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ABSTRACT
The mechanical and chemical properties of a compound mate-
rial are determined by the fractional abundances of its compo-
nents. In this work, we present a spectral unmixing technique
to estimate the fractional abundances of the components of
mixed and compound materials from hyperspectral images.
The estimation of fractional abundances in mixed materials
faces the main challenge of intimate mixing. In compound
materials, the mixing with water causes changes in chemical
properties resulting in spectral variability and non-linearity.
To address these challenges, a supervised method is proposed
that learns a mapping from the hyperspectral data to spectra
that follow the linear mixing model. Then, a linear unmixing
technique is applied on the mapped spectra to estimate the
fractional abundances. To demonstrate the potential of the
proposed method, experiments are conducted on hyperspec-
tral images from mixtures of red and yellow clay powders and
hardened mortar samples with varying water to cement ratios.

1. INTRODUCTION

In remote sensing, hyperspectral imaging has been applied
for many years for urban, geological, and agricultural studies.
With advances in hyperspectral sensor technology, low cost
hyperspectral cameras became available that can be applied in
close-range settings for fast, economical, and non-destructive
material characterization. Specifically, hyperspectral imaging
is an effective tool to estimate the mechanical and chemical
properties of construction materials. In [1], spectrometry data
was used to determine bricks characteristics. In [2], concrete
and cement-based materials with different water to cement
ratio (w/c) were characterized by hyperspectral imaging. The
spectral analysis in these studies was done by supervised clas-
sification of the different compositions, without using any ref-
erence spectral data related to the ingredients (cement, sand,
gravel, water, red clay, yellow clay).

Model-based spectral unmixing techniques estimate the
fractional abundances of the different materials within a hy-
perspectral pixel by minimizing the error between the true re-
flectance spectrum and the spectrum that is generated by a
particular mixing model. When the incoming rays of light in-
teract with a single pure material in the pixel before reaching

the sensor, the linear mixing model (LMM) [3] can estimate
the material fractions accurately. In intimate mixture scenar-
ios, the incoming rays of light interact with more than one
pure material making the true reflectance spectrum a highly
nonlinear mixture of the pure materials (i.e., endmembers).
To solve this problem, several nonlinear mixing models have
been developed [4].

One of the drawbacks of the model-based approaches is
that not all spectra necessarily follow the same nonlinear mix-
ing model. Moreover, the model parameters can be hard to
interpret and link to the actual fractional abundances. How-
ever, the main problem with compound materials is that the
pure materials change their reflectance properties when react-
ing with water. This result in endmember variability and a
loss of the relation between the endmember spectra and the
fractional abundances.

Recently, we proposed a neural network based method [5]
that uses training data to learn a mapping from nonlinear spec-
tra to spectra that follow the linear mixing model, after which
the LMM is applied for the estimation of the actual fractional
abundances. In this paper, we adopt a similar strategy and
test three different nonlinear methods to learn the mapping.
This mapping procedure tackles both the nonlinearities in in-
timate mixtures and the changes in the chemical properties
of the pure materials. Once the mapping is learned, all spec-
tra from test samples are mapped to the linear model and the
mapped spectra are unmixed by applying the LMM to esti-
mate the fractional abundances. The presented methodology
is validated on mixtures from red and yellow clay powders
with different fractional compositions and three mortar sam-
ples with varying water to cement ratio.

2. METHODOLOGY

Let us consider a matrix containing N reflectance spectra
X({xi}Ni=1 ∈ Rd

+) and a set of p pure spectra (endmembers)
E({ej}pj=1 ∈ Rd

+). The LMM construct a spectrum xi by
combining endmembers linearly:

xi =

p∑
j=1

ajej + η = Ea+ η (1)



where aj is the fractional abundance of endmember ej and η
represents Gaussian noise. The fractional abundance of each
spectrum is estimated by minimizing ‖xi −Ea‖2 under the
physical constraints:

∑
j aj = 1, ∀j : aj ≥ 0.

We propose to learn a mapping from the nonlinear spec-
tra to the LMM ([5]). A training set with known endmem-
ber spectra and fractional abundances (E, {ai}ni=1) is applied
to generate linear spectra Xl = {xi}ni=1 and for learning a
mapping between the actual spectra Y = {yi}ni=1 and the
linear ones. This mapping can be learned by applying dif-
ferent machine learning regression algorithms. In this work,
we choose feedforward neural networks (NN), as in [5], ker-
nel ridge regression (KRR), and gaussian processes (GP). The
mapping is then applied to map the test nonlinear spectra
Y∗ = {yi}Ni=n+1 onto linear spectra X∗ = {xi}Ni=n+1.

2.1. Feedforward neural networks

The feedforward neural network (NN) applied in this work
has three layers: the input and output layer of d nodes and a
hidden layer consisting of 5 nodes. The network was trained
by dividing the dataset into a training, validation, and test set.
The network parameters (weights and biases) were optimized
by using a training set while the validation set was used to
avoid overfitting.

2.2. Kernel ridge regression

Another way to learn the mapping is given by kernel ridge
regression [6][7], a kernelized extension of ridge regression.
Ridge regression finds a linear relationship between the input
and output by:

xi = Xl

(
YTY + λI

)−1

YTyi (2)

where λ is a regularization parameter that tackles the problem
of overfitting and I is the identity matrix.

Using the kernel trick, the mapping of a nonlinear spec-
trum yi to the linear one xi is obtained by:

xi = f(yi) = Xl

(
K(Y,Y) + λI

)−1

K(Y,yi) (3)

whereK(Y,Y) is the matrix of kernel functions between the
n training points and K(Y,yi) is the vector of kernel func-
tions between the n training points and a test sample. For this
work, the RBF kernel is used.

k(yi,yj) = exp

(
−‖yi − yj‖2

2σ2

)
(4)

where σ is the kernel parameter, that controls the smoothness
of the prediction function.

2.3. Gaussian processes

A Bayesian method for learning the nonlinear relationship
between the input Y and output Xl is given by Gaus-
sian processes (GP) [8]. The mean prediction of the input
according to GP is obtained by factorizing the joint dis-
tribution of the training output (Xl) and the test output
(f(Y∗) = X∗), i.e., p(f(YT

∗ ),X
T
l ), into the predictive

distribution p(f(YT
∗ )|XT

l ) and the marginal p(XT
l ). The

estimated mapping of the nonlinear spectra Y∗ to the linear
spectra X∗ is then given by:

X∗ = f(Y∗)

= Xl(K(Y,Y) + σ2
nI)

−1K(Y∗,Y)T (5)

where σ2
n is the noise variance of the training spectra. The

kernel function used in (5) provides the covariance of the out-
put:

cov(xi,xj) = k(xi,xj) = σ2
f exp

(
−

d∑
b=1

(
xbi − xbj

)2
2l2b

)
where σ2

f is the variance of the input spectra, and lb is a char-
acteristic length-scale for each band. The hyperparameters in-
volved in (6) were optimized by minimizing the log marginal
likelihood of the training dataset log(p(XT

l |YT )).
Finally, the fractional abundances from the mapped spec-

tra are obtained by applying the LMM.

3. EXPERIMENTAL RESULTS AND DISCUSSION

In the following experiments, the mappings are learned ei-
ther by KRR, GP, or NN. For comparison, we applied a feed-
forward neural network to map nonlinear spectra directly to
the fractional abundances, i.e., softmax (SM) and three un-
supervised spectral unmixing models: the LMM, a bilinear
model (the polynomial post-nonlinear model (PPNM)), and
the Hapke model.

3.1. Experiment 1: clay samples

In the first experiment, two different clay powders (yellow
and red) were mixed to obtain three different mixtures. The
first mixture (YR5050) contains 5 g each of yellow and red
clay. In the second mixture (YR6040), 6.01 g of yellow
clay was mixed with 4.03 g of red clay. The third mixture
(YR7030) contains 7.01 g of yellow clay and 3.03 g of red
clay. The mixtures were filled in a sample holder and com-
pressed until the top surface becomes smooth. The densities
of the pure clays were estimated by weighing a 2 ml clay
sample. The volume of the pure materials was computed by
dividing the weight by density. The ground truth fractional
abundances are the volume percentages.

Hyperspectral images were acquired from these sam-
ples as well as the pure yellow and red clay by a SPECIM



SisuRock drillcore scanner, equipped with an AisaFenix
VNIR-SWIR hyperspectral sensor. Each pixel of the hy-
perspectral image contains 450 reflectance values for wave-
lengths in the range of 380-2500 nm and a spatial resolution
of 1.5 mm/pixel. By using the toolbox presented in [9],
radiometric, geometric and sensor-shift corrections were per-
formed on the acquired hyperspectral images. The image of
each clay mixture contains 7× 7 pixels.

For the validation of the proposed techniques, only two
mixtures (YR5050 and YR7030) were selected for learning
the mapping. From each sample, 21 training pixels were ran-
domly selected as training samples. By using the ground truth
fractional information and the pure spectra, linearly mixed
pixel spectra were generated. After learning the mapping be-
tween a hyperspectral dataset to the linear model, test spec-
tra from not only samples YR5050 (28 pixels) and YR7030
(28 pixels) but also from sample YR6040 (49 pixels) were
mapped to the linear model. Finally, the LMM was applied to
estimate the fractional abundance maps.

Figure 1(a) shows the scatterplot on three spectral bands
of all clay samples. Although the mixtures were homoge-
neous, a large spectral variation within each sample can be
observed. The mapping accounts for the nonlinearities and
the spectral variability caused by the intimate mixtures. The
scatterplot after mapping to the linear model by NN is shown
in Fig. 1(b).

Table 1 lists the estimated fractional abundances of yel-
low and red clay, averaged over the test pixels from YR5050,
YR6040 and YR7030 (mean and standard deviations are
given), and compared to the ground truth fractional abun-
dance (GT). The obtained weights are given as well. GP
outperformed the other methods on sample YR5050, SM
was the best in predicting sample YR7030. Sample YR6040,
although not being the part of the training, was accurately pre-
dicted by NN. The unsupervised techniques all overestimated
yellow clay, while underestimating red clay. We believe that
the reason for this is that the spectral reflectances of all of the
mixtures are much closer to that of pure yellow clay than that
of red clay.

3.2. Experiment 2: Mortar samples

In the second experiment, hardened mortar samples with three
different compositions were prepared by mixing dark sand
(density: 2660 Kg/m3), cement (density: 3100 Kg/m3), and
water. The first mixture contains 1350 g of dark sand, 450 g of
cement, and 270 g of water (water-to-cement (w/c) ratio (g/g)
60% (W/C60%)). The second and third mixture were pre-
pared by only changing the amount of water to produce sam-
ples with w/c ratios of 70% (W/C70%) and 80% (W/C80%)
respectively. Hyperspectral images were acquired from these
samples as well as from the pure materials (dark sand and ce-
ment powders) by using the AisaFenix VNIR-SWIR hyper-
spectral sensor. The reflectance spectrum of water was ob-

tained from the USGS spectral library.
Only two mortars samples (W/C60% and W/C80%) were

selected for training the algorithms. From these two images,
200 training pixels (100 per sample) were randomly selected.
Linearly mixed pixel spectra were generated by using the
fractional abundances of the training samples and the spec-
tra of the pure materials as endmembers. After learning the
mapping, test spectra from W/C60% (1580 pixels), W/C80%
(1515 pixels), and W/C70% (1785 pixels) were mapped to
the linear model. Finally, the LMM was applied to estimate
the abundance maps.

Figure 2(a) shows the scatterplot on three spectral bands
of all mortar pixels. The plot reveals nonlinearity and spectral
variability due to the intimate mixing and changes in chem-
ical properties of the cement when mixed with water. The
scatterplot after mapping to the linear model by GP is shown
in Fig. 2(b). All spectra are mapped onto a linear simplex,
spanned by the 3 endmembers.

Table 2 shows the estimated fractional abundances (and
their standard deviations) and w/c ratio averaged over the
test pixels (W/C60%, W/C70%, and W/C80%). All mapping
methods estimated the abundances of dark sand, cement, and
water perfectly. GP best predicted the w/c ratio for W/C60%
and W/C80% while KRR best predicted W/C70%. The esti-
mated fractional abundances from the unsupervised methods
were not reliable. Cement was not detected at all, which lead
to an undetermined w/c ratio. The reason can be found in the
fact that the spectral reflectances of dark sand and cement are
very close. Most mixed spectra are closer to dark sand than
to cement, so that the reconstruction error is minimized by
projecting most of the data onto the dark sand-water face of
the simplex.

All methods were developed in Matlab and ran on an In-
tel Core i7-8700K CPU, 3.20 GHz machine with 6 cores.
The runtimes of KRR, GP, and NN to learn the mapping from
nonlinear spectra to the linear model were respectively 0.92,
241.92, and 1109.00 seconds.

4. CONCLUSIONS

In this paper, we applied a supervised method for estimating
the fractions of component materials in hyperspectral data of
mixed and compound materials. The method learns a map-
ping from the actual reflectance spectra to spectra that follow
the linear mixing model. The mapping accounts for nonlin-
earities and spectral variability due to intimate mixtures and
chemical changes. The methodology was validated on mix-
tures of clay powders and mortar samples. The results demon-
strate the potential of the proposed technique for estimating
the composition of baked bricks or the initial water to cement
ratios in a hardened mortar and concrete samples. In future
work, we will apply the methodology to heterogeneous mix-
tures, e.g., to concrete and cementitious materials.
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Fig. 1: Scatterplot of the clay samples; (a) true dataset; (b) after mapping to the linear model by NN. Blue, red, and black dots
represent pixels from YR5050, YR6040, and YR7030 respectively.

Clay GT GP KRR NN SM LMM Hapke PPNM
YR5050

Yellow (%) 54 53.97±1.69 55.26±2.19 53.88±1.35 54.08±0.28 73.60±3.75 73.60±3.74 73.61±3.77
Red (%) 46 46.03±1.69 44.74±2.19 46.12±1.35 45.92±0.28 26.40±3.75 26.40±3.74 26.39±3.77

Yellow (g) 5 5.00 5.12 4.99 5.01 6.82 6.82 6.82
Red (g) 5 5.00 4.86 5.01 4.99 2.87 2.87 2.87

YR7030
Yellow (%) 73.09 73.16±1.20 71.22±2.05 73.22±2.53 73.07±0.31 92.66±3.18 92.63±3.20 92.88±3.22

Red (%) 26.91 26.84±1.20 28.78±2.05 26.78±2.53 26.93±0.31 7.34±3.18 7.37±3.20 7.12±3.22
Yellow (g) 7.01 7.02 6.83 7.02 7.01 8.89 8.88 8.91

Red (g) 3.03 3.02 3.24 3.02 3.03 0.83 0.83 0.80
YR6040

Yellow (%) 63.65 67.43±2.57 65.29±2.38 63.79±2.72 68.80±5.02 85.19±4.06 85.15±4.06 85.31±4.10
Red (%) 36.35 32.57±2.57 34.71±2.38 36.21±2.72 31.20±5.02 14.81±4.06 14.85±4.06 14.69±4.10

Yellow (g) 6.01 6.37 6.16 6.02 6.50 8.04 8.04 8.06
Red (g) 4.03 3.61 3.85 4.01 3.46 1.64 1.65 1.63

Table 1: The mean estimated fractional abundances and standard deviations (in volume %) and mean estimated weight of the
test pixels by using GP, KRR, NN, SM, LMM, the Hapke model and PPNM respectively.

Endmember GT GP KRR NN SM LMM Hapke PPNM
W/C60%

Dark sand 55.01 55.06±0.63 56.70±1.52 54.84±0.45 54.59±0.38 67.57±5.24 62.90±5.51 67.42±5.20
Cement 15.74 15.77±0.18 14.69±0.85 15.69±0.13 15.60±0.11 0±0 0.001±0.043 0±0
Water 29.25 29.17±0.80 28.61±0.81 29.47±0.58 29.81±0.49 32.43±5.24 37.10±5.51 32.56±5.20

W/C ratio (%) 60 59.70 62.80 60.59 61.64 ∞ 106 ∞
W/C80%

Dark sand 50.10 50.28±0.83 52.44±1.63 50.75±0.70 50.47±0.81 54.19±6.35 48.14±6.77 54.18±6.28
Cement 14.34 14.39±0.23 13.26±0.80 14.52±0.21 14.48±0.24 0±0 0±0 0±0
Water 35.56 35.33±1.05 34.30±1.15 34.73±0.91 35.05±1.04 45.81±6.35 51.86±6.6.77 45.82±6.28

W/C ratio (%) 80 79.22 83.52 77.21 78.11 ∞ ∞ ∞
W/C70%

Dark sand 52.41 53.15±0.91 55.16±2.79 53.39±0.58 53.26±0.61 64.08±7.03 58.99±7.43 63.98±6.96
Cement 15.02 15.15±0.27 14.24±1.47 15.26±0.16 15.24±0.17 0±0 0±0 0±0
Water 32.57 31.70±1.17 30.61±1.49 31.35±0.74 31.49±0.78 35.92±7.03 41.01±7.43 36.02±6.96

W/C ratio (%) 70 67.52 69.38 66.26 66.66 ∞ ∞ ∞

Table 2: The mean estimated fractional abundances, their standard deviations and mean estimated w/c ratio of test pixels (in
%) by GP, KRR, NN, SM, LMM, the Hapke model, and PPNM respectively.
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Fig. 2: Scatterplot of the mortar samples; (a) true dataset; (b) after mapping to the linear model by GP. Blue, red, and black dots
represents W/C60%, W/C70%, and W/C80% respectively.
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