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Abstract. If objects or patients move during a CT scan, reconstruc-
tions suffer from severe motion artifacts. Time dependent computed to-
mography (4DCT) tries to minimize these artifacts by estimating motion
and/or reconstruction simultaneously. Most current methods assume a
known deformation or a reconstruction without artifacts at a certain time
point. This work explores the possibilities of estimating the motion model
and reconstruction simultaneously. It does so by modifying the simulta-
neous iterative reconstruction technique (SIRT) to incorporate motion
(trans-SIRT) and uses this method in an optimization routine that com-
putes motion and reconstruction at the same time. Results show that
the optimization routine is able to estimate motion accurately, assuming
only the type of parametrization for the motion model. Our approach
can potentially be extended to more complex motion models.
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1 Introduction

Time-dependent computed tomography (4DCT) is a highly active research area
which involves the estimation of object and/or motion from tomographic projec-
tions acquired from an object subjected to some form of motion. Among its most
obvious applications is the reconstruction of patient anatomy when scanning un-
der free breathing conditions. Without compensation for motion, reconstructions
suffer from serious motion artifacts. A standard technique to counter these mo-
tion artifacts is to minimize the motion itself by fixing the object or asking
patients to hold their breath. There are, however, numerous situations where
such precautions cannot be taken and hence other methods for 4DCT are being
developed, which are roughly subdividable into two categories: gated CT and
methods that explicitly incorporate a motion model.
Gated CT sorts projections into several phase bins and generates a reconstruc-
tion for every separate phase bin. The sorting can depend on an external brea-
thing signal, which is currently acquired in most medical applications using ex-
ternal markers and a detection system [1], spirometry [2], or other data corre-
lated to the breathing signal. Promising research has been reported where phase
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bins are extracted from the tomographic data itself [3]. Since each phase bin
reconstruction is created from only a fraction of all available projections, it lacks
accuracy. In order to improve reconstruction quality, the correlation of recon-
structions at adjacent phases can be exploited for temporal regularization [4, 5].
Another class of methods explicitly incorporates a motion model in the recon-
struction algorithm, either in projection or object space. In projection space,
the class of possible motion models for straight ray geometry is limited to affine
transformations [6] and a slightly more general class, where the spacing and
angles between rays can also be adapted [7]. If the condition of a straight ray
geometry is relaxed, one can model any kind of deformation by properly adap-
ting the projection matrix [8].
If the modeling is performed in object space, any transformation can be directly
applied to the object. Usually, either the deformation or a motionless reconstruc-
tion is assumed to be known in advance. If the deformation is known, a modified
Feldkamp or FBP algorithm can directly calculate a motionless reconstruction at
a reference phase [9]. If a motionless reconstruction is assumed, the deformation
can be estimated by a parameterized B-spline or PCA model that minimizes the
projection distance [10, 11]. Several efforts have been made to generate general
motion models. A popular modeling approach, which was already mentioned be-
fore, is the use of B-splines for parameterizing the motion field [10]. For modeling
lung motion, Erthardt et al. created an 4D mean motion model using patient
data, which can be adapted to a specific patient by performing a diffeomorphic
image registration of a 3D volume at a reference phase to an average lung atlas
[12]. By generating a patient specific lung motion model using PCA, a surrogate
signal obtained from one marker could be sufficient to obtain the entire lung
motion at a specific time point [13].
The above mentioned methods assume some kind of prior information. Gated
CT assumes a motionless object for the duration of the scan in each phase bin,
projection space modeling includes only a limited class of transformations, and
object space modeling assumes a reference scan or a known deformation.
This paper describes a proof-of-concept study where as little prior information
as possible is assumed. In Section 2, we start by introducing some notations
and concepts and work our way forward to an iterative algorithm that recon-
structs an object with given motion (trans-SIRT), which is thereafter used in an
iterative optimization routine for estimating motion and object simultaneously.
Simulation experiments and their corresponding results are discussed in Section
3 and 4. Finally, conclusions are drawn in Section 5.

2 Methods

2.1 Notations and Concepts

A 2D object can be described as a function f : R × R → R. The projection
process in tomography consists of straight rays traversing the object f at a
certain angle θ and a signed distance s from the center of the detector to the
ray (see Fig. 1). In a parallel beam geometry setup, the object is scanned at nθ
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Fig. 1. Schematic overview of the projection process

angles, with all rays parallel per projection angle. In this paper, we use a parallel
beam geometry with equidistant spacing between adjacent rays. To model the
projection process, we introduce the 2D Radon transform

Rf(θ, s) =

∫ ∞
−∞

f
(
(t sin θ + s cos θ), (−t cos θ + s sin θ)

)
dt (1)

in which θ ∈ [0, π). The function Rf(θ, s) yields the integral of f along the line
described by x cos θ + y sin θ = s (Fig. 1). In a real tomographic scanner, there
are only a finite number of detector pixels at a finite number of angles, denoted
by d and nθ, respectively. The (log-corrected) measured projection data pθ,s at
angle θ ∈ {θ1, . . . , θnθ} and offset s ∈ {s1, . . . , sd} can be ordered in a vector

p = (pθ1,s1 , . . . , pθ1,sd , pθ2,s1 , . . . , pθnθ ,sd)T . (2)

We refer to p as the projection data or the sinogram. The 2D object f can
be approximated on a rectangular grid of N pixels, represented by a vector
x = (x1, . . . , xN ) ∈ RN , where we assume that f is constant over the domain
of every pixel i. The line integral (1) can then be computed by the summation∑N
j=1 aijxj where aij represents the contribution of pixel j to detector pixel i.

Combining these discrete summations for all detector positions and all angles
yields the system of linear equations Ax = p. Since this system is typically in-
consistent, due to noise and discretization effects, one typically tries to minimize
the projection distance ||Ax− p||.
Now consider a time varying object {f1, f2, . . .}, where fi represents the object
at time ti. Throughout the paper, it will be assumed that motion during the
acquisition of a single projection can be neglected and that the object can be
represented on a pixel grid as {x1,x2, . . . ,xnθ}. Finally, we assume that at ev-
ery time point ti, the object is a transformation of the original object at time
t1: xi = Tθi(x1) (i = 1, . . . , nθ). Evidently, this implies that Tθ1 is the iden-
tity transformation. In practice, we calculate Tθi(x1) by applying a deformation
vector field (DVF) to the pixel coordinates of x1, followed by an interpolation
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step to obtain the pixel values of xi. Since we use bilinear interpolation, we are
able to represent Tθi as an N ×N matrix. Notice that this assumption does not
restricts the object’s motion to be linear, as this can be given by any DVF.

2.2 Trans-SIRT

In this section, the simultaneous iterative reconstruction technique (SIRT) [14]
is modified to incorporate a known transformation. For every iteration k, the
standard SIRT algorithm updates every jth pixel (j = 1, . . . , N) as

x
(k+1)
j = x

(k)
j +

∑
i aij

(
pi −

∑
h aihx

(k)
h

)
/
∑
h aih∑

i aij
. (3)

Usually, x(0) is taken to be a zero image. SIRT can also be represented in matrix
notation as

x(k+1) = x(k) +CATR(p−Ax(k)) , (4)

where C and R are the diagonal matrices with inverse column and row sums,
respectively. As is noted in [14], SIRT computes the solution of the weighted
least square problem x∗ = argminx

(
||Ax− p||2R

)
. To be able to introduce a

known transformation in Eq. (4), we start by introducing some notations. Let
Aθl be the part of the projection matrix A that represents the projection in
direction θl. Define

Ã :=


Aθ1 0 · · · 0

0 Aθ2 0
...

. . .
...

0 0 · · · Aθnθ

 ∈ Rdnθ×nθN , C̃ :=


C 0 · · · 0
0 C 0
...

. . .
...

0 0 · · · C

 ∈ RnθN×nθN

(5)
and

T :=

 Tθ1...
Tθnθ

 ∈ RnθN×N , T ∗−1 :=
[
T−1θ1

· · ·T−1θnθ

]
∈ RN×nθN . (6)

The introduced notation allows us to describe the trans-SIRT algorithm as fol-
lows:

x(k+1) = x(k) + T ∗−1C̃ÃTR(p− ÃTx(k)) . (7)

By an analogous argument as in [14], we will show the connection between trans-
SIRT and the weighted least squares minimization problem

argmin
y

(
||Ãy − p||2R

)
subjected to y = Tx . (8)

Multiplying the normal equations of Eq. (8) with T ∗−1C̃ and replacing y with
Tx gives

T ∗−1C̃ÃTRÃTx = T ∗−1C̃ÃTRp . (9)
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This can be rewritten as

(I − (I − T ∗−1C̃ÃTRÃT ))x = T ∗−1C̃ÃTRp (10)

⇔ x = x+ T ∗−1C̃ÃTR(p− ÃTx) . (11)

Applying a fixed point iteration to Eq. (11) results in the iterative algorithm
described by Eq. (7).
Note that we introduced Eq. (7) rather for the mathematical derivation and to
have a compact description of trans-SIRT. In the implementation of trans-SIRT
we calculate the transformation using bilinear interpolation and instead of mul-
tiplying with Ã, the projections are calculated using Aθ per projection angle
θ. In Eq. (7), it was assumed that the inverse T−1θi

exists. This assumption is,
however, not too restrictive, since realistic physical motion is invertible. Prefer-
ably an analytic inverse should be used. For more complex models this inverse
will, however, no longer be available and must be calculated with a numerical
method.

2.3 Simultaneous Estimation of Motion and Reconstruction

To simultaneously estimate object and motion, we use a motion model T depend-
ing on some parameters α3, where we assume that the transformation Tθ can
be parameterized as T (α, θ) for each angle θ. Discrete approximations of these
transformations can be collected in a large matrix T (α) analogous to Eq. (6).
If we define x1(α) to be the trans-SIRT solution for motion model T (α, θ), the
optimal parameters α (and hence also the optimal trans-SIRT solution x1(α))
can be found by solving the following optimization problem:

α∗ = argmin
α

(
||ÃT (α)x1(α)− p||22

)
. (12)

Essentially, the solution of Eq. (12) minimizes the projection distance and hence
optimizes the projections consistency. It does so by varying the motion model
parameters α, computing an optimal trans-SIRT solution for these parameters
and finally comparing the projections of this solution to the original projections.
The function is minimized using the Levenberg-Marquardt algorithm (see for
example [15]). Since the landscape of the objective function in Eq. (12) is rather
coarse, the Jacobian needed by the Levenberg-Marquardt algorithm is computed
using a finite difference scheme, starting from an initial stepsize which is halved
every time the solver has found a minimum for the current stepsize.

3 Experiments

3.1 Trans-SIRT

To validate the trans-SIRT algorithm, a standard Shepp-Logan phantom of size
500×500 pixels was used, whereas the reconstruction was computed on a coarser

3 Here, any motion model which transforms the pixel coordinates followed by an in-
terpolation step can be used. A specific model will be tested in Section 3.
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(a) Sinogram of Shepp-Logan without
motion

(b) Sinogram of Shepp-Logan when B-
spline based DVF is applied

Fig. 2. Sinogram of Shepp-Logan phantom

grid of 100×100 pixels. Projections are calculated from the phantom (500×500)
using a strip kernel (see for example Section 7.4.1 of [16]). To compare trans-SIRT
to regular SIRT, the following experiment was performed. A SIRT reconstruction
was calculated using 51 projection angles uniformly sampled from the interval
[0, π] and a detector consisting of 100 pixels. A trans-SIRT reconstruction was
computed using the same projection data, but regarding it as coming from a
stationary detector and a moving Shepp-Logan phantom that turns in the op-
posite direction. In both cases, a circular reconstruction domain was used. The
two cases are illustrated in Fig. 3(a). As a measure for accuracy, the root mean
square error (RMSE) between reconstruction and phantom was calculated.
In another test, we used the same phantom but a rather complicated transfor-
mation represented by a DVF and based on quadratic B-splines using 6 knots
in every dimension. The inverse DVF was calculated using Chen’s method [17].
Again 51 equiangular projections (with 100 detectors each) were taken. The
sinogram is displayed in Fig. 2.

3.2 Motion Parameter Estimation

For our experiments, we used a simple motion model that scales the object
differently at every time point. If si is the scaling parameter at time ti, then
fi(x, y) = f1(six, siy). Instead of modeling every si individually, we approximate
the time varying scaling coefficient series {si}i=1,...,nθ by a cubic spline model
with 12 or 16 parameters. The first scaling coefficient s1 is forced to be 1 such
that Tθ1 = I. If this model would be regarded as a simplification of a breathing
motion, then it would not be confined to regular breathing, since the spline
approximation can model a large class of continuous function over a certain
time interval. In a first test, the time varying scaling parameter series was the
one displayed in Fig. 4(d). A spline model was used based on 12 parameters
and uniform knot spacing. As a second test a more irregular scaling signal was
employed, see Fig. 5(a). In this test, a spline approximation of 16 parameters
and uniform knot spacing was used. The RMSE error was calculated for the
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Table 1. aRMSE for each experiment and reconstruction

Experiment True transformation Gold standard Optimized transformation

Regular signal 0.090319 0.1001 0.10156
Irregular signal 0.089871 0.10093 0.10302

reconstruction at every time point ti and averaged to produce an average RMSE
(aRMSE). The series {si}i=1,...,nθ was approximated directly by a cubic spline,
which we then regarded as the gold standard. The same phantom was used as
in the trans-SIRT validation. To make the experiment more realistic, Poisson
distributed projections with incident beam intensity I0 = 50000 (photon count)
were generated from the simulated projection data. We used 50 SIRT iterations
and 50 trans-SIRT iterations in every experiment. This number of iterations was
determined experimentally to have the lowest RMSE in terms of reconstruction
quality, when estimating motion parameters any number of iterations ranging
from 20-500 gave equally good results.

4 Results

4.1 Trans-SIRT

In Fig. 3(b), the RMSE for SIRT and trans-SIRT is displayed as a function of the
iteration number. We can see that the curves are almost identical. The fact that
there is a difference can be explained by the discrete nature of our algorithm and
the different types of interpolation for the two cases. That being said, the two
solutions should approach one another in terms of RMSE (calculated between
the reconstruction of case 1 and the reconstruction of case 2) if the resolution in
the reconstruction domain increases. This was tested and the result is displayed
in Fig. 3(c). The results for the spline based DVF are displayed in Fig. 3(d).

4.2 Motion Parameter Estimation

The results for the test with the regular scaling coefficient signal are displayed in
Fig. 4. In Fig. 4(a)-(c), the reconstruction at time t = 0 is shown for regular SIRT
(no motion correction), the gold standard (i.e. based on prior knowledge of the
transformation) and the optimization problem in Eq. (12), respectively. Fig. 4(d)
shows the starting values, the true scaling parameters, the gold standard, and
the solution of the optimization problem with regards to time. The RMSE for
every time point of the optimized reconstruction is shown in Fig. 4(e). The same
figure was generated for the test with the irregular scaling parameter signal (Fig.
5). The aRMSE for each of the reconstructions is summarized in Table 1. It can
be noticed that the optimization method does not require the signal to be regular
to produce good results. Visually there is hardly any difference between the gold
standard solution and the optimized solution, which is confirmed numerically in
Table 1.
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(a) Set up for experiment for case 1
and 2
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(b) RMSE of SIRT and trans-SIRT (case
1 and 2) as a function of iteration number
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(d) RMSE as a function of iteration num-
ber for deformed Shepp-Logan phantom
using spline based DVF

Fig. 3. A validation of trans-SIRT is performed in a first test (Fig. (a)-(c)), where a
SIRT reconstruction is calculated using a rotating detector and a stationary object
(case 1) and trans-SIRT is used to calculate a reconstruction for a stationary detector
and rotating object (case 2). Figure (d) is the result of the experiment with the spline
based DVF

5 Conclusion

We conducted a proof-of-concept in which motion and reconstruction is esti-
mated simultaneously from tomographic data created with an object subjected
to some form of motion. Simulation experiments confirmed the feasibility of this
technique. For a known motion, trans-SIRT is able to produce results that are
as accurate as regular SIRT for the same object without motion. We have also
developed an optimization routine which simultaneously estimates motion and
reconstruction, without the need for extra data. A major advantage of our ap-
proach is that any parameterized motion model can be incorporated and that
only few assumptions were made, in contrast to many other current methods.
A run of the optimization algorithm required about 5 minutes of computation
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(a) Reconstruction
without motion correc-
tion

(b) Gold standard re-
construction

(c) Reconstruction af-
ter optimization
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(d) Approximation of scaling parameters
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Fig. 4. Optimization results (regular scaling parameter signal)
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(a) Approximation of scaling parameters
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Fig. 5. Optimization results (irregular scaling parameter signal)

time when using an unoptimized GPU-based implementation of trans-SIRT. In
future work we aim to extend our methodology to more complex motion models
that have several parameters.
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