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Abstract—In this work, we propose a supervised framework
for spectral unmixing of binary intimate mixtures. The core idea
is based on geodesic distance measurements and regression to
estimate the fractional abundances. The main assumption is that
spectral reflectances of binary mixtures form a curve between the
two endmembers, and the mixture’s relative position on this curve
serves as an indicator of its fractional abundances. We propose
four novel approaches to approximate this relative position. From
this, the fractional abundances are obtained using Gaussian
process regression. The proposed framework simultaneously
copes with the spectral variability by hypersphere and high-
dimensional simplex projections. The approach is extensively
validated on real datasets, including binary mineral mixtures and
industrial clay powder mixtures produced in a laboratory setting,
comprising 60 binary mixtures derived from five types of clay
powders: Kaolin, Roof clay, Red clay, mixed clay, and Calcium
hydroxide, measured by a variety of hyperspectral sensors in
the VNIR-SWIR and mid-and longwave infrared regions. A
comparison with the linear mixing model and several nonlinear
mixing models demonstrates the superiority of the proposed
approach.

Index Terms—Hyperspectral, spectral variability, nonlinearity,
mixing models, mineral powder mixtures

I. INTRODUCTION

Hyperspectral unmixing aims at estimating the fractional
contributions (abundances) of various pure materials (end-
members) within a pixel’s field of view. Generally, spec-
tral unmixing is carried out by formulating a mathematical
model that characterizes spectral reflectance as a function of
endmembers and their fractional abundances. Subsequently,
the inversion of this model provides an estimation of the
composition of pixels. The linear mixing model (LMM) [1]
is the most widely used model in the remote sensing com-
munity. The major assumption of this model is that each
incident light ray interacts with a single pure material within
the pixel’s instantaneous field of view before reaching the
sensor. As the fractional abundance represents the extent of
ground coverage by each pure material, the Fully Constrained
Least Squares Unmixing procedure (FCLSU) [2], [3] estimates
these abundances while taking into account their physical
constraints, i.e., they should be non-negative and sum up
to one. The LMM is commonly favored in scenarios where
the Earth’s surface exhibits extensive flat, well-defined, and
distinct regions containing different endmembers.
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Due to the success of deep learning in computer vision
and image recognition tasks, there has been a recent trend of
integrating deep autoencoder architectures with the LMM. The
basic idea of these structures is to map the input hyperspectral
image into fractional abundances. This is generally done by
utilizing the encoder, while the decoder transforms the esti-
mated fractional abundances into reconstructed hyperspectral
images using linear layers, where the endmembers act as
the weights. A variety of autoencoders has been applied in
hyperspectral unmixing: Denoising autoencoders [4], Sparse
nonnegative autoencoders [5], Variational autoencoders [6],
[7], Convolutional autoencoders [8], [9], [10], [11], Adver-
sarial autoencoders [12], [13], and Transformer autoencoders
([14], [15]).

The LMM is not suitable when hyperspectral images are
acquired from the Earth’s surface scenes featuring complex
geometric structures. In these scenarios, each incident ray
of light interacts with multiple pure materials in the scene
before reaching the sensor. This results in a nonlinear rela-
tionship between the fractional abundances and the measured
reflectance spectra. To describe the interaction of light with
complex geometric structures, nonlinear mixing models have
been proposed [16].

A widely used group of nonlinear mixing models are
bilinear mixing models. The major assumption of these models
is that an incident ray of light interacts with a maximum of
two pure materials before reaching the sensor. These models
often have a nonlinear term in addition to the linear term.
The Fan model [17] derives this nonlinear term through the
first-order Taylor series expansion of a general nonlinear
mixing equation. Because of the hard nonlinear constraint,
this model cannot perform well on datasets that follow the
LMM. To generalize bilinear mixing models to the linear case,
the generalized bilinear model (GBM) [18], the polynomial
post-nonlinear mixing model (PPNM) [19], and the linear-
quadratic model (LQM) [20] have been proposed. These
models have hyperparameters to balance between linear and
nonlinear terms. To describe higher-order interactions of the
incident ray of light before reaching the sensor, the multilinear
mixing model (MLM) [21] and the p-linear (p > 2) mixture
model (pLMM) [22], [23], [24], etc.) have been proposed.

The aforementioned approaches all use a mathematical
formulation to describe the unmixing problem. Another group
of mixing models has been developed based on physics-based
radiative transfer principles. These models are often utilized
to describe the spectral reflectance of intimate mineral powder
mixtures. In remote sensing applications, the Hapke model
[25], [26] is extensively utilized. This model assumes that
the particles of the intimate mixtures are significantly larger



2

than the wavelength of light, are spherical, and scatter light
isotropically.

A limited number of studies exploit the potential of deep
learning for nonlinear unmixing. Deep autoencoder architec-
tures have been developed that utilize the PPNM to reconstruct
the input hyperspectral image [27], [28]. In [29], it was
demonstrated that the endmembers of nonlinear datasets can
be accurately estimated through the use of deep autoencoder
architectures.

Rather than relying on a specific mixing model for spectral
unmixing, efforts have been made to learn the nonlinearity
inherent in a dataset through a data-driven approach [30],
[31], [32], [33]. The major disadvantage of these approaches
is their limited generalization capacity. In [34], it was shown
that these methods encounter complete failure when test and
training samples lie on different data manifolds, due to vari-
ations in acquisition and illumination conditions. Variations
in illumination conditions often lead to scaling effects, either
globally or on a pixel-based level, in the measured spectral
data. On the other hand, variations in acquisition conditions,
such as differences in sensors and white calibration contribute
to wavelength-dependent variations in the measured spectra.
These phenomena are often referred to as external spectral
variability [35], [34]. Even though the intrinsic nonlinearity
of a dataset does not change with global scaling [34], also
the existing nonlinear mixing models are not invariant to
external variability, due to the fact that the nonlinear function
transforms any scaling effect nonlinearly.

In linear spectral unmixing, external spectral variability has
been tackled by methods based on endmember bundles ([36],
[37], [38]), physical ([39], [40], [41]) and statistical models
([42], [43], [44]). To bridge the gap between endmember
bundle-based methods and parametric physics-based models,
in [45], a multiple endmember mixing model was proposed.

The aforementioned nonlinear models do not take into
account the spectral variability. In the works of [46], [47],
bilinear models were expanded by introducing a scaling term
to specifically tackle external spectral variability. In [48], the
impact of spectral variability in bilinear models has been
modeled by a normal distribution. In the study by [49], an
approach named neighbor-band ratio unmixing (NBRU) was
introduced to estimate fractional abundances from intimate
mineral powder mixtures, and its resilience against external
spectral variability was validated. In general, the inversion of
a model that simultaneously tackles spectral variability and
nonlinearity tends to be highly non-convex. These models
often have a substantial number of hyperparameters, leading
to challenges in terms of optimization and interpretation.

In this work, we proposed a supervised methodology for un-
mixing of binary intimate powder mixtures. This methodology
assumes that spectral reflectances of binary mixtures form a
curve between the two endmembers, and the mixture’s relative
position on this curve serves as an indicator of its fractional
abundances. In practical scenarios, variations in illumination
conditions may cause the spectra of mixtures to deviate from
the curve. To address this challenge, we will investigate two
distinct projections designed to make the data scale-invariant.
When identical binary mixtures are captured using different

sensors, different curves are obtained, but the relative position
on these curves constitutes a unique representation of the mix-
ture’s composition. In [34], the relative position of the mixture
is approximated by estimating the geodesic distances between
a mixture and the endmembers, by sampling the curve with a
large number of mixtures. In practice, only one mixture and the
two endmembers are generally available. In this study, we will
investigate two approaches to estimate the relative position of
a mixture solely based on the mixture and both endmembers.
It’s important to note that these approaches assume that both
the spectra of the mixture and the endmembers are acquired
using the same sensor.

Because mixtures with equidistant abundances are not
equidistant on the curve, a nonlinear relation exists between
the relative position and actual fractional abundances [34].
To learn this relationship, a supervised nonlinear regression
approach will be employed. The supervised method will be
trained using training samples obtained from a particular
acquisition scenario (e.g., a dataset acquired by one specific
sensor).

Contributions and Novelties: The contributions of the
proposed research are:

1) In this work, we proposed four different supervised
approaches for estimating the fractional abundances of
binary intimate mixtures. These approaches involve the
integration of two projection methods and two distinct
relative position estimation methods.

2) Simultaneous tackling nonlinearity and spectral variabil-
ity: The proposed approach not only characterizes the
nonlinearity of intimate mixtures but also finds a unique
representation of binary intimate mixtures to tackle the
spectral variability.

3) Comprehensive analysis of binary intimate mixture sam-
ples: We validated the proposed approach on a large
amount of binary intimate mixtures acquired by a large
variety of sensors, with a broad wavelength range be-
tween the visible and the long-wavelength infrared re-
gions (i.e., between 350 nm and 15385 nm).

4) In the experimental section, we demonstrated that the
analysis of intimate mixtures from spectral reflectance
is challenging and reveals highly inaccurate results from
linear and nonlinear mixing models.

The rest of the paper is structured as follows: Section II
provides a detailed explanation of the proposed methodology.
In Section III, we describe three real intimate powder mixture
datasets on which our methodology is validated. In Section IV,
we outline the experiments and present the results, followed
by a discussion in Section V. The conclusion of this work is
presented in Section VI.

II. METHODOLOGY

It is generally assumed that the spectral reflectance of
intimate mixtures X({xi}Ni=1 ∈ Rd

+) can be described by the
nonlinear combination of endmembers E({ej}pj=1 ∈ Rd

+) and
their fractional abundances A({ai}Ni=1 ∈ Rp

+):

xi = F (E,ai) + ηi, (1)
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where p denotes number of endmembers, d denotes spectral
bands, F is a nonlinear function and ηi represents Gaussian
noise.

Our framework estimates the fractional abundances of bi-
nary intimate mixtures with known endmembers. The pro-
posed framework contains three main steps: Projection, Rela-
tive Position Estimation, and Abundance Estimation. We pro-
pose two projection approaches (i.e., Hypersphere and Simplex
Projection) and two relative distance estimation approaches
(Geodesic and Projection Unmixing).

A. Hypersphere Projection

The first projection that makes the spectra invariant to scal-
ing is the projection onto the unit hypersphere. The projection
of a vector (x) onto the unit hypersphere is achieved by

dividing the vector by its length (y = x/
√∑d

i=1 x
2
i ). On

a unit (hyper)sphere, the arc length between any 2 unit-length
vectors equals the angle between them. The cosine of the angle
is given by the dot product between them. In this way, the arc
length (T ) between two endmembers on the unit hypersphere
can be computed by taking the arc cosine of their dot product:
T = arccos(e1Te2), where the length of vectors ∥e1∥ = 1
and ∥e2∥ = 1. When a mixture lies on the arc connecting
the 2 endmembers (y′ as an example in Fig. 1), the geodesic
distance between the mixture and the endmembers is obtained
by: b1 = arccos(e1Ty′) and b2 = arccos(e2Ty′). However,
in reality the mixtures lie on a curve between the endmembers
that can substantially deviate from the arc. In Fig. 1, we
illustrate a scenario wherein the spectrum of a binary mixture,
represented by y, deviates from the arc connecting the two
endmembers e1 and e2 (as indicated by the red curve).

Fig. 1. Red curve: the arc connecting the two endmembers. Yellow curves:
the arcs connecting the binary mixture (y) with both endmembers; c1 and c2
denote the arc lengths between y and the endmembers e1 and e2, respectively.
y′ represents the projection of y on the arc, while b1 and b2 denote the arc
lengths between y′ and the endmembers. Green curve: the true curve that
connects the endmembers; g1 and g2 denote the Euclidean distances between
y and the endmembers.

By employing the law of cosines:

cos (c1) = cos (d) cos (b1)

cos (c2) = cos (d) cos (b2)
(2)

one can obtain the arc lengths b1 and b2 of y′, the projected
data point on the arc connecting the two endmembers (for
further details, we refer to [50]):

b1 = arccos

(
sin(T )√[[

cos (c2)
cos (c1)

− cos (T )
]2

+ sin2(T )
]
)

(3)

where T = b1 + b2 = arccos(e1Te2).
1) Hypersphere Projection Unmixing: The mixture’s rela-

tive position on the arc connecting the endmembers is given
by:

â =

 b2
b1+b2

b1
b1+b2

 (4)

We will refer to this methodology as Hypersphere Projection
Unmixing (HPU).

2) Hypersphere Geodesic Unmixing: However, when the
actual curve of the mixtures (the green curve in Fig. 1)
substantially deviates from the arc between the endmembers,
the true geodesic distance might deviate a lot from the arc
length. The only option remaining is to approximate the
geodesic distances by the Euclidean distances (g1 and g2) to
obtain the mixture’s relative position:

â =

 g2
g1+g2

g1
g1+g2

 (5)

We will refer to this methodology as Hypersphere Geodesic
Unmixing (HGU). In the simulation experiment, we will
demonstrate that, even though this approximation can deviate
substantially from the true geodesic distance, the estimated
relative positions obtained from Eq. (5) closely resemble those
derived from the true geodesic distance.

B. High-dimensional Simplex Projection

The second projection that makes the spectra invariant
to scaling is the projection of data point (x) onto a high-
dimensional simplex, by dividing each element of the vector
by the sum of all its elements (y = x/

∑d
i=1 xi). Unlike

the unit hypersphere, this space is a linear space. When
the mixture lies on the line connecting the 2 endmembers,
the relative position of the mixture is simply given by its
Euclidean distances from the endmembers. However, the real
curve between the endmembers may deviate from the line
connecting the two endmembers. In Fig. 2, we illustrate a
scenario wherein the spectrum of a binary mixture, represented
by y, deviates from the line connecting the two endmembers
e1 and e2 (as indicated by the red line).

By utilizing the Pythagorean theorem:

g21 = d2 + b21

g22 = d2 + b22
(6)
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Fig. 2. Red line: line connecting the two endmembers. Blue lines: lines
connecting the binary mixture (y) with the endmembers. y′ represents the
projection of y on the line, b1 and b2 denote the Euclidean distances between
y′ and the endmembers. Green curve: The true curve that connects the
endmembers. g1 and g2 denote the Euclidean distances between y and the
endmembers.

one can obtain the Euclidean distances of the projected data
point y′ on the red line:

b1 =

(
(b1 + b2)

2 + g21 − g22
2(b1 + b2)

)
(7)

where b1 + b2 = ∥e1 − e2∥.
1) Simplex Projection Unmixing: For Simplex Projection

Unmixing, the relative position of the mixture is then given
by Eq. (4). We will refer to this method as Simplex Projection
Unmixing (SPU).

2) Simplex Geodesic Unmixing: However, when the actual
curve of the mixtures (the green curve in Fig. 2) substantially
deviates from the line between the endmembers, the result of
SPU might deviate from the true relative position. The only
option remaining is to approximate the geodesic distances on
the curve by the Euclidean distances g1 and g2 to obtain the
mixture’s relative position (see Eq. (5)). We will refer to this
method as Simplex Geodesic Unmixing (SGU).

C. Abundance Estimation Using Supervised Regression
Due to the non-equidistant nature of mixtures with equidis-

tant abundances on the curve, a nonlinear relationship emerges
between the relative position and actual fractional abundances.
To model this intricate relationship, we will adopt a super-
vised nonlinear regression approach. The supervised method
will undergo training using samples derived from a specific
acquisition scenario, such as a dataset acquired by a particular
sensor. The actual abundances are obtained by minimizing the
following optimization equation:

a = argmin
a

∣∣∣∣∣
∣∣∣∣∣F (â)−Ea

∣∣∣∣∣
∣∣∣∣∣
2

(8)

s.t. :
p∑

l=1

al = 1,∀l : al ≥ 0

where the function F (·) can be estimated by using Gaussian
Processes regression (for further details, we refer to [34], [51]:

F (â) = EA(K(Â, Â) + σ2
nI)

−1K(â, Â)T (9)

where the matrix Â({âi}Ni=1 ∈ Rp
+) contains the estimated

relative positions of the training set and the matrix A refers
to its ground truth fractional abundances. The kernel function
(K) involved in Eq. 9 is the squared exponential kernel func-
tion and σ2

n is the noise variance of the estimated relative
positions. The pseudo-code of the proposed method is shown
in Algorithm 1.

Algorithm 1: Supervised approach for estimating
fractional abundances of binary intimate mixtures

Input: Ytrain({yi}Ni=1 ∈ Rd
+), Etrain({el}2l=1 ∈ Rd

+),
Ytest({yi}Mi=1 ∈ Rf

+), Etest({el}2l=1 ∈ Rf
+)

Output: Âtest({ai}Mi=1 ∈ R2
+)

Determining the relative position of the mixture (Begin)
Estimate the relative position of the mixture by applying one of

the following two equations: Eq. 4 and Eq. 5
Determining the relative position of the mixture (End)
Training the supervised model (Begin)

Estimating hyperparameters involved in Eq. 9 (see [34] for the
detailed explanation)

Training the supervised model (End)
for o← 1 to M

Âtest
o : = Estimate the fractional abundance of each test sample

by applying Eq. (8)

III. HYPERSPECTRAL DATA

1) Relab dataset: The dataset comprises spectra derived
from carefully prepared mineral mixtures at the NASA Re-
flectance Experiment Laboratory (RELAB) at Brown Univer-
sity [52]. The chosen binary mixtures involve five minerals:
Alunite (Al), Anorthite (An), Bronzite (Br), Olivine (Ol), and
Quartz (Qz). Each binary combination, namely An-Br, Br-Ol,
Ol-An, and Qz-Al, comprises three mixtures characterized by
mass ratios of approximately 25%, 50%, and 75%. Notably,
these minerals share similar grain sizes (around 100 µm)
and densities (approximately 3 g/cm3), resulting in volumetric
and areal fractional abundances closely mirroring these mass
ratios. Fig. 3 shows the endmembers from the Relab dataset.
The rationale for selecting this dataset lies in the accurate
estimation of the mixture’s fractional abundances by the Hapke
model.

Fig. 3. Endmembers from the Relab dataset.

2) Self-crafted mineral dataset: In earlier work [34], we
generated datasets comprising homogeneously mixed mineral
powder combinations acquired by two sensors: an AgriSpec
spectroradiometer (manufactured by Analytical Spectral De-
vices - ASD) and a Snapscan shortwave infrared hyperspectral
camera. The selected minerals are various oxides commonly
found in soil and utilized in cementitious materials, namely
Aluminum oxide (Al2O3), Calcium hydroxide (Ca(OH)2), Iron
oxide (Fe2O3), Silicon dioxide (SiO2), and Titanium dioxide
(TiO2).
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From these minerals, seven binary mixture combinations
were prepared: Al2O3-SiO2 (Al-Si), Ca(OH)2-SiO2 (Ca-
Si), Ca(OH)2-TiO2 (Ca-Ti), Fe2O3-Al2O3 (Fe-Al), Fe2O3-
Ca(OH)2 (Fe-Ca), Fe2O3-SiO2 (Fe-Si), and SiO2-TiO2 (Si-Ti).
Within each mineral combination, 7 samples were generated
with ground truth fractional abundances exhibiting uniform
variation, spanning mass ratios from 12.5% to 87.5%. We
transformed mass ratios into volume ratios by utilizing the
densities of the pure mineral powders. Fig. 4 illustrates the
spectra of the pure mineral powders acquired by both the ASD
spectroradiometer and the hyperspectral camera. Noticeable
distinctions in the obtained spectra arise from external factors,
encompassing variations in illumination, sample-to-sensor dis-
tances leading to global scaling effects, and sensor-related
differences like the utilization of different white calibration
procedures, resulting in wavelength-dependent scaling.

Fig. 4. Spectral reflectance of pure mineral powders (endmembers) acquired
by the ASD spectroradiometer (full line) and the hyperspectral camera
(dashed)

3) A Multisensor Hyperspectral Benchmark Dataset: In
recent work [53], a comprehensive laboratory ground truth
dataset of intimately mixed mineral powders was created. This
involved homogeneously mixing five clay powders (Kaolin,
Roof clay, Red clay, mixed clay, and Calcium hydroxide)
to generate a total of 325 samples, including 60 binary,
150 ternary, 100 quaternary, and 15 quinary mixtures. These
325 mixtures and five pure clay powders were scanned by
eight different sensors across the visible (V), near-infrared
(NIR), and short-wave infrared (SWIR) wavelength regions,
and three sensors in the mid-wave infrared (MWIR) and long-
wave infrared (LWIR). The properties of all the sensors are
summarized in Table I. To maintain consistency with the first
two datasets, this study will exclusively concentrate on the 60
binary mixtures.

Figs. 5 and 6 depict the spectra of the pure clay powders
acquired by the aforementioned sensors. It’s noteworthy that
considerable spectral variability occurs in the obtained spectra.
The observed variations arise from differences in illumination
and acquisition conditions, the utilization of various white
calibration panels, and specific dissimilarities in the spectral
response functions of the sensors.

IV. EXPERIMENTAL RESULTS

Here, the results of HPU, HGU, SPU, and SGU are com-
pared with four different mixing models (i.e., FCLSU [2],
[3], PPNM [19], MLM [21], and the Hapke model [25], [26])
and the neighbor-band ratio unmixing approach NBRU [49].
For all of these methods, endmembers are acquired by the
hyperspectral sensors. For HPU, HGU, SPU, and SGU, a
mapping between the relative position and the linear mixing
model is learned by using the training samples obtained from
one of the applied sensors.

Quantitative comparisons are expressed through the abun-
dance root mean squared error (AE), representing the discrep-
ancy between the estimated fractional abundances (Â) and the
ground truth fractional abundances (A):

Abundance RMSE (AE) =

√√√√ 1

pn

p∑
k=1

n∑
i=1

(
Âki −Aki

)2
×100

(10)
where p and n denote the number of endmembers and the
number of mixed spectra, respectively.

A. Simulation experiment

In this experiment, we aim to showcase that the relative
position of a data point on a nonlinear curve, estimated by
the proposed approach does not differ much from the true
geodesic distance. As nonlinear curves, we choose a circle, an
exponential curve, a parabola, as well as datasets generated
by the Hapke model and the Fan model. We sampled the
curves with 1000 datapoints, with corresponding uniformly
sampled fractional abundances. For the mixing models, a total
of 1000 binary mixtures were generated by combining Quartz
and Alunite (see Fig. 3 for their spectral reflectances). The
true curve lengths between the endmembers were estimated
by summing up the Euclidean distances between neighboring
samples on the 1-nearest neighbor (NN) graph. For this,
all 1000 data points were applied. Then, the length was
approximated by summing up the Euclidean distances between
one binary mixture and the two endmembers. Given that the
error in the approximated geodesic distance is dependent on
the position of the binary mixture on the curve, we conducted
1000 approximations by gradually altering the binary mixture.
The mean of these approximations was then obtained as the
approximated curve length. In Table II, we show the true
lengths of these curves, the mean approximated lengths of
the curves (± standard deviation), the errors in the obtained
lengths and the errors in the relative position of data points
on the curve due to the approximation. As can be observed,
despite significant deviations in the estimated length of the
curves (1.6-5.1 %), the impact on the estimated relative
position of data points on the curve was limited (error below
1%).

B. Experiment on Relab dataset

Since HPU, HGU, SPU, and SGU require training samples
to learn the nonlinearity of the dataset, the Hapke model was
utilized to simulate the spectral reflectances of a large number
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Fig. 5. Spectra of pure clay samples acquired by eight different sensors in the VNIR and SWIR.

Fig. 6. Spectra of pure clay samples acquired by three different sensors in the MWIR and LWIR.

TABLE I
OVERVIEW OF THE SENSORS UTILIZED IN THIS STUDY.

Sensor Spectral range Bands/Channels Spatial resolution Spectral resolution

ASD Spectroradiometer 350 nm to 2500 nm 2151 - 3-6 nm

PSR-3500 spectral evolution 350 nm to 2500 nm 1024 - 2.8-8 nm

Specim AisaFenix 400 nm to 2500 nm 450 1024 pixels 3.5-10 nm

IMEC hyperspectral camera 1120 nm to 1675 nm 100 400 × 400 pixels 5 nm

Specim sCMOS 400 nm to 1000 nm 238 2148 pixels 6 nm

Cubert Ultris X20P 350 nm to 1000 nm 164 410 × 410 pixels 4 nm

Senops HSC2 500 nm to 900 nm 50 1024 × 1024 pixels 10-16 nm

Specim JAI(RGB) 440 nm to 630 nm 3 4096 × 8496 pixels -

Specim FX50 2700 nm to 5300 nm 308 640 pixels 35 nm

Specim AisaOwl 7600 nm to 12300 nm 96 385 pixels 100 nm

Agilent 4300 FTIR 2500 nm to 15385 nm 7191 - 4-16 cm−1
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TABLE II
NONLINEAR CURVES AND THE ASSOCIATED APPROXIMATION ERRORS.

Model Equation True length Approximated length Error in length (in %) Error in relative position (in %)

Circle y =

cos(θ)
sin(θ)

,0 ≤ θ ≤ π/2 1.57 1.49±0.04 5.10 0.73

Exponential y =

exp(1− a)

exp(a)

,0 ≤ a ≤ 1 2.52 2.48±0.02 1.61 0.28

Parabola y =

 a

a2

,0 ≤ a ≤ 1 1.48 1.45±0.02 2.02 0.52

FM y = y +
∑p−1

m=1

∑p
k=m+1 amakem ⊙ ek 9.35 9.03±0.15 3.42 0.70

y =
∑p

i=1 aiei

Hapke y = Wa

(1+2cos(θe)
√
1−Wa)(1+2cos(θi)

√
1−Wa)

8.97 8.81±0.06 1.78 0.25

TABLE III
AE OF ALL METHODS ON THE BINARY INTIMATE MIXTURES OF THE RELAB DATASET. THE BEST PERFORMANCES ARE SHOWN IN BOLD.

FCLSU PPNM MLM Hapke NBRU HPU HGU SPU SGU

An-Br 19.50 22.61 19.50 1.03 4.95 1.46 1.47 1.47 1.48

Br-Ol 16.13 13.95 13.05 1.21 3.61 0.76 1.14 0.74 1.13

Ol-An 13.65 13.20 11.21 2.39 3.89 2.07 2.01 2.08 2.03

Qz-Al 24.73 26.25 24.73 3.57 14.48 1.71 1.83 1.71 1.81

of binary mixtures. For each binary combination, a total of 100
mixtures with uniformly distributed fractional abundances was
generated. These spectra were then utilized to learn a mapping
between the relative positions and the fractional abundances
of the mixtures.

Table III shows the results obtained by applying different
spectral unmixing techniques to the real Relab binary mixtures.
As expected, except for the Hapke model, none of the mixing
models could perform well for this dataset. An interesting
observation is that NBRU performed reasonably well for all
binary mixtures, except for the Qz-Al combination. All four
methods proposed in this work perform well on all mixtures,
and even showed a better performance than the Hapke model
on the binary mixtures of Br-Ol, Ol-An, and Qz-Al. The
observed superiority of the proposed method over the Hapke
model can be partly attributed to the potential existence of a
scaling effect in the spectral reflectances of the mixtures. As
previously highlighted, mixing models and thus also the Hapke
model cannot deal with random scaling effects occurring in
measured spectra.

C. Experiment on self-crafted mineral dataset

For this dataset, the Hapke model performs not well, and
cannot be used to learn the mapping between the relative
position and the abundances. Instead, the spectroradiometer
dataset is used for training of the supervised approaches. The
performance of the mixing models and the proposed methods
was validated on the camera data.

Table IV shows the results obtained by applying the differ-
ent mixing models and the proposed methods to the camera
dataset. Due to the complexity of this dataset, none of the
mixing models performed well. Even though the Hapke model
is designed to describe the interaction of the incident light with

intimate mixtures, for these mixtures, its performance was not
significantly better than that of linear unmixing. An interesting
observation is that HPU and SPU performed identically, as
did HGU and SGU, indicating that the projection onto the
hypersphere or onto the simplex leads to similar results.

D. Experiment on multisensor hyperspectral benchmark
dataset

In the VNIR-SWIR wavelength regions, we utilized the
ASD spectroradiometer datasets to train the supervised ap-
proaches, and the proposed methods were validated on the
dataset acquired by the remaining seven sensors (PSR-3500
spectral evolution, Specim AisaFenix, IMEC hyperspectral
camera, Specim sCMOS, Senops HSC2, Cubert Ultrix X20P,
and Specim JAI (RGB)). In the MWIR-LWIR wavelength
regions, the dataset obtained by the spectroradiometer (Ag-
ilent 4300 FTIR) served as training data, and the unmixing
methods were validated using the data from the two imaging
sensors (Specim FX50 and Specim AisaOwl). The results of
all spectral unmixing techniques applied to this dataset are
shown in Table V. Unlike the previous experiments, where the
proposed methods or the Hapke model excelled in estimating
intimate mixtures, for this dataset, also the linear, bilinear,
and multilinear mixing models performed effectively, and their
performances were comparable to each other. Overall, the best
results were consistently obtained by one of the four proposed
methods. Specifically, the proposed methods demonstrated su-
perior performance in comparison to the models when estimat-
ing the fractional abundances of the intimate mixtures across
the seven sensors: Specim AisaOwl, Specim FX50, Specim
sCMOS, Cubert Ultrix X20P, Specim JAI(RGB), IMEC hyper-
spectral camera, and Specim AisaFenix. This demonstrates the
robustness and effectiveness of the proposed methods across
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TABLE IV
AE OF ALL METHODS ON THE BINARY INTIMATE MIXTURES OF THE SELF-CRAFTED MINERAL DATASET. THE BEST PERFORMANCES ARE SHOWN IN

BOLD.

FCLSU PPNM MLM Hapke NBRU HPU HGU SPU SGU

Al-Si 48.93 33.20 48.93 48.93 21.21 37.28 28.65 37.28 28.65

Ca-Si 59.75 38.90 20.42 59.75 41.90 3.43 3.59 3.43 3.58

Ca-Ti 15.62 12.60 12.32 15.99 13.68 6.10 5.77 6.11 5.77

Fe-Al 45.94 47.28 42.82 31.45 40.77 10.65 8.62 10.65 8.62

Fe-Ca 21.10 32.14 21.01 11.02 10.46 2.63 1.15 2.63 1.15

Fe-Si 61.02 65.56 59.96 55.57 59.21 17.70 25.92 17.70 25.92

Si-Ti 61.87 31.32 24.53 61.91 27.85 11.88 11.41 11.89 11.42

TABLE V
MEAN AE OF ALL METHODS ON THE BINARY INTIMATE MIXTURES OF THE MULTISENSOR HYPERSPECTRAL BENCHMARK DATASET. THE BEST

PERFORMANCES ARE SHOWN IN BOLD.

FCLSU PPNM MLM Hapke NBRU HPU HGU SPU SGU

LWIR

Specim AisaOwl 16.40±7.44 8.91±8.17 15.28±8.66 16.84±7.69 11.01±6.94 10.83±13.30 7.11±3.92 10.39±13.46 6.64±3.80

MWIR

Specim FX50 16.44±8.23 14.45±6.66 12.51±6.15 22.61±11.12 11.18±4.18 7.21±5.01 7.35±4.78 6.89±4.98 7.05±4.79

VNIR

Specim sCMOS 6.56±4.23 6.17±2.61 9.16±3.17 22.04±10.45 17.32±9.19 6.17±5.79 5.64±4.81 6.19±5.78 5.65±4.85

Cubert Ultris X20P 34.07±15.25 34.87±11.13 35.88±16.29 36.28±14.63 40.86±10.65 37.98±16.43 23.03±7.91 38.02±16.42 23.00±7.95

Specim JAI(RGB) 8.25±6.95 9.69±3.98 7.78±4.61 26.17±8.55 11.87±5.71 8.32±4.85 7.32±2.96 8.31±4.81 7.34±2.90

Senops HSC2 17.72±9.39 16.74±9.39 18.02±9.35 30.45±9.53 14.63±8.34 20.19±9.68 22.27±9.89 20.15±9.66 22.28±9.87

SWIR

IMEC hyperspectral camera 14.10±15.82 15.28±7.11 9.34±5.58 20.26±14.11 9.76±5.51 8.77±7.14 9.11±7.15 8.78±7.14 9.12±7.15

VNIRSWIR

PSR-3500 spectral evolution 8.14±5.39 6.28±3.05 7.58±4.93 17.90±9.16 14.41±7.0 7.76±4.79 7.70±4.77 7.80±4.75 7.73±4.74

Specim AisaFenix 8.74±6.68 6.62±2.45 8.33±4.81 23.09±9.19 23.14±11.09 5.92±1.63 6.83±2.28 5.94±1.69 6.81±2.35

a diverse range of datasets. PPNM demonstrated superior
performance in predicting abundances from the PSR-3500
spectral evolution dataset. On the other hand, NBRU emerged
as the top performer on the Senops HSC2 dataset.

V. DISCUSSION

The results of the experiments lead to the following overall
conclusions:

• Generally, the LMM proves unsuitable for accurately
describing the spectral reflectances of binary intimate
mixtures of mineral powders. Its AE varied between 7-
62%. Unexpectedly, the model showed good performance
on four out of the nine sensors from the multisensor
hyperspectral benchmark dataset (see Table V).

• Similar to the LMM, the bilinear model PPNM did not
perform well in estimating the fractional abundances of
binary intimate mixtures. In general, its performance was
better than the LMM for most of the datasets. Its AE
varied between 6.5-66%. This implies that this model is
not well-suited for characterizing the interaction of light
with intimate mixtures.

• Similar to the PPNM, the MLM outperformed the LMM
for predicting the fractional abundances of binary intimate

mixtures. However, the obtained AE’s remain excessively
high, making it unreliable.

• As mentioned in the introduction section, for the Hapke
model to perform well, the particles of the intimate mix-
tures have to be larger than the wavelength of the incident
light, be spherically shaped, and scatter light isotropically.
Among the three datasets studied in this work, only the
Relab dataset fulfilled the criteria, resulting in excellent
performance. On the remaining two datasets, it could not
outperform the LMM, suggesting less suitability of this
model for real-life applications.

• Even though NBRU performed better than the FCLSU,
PPNM, and MLM models on the Relab dataset, its
performance on the other datasets was not significantly
better than the models.

• The proposed methods demonstrated strong performance
across all binary intimate mixtures. On the majority of
mixtures, the projection methods HPU and SPU per-
formed equally well, as did the geodesic approaches
HGU and SGU (see Tables III, IV, and V). This already
eliminates the need of having to choose between the
simplex or the hypersphere projection. In this way, the
number of models to select from is narrowed down to two
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i.e., a projection unmixing (HPU or SPU) and a geodesic
unmixing method (HGU or SGU). We should note that
we applied these two approaches to several datasets and
the differences in the performance were not significant.
For most of the intimate mixtures, the differences were
between 1 to 2%. Therefore, the best method depends
very much on the intimate mixtures. A possible solution
is to average results from a projection and a geodesic
method (e.g., HPU and HGU).

• Even though Eqs. (4) and (5) share a similar structure,
their inputs are completely different. Eq. (4) relies on true
arc lengths, whereas Eq. (5) uses approximated geodesic
distances to determine the relative position of the binary
mixture.

• The relatively low performance of the proposed methods
on the binary mixtures of Al-Si arises from the featureless
nature of both minerals, as they exhibit almost identical
reflection values across all bands. To reduce random
scaling effects in the measured spectral reflectances, the
proposed methods involve projecting the data onto the
unit hypersphere or the high-dimensional simplex. While
this approach effectively addresses spectral variability,
it comes at the cost of removing information regarding
absolute magnitude. This information is crucial for accu-
rately performing spectral unmixing of mixtures with flat
endmember spectra, as the Al-Si mixtures.

• The poor performance of the proposed methods on Fe-Si
mixtures (see Section III-2 and Table IV) is due to the
unnatural behavior of the measured spectral reflectance
of the mixtures. As the spectral reflectances of several
mixtures lie outside of the curve connecting the endmem-
bers, these binary mixtures are projected on one of the
endmembers, i.e., Fe2O3. Fig. 7 shows that the spectra
of these mixtures, even the ones with low fractions of
Fe2O3 resemble the spectrum of pure Fe2O3.

Fig. 7. Spectral reflectance of binary mixtures of Fe2O3 and SiO2 acquired
by the hyperspectral camera.

• The reduced performance of the proposed methods on the
mixtures acquired by the Cubert Ultris X20P and Senops
HSC2 sensors can be attributed to the low quality of the

measured spectral reflectances (see discussion section of
[53]).

• Unlike mixing models, the major disadvantage of the
proposed methods is that they are supervised. To invert
the function F , they require training samples. When a
radiative transfer model can not well explain the interac-
tion of the light with the intimate mixtures, it cannot be
used to generate training data, and the training samples
should be real data, acquired by a specific sensor. This
makes the proposed approaches less suitable for use in
remote sensing applications, but this criterion can be
easily met in close-range applications in laboratory or
industrial settings.

• The major disadvantage of the proposed method is that it
is only suitable for estimating the fractional abundances
of binary mixtures. However, in close-range applications,
encounters with intimate mixtures of two pure substances
are common, a phenomenon extensively explored (refer
to [54], for example).

VI. CONCLUSION

This study introduced four distinct supervised methodolo-
gies aimed at estimating fractional abundances in binary inti-
mate mixtures. These techniques were specifically developed
to tackle nonlinearity and spectral variability simultaneously.
The approaches were validated on a large variety of binary
mixtures acquired by a wide range of sensors, spanning
wavelengths from the visible to the long-wavelength infrared
regions. The experimental results confirmed the effectiveness
of the proposed methodologies and their superiority over
mixing models. In future work, we will explore the feasibility
of extending the proposed method to accommodate higher-
order mixtures.
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