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MRI diffusion data suffers from significant inter- and intra-site variability, which hinders
multi-site and/or longitudinal diffusion studies. This variability may arise from a range of
factors, such as hardware, reconstruction algorithms and acquisition settings. To allow a
reliable comparison and joint analysis of diffusion data across sites and over time, there
is a clear need for robust data harmonization methods. This review article provides a
comprehensive overview of diffusion data harmonization concepts and methods, and
their limitations. Overall, the methods for the harmonization of multi-site diffusion images
can be categorized in two main groups: diffusion parametric map harmonization (DPMH)
and diffusion weighted image harmonization (DWIH). Whereas DPMH harmonizes the
diffusion parametric maps (e.g., FA, MD, and MK), DWIH harmonizes the diffusion-
weighted images. Defining a gold standard harmonization technique for dMRI data is
still an ongoing challenge. Nevertheless, in this paper we provide two classification tools,
namely a feature table and a flowchart, which aim to guide the readers in selecting an
appropriate harmonization method for their study.

Keywords: harmonization, normalization, diffusion MRI, multi-site, inter-scanner, review

INTRODUCTION

Diffusion-weighted magnetic resonance imaging (dMRI) is an MRI technique in which the image
contrast is related to the diffusion of water molecules inside tissues. dMRI has brought great
innovation to neuroimaging analysis, since it enables non-invasive probing of brain microstructure.
Nevertheless, many studies using diffusion data rely on small sample sizes, leading to poor
reproducibility of results. Fortunately, research is evolving toward large multicenter studies with
the aim of increasing statistical power. However, the success of a joint analysis is highly dependent
on the comparability of the multi-site data.

Diffusion data of the same subject obtained at different sites and/or acquired at different
time points can be different due to local and/or temporal scanner characteristics resulting in a
high inter- and intra-scanner variability (Vollmar et al., 2010; Grech-Sollars et al., 2015; Nencka
et al., 2017). These variabilities may arise from a range of factors, such as hardware (scanner
manufacturer, field strength, transmitter/receiver coils, magnetic field inhomogeneities, etc.),
reconstruction algorithms (SENSE, GRAPPA, etc.), acquisition parameters (voxel size, number of
gradient directions, echo time, repetition time, etc.), and image quality [signal to noise ratio (SNR),
etc.] (Alexander et al., 2006; Ni et al., 2006; Jones, 2010; Vollmar et al., 2010). All these factors affect
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the final diffusion signal intensity and consequently the diffusion
metrics, preventing reliable multi-site and/or longitudinal
diffusion studies (Pfefferbaum et al., 2003; Vollmar et al., 2010;
Mirzaalian et al., 2018).

In literature, many conflicting inferences have been reported
between studies, in which findings based on small distinct
cohorts are used to generalize conclusions for an entire
population, without considering intra- and inter-site differences
(Button et al., 2013; Kelly et al., 2018; Smith and Nichols,
2018). To determine the site effects on diffusion data, a
number of studies examined diffusion phantom data to detect
scanner related variabilities (Teipel et al., 2011; Zhu et al.,
2011; Walker et al., 2013; Pullens et al., 2017; Timmermans
et al., 2019). Up to 7% of inter-site variability in diffusion
metrics was demonstrated in phantoms (Teipel et al., 2011;
Palacios et al., 2017). However, using parameters obtained
from phantom data to correct human data is not advised
due to the structural complexity of human biological tissue
(Karayumak et al., 2019).

Previous research has established that inter-site variability
is non-uniform across the white matter of the human brain,
with a variability up to 5% in diffusion metrics of major
brain tracts (Vollmar et al., 2010; Grech-Sollars et al., 2015;
Nencka et al., 2017). Recently, investigators have examined
the reproducibility of multi-shell diffusion images in a multi-
site study involving traveling subjects (Tong et al., 2019).
A 7.7% median inter-center coefficient of variation was estimated
for the track density maps in whole white matter among
the subjects. These inter-site variabilities in diffusion metrics
are similar to the changes due to pathologies. For example,
in the work of Kumar et al. (2009), it was shown that
the variability in diffusion metrics in the corpus callosum
between controls, mild Traumatic Brain Injury (TBI) and
moderate TBI patients, are of the same order as intra-scanner
changes. Furthermore, a quantitative study by Mahoney et al.
reported longitudinal changes in diffusion metrics in dementia
patients compared to controls in the same order of the site
variabilities (Mahoney et al., 2015). From these findings, we can
infer that it is crucial to reduce the variability across multi-
center diffusion data.

Inter-site variability can be reduced by acquiring data
with scanners from the same manufacturer at each site and
using similar acquisition parameters (Vollmar et al., 2010;
Fox et al., 2012; Cannon et al., 2014). However, diffusion
parameters of subjects scanned using the same acquisition
protocol may still differ significantly across sites (Nyholm
et al., 2013; Jovicich et al., 2014; Mirzaalian et al., 2015). These
differences may come from several sources, such as sensitivity
of head coils, imaging gradient non-linearities, magnetic
field inhomogeneities and other scanner related factors.
Hence, there is a substantial need for robust harmonization
techniques (Jenkins et al., 2016; Jovicich et al., 2019). The
overall concept of harmonization methods is to apply
statistical or mathematical concepts to reduce unwanted
site variability while maintaining the biological content.
In the last decade a multitude of harmonization methods
have been developed.

For this review, we have categorized the brain dMRI methods
in two main groups depending on the data-format used as
input for harmonization. The first category uses calculated
diffusion (para)metric maps, such as Fractional Anisotropy
(FA), Mean, Axial and Radial Diffusivity (MD, AD, and RD,
respectively), Kurtosis Anisotropy (KA), Mean, Axial, and Radial
Kurtosis (MK, AK, and RK, respectively), as input (i.e., diffusion
parametric map harmonization; DPMH). While the second
category uses diffusion weighted images (DWI) as input (i.e.,
diffusion weighted image harmonization; DWIH).

To the authors’ knowledge, no previous study has provided
an extensive report of diffusion harmonization methods. In this
review paper, a comprehensive overview of those methods is
presented, including an investigative analysis of their strengths
and weaknesses. DPMH and DWIH methods reported since
2009 are described. This paper is organized as follows.
Section “Literature Search” describes the search mechanism
used for selecting the literature on brain diffusion data
harmonization. In Section “Requirements for Harmonization,”
the requirements for harmonization are specified. Sections
“Diffusion Parametric Map Harmonization Methods” and
“Diffusion Weighted Image Harmonization Methods” depict the
DPMH and DWIH harmonization methods reported in the
literature. Section “Discussion” then presents an overview of the
main characteristics of the methods and a guideline that helps the
user to select an adequate harmonization method for her/his data.
Finally, in Section “Conclusion” conclusions are drawn.

LITERATURE SEARCH

Two authors (MSP and RP) independently performed a literature
search across two databases (PubMed and Google Scholar) using
combinations of the following search terms: “harmonization,”
“harmonisation,” “normalization,” “normalisation,” “multi-site,”
“multi-center,” “inter-site,” “intra-scanner,” “diffusion,” “MRI,”
“DTI,” “meta-analysis,” “covariates,” “spherical harmonics,” “deep
learning.” Besides the usual search engines, additional important
papers were selected by checking the reference lists of identified
relevant publications on data harmonization. After removing
the duplicates, all identified articles were screened by title
and abstract. Studies were included if they described diffusion
harmonization methods and concepts.

REQUIREMENTS FOR HARMONIZATION

For the majority of dMRI harmonization procedures, co-
registration is of crucial importance. Co-registration of
diffusion images aims to find spatial transformations to
map different images to a common reference space, allowing
direct comparison of various image properties. Prior to
harmonization, a voxel-by-voxel correspondence between
multiple diffusion volumes is needed, in order to minimize
errors in subsequent calculations. In particular, voxel-wise
DPMH and DWIH approaches require all subjects to be in
the same space in order to extract common features that are
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site-related rather than anatomically specific. The common
space can be a study-specific template or a standard brain
atlas template, as for example, the ICBM152 template of the
Montreal Neurological Institute (MNI) space1. Many tools are
available for registering diffusion images, such as Advanced
Normalization Tools (ANTs; Avants et al., 2011), FMRIB
Software Library (FSL; Jenkinson et al., 2012), and elastix
(Klein et al., 2010; Shamonin et al., 2014).

Additionally, a dataset with a balanced number of subjects
per site is advised for robust harmonization. Many DPMH and
DWIH methods use these subjects to efficiently learn a set of so-
called mapping parameters used to characterize the differences
between the images across scanners. Additionally, an important
requirement, especially for DWIH methods, is the availability of
training data, i.e., matched subjects across sites for obtaining the
mapping parameters between sites. Age, gender, handedness, and
socio-economic status need to be matched among the subjects
to remove the statistical differences at group level. Moreover,
for some machine learning techniques, there is a need for DWI
data of individual subjects that are scanned at different sites,
within a small interval of time, to train a network to recognize
site-related underlying inter-scanner/inter-site differences in the
characteristics of the images to harmonize.

Overall, for all the methods, it is highly recommended
to use a balanced dataset and to co-register the diffusion
images or maps to a common template. The recommendations
are to assure that statistical differences are only due to
hardware, software and protocol differences, and ensure spatial
compatibility intra- and inter-subjects during the harmonization
procedure. Furthermore, each method has its own specifications
and limitations that are described in the following sections.

DIFFUSION PARAMETRIC MAP
HARMONIZATION METHODS

Diffusion parametric map harmonization methods perform
particular transformations on the diffusion parametric maps that
enable data pooling and reduction of unwanted intra- and inter-
site variability. For a joint analysis of multi-site diffusion metric
maps that have been estimated using a given diffusion model [e.g.,
diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI),
neurite orientation dispersion and density imaging (NODDI),
etc.], statistical or mathematical DPMH methods can be applied.
The purpose of these methods is to perform joint statistical
analysis on multi-site data. It can be performed in two ways: (1)
without modifying the original diffusion parametric maps (see
Subsection “Modeling Inter-Site Variability Within the Statistical
Analysis”); (2) by modifying the parametric maps with a
posteriori analysis (see Subsection “Harmonizing the Parametric
Maps Based on Regression of Covariates”). DPMH methods allow
to pool DWI parametric maps obtained from different diffusion
acquisition schemes (diffusion directions, b-values, repetition
time, echo time, etc.). The DPMH methods described below are
meta-analysis, mega-analysis, and regression of covariates.

1http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009

Modeling Inter-Site Variability Within
the Statistical Analysis
Meta-Analysis
Meta-analysis is a popular statistical analysis technique in
biomedical research that combines results of independent multi-
site and/or longitudinal studies. The general concept is to
perform a group-wise statistical analysis separately for each site,
followed by a weighted combination of effect size over the
different studies to strengthen conclusions about the research
question (Zhu et al., 2019). Meta-analysis is useful to pool
retrospective data with sample sizes that are too small to draw
valid conclusions independently (Petitti, 1994).

Figure 1 presents an example of meta-analysis in which
statistical inferences are obtained independently per site from
the FA maps of different groups of subjects. As a first step, an
intra-site statistical analysis is performed. The resulting statistical
scores (e.g., z-score) of the metric of interest (e.g., FA) can then be
weighted by each site’s sample size or with respect to an estimate
of precision, such as effect size (Salimi-Khorshidi et al., 2009), to
obtain the final statistical score. In contrast to this approach, the
overall statistical score can also be obtained by modeling site as a
random effect (Worsley, 2002; Beckmann et al., 2003; Woolrich
et al., 2004). For example, in the work of Teipel et al. (2012),
meta-analysis was used to investigate FA and MD differences
between dementia patients and controls in a multi-site study,
taking scanner effects into account. Voxel-based t-statistics were
converted to z-scores after which a variance component analysis
was applied, effectively reducing effects of site (random effect),
age and gender (fixed effects).

One of the main advantages of meta-analysis is the possibility
to pool data from small/underpowered studies to derive robust
conclusions. It is also the only way to pool studies for which only
aggregated data are reported (e.g., group difference statistics or
the mean FA per region of interest) and for which the whole
brain images are not available. However, one drawback is that
if the statistics performed in the individual studies are biased
by study size, the population estimate will be also affected.
Another disadvantage is that the statistical analysis should first
be performed separately for each diffusion metric of interest.

Mega-Analysis
In contrast to meta-analysis, mega-analysis refers to a technique
of summarizing the statistics from the individual subjects of all
sites to jointly evaluate population group differences (Jahanshad
et al., 2013; Zhu et al., 2019). As depicted in Figure 1, in
mega-analysis group-difference statistics are not calculated for
each site separately. Instead, group differences are identified by
a site-weighted combination of the statistical scores from all
individuals jointly.

When the individual diffusion data (e.g., FA) is available
per subject, the measures can be pooled to calculate the effect
size across the entire group in a mega-analysis. To take into
account the variability due to site differences, the site effect
can be modeled using a mixed linear model statistical approach
(or another statistical method to analyze the dataset), just as
in meta-analysis.
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FIGURE 1 | Scheme of meta- and mega-analysis. FA measures from sites 1 and 2, for two groups of subjects: controls and patients. The FA frequency for each
group is estimated for each of the sites. Meta-analysis performs the statistical evaluation between groups for each site separately, followed by a weighted
combination of its statistical results, while in mega-analysis a weighted statistical evaluation is performed for all sites jointly.

While not directly harmonizing the imaging data itself, mega-
analysis allows a joint analysis of two (or more) datasets to
evaluate a common characteristic in the population (Jahanshad
et al., 2013; Kochunov et al., 2014; Zhu et al., 2019). Some
limitations in this approach are that the size of the cohort may
not be sufficient to capture the variance of the entire population,
pre-processing steps could be very different for each site (if
the FA maps are computed independently), and the statistical
analysis has to be performed separately for each variable (e.g., FA,
MD, AD, and RD).

Meta-and mega-analysis have successfully been adopted in the
field of neuroimaging by the Enhancing NeuroImaging Genetics
through Meta-Analysis (ENIGMA) consortium (Jahanshad et al.,
2013; Kochunov et al., 2014). The general concept of the
harmonization method proposed by the ENIGMA-DTI group

is that each site preprocesses the diffusion metric maps (e.g.,
FA) separately. The statistical scores are harmonized using
meta- or mega-analysis, to improve data comparability and
robustness. Findings of the ENIGMA-DTI group indicate that
results obtained by meta- and mega-analysis may differ, in
favor of the latter. In multi-center studies with a moderate
amount of variation between cohorts, a mega-analysis statistical
framework appears to be the better approach to investigate
structural neuroimaging data, showing greater stability and
higher power for jointly analyzing the data (Kochunov
et al., 2014). Nonetheless, when the individual diffusion
metric maps are not available, meta-analysis could serve
as a valuable alternative. However, meta-analysis should be
performed carefully and one should take into account cohort
trends (Kochunov et al., 2014).
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FIGURE 2 | General scheme of a voxel-wise regression of covariates harmonization approach. For these methods the voxel intensity of the diffusion metric maps
(yspv, the intensity for a specific site s, subject p and voxel v) is modeled as a combination of a voxel-wise intercept (αv), a voxel-wise slope (βv) multiplied by a
model-specific dependent variable (xspv), and an error component (εspv). Each of the regression of covariates approaches will have a different model and dependent
variable to describe the biological and site-related effects on the diffusion metric intensities. Next, the estimated coefficients are used to compute the new
harmonized diffusion intensity values (yharmonized

spv ).

Harmonizing the Parametric Maps Based
on Regression of Covariates
Covariates, also known as explanatory variables, are variables
that may affect the estimate of the diffusion metric under
study. These covariates can be variables of clinical interest
or unwanted confounding variables, such as MR hardware
(e.g., scanner manufacturer, field strength, and coils), software,
acquisition parameters (e.g., echo time, repetition time, b-value,
and gradient directions) or image quality. One way to handle
unwanted variability due to confounding factors is the use of
regression models (Pourhoseingholi et al., 2012). This approach
is illustrated in Figure 2. After fitting a regression model to
the diffusion values, adjusted values can be derived that no
longer contain the effect of the covariates. The use of the
regression of covariates harmonization approach to correct
for variability in software and hardware has been reported
extensively in the literature (Forsyth et al., 2014; Venkatraman
et al., 2015; Fortin et al., 2016, 2017; Pohl et al., 2016;
Timmermans et al., 2019). Regression of covariates methods
can be divided into two categories: global harmonization
methods and voxel-wise harmonization methods. Both classes are
described below.

The methods present different options for harmonizing
diffusion metric maps (e.g., FA and MD maps). For briefness, we
use the notation ymethod

spv to denote the diffusion metric measure
y harmonized by a specific method, at site s, for subject p
and voxel v.

Global Harmonization
Human-phantom based harmonization (HuP)
A straightforward approach for data harmonization is to
apply scanner-specific correction factors derived from human
phantom data (i.e., a group of individuals scanned at multiple
scanners/sites within a short period of time) (Pohl et al., 2016).
One scanner type is defined as the reference (R) and the other
as the target (T). The goal is to correct the diffusion metric

maps of the target site. For this purpose, a correction factor
(F) is calculated as the ratio of the mean value (across the
human phantoms) of the diffusion metric in the reference

and target, respectively: F =

∑
p

ȳR
p /N∑

p
ȳT

p /N
, where ȳR

p and ȳT
p are the

mean metric value across the white matter voxels for human
phantom p at the reference and target site, respectively, and
N is the number of human phantoms. Successively, once
the scanner-specific correction factors are determined, metric
maps y for subject p and voxel v scanned in the target
scanner (yspv) are scaled by the appropriate correction factor
in order to obtain the HuP-harmonized diffusion metric maps:
yHuP

spv = yspvF.
The main advantages of the correction factor are its simple

derivation and the fact that it has been demonstrated to correct
for differences that are likely attributable to the MR system
manufacturer (Pohl et al., 2016). However, human phantom
datasets from multiple sites are required. Moreover, a unique
correction factor per scanner type only partially reduces the
harmonization problem due to its intrinsic non-linearity, i.e.,
scanner type differences are not uniform but vary in a highly
non-linear fashion across the brain (Karayumak et al., 2019).

Hardware-phantom based harmonization (HaP)
Timmermans et al. (2019) presented global multi-site
harmonization models, using phantom data acquired at
multiple centers in a longitudinal study. For this study, dedicated
diffusion single-strand phantoms were developed by HQ
Imaging (Heidelberg, Germany). The study aimed to build a
comprehensive model for the variability of FA. Protocol-specific
and site-specific effects were included in the models, considering
hardware (scanner vendor and head coil), software, acquisition
parameters (bandwidth, TE, and TR), image quality (signal-
to-noise ratio and mean residual), as fixed predictor variables,
and site as random predictor variable, taking into account that
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fixed predictors relate to effects that are constant across all
individuals, and random predictors relate to effects that vary
across individuals.

Different models were proposed to describe the diffusion
metric values yp of the phantoms p considering the differences
between acquisitions and were evaluated via the combination
of the fixed and random predictors (xp and zp, respectively):
yHaP

p = β0 + βnxp + b0p + bnpzp + εp, where β0 is the fixed
intercept, βn the fixed effects slope, b0p the random intercept
per phantom, bnp the random slope per phantom, and εp the
error. In order to find the most comprehensive model for
the diffusion metric data, many linear mixed effects models
were evaluated by the Akaike information criterion (AIC).
The selection of model parameters was based on three model
categories: protocol-specific intercept, protocol-specific intercept
with quality effects, and protocol-specific intercept with protocol-
specific quality effects. Each model was further divided into
submodels depending on the included variables. AIC is used to
select which model best describes the variations in the metric
intensities. The results showed that scanner manufacturer, SNR,
head coil, bandwidth and TE are the covariates that best describe
the sources of variability in the inter-site phantom data, and
should be used to harmonize the diffusion metric maps of multi-
center studies.

The use of hardware phantoms for harmonization has several
advantages. Hardware phantoms can be scanned multiple times,
for a longer time, and their images do not suffer from motion
artifacts. The phantom content is controllable and remains stable
over time. Duplicated phantoms can be easily obtained by
several sites, obviating transport. The main drawback of hardware
phantom based harmonization is that such phantoms do not fully
represent the complexity of the human brain, and therefore have
different, intra- and inter-scanner variabilities. Obviously, voxel-
wise harmonization (cf., Section “Voxel-Wise Harmonization”)
of brain dMRI is not possible using phantom data.

Global scaling (GS)
In the global scaling method presented by Fortin et al., 2017, a
linear model is used to correct the site effect on the diffusion
metric maps (Fortin et al., 2017). The estimated location
(θs,location) and scale (θs,scale) model parameters, per site s,
encapsule the variabilities in the diffusion metric maps due to site
effects. They are estimated by fitting a linear regression model:
Ȳs = θs,location + θs,scale Ȳ + εs, where Ȳs is an nv ×1 vector
containing the average diffusion metric intensity per voxel for the
number of voxels nv computed over all subjects of site s, Ȳis an
nv x1 vector containing the average diffusion metric intensity per
voxel for the number of voxels nv computed over all subjects of
all sites together (considered a reference), and εs is the residual
error. From the estimated parameters, the harmonized diffusion

metric maps are calculated as: yGS
spv =

yspv − θ̂s,location

θ̂ s,scale
.

The main advantage of global scaling is that it takes into
account information from all sites. Some disadvantages are that
the removal of site effects can also remove biological variability,
and that it does not account for spatial heterogeneity of the site
effects in the brain.

Voxel-Wise Harmonization
Removal of Artificial Voxel Effect by Linear regression
(RAVEL)
The Removal of Artificial Voxel Effect by Linear regression
(RAVEL) method (Fortin et al., 2016) uses voxels in the
cerebrospinal fluid (CSF) voxels as control region. The CSF-
voxels are used for harmonization because their diffusion metric
intensities are unassociated with disease or other clinical factors
and are theoretically only influenced by site-related variabilities.
In this method, the voxel-wise intensity of the diffusion metric
maps (yspv) is described as a combination of four components:
the average intensity in the sample (α1t), the known clinical
covariates of interest (βXt), the unknown site-related factors
(γZt) and a residual (R): yspv = α1t

+ βXt
+ γZt

+ R. Where the
symbol t indicates the transpose operation, yspv is the v × p
matrix containing the registered and normalized voxel intensities
for v voxels and p subjects, α1t is a v × 1 vector containing the
average voxel intensity per site, X is a p × k matrix containing
for each subject p the correspondent biological covariates k,
β is the coefficient matrix associated with X, Z is a p × m
matrix containing for each subject p the associated m unwanted
coefficient factors and γ is the coefficient matrix associated
with Z.

The CSF voxels are used to estimate the unknown/unwanted
factors (Zt) by assuming that α and β are null for the CSF
since there is no association between control voxels and clinical
features. Thus, the CSF diffusion intensities (yCSF

spv ) are described
as: yCSF

spv = γCSFZt
+ RCSF. Singular value decomposition is used

to obtain the first latent factors (w1sp) from the CSF voxels,
representing the site-related variability common to all voxels.
Next, the voxel-wise RAVEL coefficients (ψv) are estimated
fitting the linear regression model to the voxel-wise diffusion
intensities (yspv) and the first latent factors (w1sp): yspv = αv +

ψvw1sp + εspv, where εspv is the residual error. Lastly, the RAVEL-
harmonized diffusion metric map intensities are computed:
yRAVEL

spv = yspv − ψ̂vw 1sp .
An advantage of the RAVEL method is that it is a voxel-

wise harmonization method that uses intra-subject information
that is not affected by disease (CSF control region) for
improving comparability between subjects. However, if these
control regions do not carry the information about the inter-
site variability and/or are related to the parameter of interest,
then the correction may remove relevant biological information,
becoming a disadvantage to use this method in such cases.

Surrogate Variable Analysis (SVA)
Surrogate Variable Analysis (SVA) identifies and estimates
unknown, unmodeled or unwanted sources of variation from the
data (Leek et al., 2012; Fortin et al., 2017). The so-called batch
effects can be defined as measurements of unwanted variability
that have qualitatively different behavior across conditions and
are unrelated to the biological or scientific variables in a study
(Leek et al., 2010). In the context of multi-site harmonization,
SVA is particularly useful when it is not known which datasets
belong to which site. Through singular value decomposition, the
data is decomposed into a set of m surrogate variables (z1, ..., zm).
Variables with the largest variance, and which are not covarying
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with a priori defined factors of interest such as age, gender or
diagnosis, are then regressed out of the data. The voxel-wise SVA
coefficients (8mv) are estimated by fitting the surrogate variables
(zmsv, for surrogate variable m, site s and voxel v) and the original
diffusion metric intensities (yspv, for site s, subject p and voxel

v) to the linear regression model: yspv = αv +
m∑

n=1
8nvznsp + εspv,

where αv is the voxel-wise overall measure of the diffusion metric
and εspv is the residual error. Next, the SVA-harmonized diffusion
metric map intensities (ySVA

spv ) are computed as: ySVA
spv = yspv −

m∑
n=1

8̂nvz nsp .

Surrogate variable analysis is implemented in the SVA
package for R, and is applicable voxel-wise (Leek et al., 2012).
A strong point is that it estimates all common sources of latent
variation, without needing to know their exact origin (e.g., site).
Nonetheless, if this inherent variation is related to biological
variability (e.g., patients in site A, controls in site B) then SVA
is not appropriate.

Combined association test (ComBat)
The combined association test (ComBat) uses regression of
covariates for data harmonization (Fortin et al., 2017). It started
as a batch effect correction tool (similar to SVA) used in
genomics, in which the batch effect is known (Johnson et al.,
2007). It is a powerful and fast alternative for SVA in cases where
site is an a priori known factor.

ComBat describes the non-harmonized diffusion metric in
each voxel (yspv, for site s, subjects p and voxel v) by an adjustment
model that consists of the following terms: an overall measure of
the diffusion metric (αv), the product of a design matrix (Xsp)
containing the covariates of interest (e.g., gender and age) and
the vector of corresponding regression coefficients (βv), a term
representing the so-called additive site effects (γsv) and, finally,
the product of a normally distributed error term (εspv) and a
factor representing the so-called multiplicative site effects (δsv):
yspv = αv + Xspβv + γsv + δsvεspv. The site-specific parameters
of the adjustment model are assumed to have parametric prior
distributions, being a normal distribution for the additive factor
(γsv) and an inverse gamma distribution for the multiplicative
factor (δsv). The parametric distributions are estimated from
the data, using an empirical Bayes framework to decrease the
variance of the site effects. It assumes that all voxels share
a common distribution, and are used to infer the properties
of the site-effects. Subsequently, ComBat-harmonized diffusion
parameter maps are created based on the estimated additive
and multiplicative factors (γ

∗

sv and δ
∗

sv, respectively): yComBat
spv =

yspv − α̂v − Xspβ̂v − γ∗sv
δ∗sv

+ α̂v + Xspβ̂ v.
It was reported that the ComBat harmonization method

preserves between-subject biological information (Fortin et al.,
2017). However, a limitation of this method is that the
optimization procedure assumes the site effect parameters to
follow a particular parametric prior distribution (Gaussian and
Inverse-gamma), which might not generalize to all scenarios or
measures. Moreover, it is not clear how non-linearities in the
signal due to site effects propagate through the preprocessing
techniques, as well as model fitting procedures.

DIFFUSION WEIGHTED IMAGE
HARMONIZATION METHODS

Diffusion parametric map harmonization methods for data
pooling and joint analysis, meta- and mega-analysis and
regression of covariates, have been reported extensively in the
literature. Nonetheless, the harmonization of diffusion metric
maps has several drawbacks, as described in section 4 for each of
the methods. Recall that one of the main drawbacks is the lack of
knowledge on how the scanner-specific non-linearities propagate
in the diffusion model fit, possibly affecting the harmonization
procedure of the diffusion metric maps. Recently, the use of the
dMRI intensity signal has been proposed to perform model-free
harmonization approaches. These methods are categorized as
DWIH (Mirzaalian et al., 2015; Koppers et al., 2018; Huynh et al.,
2019; Karayumak et al., 2019; Tax et al., 2019). DWIH methods
rely on mapping the DWI images to a reference space. An
overview of these DWIH approaches is given below. The methods
described are the rotation invariant spherical harmonics method,
machine learning algorithms, and the method of moments.

Rotation Invariant Spherical
Harmonics (RISH)
The use of rotation invariant spherical harmonics (RISH)
for dMRI signal harmonization has been first proposed by
Mirzaalian et al. (2015) and several improvements to this method
have been presented since then (Mirzaalian et al., 2016, 2018;
Karayumak et al., 2019).

The core idea of the RISH method is to map the diffusion
weighted imaging (DWI) data from a target (T) site to a reference
(R) site. The voxel-wise DWI signal intensity S = [s1, ..., sg]

t,
along g unique directions, can be compactly represented in a
spherical harmonics (SH) basis: S ≈

∑
i

∑
j

CijYij, composed by

SH basis functions (Yij) and their corresponding coefficients
(Cij) of order i and degree j, with j = 1,2,...,2i + 1. The RISH
features, per harmonic order, are extracted from the estimated SH

coefficients as: RISHi = ||Ci
2
|| =

2i+1∑
j=1

(C2
ij).

The harmonization procedure, which is illustrated in Figure 3,
consists of two parts: (1) learning scale maps between sites
from training data and (2) applying the learned scale maps
to harmonize all DWI of the target site. The learning part is
performed using training data that is a subset of subjects that are
matched by age and gender for both sites. From the DWI, the
RISH features are calculated and used to create a multivariate
template, per b-value shell. In template space, the voxel-wise
expected value per site s and per harmonic order i [Es

i (v)] of
RISH features is calculated as the sample mean over the number

of training subjects (Ns): Es
i (v) ≈

Ns∑
p=1

RISHs
i (v, p)/Ns, where s

represents the site, v the voxel location in template space and
p the training subject. Then, voxel-wise scale maps (8i) are

computed for each harmonic order i: 8i(v, R, T) =

√
ER

i (v)
ET

i (v)+ε
.

Next, in the application part, the scale maps are used to calculate
the harmonized SH coefficients of the target data per harmonic
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FIGURE 3 | Representation of the RISH harmonization approach. Consider the purpose of modifying the DWI acquired in a target site, to correspond to the DWI
acquired in the reference site. In the learning part using matched subjects, the RISH features are computed in native space from the DWI for the two data sets
separately: reference (R) and target (T ) sites. Then RISH features are transformed to a common space, the expected values are calculated per site s and per
harmonic order i (Es

i ), after which the scale maps are calculated (8i). The scale maps, which are computed for each harmonic order i, represent the transformation of
the RISH features from target to reference site. Next, in the application step, the SH coefficients from the target site are calculated, the scale maps are warped into
native space and applied to the SH coefficients, creating harmonized SH coefficients in native space. Those are transformed back to the signal intensity domain,
obtaining the harmonized DWI. Thus, harmonized DWI from the target site can be jointly analyzed with the ones from the reference site.

order: Ĉij(v) = 8̂i(v)Cij(v). Next, the image is transformed from
SH domain back to the intensity signal domain [Ŝ(v)] using the
harmonized SH coefficients: Ŝ(v) =

∑
i

∑
j

Ĉij(v)Yij.

Rotation invariant spherical harmonics has many advantages,
the most important one being that it harmonizes the raw
dMRI signal in a model-independent manner. The mapping
captures only site-related differences, preserving the between-
subject biological variation and fiber orientation (Karayumak
et al., 2019). However, a limitation is that it requires dMRI data
with similar acquisition parameters across sites. It also requires
the same number of matched controls that are scanned in both
reference and target sites to obtain the scale maps.

Machine Learning
In the past decade, several diffusion data harmonization methods
have been developed employing a machine learning approach,
such as sparse dictionary learning (SDL) and deep learning (DL).

Sparse Dictionary Learning (SDL)
Sparse dictionary learning is a representation learning method
aiming at representing the input data as a linear combination of
elements (the sparse dictionary), thus reducing the complexity of
the harmonization problem (Mairal et al., 2010). The dictionary
elements are small patches of spatial and angular image features
(e.g., 3 × 3 × 3 × 5 voxels) that are learnt from the data
itself. From a large set of random features, SDL extracts the
common features with which full images can be reconstructed.
The idea behind applying SDL for harmonization is that when a
sparse dictionary can be constructed from data originating from
multiple sites, the learnt imaging features will not include features
of inter-site variability, as those are not common across the
input data. Reconstructing dMRI data with a sparse dictionary,
would then effectively harmonize the data (St-Jean et al., 2016;
St-Jean et al., 2017).

An advantage of this method is that modeling a signal with
such a sparse decomposition (sparse coding) is very effective in
detecting salient regions that are related to the more informative
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areas. However, a disadvantage is that, depending on the interest
points and the type/resolution of the image, sometimes only a few
regions are detected.

Deep Learning (DL)
The DL approach, which is illustrated in Figure 4, consists of
two steps: (1) Training: the learning stage in which the network
parameters are optimized using the DWI from the same subjects
acquired in two sites (target and reference) and (2) Inference:
the trained network is applied to harmonize all subjects of
the target site.

The current deep learning algorithms for diffusion data
harmonization are mainly based on spherical harmonic features.
The aim is to bring all the images in the same SH domain,
by modifying the SH coefficients of the target data creating
harmonized DWIs of the target site that are comparable to
the DWIs from reference site. To achieve this, the network is
trained to generate the harmonized image starting from the image
acquired at a target site, using the image acquired in the reference
site as ground truth, as illustrated in Figure 4. Hence, diffusion
data from subjects that were acquired in both reference and target
sites are used for training the network. Once it is trained, the
inference can be done for other subjects from the target site, to
create harmonized images.

Tax et al. (2019) presented a summary of four deep learning
algorithms and one sparse dictionary learning harmonization
algorithm used to evaluate two harmonization tasks in diffusion
MRI: scanner-to-scanner mapping and angular- and spatial-
resolution enhancement, i.e., mapping between standard and
state-of-the-art acquisitions. Each of the algorithms was built
with different net architectures and strategies. The deep
learning algorithms that were evaluated by Tax et al. (2019)
are: spherical harmonic network (SHNet), spherical harmonic
residual network (SHResNet), spherical network (SphericalNet),
and fully convolutional shuffling network (FCSNet). The used
SH coefficients, on which the net is based, are obtained starting
from the diffusion signal of the same subjects scanned in different
scanners and with different acquisition schemes. Here we
summarize some of these methods. A more extensive benchmark
can be found in Tax et al. (2019).

Spherical Harmonic Network (SHNet)
Spherical Harmonic Network is based on a classical Fully
Connected Network (FCN) architecture, composed of a cascade
of three fully connected layers, in which the rectified linear
unity (ReLU) function is used as the activation function (Golkov
et al., 2016; Koppers et al., 2017). Next, a batch normalization
layer is used to stabilize. The different weights of the neural
network layers are tuned by using paired images from different
sites. The net is trained by matching data between the target
site and the reference site to obtain the harmonized image.
Once the network is trained, it can be used to harmonize
unseen datasets from the target site. The main advantage of
this network is that it is a simple FCN approach to tackle the
harmonization problem. However, it might not be sufficiently
sensitive to learn all the complex features of an accurate
harmonization procedure.

Spherical Harmonic Residual Network (SHResNet)
A Convolutional Neural Network (CNN) approach has been
presented by Koppers et al. (2018). In this case, the network
algorithm is based on the novel concept of residual structure by
He et al. (2016). This approach is based on the difference between
the input and the ground truth (target signal). The main building
blocks of SHResNet are so-called functional units consisting of
three convolutional layers, where each functional unit predicts
the coefficients of a single SH order (Koppers et al., 2017). The
main advantage of using a residual network structure consists
in the robustness against the degradation problem (decrease
of accuracy due to the increased network depth) and hence
enabling the use of a deeper network (more convolutional layers).
Nonetheless, the harmonization is done per harmonic order of
the SH signal, thus, the signal from both target and reference
should have the same SH orders.

Spherical Network (SphericalNet)
SphericalNet is a novel deep learning approach based on spherical
surface convolutions (Koppers and Merhof, 2018). It transforms
the signal from SH space into spherical surface space, and
performs three spherical surface convolutions. After each of these
convolutions, a sigmoid activation function is applied in order
to limit the signal’s range between 0 and 1 (Tax et al., 2019).
The signal is converted back to SH space, followed by three
3-D convolutional layers with parametric ReLU as activation.
Spatial information is combined in the last convolutional layer
to project neighborhood info into one voxel. The advantage
of this algorithm is that it uses spherical information during
spatial convolution to improve accuracy in the harmonization
procedure. However, for this algorithm the intensity signal has
to be transformed twice (for SH domain and then to spherical
surface domain), which could introduce additional complexity to
the harmonization problem.

Fully Convolutional Shuffling Network (FCSNet)
Fully convolutional network is a patch-based deep learning
harmonization algorithm inspired by Tanno et al. (2017). The
architecture of this network contains four hidden convolutional
layers with ReLU activation. Large patches are used as input,
overlayed to cover the entire brain, and smaller patches are
obtained as output. The last layer contains a “shuffle” operation
and is composed of “skip” connections to increase the prediction
accuracy. The cost function for this algorithm has two parts:
channel-wise loss and loss on the function-value. The algorithm
uses the patched-based fully convolutional network for diffusion
data harmonization and resolution enhancement. One advantage
of this approach is the use of large patches that inform about
the local neighborhood and are beneficial for the harmonization
procedure. On the other hand, neighborhood data could be
biased and end up corrupting the harmonization algorithm.

Deep learning algorithms demonstrated the robust capability
of solving non-linear problems such as data harmonization.
However, some limitations are: (1) overfitting, i.e., when the
model is more accurate in fitting known data but less accurate
in predicting unseen data, (2) the need for a large amount
of matched subjects scanned at different sites with similar
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FIGURE 4 | Representation of a deep learning approach for diffusion data harmonization. The purpose of the method is to modify the DWI acquired at the target
site, to correspond to the DWI of the same subject acquired at the reference site. In the training part, DWI from the target site is used as input and DWI from the
reference site as ground truth, for patient X. Matched subjects are used to tune the weights of the harmonization network. During the forward phase, the network
produces the predicted harmonized DWI that is compared with the corresponding expected DWI from the reference site. The difference between the predicted and
the ground-truth (cost function) is back propagated into the network to update the weights in such a way that the loss decreases and the predicted harmonized DWI
is closer to the ground truth. In the inference step, the trained network is used to generate the predicted harmonized DWI from unseen DWI data of the target site,
which then become comparable to the DWI from the reference site.

acquisition sequences per site for training and (3) possible
distortion of pathological information, if the net is trained with
healthy subjects and then applied to patients.

Method of Moments (MoM)
Method of Moments is a statistical harmonization approach
that uses spherical moments to map DWI images from target
to reference sites (Huynh et al., 2019). The first moment (M1)
corresponds to the spherical mean and the second central
moment (C2) corresponds to the spherical variance. The core
idea is to match the spherical mean and spherical variance
in order to correct for unwanted variability. Each voxel-wise
n-th spherical moment (Mn) is defined as the diffusion signal
at constant b-value (Sb) raised to the power of n integrated
over all directions g: Mn[Sb] = ∫Sn

b(g)dg. MoM matches M1and
C2 per b-shell b using the mapping function (fθ): M1[Rb] =

M1[fθ(Tb)] and C2[Rb] = C2[fθ(Tb)], where Rb is the diffusion
signal acquired at the reference site, and Tb the signal at the

target site. Considering the mapping function as fθ={α,β}(S) =
αS+ β, α and β are the mapping coefficients calculated as αb =√

C2[Rb]
C2[Tb]

and βb = M1[Rb] − αbM1[Tb]. The MoM parameters
are calculated in template space and then warped back to native
space of the target subjects and applied to the DWI images. The
MoM-harmonized DWI signal is SMoM

b = αbSb + βb.
The MoM approach is illustrated in Figure 5. In this method,

M1 and C2 are computed in native space from the DWIs acquired
in the reference and target sites. Next, the moment images are
warped into a common space that is defined by the target data at
the population level. Population moment median images across
subjects are calculated for each of the moments for each of the
sites. The mapping parameters (α and β) for the target site are
obtained by matching the population median moments using
the linear mapping function fθ. These parameters are warped to
native space for each of the subjects of the target site and the
mapping function is applied voxel-wise. Lastly, the harmonized
DWI of the target data is obtained.
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FIGURE 5 | Representation of the method of moments harmonization pipeline. The purpose of the method is to modify the DWI of the target site, to correspond to
the DWI acquired in the reference site. Initially, the diffusion signal in the reference (R) and target (T ) are used to compute spherical means (M1[R] and M1[T]) and
spherical variances (C2[R] and C2[T]) in native space for each b-shells (b). The spherical moments are warped to a common space, based on the target population.
Then the moment medians are calculated across subjects (M1[Rb], C2[Rb], M1[Tb], and C2[Tb]). Afterward, the mapping parameters (αb and βb) are calculated per
b-shell, by matching the population moments. The mapping parameters are warped to native space and applied voxel-wise to the DWI images of target site
subjects, obtaining the harmonized DWI.

Advantages of the MoM are that it (1) allows direct
harmonization of DWI images, without the need to represent
them in any other space domain (e.g., SH space); (2) preserves
directional information of the signal; (3) does not require
that reference and target data have the same number of
gradient directions; (4) does not require training data or
matched populations with controls/patients, and (5) allows the
harmonization of either a subject or a population of subjects.
However, MoM as described in Huynh et al. (2019) does not
harmonize multi-site data with different spatial resolution or
different b-values. Possible solutions to cope with different spatial
resolutions and different b-values would be to resample the
reference data to the resolution of the target data, and rescale the
signal, respectively, both prior to harmonization.

DISCUSSION

Multi-center and/or longitudinal studies using diffusion
MRI data are significantly affected by inter- and intra-site

variability. Sources of variability include, but are not limited
to, hardware, acquisition settings, reconstruction algorithms,
incompatible data formats and data quality. To cope with
this variability, regulations and strategies are needed to
facilitate harmonization of multi-center diffusion MRI data.
In that respect, MR scanner vendors and researchers have a
responsibility regarding the access and storage of DWI data,
and transparency on reconstruction algorithms, acquisition
protocols and applied pre- and post-processing steps. Ideally,
worldwide governments should ally to enforce regulations
regarding calibration procedures to MR scanner vendors. The
use of the same quantitative calibration phantom and a standard
procedure would decrease inter-scanner variability (Keenan
et al., 2017; Prohl et al., 2019).

The need for harmonization has increased with the availability
of large diffusion MRI multi-center datasets. Examples of these
are the Human Connectome Project (HCP2), the Alzheimer’s

2https://www.humanconnectome.org/
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Disease Neuroimaging Initiative (ADNI3), CENTER-TBI4, and
the Cross-scanner and cross-protocol diffusion MRI data
harmonization (Tax et al., 2019). For performing joint analysis of
data that have been acquired with multiple acquisition settings,
several statistical and mathematical harmonization approaches
have been developed to reduce unwanted site variability while
preserving the biological variability.

To overcome the challenges with respect to joint analysis
of multi-center diffusion data, the scientific community has
gathered to participate in challenges on data harmonization.
The Diffusion MRI Data Harmonization5 2017 and the Multi-
shell Diffusion MRI Harmonization Challenge 2018 (MUSHAC6)
were proposed with the aim to evaluate the performance of
algorithms that enable the harmonization of DWI data. From
the last challenge, Ning et al. (2019) presented a summary of
results comparing the effects of DWIH methods on diffusion
parametric maps. Different DWIH methods were used to
harmonize the multi-shell DWI data. The algorithms range
over three approaches: interpolation-based, regression-based and
CNN algorithms. Diffusion parametric maps were calculated
before and after the harmonization procedure, such as FA,
MD, and MK. The results demonstrated that the harmonization
algorithms are significantly effective in reducing the variability
and maintaining the biological information.

In this paper, we have reviewed a variety of harmonization
methods proposed in the literature. The decision as to which
method to use depends on several aspects, such as the study
design, the research question and the available data. In Table 1,
we have categorized the reviewed methods in terms of their
intrinsic properties. This categorization may help to select a
harmonization method, given a certain diffusion MRI dataset
and a specific research question. Additionally, Figure 6 shows
a flowchart that could provide guidance for selecting the most
appropriate harmonization strategy.

For example, the flowchart can be applied to the study of
Zavaliangos-Petropulu et al. (2019), who assessed the relation
between diffusion MRI indices and cognitive impairment in brain
aging using the ADNI3 dataset. In this study, new harmonized
metrics maps (FA, MD, AD, and RD) were created using the
ComBat method to remove any site-effects from the results.
Following the flowchart presented in Figure 6, first, the research
was related to the harmonization of diffusion metric maps, thus,
the right segment of the chart is suggested to be followed. Next,
the researchers aimed to create new harmonized maps, in this
case the choice of a regression of covariates method was logical
and appropriate. Along these lines, the suggested harmonization
approach by our flowchart is in agreement with the decision
from the authors.

In general, it is an ongoing challenge to define a gold standard
for dMRI harmonization. A possible explanation for this might
come from the complexity of removing the unwanted variability.
The sources of unwanted variability may stem from differences in

3http://adni.loni.usc.edu/
4https://www.center-tbi.eu/
5https://projects.iq.harvard.edu/cdmri2017/challenge
6https://projects.iq.harvard.edu/cdmri2018/challenge

number of subjects acquired per site, MRI hardware, acquisition
protocol (voxel size, repetition time, echo time, number of
diffusion directions, number of b-shells, etc.), pre-processing
steps and co-registration effects. In these circumstances, the
preservation of expected biological variability is a useful criterion
for evaluating the efficacy of harmonization methods, but this
is only possible when the same subjects are scanned at different
sites. When traveling human phantoms are included in the study
design this provides a ground truth and allows for carefully
evaluating the newly computed features and their accuracy and
precision (Tax et al., 2019). However, traveling human phantoms
datasets are mostly absent from a scenario of multi-center studies,
where distinct subjects are scanned at different sites. Additionally,
a note of caution in both cases is due here since anatomical
differences or co-registration deformations (to a common space)
may cause significant errors in the harmonization.

Although DPMH approaches have demonstrated their ability
to harmonize diffusion metric measures for joint analysis in
multi-center studies, there are some drawbacks, which can be
avoided by using DWIH methods. First, DPMH methods require
different transforms to harmonize each of the diffusion metrics
of interest. This may have implications for multivariate analyses,
as it is not guaranteed that subject-specific patterns (e.g., high FA
in combination with low MD) are preserved after both metrics
are harmonized separately. Second, DWIH methods do not rely
on a specific diffusion model, hence unwanted variation is not
propagated (and as a result made more complex) through model
fitting. Moreover, any diffusion metric estimated from DWIH
harmonized DWIs will automatically be harmonized as well. In
this regard, DWIH approaches are more promising for reliable
harmonization.

In a recent study by Cetin-Karayumak et al. (2019), DWIH
was applied to harmonize diffusion MRI multi-site data prior
to detection of white matter abnormalities in schizophrenia
patients. RISH was retrospectively applied to DWIs of 13 different
sites to remove the site-related differences. For this, a reference
site was chosen and the DWI data from the other 12 sites were
harmonized accordingly. The harmonization performance was
evaluated in a group of matched controls, using their FA maps
before and after harmonization. It was shown that the statistical
differences between sites were removed and the inter-subject
biological differences were preserved.

Nonetheless, many challenges remain for diffusion
data harmonization in multi-center studies. Ideally, novel
harmonization methods should not require training data of
subjects scanned in multiple centers, and be applicable to data
acquired with different spatial resolution, number of b shells,
or number of diffusion gradient directions. Moreover, the
availability of easily implementable methods and open-source
platforms are important assets to encourage researchers to
perform diffusion data harmonization in multi-center and
longitudinal studies.

Furthermore, harmonization methods should be generalizable
to clinical cases. Up to now, serious challenges that limit
voxel-wise harmonization of DWI data of clinical patients
are the co-registration requirement, since disease-related
anatomical alterations may severely complicate co-registration,
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TABLE 1 | Overview of the harmonization methods presented in this review.

Category Method References Statistical
harmoni-

zation

Creates
new

harmoni-
zed

images

Individual
measures
required

Same
subjects

acquired in
multiple
centers
required

Training
data

required

Similar
acquisition
protocols
required

Inter
subject co-
registration

of DWI
required

Mapping
parameters
on template

space

DPMH Meta-analysis Salimi-Khorshidi et al., 2009; Teipel
et al., 2012; Jahanshad et al.,
2013; Kochunov et al., 2014;
Zhu et al., 2019

X

Mega-analysis X X

Regression of
covariates

Human-phantom
based harmonization
(HuP)

Pohl et al., 2016 X X X X

Hardware-phantom
based harmonization
(HaP)

Timmermans et al., 2019 X X X

Global Scaling (GS) Fortin et al., 2017 X X X X

Removal of Artificial
Voxel Effect by Linear
Regression (RAVEL)

Fortin et al., 2016 X X X X X

Surrogate Variable
Analysis (SVA)

Leek et al., 2012; Fortin et al., 2017 X X X X X

Combined association
test (ComBat)

Fortin et al., 2017 X X X X X

DWIH Rotation Invariant Spherical Harmonics (RISH) Mirzaalian et al., 2015, 2016, 2018;
Karayumak et al., 2019

X X X X X X

Machine
learning

Sparse Dictionary
Learning (SDL)

St-Jean et al., 2016, 2017; Tax
et al., 2019

X X X X

Deep Learning (DL) Golkov et al., 2016; Koppers et al.,
2017, 2018; Tanno et al., 2017;
Koppers and Merhof, 2018;
Tax et al., 2019

X X X X

Method of Moments (MoM) Huynh et al., 2019 X X X X X

Comparison between the methods related to: implementation of statistical harmonization, creation of new harmonized images, requirement of individual measures, requirement of images from the same subjects
acquired in multiple centers, requirement of training data (i.e., matched subjects across sites are needed for obtaining the mapping between sites), requirement of similar acquisition protocols (i.e., diffusion directions,
b-values, spatial resolution, TR, TE, SNR, etc.), requirement of inter subject co-registration, and implementation of mapping between sites through mapping parameters on template space. The X denotes if the method
requires or performs the specific condition described in the column.
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FIGURE 6 | Flowchart describing a possible way to select a suitable harmonization method depending on the available data and research question at hand. In this
flowchart, the first question to be answered is: Do you want to harmonize the DWI or the diffusion metric maps? For harmonization of the diffusion metric maps (right
segment of the flowchart), the following question is: Do you want to create new harmonized metric maps? If so, the suggested harmonization approach would be
one of the regression of covariates methods. In case of a negative answer, the next question is: Do you have individual measures available or a summary of statistics?
If the user has a summary of statistics, the suggestion is to use a meta-analysis approach, otherwise, if one has individual diffusion measures, the suggestion is to
harmonize the data using a mega-analysis approach. On the other hand, for harmonization of DWIs (left segment of the flowchart), the next question is: Do you have
DWIs of the same subjects acquired in multiple sites? In case of an affirmative answer, the suggested approach is machine learning, which comprehends deep
learning and sparse dictionary learning methods. In case of a negative answer, the following question is: Do you have DWIs of a cohort of subjects that is age- and
gender-matched between the sites? If the user has matched data, the RISH method is suggested. Otherwise, the method of moments is the suggested approach.

and the condition that the pathological content (e.g.,
diffusion properties of lesions) should be harmonized while
the expected biological variability should not be affected.
To overcome these limitations, the use of clinical data
during the training of DWIH harmonization approaches
would be valuable.

CONCLUSION

While dMRI is routinely used in clinical workflows, comparing
the signal intensity of dMRI scans across sites and over time
is challenging. Harmonization methods aim to overcome
this by recalibrating/recalculating either the DWI signal
intensities or the resulting diffusion metrics. In this article
an overview of harmonization methods in the literature was
presented, covering meta- and mega-analysis, regression of

covariates, rotation invariant spherical harmonics, machine
learning algorithms and the method of moments. The
proposed feature table and flowchart present the main
characteristics of the methods, assisting in the decision
of which method to use depending on the study design
and the available data. Future developments of diffusion
harmonization methods may benefit from focusing on DWIH
approaches, avoiding unwanted variation propagates through
diffusion model fitting.

AUTHOR CONTRIBUTIONS

MP and RP wrote the manuscript with comments from TB,
PVD, P-JG, BJ, AR, AdD, and JS. MP and RP contributed
equally to this manuscript. All authors read and approved the
final manuscript.

Frontiers in Neuroscience | www.frontiersin.org 14 May 2020 | Volume 14 | Article 396

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00396 May 4, 2020 Time: 18:33 # 15

Pinto et al. Harmonization of Brain Diffusion MRI

FUNDING

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 764513. PVD
and BJ are supported by the Research Foundation (FWO)
Flanders, Belgium. This work was also supported by the European
Space Agency (ESA) and BELSPO Prodex and the Flemish
Government under the Research program Artificial Intelligence
(AI) Flanders. The diffusion data used for Figures 3, 4, and
5 were acquired at the United Kingdom National Facility for
In Vivo MR Imaging of Human Tissue Microstructure located

in CUBRIC funded by the EPSRC (grant EP/M029778/1),
and The Wolfson Foundation. Acquisition and processing
of the data was supported by a Rubicon grant from the
NWO (680-50-1527), a Wellcome Trust Investigator Award
(096646/Z/11/Z), and a Wellcome Trust Strategic Award
(104943/Z/14/Z). This database was initiated by the 2017
and 2018 MICCAI Computational Diffusion MRI committees
(Chantal Tax, Francesco Grussu, Enrico Kaden, Lipeng Ning, Jelle
Veraart, Elisenda Bonet-Carne, and Farshid Sepehrband) and
CUBRIC, Cardiff University (Chantal Tax, Derek Jones, Umesh
Rudrapatna, John Evans, Greg Parker, Slawomir Kusmia, Cyril
Charron, and David Linden).

REFERENCES
Alexander, A. L., Lee, J. E., Wu, Y. C., and Field, A. S. (2006). Comparison of

diffusion tensor imaging measurements at 3.0 T versus 1.5 T with and without
parallel imaging. Neuroimag. Clin. N. Am. 16, 299–309. doi: 10.1016/j.nic.2006.
02.006

Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., and Gee, J. C. (2011).
A reproducible evaluation of ants similarity metric performance in brain image
registration. Neuroimage 54, 2033–2044.

Beckmann, C. F., Jenkinson, M., and Smith, S. M. (2003). General multilevel
linear modeling for group analysis in FMRI. Neuroimage 20, 1052–1063. doi:
10.1016/S1053-8119(03)00435-X

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson,
E. S. J., et al. (2013). “Power failure: why small sample size undermines the
reliability of neuroscience”: Erratum. Nat. Rev. Neurosci. 14:442.

Cannon, T. D., Sun, F., McEwen, S. J., Papademetris, X., He, G., van Erp,
T. G. M., et al. (2014). Reliability of neuroanatomical measurements in a
multisite longitudinal study of youth at risk for psychosis. Hum. Brain Mapp.
35, 2424–2434. doi: 10.1002/hbm.22338

Cetin-Karayumak, S., Di Biase, M. A., Chunga, N., Reid, B., Somes, N., Lyall, A. E.,
et al. (2019). White matter abnormalities across the lifespan of schizophrenia:
a harmonized multi-site diffusion MRI study. Mol. Psychiatry doi: 10.1038/
s41380-019-0509-y [Epub ahead of print]

Forsyth, J. K., McEwen, S. C., Gee, D. G., Bearden, C. E., Addington, J., Goodyear,
B., et al. (2014). Reliability of functional magnetic resonance imaging activation
during working memory in a multi-site study: analysis from the North
American prodrome longitudinal study. Neuroimage 97, 41–52. doi: 10.1016/
j.neuroimage.2014.04.027

Fortin, J. P., Parker, D., Tunç, B., Watanabe, T., Elliott, M. A., Ruparel, K., et al.
(2017). Harmonization of multi-site diffusion tensor imaging data. Neuroimage
161, 149–170. doi: 10.1016/j.neuroimage.2017.08.047

Fortin, J. P., Sweeney, E. M., Muschelli, J., Crainiceanu, C. M., and Shinohara,
R. T. (2016). Removing inter-subject technical variability in magnetic resonance
imaging studies. Neuroimage 132, 198–212. doi: 10.1016/j.neuroimage.2016.02.
036

Fox, R. J., Sakaie, K., Lee, J.-C., Debbins, J. P., Liu, Y., Arnold, D. L., et al.
(2012). A validation study of multicenter diffusion tensor imaging: reliability
of fractional anisotropy and diffusivity values. Am. J. Neuroradiol. 33, 695–700.
doi: 10.3174/ajnr.A2844

Golkov, V., Dosovitskiy, A., Sperl, J. I., Menzel, M. I., Czisch, M., Samann, P., et al.
(2016). Q-space deep learning: twelve-fold shorter and model-free diffusion
MRI scans. IEEE Trans. Med. Imaging 35, 1344–1351. doi: 10.1109/tmi.2016.
2551324

Grech-Sollars, M., Hales, P. W., Miyazaki, K., Raschke, F., Rodriguez, D., Wilson,
M., et al. (2015). Multi-centre reproducibility of diffusion MRI parameters for
clinical sequences in the brain. NMR Biomed. 28, 468–485. doi: 10.1002/nbm.
3269

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for
image recognition,” in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, San Juan, 770–778. doi: 10.1109/
CVPR.2016.90

Huynh, K. M., Chen, G., Wu, Y., Shen, D., and Yap, P. (2019). Multi-site
harmonization of diffusion MRI data via method of moments. IEEE Trans. Med.
Imaging 38, 1599–1609. doi: 10.1109/tmi.2019.2895020

Jahanshad, N., Kochunov, P. V., Sprooten, E., Mandl, R. C., Nichols, T. E., Almasy,
L., et al. (2013). Multi-site genetic analysis of diffusion images and voxelwise
heritability analysis: a pilot project of the ENIGMA–DTI working group.
Neuroimage 81, 455–469. doi: 10.1016/j.neuroimage.2013.04.061

Jenkins, J., Chang, L. C., Hutchinson, E., Irfanoglu, M. O., and Pierpaoli,
C. (2016). “Harmonization of methods to facilitate reproducibility in
medical data processing: applications to diffusion tensor magnetic resonance
imaging,” in Proceedings–2016 IEEE International Conference on Big Data,
Big Data 2016, Washington, DC, 3992–3994. doi: 10.1109/BigData.2016.784
1086

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., and Smith,
S. M. (2012). FSL. Neuroimage 62, 782–790. doi: 10.1016/J.NEUROIMAGE.
2011.09.015

Johnson, W. E., Li, C., and Rabinovic, A. (2007). Adjusting batch effects in
microarray expression data using empirical Bayes methods. Biostatistics 8,
118–127. doi: 10.1093/biostatistics/kxj037

Jones, D. K. (2010). Precision and accuracy in diffusion tensor magnetic
resonance imaging. Topics Magn. Reson. Imaging 21, 87–99. doi: 10.1097/RMR.
0b013e31821e56ac

Jovicich, J., Barkhof, F., Babiloni, C., Herholz, K., Mulert, C., van Berckel,
B. N. M., et al. (2019). Harmonization of neuroimaging biomarkers for
neurodegenerative diseases: a survey in the imaging community of perceived
barriers and suggested actions. Alzheimer’s Dementia 11, 69–73. doi: 10.1016/j.
dadm.2018.11.005

Jovicich, J., Marizzoni, M., Bosch, B., Bartrés-Faz, D., Arnold, J., Benninghoff, J.,
et al. (2014). Multisite longitudinal reliability of tract-based spatial statistics in
diffusion tensor imaging of healthy elderly subjects. Neuroimage 101, 390–403.
doi: 10.1016/j.neuroimage.2014.06.075

Karayumak, S. C., Bouix, S., Ning, L., James, A., Crow, T., Shenton, M., et al.
(2019). Retrospective harmonization of multi-site diffusion MRI data acquired
with different acquisition parameters. Neuroimage 184, 180–200. doi: 10.1016/
j.neuroimage.2018.08.073

Keenan, K. E., Ainslie, M., Barker, A. J., Boss, M. A., Cecil, K. M., Charles, C., et al.
(2017). Quantitative magnetic resonance imaging phantoms: a review and the
need for a system phantom. Magn. Reson. Med. 79, 48–61. doi: 10.1002/mrm.
26982

Kelly, S., Jahanshad, N., Zalesky, A., Kochunov, P., Agartz, I., Alloza, C., et al.
(2018). Widespread white matter microstructural differences in schizophrenia
across 4322 individuals: results from the ENIGMA Schizophrenia DTI working
group. Mol. Psychiatry 23, 1261–1269. doi: 10.1038/mp.2017.170

Klein, S., Staring, M., Murphy, K., Viergever, M. A., and Pluim, J. (2010).
elastix: a toolbox for intensity- based medical image registration.
IEEE Trans. Med. Imaging 29, 196–205. doi: 10.1109/TMI.2009.20
35616

Kochunov, P., Jahanshad, N., Sprooten, E., Nichols, T. E., Mandl, R. C., Almasy, L.,
et al. (2014). Multi-site study of additive genetic effects on fractional anisotropy
of cerebral white matter: comparing meta and megaanalytical approaches for
data pooling. Neuroimage 95, 136–150. doi: 10.1016/j.neuroimage.2014.03.033

Frontiers in Neuroscience | www.frontiersin.org 15 May 2020 | Volume 14 | Article 396

https://doi.org/10.1016/j.nic.2006.02.006
https://doi.org/10.1016/j.nic.2006.02.006
https://doi.org/10.1016/S1053-8119(03)00435-X
https://doi.org/10.1016/S1053-8119(03)00435-X
https://doi.org/10.1002/hbm.22338
https://doi.org/10.1038/s41380-019-0509-y
https://doi.org/10.1038/s41380-019-0509-y
https://doi.org/10.1016/j.neuroimage.2014.04.027
https://doi.org/10.1016/j.neuroimage.2014.04.027
https://doi.org/10.1016/j.neuroimage.2017.08.047
https://doi.org/10.1016/j.neuroimage.2016.02.036
https://doi.org/10.1016/j.neuroimage.2016.02.036
https://doi.org/10.3174/ajnr.A2844
https://doi.org/10.1109/tmi.2016.2551324
https://doi.org/10.1109/tmi.2016.2551324
https://doi.org/10.1002/nbm.3269
https://doi.org/10.1002/nbm.3269
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/tmi.2019.2895020
https://doi.org/10.1016/j.neuroimage.2013.04.061
https://doi.org/10.1109/BigData.2016.7841086
https://doi.org/10.1109/BigData.2016.7841086
https://doi.org/10.1016/J.NEUROIMAGE.2011.09.015
https://doi.org/10.1016/J.NEUROIMAGE.2011.09.015
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1097/RMR.0b013e31821e56ac
https://doi.org/10.1097/RMR.0b013e31821e56ac
https://doi.org/10.1016/j.dadm.2018.11.005
https://doi.org/10.1016/j.dadm.2018.11.005
https://doi.org/10.1016/j.neuroimage.2014.06.075
https://doi.org/10.1016/j.neuroimage.2018.08.073
https://doi.org/10.1016/j.neuroimage.2018.08.073
https://doi.org/10.1002/mrm.26982
https://doi.org/10.1002/mrm.26982
https://doi.org/10.1038/mp.2017.170
https://doi.org/10.1109/TMI.2009.2035616
https://doi.org/10.1109/TMI.2009.2035616
https://doi.org/10.1016/j.neuroimage.2014.03.033
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00396 May 4, 2020 Time: 18:33 # 16

Pinto et al. Harmonization of Brain Diffusion MRI

Koppers, S., Bloy, L., Berman, J. I., Tax, C. M. W., Edgar, J. C., and
Merhof, D. (2018). “Spherical harmonic residual network for diffusion signal
harmonization,” in Computational Diffusion MRI, eds E. Bonet-Carne, F.
Grussu, L. Ning, F. Sepehrband, C. M. W. Tax (Berlin: Springer).

Koppers, S., Haarburger, C., and Merhof, D. (2017). “Diffusion MRI signal
augmentation: from single shell to multi shell with deep learning,” in
Proceedings of the Computational Diffusion MRI: MICCAI Workshop, Athens,
61–70. doi: 10.1007/978-3-319-54130-3_5

Koppers, S., and Merhof, D. (2018). DELIMIT PyTorch - An extension for Deep
Learning in Diffusion Imaging. Available online at: http://arxiv.org/abs/1808.
01517 (accessed June 20, 2019).

Kumar, R., Gupta, R. K., Husain, M., Chaudhry, C., Srivastava, A., Saksena, S., et al.
(2009). Comparative evaluation of corpus callosum DTI metrics in acute mild
and moderate traumatic brain injury: its correlation with neuropsychometric
test. Brain Injury 23, 675–685. doi: 10.1080/02699050903014915

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., and Storey, J. D. (2012).
The SVA package for removing batch effects and other unwanted variation
in high-throughput experiments. Bioinformatics 28, 882–883. doi: 10.1093/
bioinformatics/bts034

Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E.,
et al. (2010). Tackling the widespread and critical impact of batch effects in
high-throughput data. Nat. Rev. Genet. 11, 733–739. doi: 10.1038/nrg2825

Mahoney, C. J., Simpson, I. J. A., Nicholas, J. M., Fletcher, P. D., Downey,
L. E., Golden, H. L., et al. (2015). Longitudinal diffusion tensor imaging in
frontotemporal dementia. Ann. Neurol. 77, 33–46. doi: 10.1002/ana.24296

Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2010). Online learning for matrix
factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60. doi: 10.1145/
1756006.1756008

Mirzaalian, H., de Pierrefeu, A., Savadjiev, P., Pasternak, O., Bouix, S., Kubicki, M.,
Rathi, Y. (2015). Harmonizing Diffusion MRI Data Across Multiple Sites and
Scanners. in Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2015, eds N. Navab, J. Hornegger, W. M. Wells, & A. Frangi (Cham:
Springer International Publishing), doi: 10.1007/978-3-319-24553-9_2

Mirzaalian, H., Ning, L., Savadjiev, P., Pasternak, O., Bouix, S., Michailovich, O.,
et al. (2016). Inter-site and inter-scanner diffusion MRI data harmonization.
Neuroimage 135, 311–323. doi: 10.1016/j.neuroimage.2016.04.041

Mirzaalian, H., Ning, L., Savadjiev, P., Pasternak, O., Bouix, S., Michailovich, O.,
et al. (2018). Multi-site harmonization of diffusion MRI data in a registration
framework. Brain Imaging Behav. 12, 284–295. doi: 10.1007/s11682-016-
9670-y

Nencka, A. S., Meier, T. B., Wang, Y., Muftuler, L. T., Wu, Y.-C., Saykin, A. J., et al.
(2017). Stability of MRI metrics in the advanced research core of the NCAA-
DoD concussion assessment, research and education (CARE) consortium.
Brain Imaging Behav. 12, 1121–1140. doi: 10.1007/s11682-017-9775-y

Ni, H., Kavcic, V., Zhu, T., Ekholm, S., and Zhong, J. (2006). Effects of number
of diffusion gradient directions on derived diffusion tensor imaging indices in
human brain. Am. J. Neuroradiol. 27, 1776–1781.

Ning, L., Bonet-Carne, E., Grussu, F., Sepehrband, F., Kaden, E., Veraart, J., et al.
(2019). “Muti-shell diffusion MRI harmonisation and enhancement challenge
(MUSHAC): progress and results,” in Proceedings of the Computational
Diffusion MRI: International MICCAI Workshop, eds L. Ning, C. M. W. Tax,
F. Grussu, E. Bonet-Carne, & F. Sepehrband (Cham: Springer), 217–224. doi:
10.1007/978-3-030-05831-9_18

Nyholm, T., Jonsson, J., Söderström, K., Bergström, P., Carlberg, A., Frykholm,
G., et al. (2013). Variability in prostate and seminal vesicle delineations defined
on magnetic resonance images, a multi-observer, -center and -sequence study.
Radiat. Oncol. 8:126. doi: 10.1186/1748-717X-8-126

Palacios, E. M., Martin, A. J., Boss, M. A., Ezekiel, F., Chang, Y. S., Yuh,
E. L., et al. (2017). Toward precision and reproducibility of diffusion tensor
imaging: a multicenter diffusion phantom and traveling volunteer study. Am.
J. Neuroradiol. 38, 537–545. doi: 10.3174/ajnr.A5025

Petitti, D. B. (1994). Meta-Analysis, Decision Analysis, and Cost-Effectiveness
Analysis: Methods for Quantitative Synthesis in Medicine. New York, NY: Oxford
University Press.

Pfefferbaum, A., Adalsteinsson, E., and Sullivan, E. V. (2003). Replicability
of diffusion tensor imaging measurements of fractional anisotropy and
trace in brain. J. Magn. Reson. Imaging 18, 427–433. doi: 10.1002/jmri.
10377

Pohl, K. M., Sullivan, E. V., Rohlfing, T., Chu, W., Kwon, D., Nichols, B. N.,
et al. (2016). Harmonizing DTI measurements across scanners to examine
the development of white matter microstructure in 803 adolescents of the
NCANDA study. Neuroimage 130, 194–213. doi: 10.1016/j.neuroimage.2016.
01.061

Pourhoseingholi, M. A., Baghestani, A. R., and Vahedi, M. (2012). How to control
confounding effects by statistical analysis. Gastroenterol. Hepatol. 5, 79–83.
doi: 10.22037/ghfbb.v5i2.246

Prohl, A. K., Scherrer, B., Tomas-Fernandez, X., Filip-Dhima, R., Kapur, K.,
Velasco-Annis, C., et al. (2019). Reproducibility of structural and diffusion
tensor imaging in the TACERN multi-center study. Front. Integr. Neurosci.
13:24. doi: 10.3389/fnint.2019.00024

Pullens, P., Bladt, P., Sijbers, J., Maas, A. I. R., and Parizel, P. M. (2017). Technical
Note: a safe, cheap, and easy-to-use isotropic diffusion MRI phantom for
clinical and multicenter studies. Med. Phys. 44, 1063–1070. doi: 10.1002/mp.
12101

Salimi-Khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D., and Nichols, T. E.
(2009). Meta-analysis of neuroimaging data: a comparison of image-based and
coordinate-based pooling of studies. Neuroimage 45, 810–823. doi: 10.1016/j.
neuroimage.2008.12.039

Shamonin, D. P., Bron, E. E., Lelieveldt, B. P., Smits, M., Klein, S., Staring, M.,
et al. (2014). Fast parallel image registration on CPU and GPU for diagnostic
classification of Alzheimer’s disease. Front. Neuroinform. 7:50. doi: 10.3389/
fninf.2013.00050

Smith, S. M., and Nichols, T. E. (2018). Statistical Challenges in “Big Data”. Hum.
Neuroimag. Neuron 97, 263–268. doi: 10.1016/j.neuron.2017.12.018

St-Jean, S., Coupé, P., and Descoteaux, M. (2016). Non local spatial and angular
matching: enabling higher spatial resolution diffusion MRI datasets through
adaptive denoising. Med. Image Anal. 32, 115–130. doi: 10.1016/j.media.2016.
02.010

St-Jean, S., Viergever, M., and Leemans, A. (2017). “A unified framework for
upsampling and denoising of diffusion MRI data,” in Proceedings of the 25th
Annual Meeting of ISMRM, Honolulu, HI, 3533.

Tanno, R., Worrall, D. E., Ghosh, A., Kaden, E., Sotiropoulos, S. N., Criminisi, A.,
et al. (2017). “Bayesian image quality transfer with CNNs: exploring uncertainty
in dMRI super-resolution,” Medical Image Computing and Computer Assisted
Intervention - MICCAI 2017. MICCAI 2017. Lecture Notes in Computer Science,
eds M. Descoteaux, L. Maier-Hein, A. Franz, P. Jannin, D. Collins, S. Duchesne
(Cham: Springer), Vol 10433, 611–619. doi: 10.1007/978-3-319-66182-7_70

Tax, C. M., Grussu, F., Kaden, E., Ning, L., Rudrapatna, U., John Evans, C., et al.
(2019). Cross-scanner and cross-protocol diffusion MRI data harmonisation: a
benchmark database and evaluation of algorithms. Neuroimage 195, 285–299.
doi: 10.1016/j.neuroimage.2019.01.077

Teipel, S. J., Reuter, S., Stieltjes, B., Acosta-Cabronero, J., Ernemann, U., Fellgiebel,
A., et al. (2011). Multicenter stability of diffusion tensor imaging measures: a
European clinical and physical phantom study. Psychiatry Res. Neuroimaging
194, 363–371. doi: 10.1016/j.pscychresns.2011.05.012

Teipel, S. J., Wegrzyn, M., Meindl, T., Frisoni, G., Bokde, A. L. W., Fellgiebel,
A., et al. (2012). Anatomical MRI and DTI in the diagnosis of Alzheimer’s
disease: a european multicenter study. J. Alzheimer’s Dis. 31, S33–S47. doi:
10.3233/jad-2012-112118

Timmermans, C., Smeets, D., Verheyden, J., Terzopoulos, V., Anania, V., Parizel,
P. M., et al. (2019). Potential of a statistical approach for the standardization of
multicenter diffusion tensor data: a phantom study. J. Magn. Reson. Imaging 49,
955–965. doi: 10.1002/jmri.26333

Tong, Q., He, H., Gong, T., Li, C., Liang, P., Qian, T., et al. (2019). Reproducibility
of multi-shell diffusion tractography on traveling subjects: a multicenter study
prospective. Magn. Reson. Imaging 59, 1–9. doi: 10.1016/j.mri.2019.02.011

Venkatraman, V., Dimoka, A., Pavlou, P. A., Vo, K., Hampton, W., Bollinger,
B., et al. (2015). Predicting advertising success beyond traditional
measures: new insights from neurophysiological methods and market
response modeling. J. Mark. Res. 52, 436–452. doi: 10.1509/jmr.13.
0593

Vollmar, C., O’Muircheartaigh, J., Barker, G. J., Symms, M. R., Thompson,
P., Kumari, V., et al. (2010). Identical, but not the same: intra-site
and inter-site reproducibility of fractional anisotropy measures on two
3.0T scanners. Neuroimage 51, 1384–1394. doi: 10.1016/j.neuroimage.2010.
03.046

Frontiers in Neuroscience | www.frontiersin.org 16 May 2020 | Volume 14 | Article 396

https://doi.org/10.1007/978-3-319-54130-3_5
http://arxiv.org/abs/1808.01517
http://arxiv.org/abs/1808.01517
https://doi.org/10.1080/02699050903014915
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1038/nrg2825
https://doi.org/10.1002/ana.24296
https://doi.org/10.1145/1756006.1756008
https://doi.org/10.1145/1756006.1756008
https://doi.org/10.1007/978-3-319-24553-9_2
https://doi.org/10.1016/j.neuroimage.2016.04.041
https://doi.org/10.1007/s11682-016-9670-y
https://doi.org/10.1007/s11682-016-9670-y
https://doi.org/10.1007/s11682-017-9775-y
https://doi.org/10.1007/978-3-030-05831-9_18
https://doi.org/10.1007/978-3-030-05831-9_18
https://doi.org/10.1186/1748-717X-8-126
https://doi.org/10.3174/ajnr.A5025
https://doi.org/10.1002/jmri.10377
https://doi.org/10.1002/jmri.10377
https://doi.org/10.1016/j.neuroimage.2016.01.061
https://doi.org/10.1016/j.neuroimage.2016.01.061
https://doi.org/10.22037/ghfbb.v5i2.246
https://doi.org/10.3389/fnint.2019.00024
https://doi.org/10.1002/mp.12101
https://doi.org/10.1002/mp.12101
https://doi.org/10.1016/j.neuroimage.2008.12.039
https://doi.org/10.1016/j.neuroimage.2008.12.039
https://doi.org/10.3389/fninf.2013.00050
https://doi.org/10.3389/fninf.2013.00050
https://doi.org/10.1016/j.neuron.2017.12.018
https://doi.org/10.1016/j.media.2016.02.010
https://doi.org/10.1016/j.media.2016.02.010
https://doi.org/10.1007/978-3-319-66182-7_70
https://doi.org/10.1016/j.neuroimage.2019.01.077
https://doi.org/10.1016/j.pscychresns.2011.05.012
https://doi.org/10.3233/jad-2012-112118
https://doi.org/10.3233/jad-2012-112118
https://doi.org/10.1002/jmri.26333
https://doi.org/10.1016/j.mri.2019.02.011
https://doi.org/10.1509/jmr.13.0593
https://doi.org/10.1509/jmr.13.0593
https://doi.org/10.1016/j.neuroimage.2010.03.046
https://doi.org/10.1016/j.neuroimage.2010.03.046
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00396 May 4, 2020 Time: 18:33 # 17

Pinto et al. Harmonization of Brain Diffusion MRI

Walker, L., Curry, M., Nayak, A., Lange, N., and Pierpaoli, C. (2013). A framework
for the analysis of phantom data in multicenter diffusion tensor imaging studies.
Hum. Brain Mapp. 34, 2439–2454. doi: 10.1002/hbm.22081

Woolrich, M. W., Behrens, T. E. J., Beckmann, C. F., Jenkinson, M., and Smith,
S. M. (2004). Multilevel linear modelling for FMRI group analysis using
Bayesian inference. Neuroimage 21, 1732–1747. doi: 10.1016/j.neuroimage.
2003.12.023

Worsley, A. (2002). Nutrition knowledge and food consumption: can nutrition
knowledge change food behaviour? Asia Pacific J. Clin. Nutr. 11, S579–S585.
doi: 10.1046/j.1440-6047.11.supp3.7.x

Zavaliangos-Petropulu, A., Nir, T. M., Thomopoulos, S. I., Reid, R. I., Bernstein,
M. A., Borowski, B., et al. (2019). Diffusion MRI indices and their
relation to cognitive impairment in brain aging: the updated multi-protocol
approach in ADNI3. Front. Neuroinform. 13:2. doi: 10.3389/fninf.2019.
00002

Zhu, A. H., Moyer, D. C., Nir, T. M., Thompson, P. M., and Jahanshad, N. (2019).
Challenges and Opportunities in dMRI Data Harmonization. In Computational

Diffusion MRI. Berlin: Springer International Publishing, 157–172. doi: 10.
1007/978-3-030-05831-9_13

Zhu, T., Hu, R., Qiu, X., Taylor, M., Tso, Y., Yiannoutsos, C., et al. (2011).
Measurements?: a diffusion phantom and human brain study. Neuroimage 56,
1398–1411. doi: 10.1016/j.neuroimage.2011.02.010.Quantification

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Pinto, Paolella, Billiet, Van Dyck, Guns, Jeurissen, Ribbens, den
Dekker and Sijbers. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 May 2020 | Volume 14 | Article 396

https://doi.org/10.1002/hbm.22081
https://doi.org/10.1016/j.neuroimage.2003.12.023
https://doi.org/10.1016/j.neuroimage.2003.12.023
https://doi.org/10.1046/j.1440-6047.11.supp3.7.x
https://doi.org/10.3389/fninf.2019.00002
https://doi.org/10.3389/fninf.2019.00002
https://doi.org/10.1007/978-3-030-05831-9_13
https://doi.org/10.1007/978-3-030-05831-9_13
https://doi.org/10.1016/j.neuroimage.2011.02.010.Quantification
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Harmonization of Brain Diffusion MRI: Concepts and Methods
	Introduction
	Literature Search
	Requirements for Harmonization
	Diffusion Parametric Map Harmonization Methods
	Modeling Inter-Site Variability Within the Statistical Analysis
	Meta-Analysis
	Mega-Analysis

	Harmonizing the Parametric Maps Based on Regression of Covariates
	Global Harmonization
	Human-phantom based harmonization (HuP)
	Hardware-phantom based harmonization (HaP)
	Global scaling (GS)

	Voxel-Wise Harmonization
	Removal of Artificial Voxel Effect by Linear regression (RAVEL)
	Surrogate Variable Analysis (SVA)
	Combined association test (ComBat)



	Diffusion Weighted Image Harmonization Methods
	Rotation Invariant Spherical Harmonics (RISH)
	Machine Learning
	Sparse Dictionary Learning (SDL)
	Deep Learning (DL)
	Spherical Harmonic Network (SHNet)
	Spherical Harmonic Residual Network (SHResNet)
	Spherical Network (SphericalNet)
	Fully Convolutional Shuffling Network (FCSNet)


	Method of Moments (MoM)

	Discussion
	Conclusion
	Author Contributions
	Funding
	References


