
CRLB 36 Cramér-Rao lower bound
CryoTEM 7 transmission electron cryomicroscopy
CTEM 6 conventional transmission electron microscopy
EAM 72 embedded atom method
EDX 16 energy dispersive X-ray spectroscopy
EELS 16 electron energy loss spectroscopy
FWHM 30 full width at half maximum
GIC 51 Generalised Information Criterion
GPU 32 graphical processor unit
HAADF 15 high-angle annular dark-field
HQC 51 Hannan-Quinn Information Criterion
ICNR 11 integrated contrast-to-noise ratio
ICNRABF 102 integrated annular bright-field contrast-to-noise ratio
ICNRADF 102 integrated annular dark-field contrast-to-noise ratio
LAADF 15 low-angle annular dark-field
MAADF 15 medium-angle annular dark-field
MAP 10 maximum a posteriori
NMR 3 nuclear magnetic resonance
PMT 32 photomultiplier tube
PSD 4 power spectral density
SNR 7 signal-to-noise ratio
STEM 6 scanning transmission electron microscopy
STM 6 scanning tunneling microscopy
TDS 28 thermal diffuse scattering
TEM 6 transmission electron microscopy
XPS 3 X-ray photoelectron spectroscopy
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