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Abstract
InX-ray computed tomography, discrete tomography (DT) algorithmshavebeen successful at reconstructingobjects composed
of only a few distinct materials. Many DT-based methods rely on a divide-and-conquer procedure to reconstruct the volume
in parts, which improves their run-time and reconstruction quality. However, this procedure is based on static rules, which
introduces redundant computation and diminishes the efficiency. In this work, we introduce an update strategy framework
that allows for dynamic rules and increases control for divide-and-conquer methods for DT. We illustrate this framework by
introducing Tabu-DART, which combines our proposed framework with the Discrete Algebraic Reconstruction Technique
(DART). Through simulated and real data reconstruction experiments, we show that our approach yields similar or improved
reconstruction quality compared to DART, with substantially lower computational complexity.

Keywords X-ray tomography · Reconstruction algorithms · Discrete tomography · Limited data tomography

1 Introduction

In X-ray Computed Tomography (XCT), the interior of an
object is commonly visualized by reconstructing an image
from a large number of radiographs, equiangularly acquired
over 180 or 360 degrees. If scan time restrictions or geomet-
rical constraints during scanning apply, only a small number
of radiographs or a set of radiographs distributed over a lim-
ited angular range will be available, respectively. In such
ill-posed limited data problems, conventional reconstruc-
tion methods, such as Filtered Back Projection (FBP) or the
Simultaneous IterativeReconstructionTechnique (SIRT) [1],
lead to images with severe artefacts [2] and semi-convergent
behaviour [3].

Including prior knowledge about the scanned object into
the reconstruction process is a well-known strategy to com-
pensate for limited data in XCT [4–6]. A specific type of
prior knowledge is exploited in discrete tomography (DT)
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[7], where the object is assumed to be composed of only a
few materials. The variety of work on discrete tomography
is vast [8–11], with several algorithms developed to improve
robustness with respect to noise [12–15], handle partially
discrete images [16,17], and polychromatic data [18,19].

Despite their strengths, practical DT methods are com-
putationally intensive as they primarily rely on iterative
reconstruction. To increase speed, divide-and-conquer strate-
gies are often employed, in which only a part of the image
is updated in each iteration [7,16,20]. Amongst the practi-
cal DT algorithms that rely on such division strategies, the
Discrete Algebraic Reconstruction Technique (DART) [2]
is well known for producing high-quality reconstructions of
objects composed of few different materials, even in cases
with a limited number of projections or projections acquired
in a limited angular range [21]. DART has been successfully
applied in various imaging domains [22–25] and is a com-
mon benchmarkmethod to compare newDT algorithmswith
[26–29].New reconstruction methods based on the DART
methodology are still being introduced [18,30–32]

Despite the benefits of DART, its computational com-
plexity is high. One of the causes is that update rules in
DART are predetermined and hence do not change over the
course of the reconstruction [33,34]. As a result, already
well-reconstructed image regions continue to be updated,
leading to redundant computation. This problem has been
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addressed in theoretical DT, where Tabu-search theory has
been combined with other DT methods such as combina-
torial optimization approaches based on Ryser’s algorithm
[35,36] and with binary reconstruction based on Gibbs priors
[7]. However, these approaches are infeasible for large-scale
problems, due to both memory requirements and compu-
tation time. Heuristic methods such as DART have better
scalability than theoretical DT methods, but still suffer from
long computation times, partly caused by redundant compu-
tation.

To reduce redundant computation of DART-like methods,
we propose a framework of dynamic update rules, which
combines concepts from Tabu-search theory with update
strategies. We introduce a probability map that adapts based
on feedback received during subsequent reconstruction steps.
By expressing update rules as changes to this probability
map, dynamic update strategies during the reconstruction
are implemented. Initialization of this map was based on the
entropy of the reconstruction, a measure used before in dis-
crete tomography in the context of optimal projection angle
selection [37] and in the non-discrete case formeasuring gray
value uncertainty [38].As a proof of concept,we present such
a framework for DART. Furthermore, we describe an esti-
mation procedure for the initial state of the probability map
based on image uncertainty. The datasets generated during
and/or analysed during the current study are available from
the corresponding author on reasonable request.

2 Methods

The computed tomography problem can be represented as a
linear system which is solved by Algebraic Reconstruction
Methods (ARMs). General ARMs and the DART algorithm
are described in Sect. 2.1. In Sect. 2.2, we build upon Tabu-
search methodology to exploit memory structures inside
DART for improved computational efficiency.

2.1 The DART algorithm

DART is built upon an Algebraic Reconstruction Method
(ARM), which calculates solutions to the following linear
reconstruction problem:

Wx = p, (1)

where x ∈ R
n is a vectorized pixel representation of the

object, p ∈ R
m is the measured projection data, and W ∈

R
m×n is the system matrix describing the approximately

linear relationship between the scanned object and the mea-
sured data. Awidely used ARM is the Simultaneous Iterative
Reconstruction Technique (SIRT) [39], which computes a
minimal distance solution to the system (1) with respect to

the 2-norm. SIRT iteratively computes the following update
step:

x( j+1) = x( j) + λCW�R(p − Wx( j)), (2)

where C ∈ R
n×n and R ∈ R

m×m , are diagonal matrices
containing the inverse of the column and row sums of W,
respectively. The vector x(k) is the current estimate of the
solution to (1) and lambda is the relaxation parameter. SIRT
was used as the ARM in this paper, with λ = 1.0 as the
default choice.

Let R = {ρ1 < · · · < ρk} be the set of gray val-
ues representing the different materials of which the object
is composed. Then, a solution x to (1) is discrete if x ∈
{ρ1, . . . , ρk}n . Given an initial SIRT reconstruction x(0), the
key steps in the DART algorithm can be briefly summarized
as follows:

1. Segmentation: Let x(�) be the output of the SIRT algo-
rithm, where x(0) is the output from the initial SIRT
iterations. Since the gray levels in the image are known
to be in R, the elements of x(�) are projected (e.g., by
thresholding) onto R. We denote the segmented image
by s(�).

2. Partitioning: In the partitioning step, a divide-and-
conquer procedure is initiated by labeling the image pixels
into two categories: free pixels (which will be updated)
and fixed pixels (which are kept fixed at their current
value). If a pixel has at least one neighbouring pixel of
different gray value ρi , it is considered a boundary pixel
and is added to the set of free pixels.Otherwise, the pixel is
considered fixed. Furthermore, every non-boundary pixel
has a small but constant probability p to be included in the
free set. After labeling, the reconstruction process contin-
ues on the free pixels only, while keeping the other pixels
fixed.

3. Masked reconstruction: A fixed number of SIRT iter-
ations is then performed on the free pixels and a new
image x(�+1) is computed by merging the updated free
pixels with the fixed pixels.

4. Smooth and repeat After an optional smoothing is per-
formed by convolution with a 3 × 3 kernel, the steps are
repeated until a convergence criterion is met or a max-
imum number of DART iterations has been reached. In
this paper, a 3×3 median kernel M was used with weight
parameter b

x = (1 − b)x(�+1) + b(M ∗ x(�+1)) ,

where ∗ denotes the convolution operator.
For a detailed description of the DART method, we refer

to [2].
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2.2 The Tabu-DART algorithm

In Sect. 2.2.1, a brief overview of Tabu-search and related
concepts is presented, together with potential implications
of using memory structures in DART. In Sect. 2.2.2, the
DART update step is generalized as a framework that intro-
duces a probability map to function as a memory structure
for the partitioning step (step 2) inside the algorithm. The
proposed Tabu-DART algorithm is described, in which the
probability map is adapted based on a dynamic set of rules
and feedback received from the segmentation step. Finally,
in Sects. 2.2.3 and 2.2.4, the map initialization and feedback
loop is explained for Tabu-DART.

2.2.1 Memory structures and Tabu-search

Tabu-search is a variations strategy for mathematical opti-
mization techniques that rely on local search. The nature of
local search methods makes them vulnerable to local optima.
Tabu-search aids infinding the global optimum through adap-
tivememory structures and reaches parts of the solution space
that would otherwise be left unexplored. It allows to escape
from local optima and intensifies searches inside a specific
region around a solution. In the next paragraph, a summary of
the Tabu-search concepts is given to clarify our contribution.
For a more in-depth description we refer to [40].

There are four main factors which describe the memory
structure used: recency and frequency based memory, qual-
ity and influence. Recency-basedmemory stores information
on recent solutions explored, and aids in preventing already
visited solutions in favor of exploring worse but yet unvis-
ited solutions. Frequency-based memory stores information
on the number of times a certain attribute has appeared in
recent solutions. Quality relates to the ability to differenti-
ate between characteristics of good and bad solutions, while
influence stores the impact of changes in structure of the solu-
tion. It is infeasible to store multiple solutions for large 3D
volumes. Hence, recency-based memory has limited func-
tion for algebraic reconstruction with DART. The frequency
of favourable attributes relating to good reconstruction can,
however, be stored and exploited to improve DART. For this
reason, our approach relies on frequency-basedmemory. The
use of quality and influence metrics is limited to a feedback
loop, which adapts the memory structure we propose for
DART. When many reconstructions with a low error share
an attribute, exploring locations in the reconstruction space
where this attribute will be present increases the probability
of finding a reconstruction that minimizes the error. Image
features, such as which pixels still change their gray value or
whether or not the boundary between different gray values
stopped evolving, are valuable attributes that can be tracked
in frequency. In Sect. 2.2.4, we describe how changes with
respect to such a feature can be tracked to adapt the partition-

ing step (step 2) in the DART algorithm and make it more
efficient over time.

2.2.2 The probability map framework

In DART, the partitioning rules decide which pixels in the
image are updated, and hence they have a significant impact
on the quality of the resulting reconstruction. The following
probability map functions as frequency-based memory for
the partitioning step inside DART:

P : Rn → [0, 1]n, x �→ px. (3)

Instead of one parameter p describing the probability that an
interior pixel is updated in the next iteration, a probability
pxi is linked to each pixel xi , which decides whether or not
to update that pixel in the next iteration. The map functions
as tracker of the frequency of change for any metric that
distinguishes between pixels that are likely to be correctly
classified and those that are not.

To correctly incorporate the update probability map, cer-
tain steps are different from the original DART algorithm.
First, an initial state for the probabilitymap is created after the
initial SIRT reconstruction. This state is based on any avail-
able or calculated image uncertainty measure. If a region in
the reconstructed volume is well-resolved, the probabilities
in that region can be lowered to reduce redundancy. During
each partitioning step, a random number ri is drawn from a
uniform distribution between 0 and 1, for each pixel xi . If
ri < pxi , the pixel is selected for update. This samples a
binary probability distribution in each pixel xi , with proba-
bility pxi to be free. Hence, the creation of the fixed and free
partitions depends entirely on the probabilitymap. At the end
of eachDART iteration, a feedback loop is introduced, which
updates the probability map based on the current reconstruc-
tion data. A flowchart of the Tabu-DART algorithm is shown
in Fig. 1.

2.2.3 Probability map initialization

An initialization scheme is presented for the probability map
to eliminate the need for the parameter p in the original
DART algorithm. The initialization is based on a general-
ization of local image uncertainty as proposed by Varga et
al. for binary reconstruction [41]. Each pixel can only attain
a value in R and the probability of being equal to ρi is spa-
tially dependent. A formula for generating the probability for
theoretical DT (illustrated in Fig. 2) is given by

P(x j = ρi ) = #{s ∈ {ρ1, . . . , ρk}n| Ws = p, s j = ρi }
#{s ∈ {ρ1, . . . , ρk}n| Ws = p} ,

∀i ∈ 1, . . . , k, j ∈ 1, . . . , n (4)
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Fig. 1 A flowchart of the
Tabu-DART algorithm. After
initial reconstruction and
segmentation (upper part), the
probability map is initialized.
The map is used to label the
image into free and fixed pixels
(middle). The fixed pixel
contribution is removed from the
original projection data (left).
The free pixels are then updated
from the residual projection data
(bottom) followed by another
segmentation step. If the
stopping criterion is satisfied,
the output is a discrete
reconstruction

Fig. 2 Theoretical (a) and
approximate (b) uncertainty
calculations in a single pixel. In
(a), the exact entropy is found
by counting all possible binary
solutions to the projection
problem. In (b), this entropy is
approximated based on a SIRT
solution, by using the distance
between the reconstructed gray
value and the a priori known
gray values

Hence, each pixel x j can be linked to a probability vector
vx j ∈ [0, 1]k , where k is the number of distinct gray values
in the image. The entropy defined as

H(x j ) = −vTx j logk vx j , (5)

translates this vector to a single value representing uncer-
tainty of the gray value of pixel x j . The logarithm logk is
applied pointwise on the different components of the vector
vx j .

Since it is infeasible to calculate the probabilities for large
images directly, we propose an extension of the approxima-
tion introduced by Varga et al. [41]. For the pixel x j of the
initial ARM reconstruction, let

dx j =
[

1

|x j − ρ1| , . . . ,
1

|x j − ρk |
]

vx j = dx j
‖dx j ‖1

. (6)

The values H(x j ) are used to initialize the probability map.
Note that one of the denominators in (6) may become zero
if x j ∈ R, e.g. if the condition x j ≥ 0 is enforced during
SIRT reconstruction possibly causing x j to be set to ρ1. To

avoid division by zero, a lower bound was selected for the
denominators in dx j .

2.2.4 Dynamic update rules

As the final part of Tabu-DART, the following set of update
rules are introduced to track a stability metric based on
changes between gray values for individual pixels: Define
cx,bx ∈ R

n such that

c(�+1)
x j =

{
0, if s(�+1)

j = s(�)
j

1, otherwise

b(�+1)
x j =

{
1, if s(�+1)

j is boundary

0, otherwise

Then, the new probability map p(‘+1)
x is given by

px(�+1) = min

(
1

2
px(�) + cx(�+1) + bx(�+1), 1n

)
(7)

These update rules halve the probabilities of all non-
boundary pixels that, when segmented, have the same gray
value ρi as in the previous iteration. Otherwise, the proba-
bilities are set to 1.
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Fig. 3 The four phantoms that
were used for the simulation
experiments

3 Experiments

Two sets of experiments were conducted. First, simula-
tion experiments were performed to test the validity of our
approach on four discrete phantoms from previous DART
papers [2,33,42] before evaluating the accuracy of Tabu-
DART on a polychromatic dataset of a plexiglass object [43].
The simulation experiments are described in Sect. 3.1 and the
plexiglass dataset is introduced in Sect. 3.2.

3.1 Simulation experiments

Figure3 shows the phantoms that were used for the sim-
ulation experiments, which are identical to those used in
previous DART publications [2,13,42]. The size of each
phantom is 512×512 pixels. With the ASTRA toolbox [44],
projections were simulated following a parallel beam geom-
etry with 512 detector values for each angle. Two cases of
limited data were studied: In the first case, the acquisition
range was [0◦, 180◦] and the number of projections was var-
ied from 2 up to 90. To maintain a uniform angular sampling
distribution while studying the performance of Tabu-DART
as a function of the number of projections, the latter were
generated using a golden ratio angular sampling [45], which

means that subsequent projections are 1+√
5

2 π radians apart
from each other. In the second case, 90 projections were
uniformly simulated, after which an increasing wedge was
removed.

To infer whether the update probability parameter p can
be avoided with our approach, we compared the Tabu-DART
algorithm to the DART algorithm with a total of 12 choices
for p. The best performing value for p for a specific case is
denoted by best p. The other DART parameters were chosen
according to literature [2,18] and have been kept constant
throughout the experiment. These are shown in Table 1.

3.2 Experimental data: barbapapa plexiglass
phantom

The goal of the real data experiment is twofold. First, to
provide evidence that Tabu-DART combines well with other
augmentations of the original DART algorithm. Second, to
study how the relaxation of the inner ARM iteration influ-
ences the overall reconstruction quality compared to DART.

Table 1 The values of the parameters used for DART and Tabu-DART
for the basic simulation experiment

Parameter Value

# Initial SIRT iterations 100

# Intermediate SIRT iterations 10

The smoothing parameter 0.1

# DART iterations 100

We reconstructed the central slice of the Barbapapa exper-
imental dataset [43], which consists of a plexiglass block
with two drilled cylindrical holes. Three aluminum rodswere
inserted into the block, amounting to a total of three dif-
ferent materials present: air, plexiglass and aluminum. A
picture of the object is shown in Fig. 4. A total of 2400 cone
beam projections were measured over the full 360◦ range
with a tube voltage of 130 kVp. To account for the poly-
chromaticity of the X-ray beam, our Tabu-search framework
was combined with a polychromatic version of DART, called
poly-DART [18].We refer to this polychromatic Tabu-DART
algorithm as TP-DART. To this end, the polychromatic spec-
trum was first estimated. This was done by scanning a
PVC step-wedge with steps ranging in thickness from 1 to
18 mm. The spectrum was then estimated using the Max-
imum Likelihood Expectation Maximization algorithm as
explained in [18]. A missing wedge experiment was set up,
starting from 400 equiangularly distributed projections over
a 360◦ range. Reconstructions are made from subsets of
these projections with an increasingly larger missing angular
wedge. These subsets consists of all projections in the range
[α, 180◦ − α] ∪ [180◦ + α, 360◦ − α] with α varying from
10◦ to 60◦. The parameters of poly-DART and TP-DART are
given in Table 2.

The run-time parameters resulted in a total of 500
SIRT/pSIRT iterations being performed for each method.
For this experiment, the relaxation factor λ for each run
of DART was estimated empirically as follows: At every
missing wedge (10◦ stepsize), the projection data was recon-
structed with 50 choices for λ. The relative Number of
Misclassified Pixels (rNMP), i.e. the ratio between the pixels
belonging to the wrong class and the total nonzero pixels,
was calculated for each λ. The best λ in terms of the rNMP
was kept for each choice of p and TP-DART, which yields a
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Fig. 4 The Barbapapa plexiglass phantom

Table 2 Parameter values within poly-DART and TP-DART for the
Barbapapa central slice reconstruction

Parameter Value

# Initial (p)SIRT iterations 50

# Interior (p)SIRT iterations 10

Smoothing 0.3

# DART iterations 45

Update probability [0.05, 0.1, 0.2, 0.5]

table for interpolation of λ for intermediate missing wedge
α. Additionally, the data was reconstructed with TP-DART
where

λ = β
Number of free pixels

Total number of pixels
(8)

is the relaxation factor and β controls the ratio between sys-
tem size and relaxation.We hypothesize that since TP-DART
iteratively lowers the system size, scaling the relaxation
appropriately could lead to better results. An interpolation
table was also created for β. The results of scaled relaxation
for TP-DART were collected separately and denoted with
TP-DART scaled.

4 Results

Two metrics were calculated to evaluate the performance of
the algorithms in each experiment: the rNMP and a mea-
sure for the computational efficiency. The latter metric is
expressed as either the total CPU time of the SIRT iterations
inside one DART iteration, or as the size of the linear sys-
tem. The system size is equal to the number of free pixels
and expressed as a percentage.

4.1 Simulation results

First, DART with different values of p was compared to
Tabu-DART in terms of rNMP, for both the few-view and
the missing wedge case. This experiment has been repeated

ten times with different seeds. Figures5 and6 show the mean
rNMP for each choice of parameter p and Tabu-DART for
increasing number of projections and increasing missing
wedge, respectively. For phantoms 2 and 3 in the few-view
case, Tabu-DART performs noticeably better than the other
three DART algorithms in terms of rNMP in the case with
varying angles, when the number of projections is very lim-
ited. For the other two phantoms, the Tabu-DART remains
competitive towards DART with the best performing value
of p.

The missing wedge experiment (Fig. 6) yields shows that
Tabu-DART performs comparably to the best choice for p,
especially when the missing wedge is high. Three specific
missing wedges (small, medium, and large) were selected
for each phantom for an in-depth study, and for those the
experiment was repeated 50 timeswith different seeds for the
random number generator. Figure7 shows the boxplot data
of the rNMP for DART and Tabu-DART for the small and
mediumwedge choices. A lower rNMP and lower variance is
observed for Tabu-DART compared to DART. Both DART
and Tabu-DART start from a different initial map and this
map is constant per algorithm in eachof the50 seeded repeats.
Our approach consistently feeds back data and dynamically
changes the set of pixels to be updated, while DART has no
feedback loop. This leads to the higher variance on the rNMP
for DART, as the free pixel selection is largely influenced
by random chance. The difference in visual quality between
DART with the worst and best performing value for p is
shown in Fig. 8. The contrast between the best and worst
choice is evident, which emphasizes the importance of a good
parameter choice for these experiments. Tabu-DART on the
other hands yields a superior visual quality without relying
on the p parameter.

Figure9 shows the average CPU time of 10 SIRT iter-
ations in seconds for varying angles. As very little of the
background is selected in the case of p = 0.01, it is not sur-
prising that this choice for p leads to the fastest algorithm.
However, our approach is comparable in speed. This is due
to the feedback procedure that iteratively removes already
stable regions from the reconstruction. Hence, the average
size of the linear system decreases, yielding the observed
low computation time together with a high reconstruction
quality in terms of the rNMP.We conclude that our approach
outperforms the DART algorithm both in rNMP and visual
quality for different types of noiseless scenarios. A final
remark is that earlier simulation studies [2,33] show that
lower values of p lead to a lower rNMP. In practice, once
noisy data is involved, the higher values of p tend to yield
a lower rNMP. We show evidence for this claim in the next
experiment.
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Fig. 5 The rNMP for Tabu-DART and DART with four different choices of p as a function of the number of projections

Fig. 6 The rNMP for Tabu-DART and DART with four different choices of p for increasing missing wedge

Fig. 7 Boxplots of the rNMP for different missing wedge α
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Fig. 8 Missing wedge reconstructions of the simulation phantoms 1
(a–c), 2 (d–f), 3 (g–i), and 4 (j–l) for the worst and best performing p
(left and center) compared to the reconstruction made with Tabu-DART

(right). The missing wedge corresponds to a choice shown in Fig. 7: for
phantom 1–4, α is 90◦, 80◦, 100◦ and 110◦, respectively

Fig. 9 The average CPU time for 10 SIRT iterations when varying the angles for each phantom. We observe that Tabu-DART has a low average
CPU time due to the probability map feedback procedure

Fig. 10 a The rNMP for varying relaxation λ for the Barbapapa plexi-
glass phantom. b The rNMP for Tabu-DART with changing relaxation
with scaling factor β

4.2 Barbapapa plexiglass phantom

Figure10a shows the rNMP of all methods tested for the
different choices of λ. Figure10b shows the rNMP of TP-
DART for varying scaling factor β. It can be observed that
DART with lower p-values has a better defined minimum
compared to high values of p. The same occurs for TP-
DART and TP-DART scaled. The common trait that low

Table 3 The relaxation values λ and scaling factors β which comprise
the interpolation table for the Barbapapa plexiglass reconstruction

Missing wedge α 10 20 30 40 50 60

λ for p = 0.05 0.1 0.1 0.12 0.12 0.92 1.0

λ for p = 0.1 0.16 0.18 0.2 0.2 0.76 1.0

λ for p = 0.2 0.24 0.34 0.32 0.3 0.94 1.0

λ for p = 0.5 1.0 0.96 0.66 1.0 1.0 1.0

λ for TP-DART 0.1 0.14 0.16 0.18 0.66 0.96

β for TP-DART 2.0 2.5 2.5 2.5 5.0 10

Fig. 11 The rNMP (a) and the percentage of free pixels (b) in function
of missing wedge α for the Barbapapa plexiglass phantom
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p-values and TP-DART share is the lower number of freed
pixels. Hence, we reason that this sensitivity to the relax-
ation factor is related to the system size. A lower system size
implies an increased sensitivity of each pixel to noisy data,
due to increased convergence speed. Relaxation is necessary
to counteract semi-converging behaviour. However, over-
relaxation lowers convergence speed. The higher choices of
p are innately more resistant to semi-convergent behaviour,
and hence the impact of relaxation is lower since their con-
vergence rate is slower. When additional projection data is
removed, the reconstruction error increases due to lack of
data instead of noise. Therefore, less relaxation is necessary
which results in a higher choice for λ in (2). The entries in
Table 3 support this since the best performing values forλ and
β increase as the missing wedge increases. This also means
that smaller choices of p benefit more from relaxation. A
final argument is that the best λ for poly-DARTwith p = 0.5
is almost exclusively λ = 1.0. In summary: The lower the
choice of p for poly-DART, the more important the selection
of a correct relaxation factor becomes. Furthermore, optimal
λ selection for TP-DART is similar to the optimal choice for
poly-DART with a small p.

The reason for only introducing a scaling factor β for the
relaxation in TP-DART is because poly-DART relies on the
same update rules as DART, which on average frees 100p
percent of the pixels plus the boundary. The change in system
size for poly-DART iterations is negligible compared to TP-
DART which makes scaled relaxation with a scaling factor
identical to relaxation with a different fixed λ.

Figure11a shows the rNMP of the reconstructed images
for varying missing wedge. All methods have very similar

rNMP when the missing wedge is low, which was also the
case for the simulation experiments. The choice of p has
negligible effect if there is sufficient data to reconstruct the
object. For large values of α, TP-DART shows a consistently
lower rNMP than poly-DART. Overall, TP-DART scaled has
the lowest rNMP for each value of α with a system size that
is of the same order as poly-DARTwith p = 0.05 (Fig. 11b).

Despite real-world projection data, the lower choices for
p yield a lower rNMP for this object. For the Barbapapa
phantom, the optimal relaxation parameter λ, with respect to
the rNMP, was chosen, (cfr. Table 3). This implies that there
exists a cut-off where relaxation stops benefiting the DART
algorithm. Our experiments provide evidence that this cut-
off depends on both the amount of projection data and the
choice p. Table 3 shows a large jump for λ once α ≥ 50◦. It
is also from this point on that p = 0.05 outperforms higher
choices of p.

Two conclusions can be drawn from the results. The first is
that estimating λ based solely on system size will yield poor
results if the available projection data is insufficient. Sec-
ondly, relaxation based on system size with a scaling factor
β dependent on the amount of data available is indispensable
towards the proper functioning of TP-DART for experimen-
tal projection data. Even in the case of polychromatic data,
our approach based on tabu-search showed favourable results
with respect to DART. The reconstructed image for amissing
wedge of 40◦ is shown in Fig. 12. Due to the large miss-
ing wedge, the pSIRT and SIRT reconstructions show large
streak artefacts, which drastically influence the quality of the
segmentation (Fig. 12b up to f). The initial probability map
used in TP-DART captures these artefacts (Fig. 12g), but the

Fig. 12 pSIRT, SIRT and
TP-DART reconstructions for
the missing wedge experiment
with α = 40◦. TP-DART yields
highly increased visual quality.
The final number of (p)SIRT
iterations for each method was
500
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Table 4 FLOP counts for operations occurring during a SIRT iteration

Operation FLOP count

[x] − [y] n

[x]T [y] 2n − 1

[W ][x] (sparse) O(sn)

[D]x (diagonal D) n

final TP-DART output contains no missing wedge artefacts.
In fact, the TP-DART reconstruction is very similar to a refer-
ence reconstruction created with pSIRT for the entire dataset
of 2400 projections (Fig. 12a). This implies that the feedback
structure of the algorithm is able to correct errors created dur-
ing the initial SIRT reconstruction.

When considering visual quality of the reconstructions,
no clear best method emerged.

5 Discussion and outlook

In summary, the proposed probability map plays the role of
frequency based memory and aids in choosing more opti-
mal regions for further reconstruction. It is able to retain
which regions are already stable and uses this information to
completely remove them from the reconstruction problem,
increasing the efficiency and speed of the DART iterations
over time. The initialization procedure suggested above elim-
inates the need for the update probability parameter p.

5.1 Complexity analysis based on floating point
operations

The experiments show that our update strategy reduces the
system size on which the SIRT algorithm is run. A good
measure for iterative algorithms, is the number of FLOating
Point operations (FLOPs) needed to perform an iteration. In
this section, each addition, subtraction, multiplication and
division is counted as one FLOP. A theoretical speedup can
be measured by counting FLOPs for the SIRT algorithm. Let
x, y ∈ R

n . LetW ∈ R
m×n be s-sparse, i.e. |W| = s. LetD ∈

R
n×n be any diagonal matrix. The FLOP counts for different

matrix/vector operations present in SIRT are summarized in
Table 4 [46]. In practice, the entries of W are calculated on
the fly, resulting in additional overhead depending on the
number of pixels in the image and the number of nonzero
entries in W. The complexity of multiplying a vector by W
is hence O(sn).

The only operation in SIRT which is not yet accounted
for, is the creation of the R,C matrices, which are diagonal
matrices that have the inverses of the row and column sums

on their diagonal, respectively. To create amatrix of the form:

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1∑m
j=1 w1 j

1∑m
j=1 w2 j

. . .
1∑m

j=1 wmj

,

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9)

the entry 1∑m
j=1 wi j

requires n − 1 additions and 1 division,

which totals n FLOPs when counting divisions as one oper-
ation. This is repeated for each row of the m-by-n matrix
which means m times n FLOPs for a total of mn. The SIRT
update step can be decomposed into a sequence of matrix-
vector multiplications with costs:

x1 = Wx(k) cost: O(sn)

x2 = p − x1 cost: m

x3 = Rx2 cost: m

x4 = WTx3 cost: O(sn)

x5 = Cx4 cost: n

x6 = x(k+1) + x5 cost: n

(10)

Since the creation of matrices C and R only happens once
per sequence of SIRT updates, the cost is omitted in further
complexity calculation. From (10) it is trivial to find that the
total complexity in termsofFLOPs is ofO(sn+m).However,
the s nonzero entries of W are spread equally across each
column since each ray i that passes through a pixel j yields
a non-zero value wi j . If instead n − k pixels are removed
from reconstruction in the masking step, a total of n − k
columns is removed fromW. This leads to a linear decrease
in the number of remaining entries sk < s and hence the
new complexity becomes O(skk + m). A study on DART
performed earlier [42] pointed out that if enough pixels are
set fixed, certain rays only pass through vacuum and fixed
pixels. These zero rays lead to zero rows in the matrix W.
Hence, the number of nonzero detector readings is lowered
to a value mk < m. The final complexity of masked SIRT
becomesO(skk+mk)which is certainly higher than a linear
reduction consideringm 
 n in typical discrete tomography
applications.

5.2 Memory requirements

The gain in computational efficiency comes at the price of
storage memory. To run the Tabu-DART algorithm we pre-
sented, two additional image sizedmatrices need to be stored.
The first one is for the probability map. This cost cannot be
avoided, since the entire purpose of the map is to serve as
a memory for the algorithm. The second matrix is required
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to store the segmentation from the previous DART iteration.
This allows to track changes in gray values between two iter-
ations. Since gray value classes of the previous iteration can
be represented by integer numbers representing the class, the
memory demand can be reduced by working with short bit
integers at the cost of extra processing.

5.3 Outlook

The criteria for dynamic update rules are not limited to
image stability. Our approach can utilize metrics such as the
Reconstructed Residual Error [47], image stability [33], or
image uncertainty [41]. Algorithms such as MDART [48]
and ADART [42] can be easily represented with a probabil-
ity map, illustrating that our proposed technique is in fact a
generalization of the original DART approach to a dynamic
framework. The development of additional dynamic update
strategies based on image uncertainty is a point of reference
for future work.

6 Conclusion

A generic framework based on Tabu-search was proposed
to aid divide-and-conquer strategies for algebraic discrete
tomography methods. Our framework relies on a probabil-
ity map that functions as a memory structure, which can be
adapted through feedback obtained during the run-time of the
algorithm. This concept was applied to DART, for which we
introduced new dynamic update rules and a stronger initial-
ization phase based on local image uncertainty. The method
was subjected to a simulation study using different discrete
phantoms and an experimental polychromatic dataset of a
plexiglass block with aluminum rods. The experiments pro-
vided evidence of increased visual imaging quality as well as
lower rNMP rates and lower average computation time com-
pared to the original DART algorithm. The generic nature
of our approach makes it ideal to be combined with other
discrete algebraic methods that rely on divide-and-conquer
strategies.
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