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A machine learning framework for estimating leaf
biochemical parameters from its spectral reflectance

and transmission measurements.
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Abstract—Spectral measurements are commonly applied for
the nondestructive estimation of leaf parameters, such as the
concentrations of chlorophyll ab, carotenoid, anthocyanin, and
brown pigment, the leaf water content, and the leaf mass per
area for quantification of vegetation physiology. The most popular
way to estimate these parameters is by using spectral vegetation
indices. The use of biochemical models allows to employ the full
wavelength range (400-2500 nm) and to physically interpret the
result. However, their performance is usually lower than that
of supervised machine learning regression techniques. Machine
learning regression techniques, on the other hand, have the
disadvantage that the relation between estimated parameters and
the reflectance/transmission spectra is unclear.

In this paper, a hybrid between a supervised learning method
and physical modeling for the estimation of leaf parameters is
proposed. In this method, a machine learning regression tech-
nique is applied to learn a mapping from the true hyperspectral
dataset to a dataset that follows the PROSPECT model. The
PROSPECT model then reveals the actual leaf parameters.
Two mapping methods, based on gaussian processes (GP) and
kernel ridge regression (KRR) are proposed. As an alternative,
a mapping onto the leaf absorption spectra is proposed as well.
The proposed methodology not only estimates the leaf parameters
with a lower error but also solves the interpretation problem
of the parameters estimated by the advanced machine learning
regression techniques. This method is validated on the ANGERS
and LOPEX dataset.

Index Terms—Hyperspectral, leaf parameter estimation, ma-
chine learning regression

I. INTRODUCTION

Retrieval of leaf parameters, e.g., the concentrations of
chlorophyll ab (Cab), carotenoid (Cxc), anthocyanin (Canth),
the water content (Cw), and the leaf mass per area (Cm) is
of great interest due to their direct connection with the vege-
tation’s physiological functions ([1],[2],[3],[4],[5],[6],[7],[8]).
The most popular way to relate reflectance/transmission spec-
tra with leaf parameters is by the use of spectral vegetation
indices ([9],[10],[11],[12],[13],[14]). As an example, the Nor-
malized Difference Vegetation Index (NDVI) ([12]) uses two
bands, one correlated with the chlorophyll (red), and the other
uncorrelated (near infrared).

Since techniques based on spectral vegetation indices use
a limited number of spectral bands, to extract critical infor-
mation from a quasi-continuous spectral signal, shape indices
were developed. In [13], they were categorized into four
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classes: a) Red-edge position ([15],[16]), b) Integration-based
indices ([17],[18]), c) Derivative-based indices ([19]), and d)
Continuum removal ([20],[21],[22],[23]).

Instead of relating a few wavelengths or individual absorp-
tion features with the leaf parameters, several deterministic
models have been developed to describe the optical properties
of plant leaves. These models can be distinguished by the
complexity level that is taken into account and the underlying
physics. In [24], they are categorized into four classes of
models. The simplest class of plate models represents the leaf
by absorbing plates with rough surfaces, isotropically diffusing
the incident rays of light. N-flux models describe leaves as
slabs, diffusing and absorbing the material. Stochastic and
radiative transfer models simulate the optical properties of the
leaf by using a Markov chain or by directly using a radiative
transfer equation. The most complex models are the ray tracing
models. They require the optical properties of the leaf material
and a detailed description of the internal structure of the leaf.

In the remote sensing community, an improved version of
the plate models, i.e., the PROSPECT model ([1],[3],[4]) is
widely used. It describes the optical properties of plant leaves
in the wavelength range λ ∈ [400, 2500] nm. This model
describes the reflectance and transmission spectrum of the leaf
as a function of the leaf parameters (Cab, Cxc, Canth, Cw,
Cm), and their corresponding specific absorption spectra, a
wavelength dependent refractive index (n(λ)) and a parameter
characterizing the leaf mesophyll structure (Nlms).

In the past two decades, much research has been reported on
the estimation of leaf biochemical parameters by inverting the
PROSPECT model ([1],[8],[25],[26],[27],[28],[29]). Among
the leaf biochemical parameters, Cab and Cw have been
studied most extensively because of their strong absorption
features in the visible and shortwave infrared ([29]). Quantifi-
cation of Cxc, Canth, and Cm was shown to be much more
challenging because their specific absorption spectra overlap
with the spectrum of Cab in the visible region and with
Cw in the shortwave infrared. To improve the performance
of the PROSPECT model for the retrieval of Cm, several
strategies have been proposed. In [27], the ill-posedness of
the PROSPECT inversion was alleviated by selecting for each
leaf biochemical parameter separately the wavelength region
to which it is sensitive. In [8], the spectral range from 1700 to
2400 nm was identified as the optimal range for the estimation
of Cm. In [30], the model PROSPECT-g was developed
that introduced a wavelength-independent factor to represent
anisotropic scattering in the elementary layer.
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However, one important drawback of the PROSPECT model
is its utilization of fixed specific absorption spectra and refrac-
tive index spectrum, hereby assuming that these spectra are the
same for the leaves of all plant species.

To account for the spectral variability of the refractive index
spectrum of plant leaves and the specific absorption spectra
of the leaf biochemical parameters, several advanced machine
learning regression algorithms have been used to retrieve
biochemical parameters ([2],[8],[29],[31],[32],[33],[34],[35]).
The goal of these algorithms is to model the predictive func-
tion that best approximates the relationship between spectra
and the parameters of interest. These are supervised methods
that require a training set of spectra and ground-truth infor-
mation of leaf parameters. Due to the nonlinear relationship
between spectra and the biochemical parameters, kernel meth-
ods have been introduced to make the regression algorithms
nonlinear. The most popular kernel-based regression methods
are Kernel Ridge Regression (KRR) and Gaussian Process
Regression (GP).

Opposed to the PROSPECT model that relates the re-
flectance/transmission spectra to the specific absorption spec-
tra of the leaf parameters, the machine learning regression
methods map the reflectance/transmission spectra directly to
the leaf parameters. One particular problem with this direct
mapping is that the physical relationship between the bio-
chemical parameters and the reflectance/transmission spectra
is lost. As a consequence, the estimated values of the leaf
parameters do not necessarily fall within their physical range,
and even can become negative. A nonnegativity constraint
could be enforced on the output variables, but in that case,
there is no closed-form solution.

In this paper, an alternative supervised technique for re-
trieval of leaf parameters is proposed. This method also
assumes that a training set of spectra and ground-truth infor-
mation of leaf parameters is available. The PROSPECT model
is used to generate spectra from the ground truth parameters of
the training data. Then, a mapping between the actual training
spectra and the spectra generated by the PROSPECT model is
learned. Two mapping methods are presented, based on KRR
([36],[37]) and GP ([38]). Once the mapping is learned, all
test spectra are mapped to the PROSPECT model, and the leaf
parameters of the mapped spectra are estimated by inverting
the PROSPECT model. As an alternative, the mapping to the
leaf absorption spectra which are, according to the PROSPECT
model, given by a linear combination of the specific absorption
spectra of the leaf parameters, is performed. Inverting the
linear model then delivers the parameters.

The proposed methodology combines the physical inter-
pretability of the PROSPECT model with the flexibility and
generalizability of the regression methods. The generaliza-
tion properties of the machine learning regression approaches
account for the spectral variability of the refractive index
spectrum of plant leaves and the specific absorption spectra
of the pigments. The use of the PROSPECT model allows
to physically relate the estimated leaf parameters to the re-
flectance/transmission spectra of the plant leaves.

The remaining of the paper is organized as follows: In
section II, the datasets and the different methodologies to

estimate leaf parameters from the hyperspectral datasets is
described. The PROSPECT model, the different kernel regres-
sion methods, and the proposed strategy will be explained. The
experimental results are presented in section III and discussed
in section IV. Section V concludes this work.

II. EXPERIMENTAL DATASETS AND METHODS

A. Datasets
1) ANGERS: The ANGERS leaf optical properties database

was generated in 2003 at INRA in Angers (France) [1]. This
dataset contains transmission and reflectance spectra of 276
leaf samples (43 plant species) and the ground-truth infor-
mation regarding four parameters (Cab, Cxc, Cw, Cm). ASD
Field spectroradiometers were used to capture leaf directional-
hemispherical reflectance and transmittance spectra (350-2500
nm) with a spectral sampling of 1.4 nm and 2 nm in the
VNIR (350-1050 nm) and SWIR (1000-2500) respectively.
To extract biochemical information, leaf discs were sampled
using a cork borer immediately after the measurement of
spectra. The fresh weight of these discs was measured before
placing them in a drying oven at 850C. After drying them
for 48 h, the Cw, and Cm were determined by reweighing.
Simultaneously, pigments were extracted using ethanol 95%
by grinding fresh leaf discs in a chilled mortar. To prevent
acidification, a small amount of MgCO3 and quartz sand
was added. The solution of ethanol 95% and pigments were
separated from other materials by centrifugation. Further, the
absorption spectra of the solution were measured using a dual
beam scanning UV-Vis spectrophotometer. Cab and Cxc were
estimated by using a multi-wavelength analysis ([39]). Cab
ranges between 0.78-106.70 µg cm−2 and Cxc ranges between
0.00-25.28 µg cm−2. The Cw ranges between 0.0044-0.034
cm and Cm ranges between 0.0017-0.0331 g cm−2.

2) LOPEX: This dataset contains transmission and reflec-
tion spectra of 330 leaf samples (66 plants) that were cap-
tured from 45 plant species and the ground-truth information
of four different leaf parameters (Cab, Cxc, Cw, and Cm)
[1],[40]. The leaf directional-hemispherical reflectance and
transmission spectra were captured over the wavelength range
400-2500 nm with 1 nm step size by using Perkin Elmer
Lambda 19 spectrophotometers. The spectral resolution of this
dataset is 1-2 nm and 4-5 nm in the VNIR (400-1000 nm)
and SWIR (1000-2500) respectively [40]. The procedure of
estimating leaf parameters from this dataset is similar to the
ANGERS dataset, except that acetone 100% was used for
extracting leaf pigments. Although this dataset contains four
leaf parameters, only Cw and Cm were used for validating
the proposed methodology, since the values of Cab and Cxc
for several leaves of the same plant ([41]) 1 are exactly the
same, making these values unreliable. The values of Cw of
this dataset range between 0.0021-0.0525 cm while the values
for Cm range between 0.0017-0.0157 g cm−2.

B. The PROSPECT model
The PROSPECT model ([1],[3],[4]) is the improved version

of a generalized “plate model” ([42],[43]), describing a leaf

1http://opticleaf.ipgp.fr/index.php?page=database

http://opticleaf.ipgp.fr/index.php?page=database
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as a pile of N homogeneous layers separated by N − 1 air
spaces.

The prospect model describes the total reflectance R(λ)
and transmission T(λ) of the N layers as a function of the
leaf absorption spectrum k(λ) and the leaf refractive index
spectrum n(λ) in the wavelength region 400-2500 nm. In its
turn, the leaf absorption spectrum is assumed to be a linear
combination of the plant biochemical parameters and their
corresponding specific absorption spectra:

k =

∑p
j=1 kspe,jcj

Nlms
(1)

where kspe,j is the specific absorption spectrum of leaf pa-
rameter cj and p is the number of leaf parameters. Nlms is
the leaf mesophyll structure.

Based on a large number of spectral measurements and
ground truth information on the leaf parameters (Cab, Cxc, Cw,
and Cm), part of which come from the ANGERS and LOPEX
dataset, the PROSPECT model has been inverted to obtain an
average refractive index spectrum n(λ) and average specific
absorption spectra of Cab, Cxc, Cw, and Cm [1]. Remark
that these are averages over a large number of plant species,
and they are assumed to be fixed. The latest version of the
PROSPECT model, PROSPECT-D [4] includes two extra leaf
parameters: Canth, and the concentration of brown pigment
(Cbr).

With the assumption of fixed n(λ) and kspe,j(λ), the
PROSPECT model can now be inverted to estimate the leaf
parameters from measured reflectance (Rmeas(λ)) and trans-
mission (Tmeas(λ)) spectra from individual leaves:

Θ = arg min
Θ

∑
λ

[(
Rmeas(λ)−R(λ,Θ)

)2
+

(
Tmeas(λ)−T(λ,Θ)

)2]
(2)

where Θ = {Nlms, {cj}pj=1}, and R(λ,Θ) and T(λ,Θ)
are the modeled reflectance and transmission spectra by the
PROSPECT model.

Although physically sound for the retrieval of leaf parame-
ters, the PROSPECT model has some problems. As mentioned
before, the refractive index spectrum is assumed to be constant,
while it actually can vary a lot between different leaf samples.
Another problem is that the chlorophyll a:b ratio is assumed
to be constant, and therefore, the specific absorption spectra
of chlorophyll a and b are estimated simultaneously ([4]).
Moreover, other pigments are present, the carotenoid group
contains xanthophylls and the anthocyanin group contains
several different anthocyanins and it is assumed that these
don’t influence the determination of the specific absorption
spectra from these groups. These assumptions lead to the
lower performance of the PROSPECT model compared to the
advanced machine learning regression algorithms.

C. Machine learning regression algorithms

Machine learning regression algorithms learn the
relationship between the high dimensional input
(reflectance/transmission spectra) and low dimensional
output (leaf parameters) based on a training dataset.

Let us consider a set of N samples {xi,yi}Ni=1, where

xi =

[
Rmeas,i

Tmeas,i

]
, Rmeas,i and Tmeas,i ∈ Rd

+ represent the

measured reflectance and transmission spectra and yi = Ci ∈
Rp

+ is the in-situ measurement of p leaf parameters. The goal
of machine learning regression is to learn a mapping function:

y = f(x) + ε (3)

where ε is additive noise. To learn this mapping function,
among N samples, n training samples X = {xi}ni=1 are used.
After learning this mapping, the performance of the model is
tested on the remaining (N − n) samples X∗ = {xi}Ni=n+1.
Two state-of-the-art machine learning regression algorithms,
KRR and GP are presented.

1) Kernel ridge regression: Ridge regression finds a linear
relationship between the input X = {xi}ni=1 and output Y =
{yi}ni=1:

yi = wTxi (4)

Generally, to tackle the problem of overfitting the training
samples, the quadratic cost function J is regularized by the
norm of the model weights w:

J = 1/2

(∥∥Y −wTX
∥∥2 + λ ‖w‖2

)
(5)

where λ is the regularization parameter. Minimizing 5 leads
to:

w =

(
XXT + λI

)−1(
XYT

)
(6)

where I is the identity matrix. In the above equation, a matrix
with size (2d× 2d) needs to be inverted. To do the inversion
after kernelization, equation 6 has to be re-arranged to contain
a matrix of size (n× n):

w =

(
X(XTX + λI)X−1

)−1(
XYT

)
=X

(
XTX + λI

)−1

YT

(7)

Once the mapping is found, the prediction of the leaf param-
eters from the test data Y∗ = {yi}Ni=n+1 is obtained by:

Y∗ = Y

(
XTX + λI

)−1

XTX∗ (8)

To allow nonlinear relationships between input and output,
ridge regression needs to be kernelized. A kernelized extension
of ridge regression is presented in [36][37]. The original
dataset is projected onto an infinite dimensional feature space
(xi → φ(xi)). Using the kernel trick, i.e., k(xi,xj) =
φ(xi)

Tφ(xj), the mapping of a nonlinear spectra X∗ to the
leaf parameters Y∗ is obtained by:

Y∗ = f(X∗) = Y

(
K(X,X) + λI

)−1

K(X,X∗) (9)

where K(X,X) is the matrix of kernel functions between
the n training samples (with a dimension of (n × n)) and
K(X,X∗) is the matrix of kernel functions between the
n training samples and the (N − n) test samples (with a
dimension of (n× (N − n))).
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In this work, a radial basis function (RBF) kernel is applied
as the kernel function:

k(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
(10)

In equation 9, the (n×n) kernel matrix K that is regularized
by λ needs to be inverted. For each test sample, the only
computation involved is to determine the kernel function
between the n training samples and the test samples. The
regularization parameter λ and the parameter of the kernel
(σ) were tuned by 10-fold cross-validation of the training
samples [44]. To determine the optimal pair (σ̂, λ̂), all possible
combinations of σ ∈

{
2−15, · · · , 23

}
and λ ∈

{
2−15, · · · , 25

}
were applied and the average mapping error was calculated.

2) Gaussian processes: An alternative strategy to learn the
nonlinear relationship between the input X and the output
Y is given by gaussian process regression (GP). GP is a
bayesian approach that estimates the distribution of mapping
functions that are consistent with the training set {(xi,yi)|i =
1, 2, · · · , n}.

It is assumed that the observed leaf parameters (yi) are
related to the input spectra (xi) as follows:

yi = f(xi) = φ(xi)
Tw (11)

with prior distribution for w ∼ N (0,Σ2d). The function φ(·)
maps the input spectrum to an infinite dimensional feature
space. The mean and covariance of the outputs can then be
computed as follows:

E[f(xi)] =φ(xi)
TE[w] = 0

E[f(xi)f(xj)] =φ(xi)
TE[wwT ]φ(xj) = φ(xi)

TΣ2dφ(xj).
(12)

GP assumes that the covariance of the outputs is modeled by
a squared exponential kernel function:

φ(xi)
TΣ2dφ(xj)

T = k(xi,xj) = σ2
f exp

(
−

2d∑
b=1

(
xbi − xbj

)2
2l2b

)
(13)

where lb is a characteristic length-scale for each spectral band
and σ2

f is the variance of the input spectra.
The joint distribution of the estimated leaf parameters from

the test data (f(X∗)) and the training leaf parameters (Y) is
then given by:

p(f(XT
∗ ),YT ) ∼ N

(
0,

[
K(X∗,X∗) K(X∗,X)
K(X,X∗) K(X,X) + σ2

nI

])
= N

(
0,

[
Σ11 Σ12

Σ21 Σ22

])
(14)

where σ2
n is the noise variance of the training spectra,

K(X∗,X) is the matrix of kernel functions between the test
samples and the n training samples, and K(X∗,X∗) is the
matrix of kernel functions between the test samples.

When inverting the partitioned matrix:(
Σ11 Σ12

Σ21 Σ22

)−1

=

(
Σ−1 −Σ−1Σ12Σ

−1
22

−Σ−1
22 Σ21Σ

−1 Σ−1
22 + Σ−1

22 Σ21Σ
−1Σ12Σ

−1
22

)
(15)

with Σ = Σ11 − Σ12Σ
−1
22 Σ21, (14) can be factorized into the

predictive distribution p(f(XT
∗ )|YT ) and the marginal p(YT ):

p(f(XT
∗ ),YT ) =p(f(XT

∗ )|YT )p(YT )

=N (Σ12Σ
−1
22 YT ,Σ)N (0,Σ22)

(16)

The estimated mapping of the nonlinear spectra X∗ to the leaf
parameters Y∗ is then given by:

Y∗ = f(X∗) = YΣ−1
22 Σ

T
12

= Y(K(X,X) + σ2
nI)−1K(X∗,X)T (17)

The hyperparameters involved in (13) are automatically op-
timized by minimizing the log marginal likelihood of the
training set: log(p(YT |XT )).

D. The proposed method: mapping to the PROSPECT model

The main disadvantage of applying GP and KRR to map
the spectra directly to the parameters is that the estimated leaf
parameters are not physically related to the spectra. When leaf
parameters are estimated by applying equation 9 or 17, there is
no guarantee that the estimated leaf parameters are positive. To
solve these problems, the PROSPECT model and the machine
learning regression techniques are combined in such a way
that the estimated parameters are physically interpretable while
the accuracy of the parameter estimation is comparable to
the unconstrained direct mapping to the leaf parameters. The
main idea is to learn a mapping from the actual spectra to
spectra that follow the PROSPECT model, after which the
leaf parameters can be estimated by inverting the model.

This method consist of the following steps:

1) In the first step, target spectra
(

xtarget
i =

[
Ri

Ti

])
are

generated by using the ground truth information (Ci) and
the PROSPECT model.
2) In the second step, a mapping between the true spectra
(X) and the target spectra (Xtarget = {xtarget

i }ni=1) is
learned:

Xtarget = f(X) + ε (18)

The learning of this mapping can be performed using
any machine learning regression algorithm. In this work,
GP and KRR were used. When the mapping was learned
using GP, the mapping between the true test spectra
(X∗ = {xi}Ni=n+1) and the target spectra (Xtarget

∗ =
{xtarget

i }Ni=n+1) is given by:

Xtarget
∗ =f(X∗)

=Xtarget(K(X,X) + σ2
nI)−1K(X∗,X)T

(19)

using equation 13 for computing the kernel functions.
We will refer to this method as GP PROSPECT. The
prediction using KRR is given by:

Xtarget
∗ =f(X∗)

=Xtarget(K(X,X) + λI)−1K(X∗,X)T
(20)

using equation 10 for computing the kernel functions. We
will refer to this method as KRR PROSPECT.
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3) The PROSPECT-D model contains seven leaf param-
eters. In case the number of ground truth leaf parameters
is smaller than those that are involved in the PROSPECT
model, parameters that are not a part of the ground
truth information are estimated from the true spectra(
{Rmeas,i,Tmeas,i}Ni=1

)
by inverting the PROSPECT

model (see 2). Now, the ground truth information be-
comes:

Ctrue/est.
i = [Ci(1 : l),Ci(l + 1 : p)]T (21)

with l is the number of parameters that are part of
the ground truth information and p the total number of
parameters that are involved in the PROSPECT model.
In step 1, the target spectra are then generated by using
Ctrue/est.
i .

4) In the final step, leaf parameters from the mapped

spectra
(

x̂target
i =

[
R̂i

T̂i

])
are estimated by inverting the

PROSPECT model.

E. Alternative method: mapping to the leaf absorption spectra

Instead of mapping the hyperspectral dataset onto the
PROSPECT spectra, an alternative approach is to estimate the
leaf parameters by mapping the hyperspectral dataset (X) onto
the absorption spectra ki. So, this time, in step 1, the target
spectra xtarget

i that are generated are absorption spectra by using
the ground truth information (Ci) and equation 1. To maintain

consistent notations, we will define xtarget
i =

[
ki
ki

]
.

The mapping between a hyperspectral training set and the
ground truth absorption spectra is learned by GP or KRR
(step 2). Then, the test hyperspectral data are mapped onto
the absorption spectra. The parameters C∗

i from the mapped

spectra
(

x̂target
i =

[
kR∗
i

kT∗
i

])
are estimated by (step 4):

C∗
i = arg min

C∗
i

∑
λ

[(
kR∗
i (λ)− k(λ,C∗

i )
)2

+
(
kT∗
i (λ)− k(λ,C∗

i )
)2]

(22)

where kR∗
i and kT∗

i are the mapped absorption spectra from
the reflectance and the transmission spectrum respectively, and
C∗
i is the estimated leaf parameter of the test spectrum. This

estimation can be performed by including physical constraints
of the leaf parameters, i.e., lower and upper bounds.

When the mapping between the hyperspectral training set
and the ground truth absorption spectra is learned by GP, we
will refer to this method as GP LINEAR. When KRR is used,
we refer to the method as KRR LINEAR.

F. Experimental set-up and Evaluation statistics

To reduce the computational complexity and the dimen-
sionality, the hyperspectral datasets with a 1 nm step-size
were resampled to 10 nm. For estimating the performance
of the described methods, the ground truth data set was
divided into a randomly selected training and a test set.
For the ANGERS dataset, five different experiments were
performed, by selecting 15, 45, 75, 105 and 135 training

samples randomly respectively. For the LOPEX dataset, six
different experiments were performed, by selecting 15, 45,
75, 105, 135 and 165 training samples randomly respectively.
Each experiment was repeated 100 times.

The following methods were compared:
• The PROSPECT model
• Methods that map the spectra directly to the leaf param-

eters: KRR and GP
• The proposed methods that map the spectra onto spectra

that follow the PROSPECT model: KRR PROSPECT
and GP PROSPECT

• The proposed methods that map the spectra onto absorp-
tion spectra that follow a linear model: KRR LINEAR
and GP LINEAR

The performance of each regression model for each leaf
parameter was evaluated based on the normalized root mean
squared error (NRMSE) between the estimated and ground
truth leaf parameter to measure the accuracy and the aver-
age Pearson’s determination coefficient (R2) to measure the
goodness-of-fit:

NRMSE (%) =

√
1

N−n
∑N
i=n+1(yji − ŷji)2 × 100

max(yj(n+1) : yjN )−min(yj(n+1) : yjN )
(23)

R2 = 1−
∑N
i=n+1(yji − ŷji)2∑N
i=n+1(yji − ȳj)2

(24)

where yji is the true leaf parameter j and ŷji the estimated
leaf parameter j for test sample i, and ȳj is the mean of the
true leaf parameter j over all test samples.

III. RESULTS

A. ANGERS dataset

Fig. 1 and Fig. 2 show the mean and standard deviation of
the NRMSE and R2 respectively for 100 runs as a function
of the applied number of training samples that were selected
randomly. From top left to bottom right, results are shown for
water content (Cw), the concentration of chlorophyll ab (Cab),
leaf mass per area (Cm) and the concentration of carotenoid
(Cxc).

The results indicate that the estimation error is reduced
when the number of applied training samples is increased.
Also, almost all methods outperform the PROSPECT model
from a certain number of training samples on. For each of
the two regression methods, the proposed strategy of mapping
onto the PROSPECT model or the leaf absorption spectra
outperforms the direct mapping onto the leaf parameters. In
general, mapping onto the leaf absorption spectra delivers the
best results. Except for WC, GP LINEAR outperforms all
other methods. It outperforms the PROSPECT model already
when only 15-45 training samples are applied.

Fig. 3 shows the validation of the prediction models for
each of the four leaf parameters for the case of 75 training
samples. Each time, from the 100 experiments, the result with
the best NRMSE and R2 is depicted. It can be seen that all
methods accurately estimated Cab, Cxc, Cw and Cm for a large
range of values. Both KRR and GP predicted negative values



6

15 45 75 105 135

Number of training samples

3

4

5

6

7

8

9

10

11

12

13

14

N
R

M
S

E
 (

%
)

C
w

GP_PROSPECT

GP_LINEAR

KRR_LINEAR

GP

KRR_PROSPECT

KRR

PROSPECT

15 45 75 105 135

Number of training samples

3

4

5

6

7

8

9

10

N
R

M
S

E
 (

%
)

C
ab

GP_LINEAR

GP_PROSPECT

KRR_LINEAR

GP

KRR_PROSPECT

KRR

PROSPECT

15 45 75 105 135

Number of training samples

2

4

6

8

10

12

14

16

18

20

22

N
R

M
S

E
 (

%
)

C
m

GP_LINEAR

GP_PROSPECT

KRR_LINEAR

KRR

GP

KRR_PROSPECT

PROSPECT

15 45 75 105 135

Number of training samples

6

7

8

9

10

11

12

13

14

15

N
R

M
S

E
 (

%
)

C
xc

GP_LINEAR

KRR_LINEAR

GP_PROSPECT

GP

KRR_PROSPECT

KRR

PROSPECT

Fig. 1: NRMSE (100 runs) obtained by the PROSPECT model, GP, GP PROSPECT, GP LINEAR, KRR, KRR PROSPECT
and KRR LINEAR, in function of applied number of training samples (the ANGERS dataset). Cw, Cab, Cm, and Cxc refer
to water content, the concentration of chlorophyll ab, leaf mass per area, and the concentration of carotenoid respectively.

for Cab and Cxc. These results demonstrate that mapping to
the PROSPECT model or the leaf absorption spectra avoids
negative values and obtains a sound physical interpretation of
the estimated parameters.

B. LOPEX dataset

Fig. 4 and Fig. 5 show the mean and standard deviation of
the NRMSE and R2 respectively for 100 runs as a function
of the applied number of training samples that were selected
randomly for the LOPEX dataset. On the left, the results are
shown for Cw, and on the right for Cm. Fig. 6 shows the
validation of the prediction models for Cw and Cm for the case
of 75 training samples. Each time, from the 100 experiments,
the result with the best NRMSE and R2 is shown.

Similar results are obtained as with the ANGERS dataset,
although the advantage of the machine learning regression
methods over the PROSPECT model are not so clear in case of

Cw. In case of Cm, mapping onto the leaf absorption spectra
outperforms the other methods.

C. Training on the ANGERS and tested on the LOPEX dataset

To test the generalization capability of the proposed method-
ology, the models were trained by using the ANGERS dataset
and were validated on the LOPEX dataset. Although the
ANGERS dataset contains ground truth of four different leaf
parameters, only Cw and Cm were used to make it compatible
with the LOPEX ground truth leaf parameters. The experiment
was limited to the wavelength region 900-2500 nm, because
leaf pigments do not have absorption features in that region,
and thus will not influence the results. The hyperspectral
dataset (reflectance/transmission) with a 1 nm step-size was
resampled to 8 nm resulting in 201 wavebands. Fig. 7 shows
the validation of the prediction models for Cw and Cm when
the models were trained by using 276 training samples from
the ANGERS dataset. The proposed methods outperformed
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Fig. 2: R2 (100 runs) obtained by the PROSPECT model, GP, GP PROSPECT, GP LINEAR, KRR, KRR PROSPECT and
KRR LINEAR, in function of applied number of training samples (the ANGERS dataset). Cw, Cab, Cm, and Cxc refer to
water content, the concentration of chlorophyll ab, leaf mass per area, and the concentration of carotenoid respectively.

the direct mapping onto the leaf parameters. KRR LINEAR
was the best performer for the estimation of both Cw and Cm.

D. Training on the LOPEX and tested on the ANGERS dataset

Similarly, the models were trained by using the LOPEX
dataset and were validated on the ANGERS dataset. Fig. 8
shows the validation of the prediction models for Cw and Cm
when the models were trained by using 330 training samples
from the LOPEX dataset. From the figure, it can be observed
that KRR PROSPECT was the best performer for estimating
Cw with the lowest NRMSE and the highest R2 while both
direct mapping methods (KRR and GP) could not perform
better than the PROSPECT model. For the estimation of Cm,
the PROSPECT model was the best performer with the lowest
NRMSE but R2 of KRR LINEAR was the highest. Both KRR
and GP estimated negative values for Cm for several spectra.

IV. DISCUSSION

From the experimental results, the following general con-
clusions can be drawn:

• The supervised methods outperform the use of the
PROSPECT model for estimating leaf biochemical pa-
rameters from both the LOPEX and the ANGERS dataset.
This is partially because these methods make use of
a training dataset. However, the generic nature of the
regression algorithms allows them to account for the
spectral variability of the specific absorption spectra and
refractive index spectrum. It also demonstrates that a few
training samples (15-45) are enough to outperform the
PROSPECT model.

• The strategy of mapping reflectance/transmission spec-
tra onto either the PROSPECT model or to the linear
model outperforms methods that directly map to the
leaf parameters. The main difference is that the direct
mapping techniques lose the physical relation between the
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Fig. 3: Validation between the measured (Y -axis) and the estimated (X-axis) values of the concentration of chlorophyll ab
(µg cm−2), carotenoid (µg cm−2), water content (cm), and leaf mass per area (g cm−2). The presented results are the best
prediction from the 100 runs using 75 training samples (the ANGERS dataset).

reflectance/transmission spectra and the leaf parameters.
In Fig. 3 (Cab and Cxc) and Fig. 8 (Cm), negative
values can be observed for the estimated leaf biochemical

parameters by direct mapping (GP and KRR).
• The performance of both the PROSPECT model and

the supervised techniques is affected by the uncertainty
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in the ground truth measurements of the biochemical
parameters. The uncertainty on Cw and Cm is mainly due
to improper measurements of the weight and area of the
leaf discs. The uncertainty in the pigment concentrations
and in particular in Cxc is expected to be high. In the
ANGERS dataset, Cxc was estimated from the absorption
spectra of the solution (ethanol 95% and pigments) by
using the equation of Lichtenthaler (1987) ([39]). Due
to the complexity of the mixture of chlorophyll and
carotenoid pigments, a chromatography technique (high-
pressure liquid chromatography) would be required to
prepare high-quality ground truth of Cxc. Moreover, to
predict Cxc accurately by using the PROSPECT model,
the specific absorption spectrum for each carotenoid
pigment from the carotenoid group is required. In the

ANGERS dataset, no distinction is made between these
different pigments.
Because of the high uncertainty in the ground truth of
Cxc, both the supervised approaches and the PROSPECT
model performed low at the estimation of this parameter.
Although the results on the other parameters are better,
one cannot expect errors to be lower than the uncertainties
in the ground truth.

• The low performance of the PROSPECT model for esti-
mating Cm is reported in many studies [8],[45],[46],[47].
This can also be observed in the results of the LOPEX
dataset where the error (NRMSE) on the estimation
of Cm was higher than 20%. This is because a sin-
gle specific absorption spectrum is defined for the leaf
mass per area, i.e., an average spectrum for dry matter.
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Fig. 6: Validation between the measured (Y -axis) and the
estimated (X-axis) values of water content, and leaf mass per
area. The presented results are the best prediction with best
NRMSE and R2 from the 100 runs using 75 training samples
(the LOPEX dataset).

However, dry matter contains various organic materials
(cellulose, hemicellulose, lignin, proteins, starch), each
with their absorption spectrum. When using a single
specific absorption spectrum, it is implicitly assumed that

the relative proportion of each of these single constituents
are constant among the leaves. The main reason for the
better performance of the PROSPECT model for this
parameter on the ANGERS dataset is that the specific
absorption spectrum of dry matter was better adapted to
the ground truth measurements. All supervised methods
perform better on the estimation of Cm, because they
adapt to the spectral variability of the dry matter.

• The performance of the proposed methodologies was
equivalent to or better than the PROSPECT model when
an independent dataset was used for the model validation.
This demonstrates their generalization capability.

• An advantage of the proposed methodology is that any
nonlinear regression algorithm can be applied for learning
the mapping. In this work, two different kernel methods
were compared. Gaussian processes generally seem to
outperform kernel ridge regression when training and
testing samples are from the same dataset. But kernel
ridge regression outperformed gaussian processes when
training and testing samples were independent from each
other. On the other hand, gaussian process was compu-
tationally expensive when spectra were either mapped to
the PROSPECT model or the linear model.

• Although the leaf mesophyll structure (Nlms) impacts
simulated spectra, there is no protocol to experimen-
tally estimate Nlms from leaf samples. Generally, it is
determined by inverting the PROSPECT model. Nlms
has a maximum effect in the NIR from 800-1000 nm
where absorption is at its minimum ([1]). To estimate it,
in [1], only three wavelengths were used to invert the
PROSPECT model, corresponding to the maximum re-
flectance, the maximum transmittance, and the minimum
absorptance respectively. In this work, the values were
obtained by inverting the PROSPECT model using the
entire spectrum (400-2500 nm) and were very close to
the optimal ones provided by the datasets (ANGERS and
LOPEX).

• To investigate the impact of the number of ground truth
leaf parameters on the retrieved leaf biochemical param-
eters, Cab was disregarded from the ANGERS dataset.
The estimation error of Cxc (highly correlated with Cab)
was increased by only 0.1-1% when 75 training samples
were used for learning the mapping.

• Although BRF spectra are more practical for leaf-
level applications, they contain a significant specular
component. The PROSPECT model is calibrated with
directional-hemispherical reflectance and transmission
factor spectra, captured by spectrometers equipped with
an integrating sphere, and cannot simulate BRF spec-
tra. To account for the specular component, in [48], a
physically-based method called PROCOSINE was pro-
posed. Similarly, in [49], the PROSPECT model was
coupled with a continuous wavelet transform (PROCWT)
to suppress the effect of the specular component. The
generic nature of the proposed methodology allows re-
placing the PROSPECT model either with PROCOSINE
or PROCWT. The PROCOSINE or PROCWT model
can tackle the specular component, while the advanced
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machine learning algorithms can account for the spectral
variability of the specific absorption spectra and refractive
index spectrum.

• The use of the PROSPECT model assumes that both
reflectance and transmission spectra are available to
estimate leaf biochemical parameters. However, when
only reflectance or BRF spectra are available, as is the
case at the regional or the global level, the proposed
regression methodology can be combined with canopy
models (such as PROSAIL) to estimate both leaf area
index and chlorophyll content.
To demonstrate the potential of the proposed method-
ology for canopy level applications, we performed an
experiment, only using the reflectance spectra of both
LOPEX and ANGERS data sets. Also, in this case, we
observed that the proposed methodology outperformed
the PROSPECT model, while the direct mapping meth-
ods performed worse or only slightly better than the
PROSPECT model in most cases.

• All methods were developed in Matlab and ran on an
Intel Core i7-8700K CPU, 3.20 GHz machine with 6
cores. The runtimes of the proposed methods on the
LOPEX dataset (see III-D) and the ANGERS dataset
(see III-C) are shown in Table I. As can be seen, the
runtime of GP PROSPECT and GP LINEAR is rela-
tively high due to the involvement of 2×203 hyperpa-
rameters. KRR PROSPECT, KRR LINEAR, and KRR
have a lower runtime compare to GP PROSPECT and
GP LINEAR because it involves only two free parame-
ters.

TABLE I: The runtime in seconds.

Method timeLOPEX (s) timeANGERS (s)
KRR PROSPECT 25.34 25.85
GP PROSPECT 384.02 384.12
KRR LINEAR 25.17 25.89
GP LINEAR 384.78 382.29

KRR 20.96 20.96
GP 4.99 5.16

V. CONCLUSION

In this work, a hybrid between a model-based and super-
vised data-driven method for leaf parameter estimation from
spectral reflectance/transmission measurements was proposed.
The proposed method is based on the learning of a mapping
between a true hyperspectral dataset and the PROSPECT
model. Two kernel-based mapping methods are proposed.
As an alternative, mapping to the leaf absorption spectra
is proposed as well. The proposed methods are shown to
outperform the PROSPECT model and supervised machine
learning regression methods that map directly to the leaf
parameters.

The procedure to map reflectance/transmission spectra to
the PROSPECT model can be extended to any biochemi-
cal/physical model. The main limitation of this method is that
it cannot be applied to estimate parameters which are not part
of existing radiative transfer models.
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[23] A. B. González-Fernández, J. R. Rodrı́guez-Pérez, M. Marabel, and
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Fig. 7: Validation between the measured (Y -axis) and the
estimated (X-axis) values of water content and leaf mass per
area (the LOPEX dataset). The training was performed by
applying the ANGERS dataset. Cw and Cm refer to water
content and leaf mass per area respectively.
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Fig. 8: Validation between the measured (Y -axis) and the
estimated (X-axis) values of water content and leaf mass
per area (the ANGERS dataset). The training was performed
by applying the LOPEX dataset. Cw and Cm refer to water
content and leaf mass per area respectively.
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