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Optimal Threshold Selection for Segmentation
of Dense Homogeneous Objects in
Tomographic Reconstructions

Wim van Aarle*, Kees Joost Batenburg, and Jan Sijbers

Abstract—In this paper, we present a novel approach to segment
dense, homogeneous objects in a tomographic reconstruction (or
tomogram). A popular method to extract such objects from a tomo-
gram is global thresholding, in which the threshold value is deter-
mined from the image histogram. However, accurate threshold se-
lection is not straightforward, since, due to noise or artefacts in the
reconstruction, the histogram does not always contain a clear, sepa-
rate peak for the dense object. We propose a new threshold estima-
tion approach, segmentation inconsistency minimization, that ex-
ploits the available projection data to determine the optimal global
threshold. The proposed algorithm was tested on simulation data
and on experimental 1 CT data. The results show that this method
results in more accurate segmentations, compared to alternative
threshold selection methods.

Index Terms—Computed tomography (CT), dense objects, iter-
ative reconstructions, segmentation, thresholding, tomography.

I. INTRODUCTION

HIS paper deals with the segmentation of dense objects in
T images obtained from computed tomography (CT), also
known as tomograms. It is assumed that the objects to be seg-
mented have a constant density that is higher than that of the sur-
rounding materials. In medical imaging, dense object segmen-
tation is required in many applications. For example, suppres-
sion of streak or beam hardening artefacts caused by metal im-
plants requires segmentation of the medical tomograms [1]-[3].
Object identification and motion estimation (e.g., for coregis-
tration) often requires detection of implanted markers on a de-
vice or guide wire [4], [S]. Accurate localization of individual
cochlear implant electrodes within the inner ear is important to
model the electrical field of the cochlea [4], [6]. Extraction of
the trabecular bone features, such as the cortical thickness or
the cortical area, from the surrounding marrow spaces involves
segmentation of the dense bone with respect to the background

[71, [8].
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Without noise or artefacts in the CT reconstruction, segmen-
tation of dense homogeneous objects would be trivial. Unfor-
tunately, in practice, accurate separation of such objects from
the surroundings within a tomographic reconstruction is a non-
trivial task for several reasons.

* Limited number of projection images. In many cases, the
number of available projections is not sufficient to guar-
antee a unique reconstruction. Therefore, the computed re-
construction most likely does not correspond entirely to the
underlying, unknown object.

* Noise or artefacts in the measured projection data. Real-
world data is inevitably polluted by noise and artefacts for
example caused by malfunctioning detector elements or
scatter, leading to inaccuracies in the reconstruction.

* Approximations in the reconstruction algorithm. Common
reconstruction algorithms typically do not compute an
exact inverse of the Radon transform, resulting in discrep-
ancies between the reconstruction and the original object.

As a consequence, dense objects do not always show up as clear
peaks in the histogram of a tomographic reconstruction.

For dense object segmentation, it is a common choice to set a
global threshold somewhere between the grey level of the pixels
belonging to the object and those of the maximum value of the
other pixels, which we call the background in the remainder
of this paper [9]. Typically, this threshold is selected based on
the histogram of the tomogram [10]. If only a few materials are
present and each of these correspond to a distinct grey level peak
in the histogram, it is possible to accurately determine appro-
priate thresholds, for example by analyzing the concavity points
on the convex hull of the histogram [11] or by modeling the his-
togram as a mixture of a series of Gaussian distributions [12].
The most popular global threshold selection method is the clus-
tering method of Otsu [13]. It minimizes the weighted sum of
intra-class variances of the different segmentation partitions.

The problem with histogram-based methods in the con-
text of segmenting a homogeneous object in a continuous
grey level image, however, is that there are no guaranteed
histogram peaks representing the continuous background. His-
togram-based methods are particularly inadequate if the object
of interest is only slightly more dense than the surrounding
materials.

Different approaches to segmentation of dense objects also
exist, e.g., region-based algorithms such as region growing [14]
and watershed segmentation [15]. These methods, however, are
also solely based on the reconstructed image and are therefore
very susceptible to reconstruction artefacts.
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Ideally, reconstruction algorithms for tomography should be
“invertible,” so that computed projections of the reconstructed
image would equal the measured projection data. For filtered
backprojection, the most common reconstruction algorithm
used in practice, this assumption does not hold, mainly due to
various interpolation steps involved in the algorithm. Iterative
algebraic methods (e.g., SIRT [16]), which are less commonly
used due to their computational requirements, only satisfy the
invertibility assumption for the case of noiseless projection data
and an infinite number of iterations. As the reconstructed image
does not correspond accurately with the measured projections,
using the projection data for the segmentation can potentially
result in a segmentation that is more faithful to the original
measurements.

Recently, a new method was proposed for global [17] and
local [18] threshold selection in tomograms, called projection
distance minimization (PDM). This approach is based on the
assumption that the scanned object contains a small number of
different densities, each corresponding to a constant grey level
in the reconstruction. By segmenting the reconstructed image,
this property is restored in the tomogram. To measure the quality
of this segmentation, projections of the segmentation are com-
puted and compared to the measured projection data. An optimal
segmentation will result in maximal correspondence between
the simulated projections and the measured dataset. However,
this approach requires that the scanned object contains only
a few different densities and does not allow for segmentation
of objects with a constant greylevel in a continuously varying
surrounding.

In this paper, we will introduce a new global thresholding
method, the segmentation inconsistency minimization (SICM)
method, for dense object segmentation that employs similar
concepts as the mentioned PDM methods, while allowing the
remaining part of the image to vary freely. For each candidate
segmentation, the projections of the segmented object are
subtracted from the measured projection data, after which the
remaining part of the image is reconstructed and checked for
consistency with the residual projections. The threshold for
which minimal inconsistency is obtained is selected for the
segmentation. The only assumptions that are made, is that the
density of the object is constant and that it is higher than all
remaining densities in the scanned object.

In [19], preliminary work on this topic was published and
an algorithm called segmentation consistency maximization
(SCM) was introduced. The basic strategy behind the newly
proposed SICM is similar to that of SCM, but there are signifi-
cant differences as well, such as the addition of automatic grey
level estimation and a more elaborate optimization technique.

We will focus on uCT applications such as the segmentation
of bones, cochlear implants, foams, etc. The applicability of the
proposed method is not limited to these applications, however.
Indeed, the method can also be applied in regular CT or in elec-
tron tomography.

The paper is structured as follows. In Section II, the tomog-
raphy setting is introduced. Section III describes our threshold
selection algorithm in detail. Experimental results are presented
in Section IV. Section V concludes the paper.

Fig. 1. Basic setting of transmission tomography.

II. NOTATION AND CONCEPTS

In this section, we introduce a notation for basic tomography
operations such as forward projection and reconstruction. We
also introduce a definition of sinogram inconsistency. These
concepts are used in Section III, where they will be used to de-
fine a dense object segmentation algorithm.

A. Computed Tomography

Let v € R™ denote the discretized square image of an object,
with n, the number of pixels. Assume that the object is com-
pletely contained in this square.

Projections of this image are measured along lines lg; =
{(z,y) € R xR : zcosh + ysinf = t}, where 6 represents
the angle between the line and the y-axis and ¢ represents the
coordinate along the projection axis; see Fig. 1. In practice, a
projection is measured at a finite set of projection angles and
at a finite set of detector cells, each measuring the integral of
the object density along a ray. Let m denote the total number of
measured detector values for all angles and let p € R™ denote
the measured projection data.

The forward projection of the object for a finite set of angles
can be modeled as a linear operator W, called the projection
operator, that maps the image v to the projection data q

q:=Whou. (1)

In (1), W = (w;;) is an m xn matrix where w; ; represents the
contribution of image pixel v; to detector value p;. The vector
q is called the forward projection or sinogram of v.

The reconstruction problem in transmission CT concerns the
recovery of v from a given vector p of projection data, such that

Wuv =p. 2)

Many reconstruction algorithms exist, such as filtered backpro-
jection (FBP), Feldkamp (FDK), etc. In the remainder of this
paper, however, we will focus on a single algorithm, namely the
simultaneous iterative reconstruction technique (SIRT) [16].

B. SIRT Reconstruction

The SIRT algorithm is an iterative reconstruction technique
that finds the least squares solution v to the system of equations
in (2). It has several favorable mathematical and computational
properties, such as guaranteed convergence and linearity.
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We describe the iteration update for the SIRT algorithm. Let
9 = 0. For g=1,2,... letr® =p— W57~ be the pro-
jection difference before the ¢*” iteration. In each new iteration
¢, the current reconstruction 971 is updated, yielding a new
reconstruction 'ﬁ(q), as follows:

SUSSTI I (T

3)

In the remainder of this paper, we will use the symbol S to
denote the linear operator that creates a SIRT-reconstruction of
a sinogram p with a certain fixed number of iterations, i.e., v =
Sp.

It can be shown [16] that the SIRT-algorithm as described
in (3) converges to the solution v where the weighted squared
projection difference ||Wv — p||?R = (Wo—p)TR(Wv—p)is
minimal with R, a diagonal matrix that contains the inverse row
sums of W: r;; = 1/Z]- W

The SIRT algorithm can also be performed on a subset A C
{1,...,n} of the image pixels by removing the columns of W
that are not in A. In this way, a reconstruction can be computed
for which the projection difference is minimal in the set of all
reconstruction images that are zero outside of A. We denote the
SIRT reconstruction operator restricted to the set A by S 4.

C. Sinogram Inconsistency

Not all vectors p are valid sinograms. The set of all valid con-
tinuous sinograms has been characterized by Ludwig and Hel-
gason in [20], [21]. They describe a set of conditions that must
be satisfied by all sinograms, known as consistency conditions.
In a discretized setting, where projection data is available only
for a limited set of angles, a measured sinogram is called con-
sistent if (2) is a consistent system, i.e., p € span{w; : 0 <
1 < n}. In practice, a sinogram will rarely be consistent due to
noise, discretization, partial volume effects, etc. We therefore
also introduce the inconsistency of a sinogram p given by

mingeg- |[Wz — p||
(with || - || a vector norm, defined by the reconstruction algo-
rithm), i.e., the distance between p and the nearest consistent

sinogram.

An important role in our proposed algorithm is played by sets
of sinograms that correspond to images where certain pixels are
known to be zero. A sinogram p € R™ is called A-consistent if
p € span{w, : a € A}. Thus, for each A-consistent sinogram
p there exists a reconstructed image ¥ with Wo = pand v; =0
for each i ¢ A. The distance between p and the nearest A-con-
sistent vector is called the A-inconsistency of p. Note that when
A ={1,...,n}, the concepts of inconsistency and A-inconsis-
tency are equivalent.

It is not possible to compute the A-inconsistency directly.
However, to approximate the A-inconsistency of a vector p with
respect to the norm || - || g, one can compute a SIRT reconstruc-
tion of p restricted to A with a fixed number of iterations, com-
pute the forward projection of this reconstruction and compare it
to the vector p of measured projections. Define the A-pseudo-in-
consistency of p by

ICA(p) = [[WSap —pllRg- “4)
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III. COMPUTATIONAL APPROACH

In this section, we introduce the segmentation inconsistency
(SIC) measure for determining the quality of a thresholded seg-
mentation of the dense objects in the reconstructed image. We
will explain this metric 1) by arguing that if a threshold is chosen
too low, the segmentation inconsistency will be higher and 2) by
experimentally showing that if the threshold is chosen too high,
the measured segmentation inconsistency will also increase.

Subsequently, we present the SICM algorithm. This algo-
rithm is an optimization technique to minimize the segmentation
inconsistency. In each function evaluation the SIC will be com-
puted on the residual sinogram that is created by subtracting the
forward projection of the dense object from the measured pro-
jection data. Note that this is possible only if the grey level value
of the dense object is known. We will therefore also discuss a
method for the automatic estimation of this value.

A. Segmentation Inconsistency

Although measured sinograms will always be polluted by
noise and other errors, let us assume, for the sake of clarity, that
a “perfect” sinogram p has been measured of an unknown image
v, i.e., Wv = p. All that is known of w is that it contains one or
more dense objects with a constant, maximal grey level value p
and thus satisfies the prerequisites of the suggested algorithm.
Let ¥ be an image, the tomogram of v, such that Wo =~ p. The
tomogram may have been computed by any reconstruction al-
gorithm, e.g., FBP or SIRT.

Put B = {b : v, = p}, the set of pixels belonging to the
dense object, i.e., the set of pixels to be found by the algorithm.
We seek to approximate B by applying a threshold operation to
v. Let 7 be a candidate threshold. Define B = {b: 0y > 7}, the
estimated set of pixels of the homogenous, dense object. Define
A= {a : ¥, < 7}, complementary to B, the estimated set of
pixels of the background.

For any image » € R™ and any set A C {1,...,n}, letvy
be an image that is equal to @ for all pixels 7 € A and 0 for all
pixels i ¢ A.

Let 3 = (5;) € R™ denote the segmentation of the dense
object, based on the estimated segmentation B

- 0, ified

AE L - 5

s { p, ifi € B. )

Based on this choice, we can now divide p into two parts: a

part that belongs to the dense object: W's and a part that belongs

to the background of image v. The second part is called the

residual sinogram of the region A and is given by

p;:=p— Ws. (6)

Definition: The segmentation inconsistency of any segmen-

tation image s with only two grey level values (0 for background
pixels and p for foreground pixels), is defined as

SIC(8) = IC;(pa) = |WSi(p—W3)—(p—W3)|g. (1)

We will now argue and demonstrate why SIC(8) is a useful mea-
sure for determining the quality of a segmentation s.
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1) Suppose that the reconstructed set B is an overestimation
of B, i.e., B C B. This typically happens if 7 is chosen
too low.

Put & := 5 — v, a vector that contains the exact overesti-
mation of the dense object. This vector is nonzero only for
pixels in B \ B and is strictly positive in this region because
Vi € B\B : v; < p. The residual sinogram can then also

be computed as follows:
p; = Wuv; —We. 8)

As the set of A-consistent sinograms is a linear subspace
of the set of all sinograms, p; is A-consistent if and only
if We is /i-consistent, i.e., there exists an image £ € R"
such that Wi = We and z; = 0 forall i ¢ A.

If both the number of projections and the region B \B are
small, it may occur that such an image z exists, resulting
in two different segmentations for which the residual sino-
gram is consistent. However, as the number of projections
increases and the difference between B and B becomes
larger, it becomes highly unlikely that the residual sino-
gram is still consistent. In fact, the fl-inconsistency will
typically increase as B is made larger, which will be
demonstrated in Section IV.

2) Now suppose that the reconstructed set B is an underes-
timation of B, i.e., B C B. This typically happens if 7
is chosen too high. In that case, the residual sinogram p;
will be A-consistent. Here we can make effective use of
the experimental convergence properties of the SIRT al-
gorithm. As the segmented dense object becomes smaller
(i.e., the threshold 7 is increased), the background A be-
comes larger, resulting in slower convergence for the it-
erative SIRT algorithm that is applied to those pixels. If
we terminate after a fixed number of iterations, the com-
puted SIC(s) will therefore generally increase along with
the threshold 7. Fig. 2 shows an experimental confirmation
of this algorithm property. For a Shepp—Logan phantom
image of 256 x 256 pixels using 100 projections, an in-
creasingly large random subset of pixels was kept fixed at
their true values, while computing the SIC(8) for the re-
maining pixels. Fig. 2 shows a strictly decreasing relation
between the size of A and the computed segmentation in-
consistency.

3) Of course, as a result of reconstruction errors and artifacts,
there may be a threshold interval where neither B C B nor
B C B. In that case, there will be an increase of segmenta-
tion inconsistency due to the false positive pixels, the effect
proven in 1). However, the effect explained in 2) will be
somewhat cancelled out due to a mixture of false negatives
and false positives, where the size of the segmented region
is about the same as the original dense object. Our experi-
mental results in the next section suggest that the segmen-
tation inconsistency measure can still be used as an effec-
tive measure for the segmentation quality within this range
as well.

In summary, to determine the optimal dense segmentation
threshold, we exploit two properties of the pseudo-inconsis-
tency measure. If the size of the dense object is overestimated,

x 10"

= N
- N o

o
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o

Segmentation Inconsistency

20 40 60 80 100
fixed pixels (%)

o

Fig. 2. The relation between the number of fixed pixels and the SIC after 10
iterations, for a Shepp—Logan phantom of size 256 x 256 and 100 projections.

the residual sinogram will typically be A-inconsistent, which is
detected by the pseudo-inconsistency measure. If, on the other
hand, the dense object is underestimated, the residual sinogram
will always be A-consistent, yet convergence properties of the
SIRT algorithm will favor a larger segmented region. We there-
fore expect that the SIC will reach a minimum when Band B
are almost equal.

B. Grey Level Estimation

The SIC concept of the previous subsection is based on the
assumption that the grey level p of the dense object is known. In
practice, this assumption is generally not valid. In this section,
we will therefore extend the SIC concept by including the esti-
mation of p.

Define t = (#;) € R™ as the binary image corresponding to
the segmentation B

t~i = {0’
17
Then, W5 = pWit.
Let p be a candidate grey value, that will be used to compute
the residual sinogram. Assume that B C B. The residual sino-
gram is then given by

ifie A

- 9
if7 € B. ©)

pi=p— pWi=p— pWt—(p— p)Wt=Wuv; —(p — p)Wt.
(10)
In (10), Wo5 is A-consistent by definition. Therefore, for the
residual sinogram to be fi-consistent, W must be A-consistent.
That is, there must exist an image Z € R” such that Wz = Wt
and 2; = 0 forall i € B. Again, if the number of projec-
tions and the region B are both small, it may occur that such an
image x exists, resulting in two different grey levels for which
the residual sinogram is consistent. However, as the number of
projections is increased and the region B3 becomes larger, it be-
comes highly unlikely that the residual sinogram is consistent.
This means that if B C B, the SIC concept defined in the pre-
vious subsection can also be used to estimate the grey level p, by
computing the SIC over all grey levels p and choosing the grey
level for which it is minimal. If B SZ B, characterizing the SIC
as above becomes more complex. Still, also in this case, the SIC
measure can be employed for threshold selection with unknown
p, as demonstrated in the experimental results of Section I'V.
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Fig. 3. Schematic overview of the SICM algorithm. In the shown example, the
threshold 7 is chosen too low. It can be observed that the residual sinogram p 3
is quite different from WS 3 p 5 , indicating a large segmentation inconsistency.

The grey level p for which the SIC is minimal can be
computed efficiently by exploiting the linearity of the SIRT
algorithm

SIC(jt) = |WS3(p— pW1t) — (p — pW1)|| g
=[(WSip—p) — p(WS ;Wi - Wi)|p
=(Wt- WS Wt RWt - WS ;Wt)" j?

+(WS3p—p)RWS;p—p)"
+2(Wt - WS WHRWSp—p)'p. (11)

The optimal value pop¢ is found where the first derivative of (11)
vanishes. As SIC(jt) is always nonnegative, the minimum of
this quadratic polynomial in p can be found where the derivative
is zero

(Wt - WS;Wt)(p - WS;p)"
(WE— WS Wi) (Wi - WS Wi)T"

(12)

Popt =

C. The SICM Algorithm

The SICM algorithm combines grey level estimation with
segmentation inconsistency computation. It uses the segmen-
tation inconsistency found after a fixed number of SIRT iter-
ations as a quantitative measure for the quality of the selected
threshold. To find the threshold 7o+ where SIC($) is minimal,
we use the simplex search method of Lagarias [22], which is an
unconstrained derivative-free optimization method.

Fig. 3 shows a flowchart of the calculation of the segmenta-
tion inconsistency for a certain threshold 7. In Fig. 4, a pseudo
code description of a single SIC evaluation is given. It should
be noted that for each threshold evaluation three SIRT-recon-
structions are required: two for the calculation of p: S AWi and
S 4p and one for the calculation of SIC(s) : Syp;. However,
because p; = p — pW, we can easily compute S 4P by sub-
tracting pS Wt from S;p, thereby reducing the number of
SIRT reconstructions per threshold evaluation to two.

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 30, NO. 4, APRIL 2011

Input: reconstructed image ¥ = Sp such that Wo ~ p;
Put A:={a: %, <7};
forj=1,...,n

if j € A then 7; := 0; else {; := 1;

end
p; = Wi,
Pi=P—Pp

Compute g = WS ;p and r = WS ;p;;
s (pi-m)(p=q)” .

P = i)™
P =P =0
§:=pt;

SIC(3) = |lps — Psllr;

Fig. 4. Pseudo code for the computation of a single STC measure.

IV. EXPERIMENTS

A. Simulation Studies

Simulation experiments were performed based on various
phantom images of size 512 x 512, (Fig. 5). All phantom
images contain at least one area with a constant, maximal grey
level and a background with a continuous set of lower grey
level values. Phantom (a) represents a slice of a femur in a
gradient-filled surrounding object. The femur contains large as
well as small structures (trabeculae). Phantom (b) represents
a slice of a human head filled with three differently shaped
large objects (implants). Phantom (c) again represents a slice
of a human head, but has only a few very small dense objects
(dental implants). Finally, Phantom (d) represents a slice of a
foam-like structure with a large amount of small metal particles.
Each phantom image thus represents a different application and
indeed a different segmentation problem (small objects versus
large objects, many objects versus only a few, different type of
background, etc.)

First, we evaluated the SIC and the relative number of mis-
classified pixels (rNMP), as a function of the threshold value.
The rNMP is defined as the total number of misclassified pixels
divided by the total number of pixels belonging to the dense
objects. To be a useful measure for threshold selection, the min-
imum of the SIC should correspond well with the minimum of
the rINMP. For all phantoms of Fig. 5, parallel-beam sinograms
were simulated using 180 equally spaced projection angles be-
tween 0°C and 180°. Grey level reconstructions were computed
using 300 iterations of the SIRT algorithm described in [16].
Then, for a range of global threshold values, a segmentation
was created and the INMP’s and SIC’s were computed. For
the SIRT reconstructions of the SIC measurements, 300 itera-
tions were used. We also computed the INMP with the popular
Otsu’s [13], K-means [23], and expectation maximization (EM)
[24] segmentation methods. All these methods require that the
user specifies the number of segmentation partitions. This addi-
tional prior knowledge is not always available and depends on
the scanned object. In these experiments, the number of parti-
tions was different for each phantom image and was chosen such
that the segmentation methods from the literature, in general,
generated the lowest INMP. We used six partitions for phantom
(a), four for phantom (b), eight for phantom (c), and seven for
phantom (d).
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(@) (b)

©) ()

Fig. 5. Simulated phantom images of size 512 x 512. (a) Femur of a rat in a surrounding of various densities (b) Slice of human head with differently shaped
objects (c) Slice of human head with a few small dental fillings (d) Foam object with metal marker particles that are often used for image registration.
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Fig. 6. (a), (b) SIC-scores as a function of the threshold values (c), (d) relative
number of misclassified pixels (tNMP) as a function of the threshold values. For
reliable threshold estimation, the minimum of the SIC-score should lie close to
the minimum of the INMP.

Fig. 6 shows the SIC-score and -INMP graphs for phantom
images (b) and (d). It can be observed that the distance be-
tween the minimum of the SIC-curve and the minimum of the
rNMP-curve (the squares and circles in Fig. 6, respectively) is
very small. In Table I, the results are shown numerically. The
thresholds suggested by the SICM method are good approxi-
mations of the optimal thresholds, i.e., the thresholds for which
the rINMP is minimal (when using any global threshold tech-
nique, a lower number is not possible). Furthermore, the NMP
of the SICM method are close to the optimal scenario. For phan-
toms (a), (b), and (d), the other segmentation methods result in
a substantially higher number of misclassified pixels, whereas
for phantom (c) the results of SICM are comparable to the best
performing alternatives.

In the following three experiments we investigated the effect
of various tomographic conditions on the segmentation perfor-
mance of the SICM algorithm. The resulting INMP was com-
pared with that of the optimal threshold and those of the other
previously used segmentation methods.

 Firstly, the contrast between the maximal density of the

background and the density of the continuous dense ob-
ject was varied. This contrast is defined as p/max;e 4 v;.

TABLE I
NUMERICAL RESULTS FOR THE FIRST SIMULATION EXPERIMENT.
RNMP: RELATIVE NUMBER OF MISCLASSIFIED PIXELS

Phantom _Threshold ] rNMP * 100
Optimal | SICM Optimal | SICM | Otsu Kmeans EM
a 190.38 195.22 4.11 4.57 6.87 6.92 7.18
b 172.31 171.80 1.08 1.15 1.55 1.76 17.44
c 208.72 | 205.30 10.20 12.25 | 89.80 11.22 10.71
d 164.80 167.40 7.55 7.55 98.83 9.08 22.39

As this contrast decreases, the grey level distribution of
the dense object in the tomographic reconstruction over-
laps more and more with that of the background. We there-
fore expect that the accuracy of the segmentations will also
decrease.

Fig. 7 shows the INMP as a function of the phantom con-
trast for the optimal global threshold, the SICM thresh-
olding method and the other clustering algorithms. In gen-
eral, the SICM curve approximates the curve of the optimal
threshold, whereas the other methods are much less stable
and often do not provide a good approximation.

* Secondly, the number of projection angles was reduced. In

practice, such a reduction decreases both scan time and ra-
diation dose. However, it is expected that for a low angle
count the results will be unreliable as the system will be-
come more and more underdetermined.
The results, shown in Fig. 8, indeed confirm that the INMP
increases drastically as the number of projection angles is
decreased beyond a certain minimum number that is spe-
cific for each phantom. However, the SICM method still
leads to significantly more accurate segmentations than
other methods.

* Finally, Poisson noise with a varying source intensity was
applied to the sinograms. The intensity of the noise is re-
lated to the measured detector count when there is no ob-
ject between the source and the detector. This determines
the signal-to-noise ratio. In this experiment, therefore, we
effectively simulated low dose, low photon count scans.
The results, shown in Fig. 9, indicate that the noise level has
little effect on the ability of the SICM algorithm to estimate
accurate global threshold levels.

It should be noted that in all reported experiments, both on
simulated and on experimental data, 300 iterations were com-
puted for each SIRT-reconstruction that is part of the SIC com-
putations. This number is based on empirical findings. If the
number of iterations is too low, the pseudo-inconsistency (com-
puted by a fixed number of SIRT iterations) does not match well
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Fig. 8. The relative number of misclassified pixels (NMP) as a function of the number of projection angles.

with the true inconsistency. On the other hand, if the number B. Experimental Data Studies

of iterations is too high, we can no longer make use of the

SIRT-reconstruction technique to determine if B C B. In future We also applied the proposed algorithm on pCT data.
work we will therefore look into other iterative reconstruction Fig. 10 shows a reconstructed image of a cochlear implant
techniques that can be used to estimate the inconsistency of a in surrounding tissue, acquired with a SkyScan 1076 pCT
sinogram. scanner using 360 projection angles at a detector resolution of
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Fig. 10. SIRT reconstruction of a cochlear implant in surrounding tissue.

TABLE II
RESULTS FOR THE COCHLEAR IMPLANT EXPERIMENT

Otsu SICM

72 angles
rNMP: 0.2074

360 angles
rNMP: 0.0750

360 angles
ground truth

72 angles
rNMP: 0.4452

12 pm. The standard SkyScan NRecon software package has
been used to correct for ring- and beam-hardening artefacts.
The goal is to accurately locate the small cochlear implant.
However, validating the quality of these segmentations is dif-
ficult. Notice that in Table II the segmentations provided by
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Fig. 11. Results for the mandible experiment.

Otsu’s method and SICM with 360 projection angles are very
similar, indicating that for this high number of angles the seg-
mentation result does not depend strongly on the particular seg-
mentation method. We therefore consider Otsu’s segmentation
with 360 projection angles as the ground truth image to which
we compare the SICM and Otsu’s segmentation using only 72
projection angles. In Table II, it is clear that, for this example, if
the number of projection angles is lowered, an SICM segmenta-
tion is much more accurate than a classical Otsu segmentation.

Fig. 11 shows an FBP reconstruction of a slice through a
human mandible. This image was recorded using a SkyScan
1173 pCT scanner using 900 projection angles at a detector res-
olution of 50 pm. Important in this application is the accurate
segmentation of the cortical and trabecular bone. We again apply
the SICM algorithm and the other standard methods from the lit-
erature. We compared our results by computing the INMP with
respect to a manually segmented image, shown in Fig. 12(b).
The experiments were repeated using a decreasing number of
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@

Fig. 12. Results for the mandible experiment. (a) FBP reconstruction, 900 angles. (b) Manual segmentation, 900 angles. (c) SICM segmentation, 450 angles.

(d) Kmeans segmentation, 450 angles.

projection angles, simulating low dose scans. Fig. 12 clearly
shows that the SICM method outperforms the other methods.
Fig. 12(c) and (d), respectively, shows the SICM and Kmeans
segmentation using 450 projection angles. The SICM segmen-
tation is an accurate approximation of the manual segmentation
and indeed of the reconstructed FBP image as it locates almost
every detail of the trabeculae present.

V. DISCUSSION AND CONCLUSION

Accurate image segmentation is a difficult problem, in partic-
ular if one needs to segment objects that are very detailed or very
small with respect to the image resolution. This is especially
true in tomography if the image on which the segmentation is
based is polluted by reconstruction errors or artefacts. Segmen-
tation errors generally occur at the edges of the object where a
hard edge is usually blurred in the reconstruction image. Pop-
ular methods, such as global clustering methods (Otsu, Kmeans,
EM) or local neighborhood methods (region growing, watershed
segmentation) all have different strategies to define where ex-
actly the object edges are located, making it difficult to measure
the accuracy of these segmentations in practice. Fortunately, to-
mography inherently provides a way to counter this problem as
projection data is available that can be used to improve or opti-
mize standard segmentation techniques.

In this paper, we have presented a novel method for finding
a global threshold to accurately locate dense objects in a con-
tinuous surrounding in a tomographic reconstruction. Contrary
to existing methods, the SICM method, is not only based on the
reconstructed image, but also on the available projection data.
For an optimal segmentation, the residual sinogram (i.e., the
sinogram of the part of the image that does not belong to the
dense object) is consistent. The inconsistency can be measured
by applying a linear iterative reconstruction technique (such as
SIRT) to the pixels not belonging to the dense object and by
comparing the forward projection of this reconstruction to the
residual sinogram.

Results have been generated for both simulated and experi-
mental data and the SICM algorithm generally finds a good ap-
proximation of the optimal global threshold. In a large majority
of the experiments performed, the SICM method outperforms

other tresholding methods. We have focused on pCT for exper-
imental data since it is a convenient and open research platform,
where raw projection data is readily available. The same tech-
nique can be applied to other tomography fields (e.g., medical)
as well.

One downside of the proposed method is its computational
cost. Whereas methods that work only on the reconstruction
image are typically very fast, the SICM method has an optimiza-
tion routine where each function evaluation requires two SIRT
reconstructions. For a full optimization of a 512 x 512 image
with 180 projection angles, on a system with a modern 3 GHz
Intel CPU, the typical computation time for a single SIC evalu-
ation was 10 min and 221 min for a full optimization. To drasti-
cally lower the computation time, we resorted to GPU program-
ming using the CUDA programming language. In our system
with an NVIDIA GeForce GTX 480 GPU, on average we re-
duced the computation time for a single SIC evaluation to 13 s
and for a full optimization to 4.5 min.

Future work will focus on combining the SIC approach with
other, more advanced segmentation algorithms such as local
thresholding.
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