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“Life can only be understood backwards; but it must be lived forwards.”

SØREN KIERKEGAARD
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Summary

This PhD thesis tries to reduce the obstacles that preclude MRI relaxometry from
being a fast, accurate, and precise quantitative MRI modality for clinical use, by
improving the way MR relaxometry data are acquired, processed, and analyzed.
The manuscript is divided into three parts. Part I covers the basics of quantitative
MRI from a signal processing point of view, whereas part II presents a short
introduction of MRI relaxometry as well as of statistical parameter estimation
theory. The contributions of this dissertation are included in part III.

Quantitative MRI: a model-based imaging
paradigm

Magnetic Resonance Imaging (MRI) is a versatile, non-invasive imaging modality
that provides excellent soft tissue contrast without using ionizing radiation. Con-
sequently, MRI is widely employed in clinics for medical diagnosis, staging, and
follow-up of diseases. MRI is generally used in a qualitative way, with a radiologist
interpreting the MR image, aiming to identify biomarkers that may be useful
for monitoring the state of diseases. However, current radiology requires image
biomarkers to be reliable, reproducible, and objective. Qualitative MRI often fails
to meet these demands.

In MRI, the image intensity is related to quantitative parameters that are intrinsic
descriptors of the biological state of tissues. The relation between the intensity and
those parameters is given by a physical model. Such a physical model establishes a
link between the “pictures” that the MR scanner takes, and the physical reality
inside the tissues. This way, MR images are not merely considered as pictures, but
as carriers of unique, tissue-specific information that can be measured, analyzed,
and interpreted rigorously. This model-based imaging paradigm has received the
name quantitative MRI (qMRI). Quantitative parameter maps can be estimated
from MRI images, often providing more informative, controlled, and objective
biomarkers than those obtained with qualitative MRI.

The reader can use the first two chapters of this thesis as an introduction to
the basics of qMRI. Indeed, chapter 1 introduces the reader to the MRI field.
Starting from the very basic physics that govern the spin dynamics, the reader is
guided through the theory behind the MR signal generation and its localization
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in space. Chapter 2 describes how MR images are reconstructed using signal
processing algorithms.

MRI Relaxometry

A very popular modality in qMRI is relaxometry. MRI relaxometry deals with the
estimation of the spin-lattice, T1, and the spin-spin, T2, relaxation times. Both
relaxation times are fundamental parameters that describe the spin dynamics
within a tissue during the relaxation process of the Nuclear Magnetic Resonance
(NMR) phenomenon. During the last decades, spatial T1 and T2 maps have been
analyzed to study and monitor the states of a multitude of diseases, to name a
few: multiple sclerosis, Alzheimer’s disease, dementia, schizophrenia or myocardial
fibrosis. Those studies have shown that MRI relaxometry holds the promise of
generating robust, objective image-based biomarkers for central nervous system
pathologies, cardiovascular diseases and beyond.

However, though naturally preferable to those obtained from qualitative MRI,
biomarkers that are obtained from MRI relaxometry are not yet sufficiently specific,
sensitive, and robust to be routinely used in clinical practice. On top of that, high-
resolution relaxation maps demand a clinically unfeasible long scanning time.

By adopting a quantitative approach, familiar terms such as accuracy and precision
can be related to specificity and sensitivity, whereas scanning time is fundamentally
linked to the data acquisition time. Terminology such as accuracy, precision, and
acquisition time is essential for the scientific task of “measuring”, a process which
has two major components: data acquisition and data analysis. The accuracy
and precision of quantitative MRI relaxometry are greatly influenced by errors
that originate from inaccurate physical modeling, but also from inadequate signal
processing or naïve parameter estimation techniques (data analysis). Besides, the
acquisition of MR relaxometry data is time-consuming since a large number of data
points must be sampled so as to reconstruct a set of high-quality MRI images needed
to estimate T1 and T2 maps with a high accuracy and precision. The interested
reader can use chapter 3 as a brief introduction to the basics of MRI relaxometry
as well as the main challenges that emanate from this technique. Furthermore, a
brief introduction to statistical parameter estimation theory, which is a must in
modern qMRI, is presented in chapter 4.

Contributions

This PhD thesis collects three contributions that address current problems in
MRI relaxometry, aiming at turning this modality into a robust, qMRI technique
that generates biomarkers in a clinically feasible time. To that end, we adopt an
approach based on a model-based signal processing perspective, with an important
emphasis on statistical parameter estimation. Effort has been made into developing
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model-based algorithms that are both theoretically grounded and efficient to be
implemented in clinical MR scanner software.

Chapter 5 deals with the problem of accurate and precise T1 map estimation in the
presence of patient motion. Conventionally, motion is accounted for prior to T1 map
estimation, by spatially registering the dataset of MR images with general-purpose
image registration techniques. This two-step approach precludes accurate and
precise estimation of T1 values since registration errors propagate to the estimation
step, leading to biased T1 estimates. However, there is no fundamental reason why
motion correction must be performed with image registration techniques that were
conceived for qualitative imaging, thereby leaving aside the abundant information
that the relaxation model can provide. In chapter 5, it is demonstrated that
substantially more accurate and precise T1 mapping can be achieved if the image
registration problem, which is an estimation problem, is embedded into a global
unified approach, where also the T1 map is jointly estimated. By integrating the
models of T1 relaxation, motion, and noise into one statistical model
of the dataset of MR images, the original motion-free T1 map can be
restored by using a joint Maximum Likelihood (ML) estimator. The
unified ML framework allows to accounting for the statistical noise model, the
relaxation model, and the motion model simultaneously, exploiting, in addition to
the temporal information, knowledge on data statistics.

Chapter 6 focuses on Variable Flip Angle (VFA) T1 mapping, the most efficient T1
mapping method to date, considering the trade-off between accuracy and scanning
time. Apart from the short image acquisition time, another reason why VFA T1
mapping is so popular is that the specific mathematical structure of the VFA
relaxation signal model gives rise to linear and, hence, fast T1 estimators. However,
these estimators are not derived from theoretically-grounded statistical principles,
as ML estimators are. Consequently, the statistical properties of the ML estimators
are fairly superior though, ML algorithms, which are non-linear algorithms, are
naturally much slower than linear ones. In this chapter, the apparent trade-off
between speed and statistical optimality is reconciled with a novel, fast VFA T1
estimator, which is shown to provide the non-linear least squares (NLLS)
estimates, (which equal the ML estimates in common clinical scanning
conditions), but is yet computationally much faster than standard NLLS
algorithms, such as Levenberg-Marquardt, with a computational time of the same
order of that of linear estimators.

Finally, in chapter 7, a novel k-space reconstruction technique to accelerate
the relatively long acquisition of MRI images, and thereby, reduce the overall
long protocol time of MRI relaxometry studies, is presented. Furthermore, a
discussion is given about the possibility to include information from the relaxation
signal model into the k-space reconstruction method so as to fully exploit all the
information that is present in the collected images. This way, it is expected that
even higher acceleration ratios can be achieved, aiming at placing MRI relaxometry
in the front of the wave of qMRI modalities that can be applied in clinically feasible
time.
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Samenvatting

In dit proefschrift worden nieuwe methoden voorgesteld voor de acquisitie, verw-
erking en analyse van magnetische resonantie (MR) relaxometrie data, met als doel
de obstakels weg te nemen die MR relaxometrie momenteel nog verhinderen een
snelle, nauwkeurige en precieze kwantitatieve beeldvormingsmethode voor klinisch
gebruik te zijn. Het manuscript is verdeeld in drie delen. Deel I behandelt de basis
van kwantitatieve MRI vanuit het oogpunt van signaalverwerking. Deel II geeft een
korte inleiding van MRI-relaxometrie en statistische parameterschattingstheorie.
De bijdragen van dit proefschrift tot slot zijn opgenomen in deel III.

Kwantitatieve MRI: een op modellen gebaseerd
beeldvormingsparadigma

Magnetische resonantie beeldvorming (MRI) is een veelzijdige, niet-invasieve beeld-
vormingsmodaliteit die zachte weefsels kan afbeelden met een uitstekend contrast,
zonder dat daarbij ioniserende straling wordt gebruikt. Met name daarom wordt
MRI veel toegepast in de kliniek voor medische diagnose, preventie en opvolging
van ziekten. MRI wordt over het algemeen op een kwalitatieve manier gebruikt,
waarbij een radioloog het MR-beeld interpreteert, gericht op het identificeren van
biomarkers die nuttig kunnen zijn voor het opvolgen van de ziektetoestand. De
huidige radiologie vereist echter dat biomarkers afgeleid uit beelden betrouwbaar,
reproduceerbaar en objectief zijn. Kwalitatieve MRI voldoet vaak niet aan deze
eisen.

In MRI is de beeldintensiteit gerelateerd aan kwantitatieve parameters die intrinsieke
kenmerken zijn van de biologische toestand van weefsels. De relatie tussen de
intensiteit en die parameters wordt gegeven door een wiskundig model. Zo’n model
legt een verband tussen de “foto’s” die de MR-scanner maakt en de fysieke realiteit
in de weefsels. Op deze manier worden MR-beelden niet alleen als afbeeldingen
beschouwd, maar als dragers van unieke, weefselspecifieke informatie die rigoureus
kan worden gemeten, geanalyseerd en geïnterpreteerd. Dit op modellen gebaseerde
beeldvormingsparadigma heeft de naam kwantitatieve MRI (qMRI) gekregen.
Kwantitatieve parameters kunnen worden geschat op basis van MRI-beelden, die
vaak meer informatieve, gecontroleerde en objectieve biomarkers bieden dan deze
verkregen met kwalitatieve MRI.

De lezer kan de eerste twee hoofdstukken van dit proefschrift aanwenden als een in-
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leiding tot de basisprincipes van qMRI. Hoofdstuk 1 introduceert MRI. Vertrekkend
van de fundamentele fysische principes die de spindynamiek beschrijven, wordt de
lezer door de theorie geloodst die ten grondslag ligt aan de MR-signaalvorming
en de lokalisatie ervan in de ruimte. Hoofdstuk 2 beschrijft hoe MR-afbeeldingen
worden gereconstrueerd met algoritmen voor signaalverwerking.

MRI Relaxometrie

Een veelgebruikte modaliteit in qMRI is relaxometrie. MRI-relaxometrie richt zich
op de schatting van de spin-rooster, T1, en de spin-spin, T2, relaxatietijden. Beide
relaxatietijden zijn fundamentele parameters die de spindynamiek in een weefsel
beschrijven tijdens het relaxatieproces van het fenomeen van de kernmagnetische
resonantie (NMR). Gedurende de laatste decennia zijn ruimtelijke T1 en T2 kaarten
van de hersenen geanalyseerd om de toestanden van een groot aantal ziekten te
bestuderen en te monitoren, zoals: multiple sclerose, de ziekte van Alzheimer,
dementie, schizofrenie of myocardiale fibrose. Die studies hebben aangetoond
dat MRI-relaxometrie de belofte in zich draagt van het genereren van robuuste,
objectieve, op beelden gebaseerde biomarkers voor pathologieën van het centrale
zenuwstelsel, hart- en vaatziekten en daarbuiten.

Echter, biomarkers die worden verkregen worden uit MRI-relaxometrie zijn nog niet
voldoende specifiek, gevoelig en robuust om routinematig in de klinische praktijk
te worden gebruikt. Daarbovenop vereisen hoge-resolutie relaxometrie-beelden een
klinisch onhaalbaar lange scantijd.

Door een kwantitatieve benadering toe te passen, kunnen bekende termen zoals
nauwkeurigheid en precisie worden gerelateerd aan specificiteit en sensitiviteit,
terwijl de scantijd fundamenteel gekoppeld is aan de tijd voor het verzamelen van
gegevens. Terminologie zoals nauwkeurigheid, precisie en acquisitietijd is essentieel
voor de wetenschappelijke taak van “meten”, een proces dat twee belangrijke com-
ponenten heeft: data-acquisitie en data-analyse. De nauwkeurigheid en precisie van
kwantitatieve MRI-relaxometrie worden sterk beïnvloed door fouten die voortkomen
uit onnauwkeurige fysieke modellering, maar ook door ontoereikende signaalverwerk-
ing of naïve parameterschattingstechnieken (data-analyse). Daarnaast, de acquisitie
van MR relaxometrie data is tijdrovend omdat een groot aantal datapunten moet
worden bemonsterd om een set van hoogwaardige MRI-beelden te reconstrueren
die nodig zijn om T1 en T2 parameters te schatten met een hoge nauwkeurigheid
en precisie. De geïnteresseerde lezer kan het hoofdstuk 3 aanwenden als een korte
inleiding tot de basis van MRI-relaxometrie en de belangrijkste uitdagingen die
deze techniek met zich meebrengt. Verder wordt een korte inleiding tot statistis-
che parameterschattingstheorie, een must voor moderne qMRI, gepresenteerd in
hoofdstuk 4.
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Bijdragen

Dit proefschrift bavat drie hoofdbijdragen die de huidige problemen in MRI-
relaxometrie aanpakken, en gericht zijn op het transformeren van deze modaliteit
tot een robuuste, qMRI-techniek die biomarkers genereert in een klinisch haalbare
tijd. Hiertoe hanteren we een aanpak op basis van een modelgebaseerd signaalver-
werkingsperspectief, met een belangrijke nadruk op statistische parameterschatting.
Er is gewerkt aan de ontwikkeling van modelgebaseerde algoritmen die zowel theo-
retisch onderbouwd als efficiënt zijn om te worden geïmplementeerd in klinische
MR-scannersoftware.

Hoofdstuk 5 behandelt het probleem van nauwkeurige en precieze schatting van T1
parameters, zelfs bij beweging van de patiënt. Traditioneel wordt beweging, vooraf-
gaand aan het schatten van de T1 parameters, gecorrigeerd door de opgenomen
serie van MR-beelden ruimtelijk te registreren met algemene beeldregistratietech-
nieken. Deze tweestapsbenadering sluit een nauwkeurige en precieze schatting
van de T1-waarden uit, omdat registratiefouten zich na de schattingsstap voort-
propageren, wat leidt tot systematische fouten bij de T1 parameterschattingen.
Er is echter geen fundamentele reden waarom bewegingscorrectie moet worden
uitgevoerd met beeldregistratietechnieken die oorspronkelijk werden ontwikkeld
voor kwalitatieve beeldvorming, waarbij cruciale informatie die het relaxatiemodel
kan bieden buiten beschouwing wordt gelaten. In hoofdstuk 5 wordt aangetoond
dat aanzienlijk accuratere en preciezere T1 waarden kunnen worden verkregen
als het beeldregistratieprobleem, dat een schattingsprobleem is, wordt ingebed in
een globale uniforme aanpak, waarbij ook de T1 kaart gezamenlijk wordt geschat.
Door de modellen van T1 relaxatie, beweging en ruis te integreren in een
statistisch model van de dataset van MR-afbeeldingen, kan de originele,
bewegingsvrije T1-kaart worden hersteld met behulp van een gezamen-
lijk meest aannemelijke (ML) schatter. Het uniforme ML-raamwerk maakt
het mogelijk om tegelijkertijd rekening te houden met het statistisch ruismodel,
het relaxatiemodel en het bewegingsmodel.

Hoofdstuk 6 richt zich op Variable Flip Angle (VFA) T1 mapping, de meest efficiënte
T1 mapping-methode tot nu toe, gezien de wisselwerking tussen nauwkeurigheid en
scantijd. Afgezien van de korte beeldopnametijd, is een andere reden waarom VFA
T1-toewijzing zo populair is, dat de specifieke mathematische structuur van het VFA-
relaxatiesignaalmodel aanleiding geeft tot lineaire en dus snelle T1-schatters. Deze
schatters zijn echter niet afgeleid van theoretisch gefundeerde statistische principes,
zoals de ML-schatters. De statistische eigenschappen van de ML-schatters zijn dan
ook superieur, hoewel ML-algoritmen, die niet-lineair zijn, van nature veel langzamer
zijn dan lineaire algoritmen. In dit hoofdstuk wordt de schijnbare wisselwerking
tussen snelheid en statistische optimaliteit verzoend met een nieuwe, snelle
VFA T1-schatter, waarvan wordt aangetoond dat deze de niet-lineaire
kleinste-kwadraten schattingen (NLLS) oplevert (die gelijk zijn aan de
ML schattingen in veel voorkomende klinische scan omstandigheden)
maar nog steeds veel sneller is dan standaard NLLS-algoritmen, zoals
Levenberg-Marquardt, met een rekentijd van dezelfde orde als die van lineaire
schatters.
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Tenslotte wordt in hoofdstuk 7, een nieuwe k-ruimte reconstructietechniek
geïntroduceerd om de relatief lange acquisitie van MRI-beelden te verko-
rten, en daardoor de lange opnametijd bij MRI-relaxometriestudies te verminderen.
Verder wordt een discussie gewijd aan de mogelijkheid om informatie uit het re-
laxatiesignaalmodel op te nemen in de k-ruimte-reconstructiemethode om alle
informatie die aanwezig is in de verzamelde beelden ten volle te benutten. Op deze
manier kunnen naar verwachting zelfs nog hogere versnellingsratio’s worden bereikt,
waardoor MRI-relaxometrie een plaats zal kunnen gaan innemen in de voorlinie
van de groep van qMRI-modaliteiten die kunnen worden toegepast in een klinisch
haalbare tijd.
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MRI: From spins’ physics to image formation

1.1 Introduction

Magnetic Resonance Imaging (MRI) is a versatile non-invasive imaging modality
that allows in vivo visualization of structure and function of the human body. MRI
produces images with high contrast between different soft tissues without the need
of ionizing radiation. By employing specific pulse sequences, MRI can be used
to probe different physical phenomena that occur in the human body, leading to
different MRI modalities with distinct clinical and biological applications. One
of those modalities is the target application of this PhD, MRI relaxometry, the
field that deals with the study or measurement of the relaxation variables in the
Nuclear Magnetic Resonance (NMR) phenomenon. To provide a comprehensive
approach for MRI relaxometry, an introduction of the underlying physical process
of relaxation is needed. Moreover, in order to understand how an MR image
is created, the signal detection and the underlying image formation theory are
briefly reviewed. This chapter aims to provide the basic principles of MRI from
a signal processing point of view. For more elaborate information on MRI, we
refer the reader to the excellent references [Kuperman, 2000,Liang and Lauterbur,
2000,Bernstein et al., 2004,Tofts, 2004].

1.2 Historical overview

The very early achievements in the MRI discovery and development date back to
the 1930s, when Isodor Isaac Rabi described the NMR phenomena for the first
time [Rabi et al., 1938]. For this work, he was awarded the Nobel Prize in Physics
a decade later. The next two important names in the journey of MRI are Felix
Bloch and Edward Mills Purcell, who were jointly awarded the Nobel Prize in 1952.
Bloch at Harvard University, and Purcell at Stanford University, independently
demonstrated that the NMR phenomenon could be used to identify the specific
atoms in any solid or liquid placed in a magnetic field [Bloch, 1946,Purcell et al.,
1946]. Another milestone in the history of MRI may be attributed to Raymond
Damadian, who discovered that the NMR signal of cancerous tissues is different
from that of healthy tissues. This observation constituted the first application of
NMR to medicine [Damadian, 1971], which in fact was patented just two years
later.

The conceptual depart from one-dimensional (1D) NMR signals to two-dimensional
(2D) images was accomplished by Paul Lauterbur (1973), who, relying on the
work of Herman Carr (1954), developed the theory of spatial information encoding
[Lauterbur, 1973,Carr and Purcell, 1954]. MRI as we know it nowadays was born.
In parallel to Paul Lauterbur’s seminal work, Peter Mansfield developed a method,
currently known as echo planar imaging (EPI), so as to acquire 2D MR images in
only a few seconds [Mansfield, 1977]. Both Lauterbur and Mansfield received the
Nobel Prize in Medicine and Physiology in 2003, for their work on non-invasive
imaging of the body. An important pioneer in the development of MRI was also
Richard Ernst, who was awarded the Nobel Prize in Chemistry in 1991. Richard
Ernst was the first to describe the use of the Fourier transform to reconstruct 2D
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1.3. NMR signal generation

images, by using switched magnetic field gradients in the time domain for spatial
encoding [Kumar et al., 1975]. The first MRI commercial systems were launched
in the early 1980s. The interested reader may find a more extensive overview of
the history of MRI in the reference [Mattson and Simon, 1996]. Of course, MRI
would not have been possible without the work of scientists that may be well
considered fundamental for the history of science, and not particularly confined to
MRI. Perhaps the name of Nikola Tesla stands out among them. The discovery of
the rotating magnetic field (1882) is due to the Serbian genius, and is, of course,
critical for the functioning of MRI.

1.3 NMR signal generation

1.3.1 Spins’ physics

Every physical object can be broken down into its molecules, then to atoms, and
then to the nuclei and electrons. A fundamental property of nuclei is that those with
an odd number of protons or neutrons possess an angular moment J = (Jx, Jy, Jz)T ,
which is often called spin, and whose modulus is given by

||J ||2 = ~
√
I(I + 1), (1.1)

where ~ is the reduced Planck’s constant (1.05 · 10−34J · s) and I is the nuclear
spin quantum number. Like any spinning charged object, a nucleus whose J is
nonzero creates a magnetic field around it. Such a magnetic field is represented
by µ, the so-called magnetic dipole moment, which is related to J as [Lauterbur,
1973]

µ = γJ , (1.2)
with γ the gyromagnetic ratio of the nucleus. The direction of µ is completely ran-
dom in the absence of an external magnetic field. However, the direction µ becomes
deterministic when spins are exposed to a strong static external magnetic field
B0 = (B0x, B0y, B0z)T (Fig. 1.1). Indeed, if µ is regarded as a classical magnetic
moment, classical mechanics dictates that the magnetic moment µ precesses about
B0 with a precession angular frequency known as the Larmor frequency:

ωL = γ||B0||2, (1.3)

and where the angle, θ, between µ and B0 can only take (2I + 1) possible values,
which are theoretically known [Lauterbur, 1973]. All nuclei with I 6= 0 exhibit
this property, which is fundamental for the NMR phenomenon. Some of the
nuclei that can be studied with NMR are: 1H, 13C, 19F, 23Na and 31P. The most
common nucleus that is considered in clinical MRI exams is the hydrogen nucleus,
i.e., 1H. For 1H, the gyromagnetic ratio is 2.675 · 108 rad/s/T, and its nuclear
spin number is 1/2. Therefore, µ only precesses with two possible orientations:
pointing up (parallel to B0) and pointing down (antiparallel to B0). In order to
describe the collective behavior of a spin system or a spin ensemble, a macroscopic
magnetization vector,M = (Mx,My,Mz)T , is used. This vector is often called the
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MRI: From spins’ physics to image formation

(a) (b)

Figure 1.1: Nuclear magnetic dipole moments of 1H (a) pointing in random directions,
and (b) aligned with the only two possible directions.

net nuclear magnetization vector. The net nuclear magnetization vector of a spin
ensemble is defined as the sum of the individual magnetic dipole moments of all
spins which constitute that ensemble. In the absence of external magnetic field,
M = 0, since the direction of individual magnetic dipole moments is random. In
the presence of B0, which we will assume that only points along the z-axis, that
is, B0 = (0, 0, B0z)T , the transversal component of M is still zero since individual
spins have a random phase in the x-y plane when they precess about the z-axis.
However, Mz, is non-zero since it is the sum of the z-component of individual
magnetic dipole moments whose individual directions are deterministic.

For a spin- 1
2 system (I = 1/2), like 1H, the orientation and strength of M can be

determined by means of Boltzmann statistics. Indeed, it is well known that spins
in different orientations have different energies of interaction with B0. According
to quantum theory, spins-up possess negative energy whereas spins-down have
positive energy. Since spins are more likely to take the lower energy state (with
higher stability) than the higher-energy state, the population of pointing-up spins
is slightly higher than that of pointing-down spins. Due to this difference in
population, there is a net component of M in the positive direction of B0. On the
contrary, there is no transverse component of M since, in the transverse plane, the
average of the random phases of the magnetic dipole moments becomes zero. We
say that such a spin system is magnetized and in thermal equilibrium.

1.3.2 Bloch equations

The NMR phenomenon can be studied in a tractable way when the macroscopic
point view is adopted. Indeed, the evolution of a ensemble of spins in the presence
of a magnetic field can be described by means of a differential equation formalism.
The cornerstone in the macroscopic approach to NMR are the Bloch equations. In
their more general form, Bloch equations describe the evolution of M along time
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t under the presence of an arbitrary magnetic field B = (Bx, By, Bz)T as [Bloch,
1946]

∂M

∂t
= γM ×B︸ ︷︷ ︸

Excitation

−

T−1
2 0 0
0 T−1

2 0
0 0 T−1

1

M +M0

 0
0
T−1

1


︸ ︷︷ ︸

Relaxation

, (1.4)

where × represents the cross-product operation, T2 and T1 are the transverse and
longitudinal relaxation times, andM0 = (Mx(0),My(0),Mz(0))T is the net nuclear
magnetization vector at equilibrium. Bloch equations describe two fundamental
processes of the NMR phenomenon, namely the excitation process due to an applied
magnetic field, and the relaxation process of M towards the system equilibrium.
Due to the fundamental importance the relaxation process has for this PhD thesis,
we treat this concept separately in subsection 1.3.5. We now first focus on the
excitation part of Eq. (1.4) when B0 is the only magnetic field applied.

1.3.3 Free precession

In the previous section, it was mentioned that, for spin- 1
2 systems that are in

thermal equilibrium, the vector M points out in the direction of B0. If that is
so, Mx = 0 and My = 0. In a more general situation, M precesses about the
z-axis with Larmor angular frequency ωL [Lauterbur, 1973]. Mathematically, the
precession of the vectorM about the z-axis and with frequency ωL can be described
as

M = Rz(ωLt)M0, (1.5)
where the rotation matrix Rz(ωLt) ∈ R3×3 is defined as

Rz(ωLt) =

cosωLt − sinωLt 0
sinωLt cosωLt 0

0 0 1

 . (1.6)

The precession of M about the z-axis can also be explained by means of the
Bloch equations. Indeed, in equilibrium, the relaxation effects in Eq. (1.4) can be
disregarded [Lauterbur, 1973]. Therefore, since the only magnetic field B that is
present is B0, Eq. (1.4) transforms into

∂M

∂t
= γM ×B0 =

 γ||B0||2Mx

−γ||B0||2My

0

 , (1.7)

whose solution is given byMx(t)
My(t)
Mz(t)

 =

cosωLt − sinωLt 0
sinωLt cosωLt 0

0 0 1

Mx(0)
My(0)
Mz(0)

 , (1.8)

and which, according to Eq. (1.6), describes the precession of the vector M about
the z-axis with frequency ωL (Fig. 1.2).
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MRI: From spins’ physics to image formation

Figure 1.2: Precession of net nuclear magnetization vector M about B0 with angular
frequency ωL.

When the external magnetic field B is non-static, describing the temporal evolution
ofM becomes more complicated. The scope of the next subsection is to characterize
the behavior ofM when B is a dynamic magnetic field, namely, a Radio Frequency
(RF) magnetic field.

1.3.4 RF excitation

1.3.4.1 Resonance condition

A necessary condition for the relaxation process to occur is that the spin system
is perturbed from its equilibrium state. This is achieved by applying a second
time-varying magnetic field, B1(t), which is perpendicular to B0. If the oscillating
frequency of B1(t) equals the Larmor frequency, the individual spins that constitute
the spin system present coherence in phase. This phenomenon is called the resonance
phenomenon. The magnetic field B1(t) is termed RF pulse since it oscillates in
the RF range. The RF pulse, in contrast to B0, is normally turned on for just
a few milliseconds, and typically takes the following form [Liang and Lauterbur,
2000],

B1(t) = Be1(t) (cos(ωRF t)1x − sin(ωRF t)1y) , (1.9)

where Be1(t) is the envelope of the pulse, ωRF = ωL (resonance condition), and
1x and 1y are the unitary vectors of the x and y-axis, respectively. The envelope
function Be1(t) is the heart of the RF pulse, since it uniquely determines its shape
and duration, and in fact it determines how the spin-system is excited.

The resonance phenomenon can be studied by means of the Bloch equations as well.
To do so, we can substitute B = B0 +B1(t) in the excitation part of Eq. (1.4),
and solve the equation for M . While this is possible, a mathematical trick which
greatly simplifies the analysis is the concept of the so-called rotating frame of
reference.
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1.3. NMR signal generation

1.3.4.2 RF-rotating frame of reference

A frame of reference that rotates along the z-axis with an angular frequency ωRF
is called a RF-rotating frame of reference. This new frame of reference, whose
unit vectors along the orthogonal axes x′, y′, and z′, are denoted as 1x′ ,1y′ ,1z′ ,
respectively, is related to the stationary (laboratory) frame by the following trans-
formations: 

1x′ = cos(ωRF t)1x − sin(ωRF t)1y
1y′ = sin(ωRF t)1x + cos(ωRF t)1y
1z′ = 1z.

(1.10)

Since B1(t) rotates with the same angular frequency as the RF-frame of reference,
it appears to be a non-oscillatory field in this new coordinate system. Indeed,
B1(t) defined as in Eq. (1.9) points along the 1x′ axis, and its component B1x′(t)
is Be1(t). The coordinates of the net nuclear magnetization vector M in the RF-
rotation frame of reference, MRot = (Mx′ ,My′ ,Mz′)T , can be succinctly derived
by using complex notation. By defining the complex numbers Mxy = Mx + iMy

and Mx′y′ = Mx′ + iMy′ , where i denotes the imaginary unit, it is possible to show
that

Mx′y′ = Mxye
iωRF t, (1.11)

and Mz′ = Mz. We can then solve the Bloch equations for MRot and go back
to the laboratory frame with the relation given in Eq. (1.11). In the RF-rotating
frame, (disregarding relaxation effects, which is a valid assumption if the RF pulse
is sufficiently short [Lauterbur, 1973]), the Bloch equations take the form of

∂MRot

∂t
= γMRot × (BRot −

ωRF1z
γ

), (1.12)

where BRot is the transformed B in the RF-rotating frame of reference, and which
is given by

BRot = B0 +Be1(t)1x′ = ||B0||21z +Be1(t)1x′ . (1.13)

Invoking the resonance condition, ωRF = ωL = γ||B0||2, and substituting Eq. (1.13)
in Eq. (1.12), we arrive at

∂MRot

∂t
= γMRot ×Be1(t)1x′ . (1.14)

Eq. (1.14) is the most general expression for the Bloch equations in the RF-rotating
frame of reference. Observe that, under the resonance condition, the envelope of
the RF pulse, Be1(t), is the only external effect that controls how the spin-system
is perturbed from equilibrium. A solution of Eq. (1.14) under initial conditions
Mx′ = 0, My′ = 0 and Mz′ = Mz(0) is given by

Mx′(t) = 0
My′(t) = Mz(0) sin (

∫ t
0 γB

e
1(t′)dt′) 0 ≤ t ≤ τp

Mz′(t) = Mz(0) cos (
∫ t

0 γB
e
1(t′)dt′),

(1.15)
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MRI: From spins’ physics to image formation

where τp is the duration of the RF pulse. Those relations describe a precession
of MRot about the x′ axis, with an angular frequency that varies with time and
vanishes when t > τp. In the laboratory frame, the net nuclear magnetization vector
M precesses both about the B0 field but also about the B1(t) field, a phenomenon
which is called forced precession. To illustrate the forced precession phenomenon in
the RF-rotating and laboratory frame of reference, let us consider the following
simple case where B1(t) is a square pulse whose time length is τp and amplitude
B1. Then, Eq. (1.15) becomes

Mx′(t) = 0
My′(t) = Mz(0) sinω1t 0 ≤ t ≤ τp
Mz′(t) = Mz(0) cosω1t,

(1.16)

with ω1 = γB1. It is evident thatMRot precesses with a constant angular frequency
ω1 till t = τp, when it stops. A graphical illustration of the precession of MRot

about x′ is presented in Fig. 1.3.(b). The forced precession of M as observed in
the laboratory frame is depicted in Fig. 1.3.(a).

(a) (b)

Figure 1.3: Motion of the net nuclear magnetization field in the presence of an RF field
as observed in (a) the laboratory frame, and (b) the RF-rotating frame.

1.3.4.3 Flip angle

Due to the forced precession, the net nuclear magnetization is tipped away from the
z-axis, creating a measurable transverse component. The angle between MRot and
the z′-axis is known as the flip angle, and is denoted by α. According to Eq. (1.15),
α is given by

α =
∫ τp

0
γBe1(t′)dt′, (1.17)

which, in the case of the rectangular pulse described above, α = γB1τp = ω1τp.
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1.3. NMR signal generation

The formalism of flip angle becomes useful since it allows to describe the effect of
an RF pulse as a rotation of the vector MRot about the axis defined by B1(t), and
with an angle of α degrees with respect of the initial position. An RF pulse that
causes a rotation ofMRot with α degrees about the axis defined by B1(t) is named
an α-pulse. Popular choices are α = 90◦ and α = 180◦, with B1(t) being aligned
with either the x′ or with the y′-axis. Those RF pulses are concisely indicated as
αx′ and αy′ , respectively. Like in Eq. (1.5), the net nuclear magnetization vector
in the RF-rotating frame after the application of an αx′ or αy′ RF pulse, M t=0+

Rot ,
can be calculated as

M
t=0+
Rot = Rx′(α)MRot or

M
t=0+
Rot = Ry′(α)MRot, (1.18)

respectively, with

Rx′(α) =

0 0 1
0 cosα sinα
0 − sinα cosα

 and Ry′(α) =

cosα 0 − sinα
0 1 0

sinα 0 cosα

 . (1.19)

1.3.5 Relaxation

After a magnetized spin system has been perturbed from its equilibrium state
by an RF pulse, it will return to its equilibrium state according to the laws
of thermodynamics. This process is called relaxation. Phenomenologically, the
relaxation process can be described by the Bloch equations (second term in Eq. (1.4)),
as a first-order dynamic process. Particularly, in the RF-rotating frame, we
have {

∂Mz′
∂t = −Mz′−Mz(0)

T1
∂Mx′y′

∂t = −Mx′y′

T2
.

(1.20)

The longitudinal relaxation time, T1, characterizes the relaxation process of the
longitudinal component Mz′ , whereas the transverse relaxation time, T2, describes
the relaxation curve of the transverse componentMx′y′ . We illustrate the recovery of
the net nuclear magnetization vector towards the equilibrium state in Fig. 1.4. The
justification of both relaxation process is based on the time-dependent microscopic
magnetic fields that surround the nuclei and arise from random thermal motion.
The specific causes of relaxation are rather diverse and we here just describe them
in brief. The interested reader is referred to more specialized references [Cowan,
1997,Kimmich, 1997].

The longitudinal or spin-lattice relaxation stems from the exchange of energy
with other degrees of freedom in the spin system in order to redistribute the
population of the nuclear spin states. In the NMR jargon, these degrees of freedom
are referred to as the lattice [Cowan, 1997]. This energy is often dissipated in terms
of vibration and rotation motion. The spin-lattice relaxation process depends,
among other things, on the gyro-magnetic ratio, γ, of the nucleus, and the mobility
of the lattice. Phenomenologically, the spin-lattice relaxation process results in
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(a) (b)

Figure 1.4: Relaxation of the net nuclear magnetization vector towards equilibrium as
observed in (a) the laboratory frame, and (b) the RF-rotating frame.

a growth of Mz (Fig. 1.5), which is characterized by T1, and whose evolution is
fully determined by Eq. (1.20). An important consequence of the phenomenological

Figure 1.5: T1 relaxation: Due to a loss of energy, the longitudinal component of the net
nuclear magnetization vector Mz recovers towards equilibrium.

description of the spin-lattice relaxation as a first-order process is that the decay of
Mz is exponential. Indeed, after an αx′ = 90◦ pulse, Mz can be written in function
of time as [Lauterbur, 1973]

Mz(t) = Mz′(t) = Mz(0)(1− e−
t
T1 ) +M

t=0+
z′ e−

t
T1 , (1.21)

whereM t=0+
z′ is the longitudinal component of the net nuclear magnetization vector

in the RF-rotating frame intermediately after the αx′ = 90◦ pulse.

The transverse or spin-spin relaxation refers to the recovery of the transverse
component of the net nuclear magnetization vectorMx′y′ . The transverse relaxation
is caused by the interaction between spins of the same nuclear system, which causes
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1.3. NMR signal generation

them to lose phase coherence. The loss in phase coherence of the spins results
in a decrease of Mx′y′ (Fig. 1.6). Such a decrease is characterized by T2, and
described by Eq. (1.20). Another aspect that causes spin dephasing is the presence
of an inhomogeneous magnetic field. The transversal relaxation due to the time
independent field inhomogeneities and spin-spin interactions is called T ∗2 , and is
related to T2 by the following inverse relation [Chavhan et al., 2009]:

1
T ∗2

= 1
T2

+ 1
T ′2
, (1.22)

with 1
T ′2

= γ∆BInhomo., and where the term ∆BInhomo. ≥ 0 contains contributions
of the inhomogeneous magnetic field. Note that since γ > 0, T ∗2 is always smaller
or equal than T2. The solution of Eq. (1.20) for Mx′y′ has also a exponential

Figure 1.6: T2 relaxation: The net nuclear magnetic dipoles associated with the spins
dephase, causing a progressively decrease in Mx′y′ . Figure adapted from [Van Steenkiste,
2016].

form,
Mx′y′(t) = M

t=0+
x′y′ e

− t
T∗2 , (1.23)

with T ∗2 = T2 when field inhomogeneities are disregarded, and where M t=0+
x′y′ is the

transverse component of the net nuclear magnetization vector in the RF-rotating
frame immediately after the αx′ = 90◦ pulse. In contrast to the T1 relaxation, the
transverse relaxation does not involve any energy exchange, and is usually much
faster (Fig. 1.7). In the laboratory frame, the net nuclear magnetization vector M
can be written as:

Mx(t) = Re
(
M

t=0+
x′y′ e

− t
T∗2 e−iωRF (t+τp)

)
My(t) = Im

(
M

t=0+
x′y′ e

− t
T∗2 e−iωRF (t+τp)

)
Mz(t) = Mz(0)(1− e−

t
T1 ) +M

t=0+
z′ e−

t
T1 ,

(1.24)

where Re (·) and Im (·) denote the real and imaginary part operators, respectively.
Observe that the longitudinal component of M is a slowly varying function com-
pared to the transversal components Mx(t) and My(t). Since signal detection in a
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Figure 1.7: Longitudinal (solid line) and transversal (dashed line) relaxation after the
αx′ = 90◦ pulse. Note that longitudinal relaxation is a much slower process than
transversal relaxation.

MR scanner is based on the well known Faraday’s law of induction, and Faraday’s
law dictates that the voltage (signal) induced in the coil depends linearly on the
time change of the magnetic flux, the voltage depends solely on the transverse
component given by Eq. (1.24). Such a signal is known as free induction decay
(FID). FID signals are the most basic form of signals that can be detected from a
spin system after pulse excitation. Though they are rarely used alone since they
quickly disappear [Lauterbur, 1973], FID signals constitute the basic of other more
complex form of MR signals, such as MR echoes. The next subsection is devoted
to describing the concept of MR echo.

1.3.6 MR echo generation

FID signals originate from the spin-spin relaxation process, which as we have
already described, is caused, among other things, by a loss in phase coherence
of the nuclear system spins. In 1950, Erwin L. Hann presented a technique to
refocus the spins that are progressively dephasing by means of the application of
another 90◦ pulse after the initial 90◦ pulse, oriented along the same axis, either x′
or y′, thereby creating a measurable echo which is known in the NMR jargon as
spin echo [Hahn, 1950]. The phenomenon of spin echo was further developed by
Herman Carr and Edward Purcell four years later, who pointed out the advantages
of using a αy′ = 180◦ (initial 90◦ pulse is assumed to be along the x′ axis) instead
of the second 90◦ pulse [Carr and Purcell, 1954]. The resulting pulse sequence
is schematically shown in Fig. 1.8, and it receives the name of spin echo (SE)
sequence. When the initial 90◦ pulse is applied, fast spins start to precess clockwise
about the z-axis faster than slow spins, thereby progressively losing phase coherence.
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1.3. NMR signal generation

Figure 1.8: Spin echo sequence. The 180◦ pulse flips the nuclear spins to the other side of
the traverse plane. Spins are rephased after TE, thereby producing a measurable echo.

After a time TE/2, where TE stands for echo time, the 180◦-pulse rotates the net
nuclear magnetization vector along the y′-axis, hence, flipping the nuclear spins to
the other side of the transverse plane. Since spins continue to precess clockwise, slow
spins now lead ahead whereas the fast ones trail behind. Progressively, fast spins
catch slow spins, and hence complete refocusing is achieved at a time TE, when
the spin echo is produced. Another advantage of the spin-echo sequence is that the
spin dephasing due to the static magnetic field inhomogeneities is compensated
with the 180◦ pulse. Consequently, the signal decay of the spin-echo only originates
solely from the T2 relaxation process.

Spin refocusing can also be achieved by applying gradient magnetic fields instead of
a second RF pulse. A gradient magnetic field is a magnetic field whose components
linearly vary along a specific direction. They are thoroughly described in subsection
1.4.1. Here, we just mention that the key concept of gradient magnetic fields for MR
echo generation is that gradient magnetic fields can dephase and rephase a set of
spins in a controlled fashion. The resulting echo signal is called a gradient re-called
echo, and the corresponding pulse sequence is known as gradient echo (GE)
sequence. In contrast to the spin echo signal, the gradient echo signal originates
from T ∗2 relaxation.

1.3.7 Signal detection

In MRI, the signal detection is based on Faraday’s law of induction. The time-
varying net nuclear magnetization vector induces a voltage v(t) in the receiving
coil, which is given by [Lauterbur, 1973]

v(t) = − ∂

∂t

∫
Ω
〈BR(r),M(r, t)〉dr, (1.25)

where r = (x, y, z)T , Ω is the volume enclosed by that coil, BR(r) is the so-
called coil sensitivity, and M(r, t) is the net nuclear magnetization vector at point
r ∈ Ω ∈ R3 and time t. As already mentioned, since the longitudinal component of
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M(r, t) is a slow varying function compared to the transverse component, Eq. (1.25)
can be simplified to [Lauterbur, 1973]

v(t) = −
∫

Ω

(
BRx (r)∂Mx(r, t)

∂t
+BRy (r)∂My(r, t)

∂t

)
dr. (1.26)

By using the following complex notation, BRxy(r) = BRx (r)−iBRy (r) andMxy(r, t) =
Mx(r, t) + iMy(r, t), Eq. (1.26) can be written as

v(t) = −<
{∫

Ω
BRxy(r)∂Mxy(r, t)

∂t
dr

}
, (1.27)

where Mxy(r, t) can be related to the transverse component in the RF-rotating
frame as Mxy(r, t) = Mx′y′(r, t)e−iωRF t. In all the cases, free precession is at much
faster rate than relaxation, that is, the following assumption is valid:

∂Mxy(r, t)
∂t

= ∂Mx′y′(r, t)
∂t

e−iωRF t − iωRFMx′y′(r, t)e−iωRF t

≈ −iωRFMx′y′(r, t)e−iωRF t. (1.28)

By doing so, Eq. (1.27) can be succinctly written as

v(t) = <{iωRF s(t)e−iωRF t}, (1.29)

where the complex signal s(t) is given by

s(t) =
∫

Ω
BRxy(r)Mx′y′(r, t)dr. (1.30)

Disregarding constants, the complex signal s(t) receives, in communication theory,
the name of the complex envelope of v(t), whereas e−iωRF t is the carrier signal
[Haykin, 2001]. The complex envelope, s(t), is the signal of interest in MRI, since
it depends on the net nuclear magnetization vector. The complex envelope s(t) can
be written as s(t) = sI(t) + isQ(t), where low-pass band signals sI(t) and sQ(t)
are the (I)n phase and (Q)uadrature components, respectively. The technique that
MR scanners include so as to extract sI(t) and sQ(t), and hence s(t), from v(t),
is based on an I/Q demodulator [Haykin, 2001]. The schematic design of an I/Q
demodulator is shown in Fig. 1.9.

1.4 MR image formation

Clearly, all spin systems in the object contribute to form the signal s(t), resulting in
the superposition integral of all the net nuclear magnetization vectors (Eq. (1.30)).
Evidently, it is impossible to determine Mxy(r, t) at every point r in the scanned
object with information only from s(t). In other words, more mechanisms are
needed to form a graphical representation of the NMR phenomenon inside the
scanned object. A graphical representation of the spatial distribution of the net
nuclear magnetization vector is called an MR image. The essential concept that
permits to move from NMR signals to MR images is the spatial localization or
encoding concept.
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Figure 1.9: I/Q demodulator to extract the (I)n phase and (Q)uadrature components,
sI(t) and sQ(t), of v(t).

1.4.1 Spatial localization and k-space

Central to spatial localization is the use of magnetic gradient fields. A gradient
field BG(r) along the z-direction is a magnetic field whose z-component, BGz (r),
varies linearly with x, y and z, that is,

BGz (r) = Gxx+Gyy +Gzz = 〈G, r〉, (1.31)

where G = (Gx, Gy, Gz)T is the gradient vector and 〈·, ·〉 denotes the scalar product
between vectors in an Euclidean space. A spin system located at point r that is
placed under BG(r) acquires a frequency which is given by

ω(r) = ωL + γBGz (r). (1.32)

Consequently, Mxy(r, t) = Mx′y′(r, t)e−iωRF te−iγBGz (r)t and the MR signal trans-
forms into

s(t) =
∫

Ω
BRxy(r)Mx′y′(r, t)e−iγ〈G,r〉tdr. (1.33)

In the more general case where gradient fields depend on time, the MR signal turns
out to be

s(t) =
∫

Ω
BRxy(r)Mx′y′(r, t)e−iγ

∫ t
0
〈G(t′),r〉dt′

dr. (1.34)

If we define the so-called k-space trajectories k(t) = (kx(t), ky(t), kz(t))T as

k(t) = γ

2π

∫ t

0
G(t′)dt′, (1.35)

then Eq. (1.34) can be expressed as

s(t) =
∫

Ω
BRxy(r)Mx′y′(r, t)e−2πi〈k(t),r〉dr. (1.36)
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For a fixed time point t1, the complex value s(t1) is nothing more than the three-
dimensional spatial Fourier transform of the image ρ(r, t1) = BRxy(r)Mx′y′(r, t1),
evaluated at vector frequency k = k(t1). By varying the acquisition time tp in a
time interval where ρ(r, t) remains relatively constant, different values of the Fourier
transform of ρ(r, t) can be acquired. Different values of the Fourier transform can
also be probed by changing the shape of G and hence of the k-space trajectories In
the k-space terminology, the set of complex values s(tp) for every p ∈ Z, where Z
denotes the set of integer numbers, is denoted as k-space data, and k(tp), ∀p ∈ Z
the set of k-space points. Ideally, if all the values of the Fourier transform of ρ(r, t)
are contained in the acquired k-space data set, the image ρ(r, t) can be analytically
calculated by means of an inverse Fourier transform.

The observation that the MR signal can be mathematically expressed as a Fourier
transform in the presence of time-varying gradient is probably the cornerstone of
MR imaging since it allows to contemplate MR image formation as a solvable inverse
Fourier problem. We italicize the word solvable because, in real life, attempting to
solve the inverse Fourier problem to form an MR image possesses a huge number
of challenges and mathematical considerations.

The field that is dedicated to solving the MR inverse problem from measured k-space
data is called MR image reconstruction. Due to the fundamental importance of
MR image reconstruction and, since this PhD thesis contains a novel contribution
in that field, we fully dedicate the next chapter to guide the reader through the
fundamentals of MR image reconstruction. Before ending this section, we briefly
comment about common terminology that is often employed in the MR image
formation literature: slice encoding and in-plane encoding.

1.4.2 Slice encoding

In subsection 1.4.1, we showed that MR images can be encoded in three dimensions
with an appropriate k-space trajectory, thereby leading to a 3D Fourier transform.
However, the classical approach in MR reconstruction is performing a tomographic
acquisition, where a stack of 2D slices of the object is acquired sequentially. This
type of acquisition is called a multi-slice acquisition. The rationale behind a multi-
slice acquisition is that only the spin systems that are located in a plane given by
z = z0 are excited. More realistically, the spin systems located at |z − z0| ≤ ∆z
are excited, where ∆z is the slice thickness. To perform a selective excitation, two
mechanisms are needed. First, a gradient field that varies along z is placed in the
system, resulting in a spatially dependent Larmor frequency:

ωL = γ(||B0||2 +Gzz). (1.37)

Second, a slice-selective RF pulse is also required, whose resonance frequency is
given by

ωRF = γ(||B0||2 +Gzz0), (1.38)

where the shape of the envelope of the RF pulse determines ∆z (Fig. 1.10).
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1.4. MR image formation

Figure 1.10: Illustration of the slice-encoding technique.

In this case, disregarding for simplicity practical considerations such as the effect
of the slice profile, the MRI signal s(t) can be seen interpreted as the 2D Fourier
transform, also known as the in-plane Fourier transform, of the 2D function which
results from the averaged slices ρ(x, y, z, t) within |z − z0| ≤ ∆z.

1.4.3 Frequency and phase encoding

By doing slice encoding, only 2D k-space trajectories, namely, kx(t) and ky(t), are
required to form 2D images. Though every 2D trajectory can be used, multi-slice
images are often acquired by using phase and frequency encoding. To understand
this specific terminology let us consider a 2D k-space trajectory constructed whose
gradients Gx, Gy are sequences of square pulses. In this case, kx(t) and ky(t) are
always linear in t. If, during the read-out step, that is, when the echo signal is
received, only Gx is active and Gy has been applied after the initial RF pulse and
then turned off before acquisition, we have that

kx(t) = γ

2πGxt, (1.39)

but
ky(t) = γ

2πGyτGy , (1.40)

where τGy is the width of the pulses of Gy. Therefore, the complex exponential
e−2πi〈k(t),r〉 in s(t) adopts the form

e−2πi〈k(t),r〉 = e−2πγiGxxt−2πγiGyyτGy . (1.41)

The direction x is said to be frequency encoded since only the frequency of
e−2πi〈k(t),r〉 depends linearly on x. Direction y, on the other hand, is said to
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be phase encoded because the phase of e−2πi〈k(t),r〉 depends linearly on y. Different
phase encoded lines can be acquired by just changing the value of height of the
pulses in Gy in different repetitions.

1.5 MRI scanner

An MRI scanner (Fig. 1.11) is composed of three main hardware components: a
large superconducting magnet, an RF system, and a magnetic field gradient system.

Figure 1.11: A 3T SIEMENS MAGNETOM Prisma scanner. Image courtesy of Siemens-
Healthcare.

The large superconducting magnet is employed to generate the homogeneous,
static, magnetic field B0. The strength of B0 is an important feature of every MR
scanner. Typical strengths of B0 are 1.5T or 3T, however, some sites also operate
a 7T scanner. The most important requisite for the larger magnet is its ability to
produce a homogeneous field over the whole region of interest. In practice, the
main magnet alone is not capable of generating such a completely homogeneous
magnetic field. The way to overcome this problem is by using a secondary magnetic
field generated by the so-called shim coils [Lauterbur, 1973].

The RF system consists of a transmitter coil so as to generate the B1(t) field,
and a receiver coil that converts the net nuclear magnetization vector into the
complex MRI signal, s(t). Sometimes, the same coil is used for both transmission
and reception. Similar to B0, a desirable feature of a RF system is to provide a
uniform B1(t) field and high detection sensitivity [Lauterbur, 1973]. Several types
of external coils can be used, namely, a body coil, surface coils, a bird-cage head
coil or arrays of small coils [Lauterbur, 1973].
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1.5. MRI scanner

Finally, the gradient system is responsible for generating the time-varying mag-
netic field to provide both spatial encoding and GE-echo signals. Important
specifications for a gradient system are the maximum gradient strength (mT/m)
and the rise time, the time to achieve the maximum gradient strength. Both
features are combined in a single specification name called slew rate, which is the
maximum gradient strength divided by the rise time. Most superconducting clinical
scanners operate with slew rates between 80 and 150 T/m/s, and most advanced
ones can do so with slew rates around 200 T/m/s [GE, , SIE, b, SIE, a, PHI, ].
Typical maximum gradient strengths are around 20-60 mT/m. Recent scanners
reach values as high as 80 mT/m [GE, ,SIE, b,SIE, a,PHI, ].
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2.1 Introduction

In this chapter, the basics of MR image reconstruction are introduced. We start
with fundamental concepts of sampling theory for Cartesian k-space sampling, such
as aliasing and spatial resolution. As MRI is a slow imaging modality due to the
strong sampling conditions, emphasis is given on the case of under-sampled k-space
data, aiming at accelerated acquisition. To that end, we describe current parallel
MRI techniques, and we further elaborate on modern algebraic reconstruction
techniques that use prior knowledge and regularization. This chapter provides the
theoretical background so as to understand one of the contributions of this PhD
thesis (chapter 7).

2.2 The Continuous Inverse Fourier problem

In subsection 1.4.1, we described how the MR signal is localized in space with the
concept of k-space encoding. It was shown that samples of the acquired signal
s(t) (Eq. (1.34)), that is, s(tp), ∀p ∈ Z, can be seen as points of the spatial Fourier
transform of ρ(r, tp) = BRxy(r)Mx′y′(r, tp). In MR image reconstruction, to end up
with a proper Fourier Inverse problem, it is common to assume that all the k-space
points correspond to the Fourier transform of a “snapshot” of ρ(r, t) at a fixed
time t′. This way, ρ(r, t′) can be treated as a 3D spatial image that is constant in
time. Consequently, the samples s(tp),∀p ∈ Z can be seen as the amplitude of the
frequencies of the Fourier spectrum of a single image ρ(r, t′), which, for simplicity
can be denoted as ρ(r) = BRxy(r)Mx′y′(r). The time point t′ is normally chosen to
be the maximum point of the echo signal, that is, the echo time (TE).

The overarching assumption that we have made does apply under the following
conditions. Let us suppose that s(kp), with ∀p ∈ Z, are acquired within a time
interval around t′ where the temporal change of Mxy(r, t) is negligible. This type
of acquisition is called single-shot acquisition. If that is so, we can perfectly assume
that all k-space points correspond to the same image ρ(r).

On the other hand, this assumption is also valid for multi-shot acquisition. In
this case, the complete NMR excitation process described in chapter 1 is repeated
multiple times, and, in each “shot”, different and small subsets of k-space points
of kp, ∀p ∈ Z are acquired. The time between repetitions is called repetition time
and is often denoted as TR. During the acquisition of the subset of k-space points,
the temporal change in Mxy(r, t) is, again, assumed to be negligible.

We are then ready to define the MR image reconstruction problem but first, let
us ease the notation. A k-space point that is mapped when a given k-space
trajectory, k(t), is evaluated at t = tp, with p ∈ Z, that is, k(tp), is denoted as
kp. Furthermore, from now on, s(kp) denotes the corresponding k-space data
measurement, i.e., s(tp).

The MR image reconstruction problem is defined as [Lauterbur, 1973]
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2.3. Cartesian k-space sampling

Given s(kp) =
∫

Ω
ρ(r)e−2πi〈kp,r〉dr with kp,∀p ∈ Z

determine ρ(r). (2.1)

Observe that if BRxy(r) is known, Mx′y′(r) can be obtained exactly provided
problem Eq. (2.1) is solved for ρ(r). There are multiple techniques for estimating
BRxy(r) [Vemuri et al., 2005,Allison et al., 2012,Allison et al., 2013], so, in this
dissertation, we will just assume that BRxy(r) is given, and hence we only focus on
reconstructing the image ρ(r).

Problem 2.1 occurs in many scientific disciplines and, in fact, has been thoroughly
studied long before MRI was conceived. It belongs to the class of discrete-to-
continuous inverse problems, where the goal is to find a continuous function that
matches a discrete finite or infinite set of samples [Lauterbur, 1973]. Such a problem
is naturally ill-posed since it is undetermined, i.e., there are infinite possible choices
for ρ(r) to solve Eq. (2.1) [Fessler, 2010]. On top of that, in practice, the number
of k-space points is always finite [Fessler, 2010]. Evidently, in order to end up with
a tractable problem, some assumptions about the distribution of k-space points kp,
and the target image ρ(r) should be made. The branch of mathematics that deals
with the recovery of a continuous function from a discrete set of samples is called
sampling theory [Marks, 1993]. A brief incursion in sampling theory is required
to understand the MR image reconstruction process. For simplicity, we will just
focus on a 2D k-space case (the 3D case is simply a generalization of this particular
case).

2.3 Cartesian k-space sampling

Most of the MR images are acquired with a Cartesian-based k-space scheme. The
main reason why this type of sampling schemes is the most popular is based on
two separate aspects. First, Cartesian k-space trajectories are relatively simple
to implement and very robust in the presence of scanner hardware imperfections.
Second, and perhaps, more importantly, there exist exact recovery methods for
Cartesian k-space sampling [Marks, 2009,Marks, 1993]. This has motivated the
conception of computational efficient reconstruction algorithm, which are nowadays
broadly integrated into commercial MR scanners software.

An MR image is said to be sampled with a Cartesian k-space scheme if the k-space
points kp,∀p ∈ Z, can be indexed with new indexes m and n as follows:

kxm = m∆kx, kyn = n∆ky, (2.2)

with m ∈ Z, n ∈ Z, and where ∆kx and ∆ky are the sampling intervals along
the x and y direction, respectively. In Fig. 2.1, the k-space data of an actual MR
image sampled with a Cartesian scheme are graphically represented. An important
concept in Cartesian k-space sampling is the so-called aliasing effect, and the
Nyquist conditions. Those topics are covered below.
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(a) (b)

Figure 2.1: Cartesian k-space scheme sampling (a) of the Fourier Transform of an actual
MR image (b).

2.3.1 Nyquist conditions and aliasing

We define the periodic summation of the image ρ(x, y), with periods 1/∆kx and
1/∆ky, as the image ρ̄(x, y) given by [Pinsky, 2002]

ρ̄(x, y) =
∑
m∈Z

∑
n∈Z

ρ(x− m

∆kx
, y − n

∆ky
). (2.3)

Equipped with the Poisson summation formula [Marks, 2009], the following result
can be shown to be true:

ρ̄(x, y) = ∆kx∆ky
∑
m∈Z

∑
n∈Z

s(m,n)e2πim∆kxx+2πin∆kyy, (2.4)

where we have used the notation s(m,n) for the discrete k-space image s(m∆kx, n∆ky).
The image ρ̄(x, y) is nothing more than the 2D Discrete-Time Fourier Transform
(DTFT) of s(m,n) [Marks, 2009]. Observe that whereas the k-space image is
discrete or digital, the image ρ̄(x, y) is continuous. The word discrete-time is
used deliberately to distinguish this type of Fourier transform from the popular
Discrete Fourier Transform (DFT), where both domains are truly discrete [Marks,
2009].

Eq. (2.4) means that the value of ρ̄ at every point x and y can be exactly recovered
by applying a 2D DTFT to the k-space image. Without further assumptions, it is
in principle not possible to extract ρ(x, y) from ρ̄. However, if ρ(x, y) is an image
of finite support, meaning that

ρ(x, y) = 0, |x| > Wx

2 |y| > Wy

2 , (2.5)
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2.3. Cartesian k-space sampling

then, there exist conditions to guarantee that ρ(x, y) can be recovered from its
periodic summation extension. Indeed, if we select the sampling intervals ∆kx and
∆ky that fulfill

∆kx ≤
1
Wx

,∆ky ≤
1
Wy

(2.6)

then ρ̄(x, y) = 1
∆kx∆ky ρ(x, y), and hence the 2D DTFT of the k-space image

is simply a scaled version of ρ(x, y). The conditions presented in Eq. (2.6) are
known as the Nyquist conditions. When the Nyquist conditions do not hold,
we say that the k-space data are under-sampled [Marks, 2009]. When sampling
intervals are strictly smaller than 1/∆kx and 1/∆ky, the term over-sampled is used
instead [Marks, 2009]. The support of the MR image ρ(x, y) is determined by the
region of interest volume Ω (see Eq. (1.25)), which in turn is defined by the coil
sensitivity profile. In the MRI jargon, the support of the MR image is called the
Field of View (FOV). In practice, the user selects the desired FOV and then, ∆kx
and ∆ky are chosen as the limit of the Nyquist conditions, that is, ∆kx = 1/Wx and
∆ky = 1/Wy. We then say that k-space data has been fully-sampled. In Fig. 2.2,
we graphically illustrate the concept of undersampling and the phenomenon of
aliasing in the reconstructed image space.

2.3.2 Truncation of k-space and spatial resolution

The number of acquired k-space data points is always finite. Since most of the
energy of the MR image is contained in its low-frequency components, the k-space
is usually sampled in a Cartesian scheme up to some maximum value. That value
is determined by the farthest k-space points that can be reached with a given
trajectory, which in turn depends on the gradient strength [Fessler, 2010]. Being
the maximum attainable k-space point in the x and y direction kxmax and kymax,
respectively, the 2D DTFT of Eq. (2.4) transforms into a truncated version given
by

S(x, y) = ∆kx∆ky
M/2−1∑
m=−M/2

N/2−1∑
n=−N/2

s(m,n)e2πim∆kxx+2πin∆kyy, (2.7)

beingM and N such that (M/2−1) = bkxmax/∆kxc and (N/2−1) = bkymax/∆kyc
respectively, where bac is the greatest integer that is less or equal to a. Eq. (2.7)
can be seen as the truncated Fourier series of ρ̄(x, y) [Pinsky, 2002]. If the Nyquist
conditions hold, ρ̄(x, y) = ρ(x, y), then [Pinsky, 2002]

S(x, y) = ρ(x, y) ∗DM,N (x, y), (2.8)

being ∗ the convolution operator and DM,N (x, y) the so-called Dirichlet periodic
kernel:1

DM,N (x, y) = ∆kx∆ky
sin (Mπ∆kxx)

sin(π∆kxx)
sin (Nπ∆kyy)
sin(π∆kyy) . (2.9)

1When the k-space is not symmetrically covered, like in Eq. (2.7), DM,N (x, y) should be
multiplied by a complex exponential factor as well. However, this term is often left aside since its
contribution is negligible [Lauterbur, 1973].
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(a) (b)

(c) (d)

Figure 2.2: Cartesian k-space sampling scheme that violates the Nyquist criterion (a),
and (b) reconstructed image after the 2DTFT , ρ̄(x, y). If the Nyquist conditions hold
(c), no overlap exists in ρ̄(x, y) (d), and hence ρ(x, y) is recoverable.

The function DM,N (x, y) can be interpreted as a Point Spread Function (PSF). The
PSF DM,N (x, y) converges to the delta function when M and N tend to infinity.
In the asymptotic case, S(x, y) = ρ(x, y), as expected, since we have seen that
for an infinite number of k-space points, exact recovery is possible if the Nyquist
conditions are fulfilled. For finite M and N , the function DM,N (x, y) introduces
distortion in ρ(x, y). The image distortion comes in form of Gibbs ringing and,
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more importantly, blurring. In general, the sharper the main lobule of the PSF
function is, the less is then the blurring. Naturally, the main lobule becomes sharper
when M and N increase. This intuitive explanation can be formalized by using
classical concepts from imaging theory. In fact, a definition of spatial resolution
can be given in terms of the width of the PSF. Two points can be “resolved” if
they are separated more than the PSF width. The lower the width is, the higher is
the spatial resolution. For PSFs that are not rectangular functions, the width is
not uniquely defined. Two practical definitions are given. The Full Width at the
Half Maximum (FWHM) and the so-called effective width. The effective width,
W , is defined as the width of a rectangular function whose height is the maximum
value of the actual PDF, and whose area is the area of the PSF. In particular, for
the Dirichlet kernel PSF

W = 1
DM,N (0, 0)

∫ ∞
−∞

∫ ∞
−∞

DM,N (x, y)dxdy = 1
MN∆kx∆ky

≈ 1
kxmaxkymax

,

(2.10)
where it is assumed that DM,N (0, 0) is the maximum point of DM,N (x, y). As a
result, the higher kxmax and kymax are, the higher the spatial resolution is. This
could be achieved by increasing ∆kx and ∆ky. Since the Nyquist condition should
be kept in mind, the only way to increase the spatial resolution is then to acquire
more k-space data points, i.e., to increase M and N . Obviously the acquisition
time then also increases. In Fig. 2.3, the effect that truncating the k-space has on
the final spatial resolution is illustrated. The 2D DTFT of the truncated k-space
data provides a continuous representation of S(x, y), but MR images are always
digital/discrete. In order to obtain a discrete image, Eq. (2.7) can be evaluated at
points

xm = m∆x with m = −M/2, ...,−1, 0, 1, ...,M/2− 1,
yn = n∆y with n = −N/2, ...,−1, 0, 1, ..., N/2− 1, (2.11)

and hence it becomes

S(m,n) = ∆kx∆ky
M/2−1∑

m′=−M/2

N/2−1∑
n′=−N/2

s(m′, n′)e2πim′ mM +2πin′ nN , (2.12)

which is the (scaled) 2D inverse DFT of s(m,n), and is normally implemented with
efficient Fast Fourier Transform (FFT) algorithms.

2.3.3 Limitations of Cartesian k-space sampling

While the advantages of Cartesian k-space sampling are evident (see subsection
2.3), it also presents serious limitations to efficient MR Imaging. Cartesian k-space
sampling is often implemented with the frequency/phase encoding method (see
subsection 1.4.3), which is also known as spin warping imaging [Edelstein et al.,
1980]. Nowadays, most of the MRI acquisition protocols employ advanced upgraded
versions of the original SE pulse sequence, where, instead of one single frequency line,
several frequency lines are acquired per TR (Fig. 2.4). These sequences are often
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Figure 2.3: Loss of spatial resolution when the maximum attained k-space frequency is
reduced, and hence M and N are reduced.

known by their commercial names Cartesian Fast Spin Echo (FSE) or Cartesian
Turbo Spin Echo (TSE) [Bernstein et al., 2004]. If Ny/TR stands for the number of
frequency lines that are acquired per TR with either an FSE or TSE sequence, and
we assume that the acquisition time per frequency line is much shorter than TR,
the total acquisition (TAcq) time per 2D image can be shown to be

TAcq ≈ TR N

Ny/TR
. (2.13)

Naturally, the user can tune the parameter Ny/TR, however, Ny/TR cannot be
made arbitrarily high without drastically suffering from T2 decay. Likewise, we
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Figure 2.4: Schematic diagram of a TSE sequence with Ny/TR = 3.

cannot decrease TR as much as we want. Indeed, in MRI relaxometry, we are
interested in measuring the evolution of the net nuclear magnetization vector during
the relaxation process. Therefore, consecutive RF pulses should not interfere with
the relaxation process until the desired measurement has been made. In short, the
time between pulses, i.e., TR, cannot be kept arbitrarily small. To illustrate the
inadequacy of Cartesian TSE for fast MRI relaxometry, let us consider the following
example. Let us suppose we employ the widespread Inversion Recovery (IR) pulse
sequence with the goal of probing the T1 relaxation time. For this particular
sequence (see chapter 4 for more details), the TR value should be higher than four
seconds, approximately. If TR = 4s, the reconstruction process of a 2D slice MR
image with M = N = 256 and Ny/TR = 10 would take TAcq = 4s× 257/10 = 1.7
min approximately! In an MRI relaxometry protocol, several images are acquired
with different settings, therefore the total acquisition time for the image set becomes
clearly infeasible.

If we adhere to fully-sampled k-space data, there is no other way than conceiving
more efficient pulse sequences schemes to accelerate the acquisition. One of these
pulse sequences is Cartesian Echo-Planar Imaging (EPI) [Mansfield, 1977]. With
Cartesian EPI, all lines of the k-space are acquired simultaneously [Bernstein et al.,
2004] during the readout. In its most basic version, Cartesian EPI corresponds
to the type of single-shot acquisition [Bernstein et al., 2004], though segmented
and interleaved EPI have also been proposed [Schmitt et al., 1998]. While much
faster than Cartesian TSE, EPI presents numerous challenges for high image
quality reconstruction since it often suffers from magnetic field inhomogeneities
effects [Schmitt et al., 1998], leading to image distortions, often referred to EPI
distortions. MRI reconstruction with EPI sequences deserves a special treatment
on its own [Schmitt et al., 1998], and because in this PhD thesis EPI sequences
have not been employed, we will not cover them here.

The main recognized disadvantage of Cartesian k-space schemes is intrinsic to the
way the k-space is sampled. Cartesian k-space schemes are relatively inefficient at
covering the whole k-space. This is because just a very small portion of the k-space
is acquired during the readout step (a reduced number of lines). This explanation
leads us naturally to conceive other different k-space trajectories resulting in
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different k-sample sampling schemes.

2.4 Non-Cartesian k-space sampling

Historically, sampling along non-Cartesian trajectories has been largely ignored
in favor of the simpler and well-understood spin-warping imaging or conventional
Cartesian k-space sampling. This is true despite the seminal work of Paul Lauterbur
[Lauterbur, 1973], where the concept of spatial encoding was illustrated with a
radial sampling scheme. One of the most important properties of non-Cartesian
trajectories is their potential for efficient use of MR gradient hardware and therefore
rapid coverage of k-space [Wright et al., 2014]. Additionally, many non-Cartesian
trajectories are much more tolerant to under-sampling [Peters et al., 2006], and are
less affected by motion [Glover and Pauly, 1992,Liao et al., 1997,Feng et al., 2016].
Furthermore, they can be used with pulse sequences with ultra-short TE [Qian and
Boada, 2008], since no preparatory step for phase encoding is needed. Perhaps,
the two paradigmatic examples of non-Cartesian k-space sampling are radial and
spiral sampling [Lauterbur, 1973]. Both radial and spiral k-space sampling can be
applied in 3D MR image reconstruction. Here, for the sake of coherence with the
rest of the chapter, we describe both k-space schemes for the 2D case.

With radial sampling, also known as projection sampling [Glover and Pauly,
1992,Altbach et al., 2002,Feng et al., 2016] the k-space is sampled by means of radial
profiles or spokes, where these spokes always pass through the origin (Fig. 2.5.(a)).
Similar to Cartesian k-space sampling, it is possible to derive conditions for exact

(a) (b)

Figure 2.5: Examples of non-Cartesian k-space sampling: (a) radial sampling (b) spiral
sampling.

recovery. An important assumption is that image ρ(x, y) has a finite circular support,
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and that its Fourier transform is band-limited in the angular direction [Lauterbur,
1973]. If that is so, exact recovery conditions exist, although they require a
slightly higher number of k-space data points than those for Cartesian k-space
sampling [Lauterbur, 1973]. Additionally, the concept of the PSF to derive a
spatial resolution criterion can be introduced as well. While conditions for exact
recovery are more demanding than those for Cartesian k-space data, radial sampling
has the benefit of performing better in the undersampling regime [Peters et al.,
2006]. To understand this, observe that, by construction, in a radial scheme low-
frequency components are acquired very often, whereas high- frequency components
are acquired less frequently. Since most of the energy of the Fourier transform
of an image is generally contained in the low-frequency region, k-space covering
with radial schemes conveys more image information than with Cartesian k-space.
Indeed, for Cartesian k-space sampling, undersampling leads to coherent artifacts
in form of aliasing. For radial k-space sampling, reducing the number of spokes
has a more clear effect in the high-frequency area rather than in the low-frequency
region, where most of the energy is found. The resulting artifacts, which come
in form of streaking artifacts, are shown to be incoherent, a property which may
become useful for the concept of Compressed Sensing (CS) [Feng et al., 2014].
Another appealing property of radial sampling is its well-known robustness against
motion artifacts during k-space acquisition. This explains the growing interest in
radial sampling development for cardiac MR acquisitions. As a drawback, with
radial scanning, it is important to account for anisotropic gradient delays [Peters
et al., 2003].

Spiral sampling is known to be one of the most efficient schemes to sample
the k-space [Ahn et al., 1986,Yudilevich and Stark, 1987b,Yudilevich and Stark,
1987a,Meyer et al., 1992, Irarrazabal and Nishimura, 1995]. With spiral sampling,
the continuous k-space trajectory is parameterized by a spiral curve as is shown in
Fig. 2.5.(b). Often, several spirals are interleaved, providing a more densely covered
k-space. Guarantee conditions for exact recovery can also be given [Marks, 1993]. A
spiral scan requires approximately 5-10 times fewer readouts than a Cartesian scan
of similar resolution and FOV. So, for fully-sampled scans, the scan efficiency of
spirals is the highest overall, followed by Cartesian and then by radial [Feng et al.,
2016]. Like radial k-space sampling, spiral sampling is relatively robust to motion
artifacts [Liao et al., 1997,Feng et al., 2016]. However, spiral schemes are less robust
to under-sampling than radial schemes. For spiral scanning, it is typically desirable
to perform a one-time calibration for gradient delays and eddy currents [Tan and
Meyer, 2009,Addy et al., 2012,Campbell-Washburn et al., 2016].

The main disadvantage of non-Cartesian k-space sampling methods is the difficulty
of reconstructing the resulting k-space data sets [Pauly, 2005]. Theorems for exact
recovery in polar coordinates can be used to derive analytical formulas, but the
numerical evaluation of those formulas is too slow [Yudilevich and Stark, 1987b,
Yudilevich and Stark, 1987a,Marks, 1993]. Another option is the so-called regridding
concept [Fessler and Sutton, 2003,Beatty, 2006]. Regridding reconstruction involves
interpolating the k-space data into a Cartesian grid, and then reconstructing the
final image with an FFT-based algorithm. Particular importance should be paid
to the interpolating kernel since it affects the final quality of the reconstructed
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image [Beatty et al., 2005,Beatty, 2006]. A more versatile option is reformulating the
inverse Fourier Problem into a discrete-discrete inverse problem by a discretization
the integral of Eq. (2.1). This type of reconstruction approach will be covered in
subsection 2.7.

2.5 Phased-Array MR image reconstruction

Practically all of MR commercial scanners have the possibility to connect multiple
RF detector coils, thereby allowing the simultaneous acquisition of the NMR signal.
This technique is called phased-array technology (for similarities with phased-array
radar), and it constitutes the standard way to reconstruct MR images. Phased-
Array coil technology, introduced with the pioneering work of Roemer [Roemer
et al., 1990], was conceived with the purpose of increasing the signal-to-noise ratio
(SNR) of the reconstructed MR image, a terminology which will become clear
in the next section when the concept of MR noise is introduced. Nevertheless,
phased-array coil technology is most often used to reduce the scan time by means
of undersampling k-space data. This technique receives the name of parallel MRI
(pMRI), and this section is devoted to presenting its fundamental ideas and the
most popular algorithms.

2.5.1 Multi-coil acquisition model

Let us consider an array of L coils, each one characterized by a transversal coil
sensitivity profile BRxyl(r), with l = 1, ..., L. Like in subsection 2.2, if the coil
sensitivities are known, and if we drop the temporal dependence of the magnetization
vector, the MR image reconstruction problem in a phased-array or multi-coil system
can be posed as

Given sl(kp) =
∫

Ω
BRxyl(r)Mx′y′(r)e−2πi〈kp,r〉dr with kp,∀p ∈ Z, and l = 1, ..., L

determine Mx′y′(r) (2.14)

In the origins of phased-array MR technology, Eq. (2.14) was “solved” independently.
Indeed, each of the L fully-sampled k-space data sets, sl(kp), was inversely Fourier
transformed (with either Cartesian or non-Cartesian k-space sampling), thereby
providing the reconstructed image in the l-th coil, that is, ρl(r) = BRxyl(r)Mx′y′(r).
Then, the next question was how to combine images ρl(r), with l = 1, ..., L, aiming
at getting Mx′y′(r). The image resulting from this combination is called the
composite MR image.

Though an advantage in terms of SNR, it seems like with this simple technique
we are not fully exploiting the multiple parallel information given in every coil. In
fact, extensions of the well-known Shannon sampling theorem have been given for a
multichannel sampling problem like Eq. (2.14) [Papoulis, 1977,Cheung, 1993,Ying
and Liang, 2010], indicating that exact reconstruction is possible even if the
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individual sets sl(kp) are under-sampled. This justifies the technique of parallel
MRI (pMRI), which we describe hereafter.

2.5.2 Parallel MRI (pMRI)

The first successful example of phased-array MR reconstruction with undersampled
data was showcased by Daniel Sodickson [Sodickson and Manning, 1997]. In 1997,
Sodickson and Manning proposed the simultaneous acquisition of spatial harmonics
(SMASH) method so as to generate missing k-space lines by encoding with coil
sensitives. The SMASH technique was followed by a plethora of acceleration
methods that boosted pMRI to the state we know it today. Nowadays, the two
most popular pMRI methods are by far SENSE and GRAPPA.

2.5.2.1 SENSitiviy Encoding (SENSE)

The SENSitiviy Encoding (SENSE) method was presented by Klaas Pruessmann
[Pruessmann et al., 1999] to reconstruct MR images from under-sampled Cartesian
k-space data. With SENSE, the extent of the k-space is kept the same, but the
sampling interval in the phase direction ∆ky is augmented by a factor R, thereby
violating the Nyquist criterion but successfully obtaining an acceleration of R
times.

To understand how SENSE works, let us focus on the simple case of R = 2, that is,
the k-space data set of every coil is sampled with

∆kx = 1
Wx

, ∆ky = R

Wy
= 2
Wy

. (2.15)

If that is so, when a 2D IDFT is applied to each of the L k-space data sets, aliased
versions of ρl(x, y), ρ̄l(x, y), are reconstructed (see subsection 2.3.1). Confined to
the image support, |x| > Wx

2 , |y| > Wy

2 , only R = 2 aliased replicates appear,
thus

ρ̄l(x, y) = 1
∆kx∆ky

(
BRxyl(x, y−)Mx′y′(x, y−) +BRxyl(x, y)Mx′y′(x, y)+

BRxyl(x, y+)Mx′y′(x, y+)
)
, l = 1, ..., L, (2.16)

with y− = y − Wy/2 and y+ = y + Wy/2. If the coil sensitivities are known,
Eq. (2.16) represents, for each point (x, y) in the image support, a linear system
of L equations, being Mx′y′(x, y−), Mx′y′(x, y), and Mx′y′(x, y+) the unknowns
variables.

Observe that the two aliased image versions, Mx′y′(x, y−) and Mx′y′(x, y+), never
overlap each other. Hence, it suffices to solve Eq. (2.16) for points x and y, with
either y < 0 or y > 0. In the first case, the upper half part is recovered by
Mx′y′(x, y+) whereas in the second case, the lower half part is obtained with
Mx′y′(x, y−). As we want digital MR images, the 2D IDTFT is replaced in favor

35



MR image reconstruction

of an IDFT, and because the number of k-space points in the y direction is also
reduced by a factor of R, the FOV of the discrete reconstructed image is reduced
by R (see last part of subsection 2.3.2). In the SENSE terminology, the name of
reduced FOV is sometimes used [Pruessmann et al., 1999,Blaimer et al., 2004],
however, this FOV reduction is inherent to the DFT, and has nothing to do with
the real FOV defined by Wx and Wy. A graphical representation of the SENSE
method is shown in Fig. 2.6.

Figure 2.6: Schematic illustration of the SENSE method with R = 2 and L = 4 coils.
Figure adapted from [Aja-Fernández and Vegas-Sánchez-Ferrero, 2016a].

Normally, current clinical MR scanners are equipped with L = 32 receiver coils, so
the linear system of Eq. (2.16) is overdetermined for common acceleration factors
of two or four [Blaimer et al., 2004]. In this situation, the least-square solution is
calculated. Despite the required a priori knowledge of coil sensitivities, SENSE
is, to date, the most widespread employed pMRI technique, and is offered by
many companies in slightly modified implementations: Philips (SENSE), Siemens
(mSENSE), General Electric (ASSET), Toshiba (SPEEDER) [Blaimer et al., 2004].
An important issue with SENSE is the required accurate estimation of the coil
sensitivities profiles, which can be circumvented with GRAPPA since this technique
works purely in the k-space domain.

2.5.2.2 GRAPPA

Three years after Pruessmann’s contribution, Mark Griswold and colleagues [Gris-
wold et al., 2002] presented the Generalized Autocalibrating Partially Parallel
Acquisitions (GRAPPA) method. GRAPPA, unlike SENSE, does not require
knowledge of the coil sensitives and it works purely in the k-space domain. Though
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initially conceived for Cartesian k-space data, extensions to non-Cartesian k-space
data have also been proposed since then. GRAPPA reconstructs the missing k-space
lines with information derived from the acquired k-space lines that are adjacent to
the missing line. In particular, a missing k-space line in the l′-th coil is reconstructed
by interpolating the k-space lines from all the L coils (Fig. 2.7). Mathematically,
the missing k-space data point sl′(m′, n′) is approximated by

ŝl′(m′, n′) =
L∑
l=1

M/2−1∑
m=−M/2

∑
n={−1,1}

sl′(m′ −m,n′ − n)ωll′(m,n), (2.17)

where ωll′(·, ·) is the GRAPPA kernel which defines how the missing k-space data
in the l′-th coil is interpolated from the acquired k-space data in the l-th coil.
The GRAPPA kernel is learned from the so-called Auto Calibration Signal (ACS)
lines, which conform the low-frequency spectrum of the k-space data of every
coil [Griswold et al., 2002].

Figure 2.7: Schematic illustration of the GRAPPA method with R = 2 and L = 4 coils.
Figure adapted from [Aja-Fernández and Vegas-Sánchez-Ferrero, 2016a].

Once the missing k-space lines have been filled up, an IDFT gives the reconstructed
images ρ̂l(x, y). The next pending question is how to form the composite image
from ρ̂l(x, y), aiming at estimating Mx′y′(x, y). Several techniques may be applied.
We briefly describe the most popular.

1. Sum of Squares (SoS)
With the SoS technique [Roemer et al., 1990], the following composite image
Scomp(x, y) is created:

Scomp(x, y) =

√√√√ L∑
l=1
|ρ̂l(x, y)|2. (2.18)
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A direct consequence of Eq. (2.18) is that Scomp(x, y) is always a real and
positive image. Note that, provided ρ̂l(x, y) are good approximations of
ρl(x, y), with l = 1, ..., L, then

Scomp(x, y) =

√√√√ L∑
l=1
|ρ̂l(x, y)|2 ≈ |Mx′y′(x, y)|

√√√√ L∑
l=1
|BRxyl(x, y)|2. (2.19)

Hence, if the coil sensitivities are designed to fulfill
L∑
l=1
|BRxyl(x, y)|2 = C for any C > 0, (2.20)

Scomp(x, y) is simply a scaled version of the magnitude of the imageMx′y′(x, y).

2. Spatially Matched Filter (SMF)
With the SMF technique [Roemer et al., 1990], the composite image Scomp(x, y)
is reconstructed as follows:

Scomp(x, y) =
L∑
l=1

ml(x, y)ρ̂l(x, y), (2.21)

where ml(x, y) is the l-th coefficient of the spatial filter at point (x, y). The
optimal filter is derived from the array noise correlation matrix [Roemer
et al., 1990,Walsh et al., 2000]. The SMF is known to be a computationally
expensive technique. Several variations have been given where the coefficients
of the filter are adaptively estimated [Walsh et al., 2000]. The name adaptive
combine method is also given [Walsh et al., 2000].

2.6 Noise in MRI

In 1928, John Johnson demonstrated that thermal motion of electrons in a resistor
R induces random fluctuation in the voltage across the resistor. The effective
resistance is the sum of the coil resistance Rc and the resistance induced by the
conductive losses in the scanned subject Rs [Hoult and Lauterbur, 1979]. Generally,
the latter is the dominant source of noise. These voltage fluctuations are also
known as thermal noise. Such value fluctuations are well-modeled as realizations of
a Gaussian random variable with zero mean and variance

σ2 = 4KbT (Rc +Rs)∆f, (2.22)

where Kb is the Boltzmann constant, T is the temperature, and ∆f is the receiver
bandwidth [Veraart, 2013,Aja-Fernández and Vegas-Sánchez-Ferrero, 2016a]. The
existence of thermal noise has an important influence on the extraction of quanti-
tative parameters in MRI. Indeed, the MR raw signal model of Eq. (1.25) is not
valid anymore. Instead, a modified model can be considered by adding a zero mean
white Gaussian noise e(t),

ṽ(t) = v(t) + e(t), (2.23)
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with v(t) the voltage signal of Eq. (1.25), and ṽ(t), for each time point t, a realization
of a Gaussian random variable with mean v(t) and standard deviation σ (Eq. (2.22)).
As a result, the complex MR signal, that is, s(t) in Eq. (1.36), is also polluted by
noise and therefore, we now have to deal with a noisy model for the k-space data
sets acquired in each coil sl(kp), p ∈ Z:

s̃l(kp) = sl(kp) + wl(kp), l = 1, ..., L, (2.24)

with wl(kp) complex additive noise processes.

It is obvious then that the MR reconstructed images are always polluted by noise,
that is, the intensities of MR images cannot be modeled as deterministic values
anymore but as random variables. Furthermore, all the reconstruction techniques
that were presented as “exact” are not so anymore, and can even amplify the noise
effect when undersampled k-space data are in play. Therefore, a study of the effect
of noise on the reconstruction of an MR image is fundamental for image quality
assurance and particularly critical for qMRI estimation (see chapter 4).

Paramount to the characterization of a random variable and hence to quantitative
MR estimation is the concept of the probability density function (PDF). In order to
derive the PDF of s̃l(kp), we have to make assumptions of the statistics of wl(kp).
More problematic is to take into account all the mathematical operations that are
carried out by the reconstruction method of choice. A deeper, yet comprehensive
analysis of the statistical distribution models can be found in the references [den
Dekker and Sijbers, 2014,Aja-Fernández and Vegas-Sánchez-Ferrero, 2016a]. Here,
we follow a more modest approach. Instead of focusing on a specific method,
we derive the PDFs of the particular random variables that result from typical
mathematical operations on Gaussian random variables. Then, for each case, we
pinpoint to which actual scanning conditions those PDFs may apply.

2.6.1 Statistical assumptions of MRI noise

After I/Q demodulation, the resulting noise processes can accurately be described
as a band-pass zero mean white Gaussian noise process, having a uniform power
spectral density function symmetric about ωRF [den Dekker and Sijbers, 2014].
An assumption that is of fundamental importance to continue is that temporal
sampling of the signal sl(t), results in wl(kp), with l = 1, ..., L, being zero-mean
white complex Gaussian processes which means their standard deviation does not
depend on p [den Dekker and Sijbers, 2014]. Since, for each l, wl(kp) is a white
Gaussian process, wl(kp) is, by definition, an uncorrelated process [Papoulis, 1977].
However, two different processes from different coils, let us say, from the l and
l′ coil, could be mutually correlated, that is, the random variables wl(kp) and
wl′(kp′) with p 6= p′ and with l 6= l′ can be correlated. The cause of this correlation
is the existence of noise correlations in the phased-array system, [Brown et al.,
2007,Hayes and Roemer, 1990]. For systems with a small number of coils, this
effect is left aside, due to their minimal effect and practical considerations, as stated
in [Constantinides et al., 1997]. However, for modern acquisition systems comprising
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up to 32 or 64 coils, the receivers usually show a certain coupling [Aja-Fernández
and Vegas-Sánchez-Ferrero, 2016a].

2.6.2 Common statistical data distributions

2.6.2.1 PDF of a Gaussian random variable

A random variable X is said to follow a Gaussian distribution with mean µ and
standard deviation σ > 0 if its PDF pX(x;µ, σ) has the following expression:

pX(x;µ, σ) = 1√
2πσ2

e−
(x−µ)2

2σ2 . (2.25)

With the assumptions made above, the real and imaginary part of each k-space
data point s̃l(kp), for given p and l, follows a Gaussian distribution.

2.6.2.2 PDF of an N-dimensional Gaussian random variable

Let X1, X2, ..., XN be a collection of random variables. We say that the random vec-
tor X = (X1, X2, ..., XN )T follows a multi-variate Gaussian distribution with mean
µ = (µ1, µ2, ..., µN )T and covariance matrix CX (N ×N) if its multidimensional
PDF is given by

pX(x;µ,CX) = 1√
(2π)N |CX |

e−
1
2 (x−µ)TC−1

X
(x−µ), (2.26)

with x = (x1, x2, ..., xN )T , and where |CX | denotes the determinant of CX . The
random variables X1, X2, ..., XN are also said to be jointly Gaussian distributed.
The k-space data sets s̃l(kp) for l = 1, ..., L and ∀p ∈ Z are jointly Gaussian
distributed, with a covariance matrix depending on the coil correlations [Aja-
Fernández and Vegas-Sánchez-Ferrero, 2016a].

2.6.2.3 Linear combinations of independent Gaussian random variables

Let X1, X2, ..., XN be a collection of independent Gaussian random variables each
with mean µn, and standard deviation σn. Then, the random variable S defined
as

S =
N∑
n=1

wnXn, (2.27)

follows a Gaussian distribution with mean µS and σS given by

µS =
N∑
n=1

wnµn, σS =

√√√√ N∑
n=1

wnσ2
n. (2.28)

40



2.6. Noise in MRI

This situation applies when MR images ρ̄l(x, y), l = 1, ..., L, are reconstructed
independently with a 2D IDFT. Observe that for each point (x, y), both the
real and imaginary part of ρ̄l(x, y) are linear combinations of independent Gaussian
random variables, since the IDFT is a linear operator. Hence, ρ̄l(x, y) is a complex
Gaussian random variable whose mean vary with (x, y) but the standard deviation
is constant.

2.6.2.4 Affine transformation of a Gaussian random vector

Let X = (X1, X2, ..., XN )T be a random vector that follows a multi-variate Gaus-
sian distribution. If we form the following random vector

S = c+BX, (2.29)

with c an M × 1 vector and B an M × N matrix, then S (M × 1) follows a
multivariate Gaussian distribution with

µS = c+Bµ, CS = BCXB
T . (2.30)

This situation applies when the MR image Mx′y′(x, y) is reconstructed with
SENSE, since the linear-least-squares solution is an affine operation over the real
and imaginary part of all the k-space data points, which are, by assumption, jointly
Gaussian distributed. The covariance matrix CS depends on the coil sensitivities
as well as on the noise correlation matrix of the coils [Aja-Fernández and Vegas-
Sánchez-Ferrero, 2016a]. For all points of the reconstructed image Mx′y′(x, y), the
intensity is a Gaussian random variable with spatially variant mean and standard
deviation.

In addition, the multivariate Gaussian distribution also arises when the the com-
posite image, Scomp(x, y), is reconstructed with GRAPPA combined and
SMF method. Indeed, the convolution operator in GRAPPA can be formally
considered as an affine transformation of the k-space data points. Therefore, indi-
vidually, the intensity of each of the reconstructed coil images follow a Gaussian
distribution, and all of them considered jointly together follow a multivariate
Gaussian distribution. The SMF effectively combines all the information into
one single image by means of an affine transformation. As a result, the inten-
sity of the final composite image Mx′y′(x, y) follows a spatially variant Gaussian
distribution.

2.6.2.5 Magnitude of a complex independent Gaussian random vari-
able

Let X1 and X2 be independent Gaussian random variables with mean µ1 and µ2,
respectively, and identical standard deviation σ. Let S be the random variable
obtained as

S = |X1 + iX2|, (2.31)
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where | · | the absolute value. The random variable S then follows a Rician
distribution with signal parameter µ = |µ1 + iµ2|, and scale parameter σ, where
the PDF of S, pS(s;µ, σ), has the formal expression

pS(s;µ, σ) = s

σ2 e
−(s2+µ2)

2σ2 I(µs
σ2 )u(s), (2.32)

with I0(·) the zeroth order modified Bessel function of the first kind and where
the unit step function u(·) is used to indicate that the expression for the PDF
of S is valid for nonnegative values of s only. Note that for high signal-to-noise
ratios µ

σ > 3, the Rician PDF becomes quasi Gaussian [Sijbers et al., 1998c]. The
Rician distribution constitutes the most ubiquitous probabilistic distribution in
MRI since the magnitude operation is a very common operation in every MR image
processing analysis where the phase information can be disregarded. The most
trivial example where the Rician distribution arises is when the magnitude of each
of the fully-sampled reconstructed image coils ρ̄l(x, y) is taken, but also comes
up naturally with undersampled k-space data. Indeed, when the magnitude of
the reconstructed image with SENSE is taken and the real and imaginary
part are independent, or when the magnitude of the reconstructed image
with GRAPPA+SMF is applied, with the same assumption on the real and
imaginary part, the intensity of the magnitude images will follow a spatially variant
Rician distribution.

2.6.2.6 Sum of squares of independent Gaussian random variables

Let X1, X2, ..., XN be a collection of independent Gaussian random variables each
one with mean µn and standard deviation σn. Then, the random variable S defined
as

S =

√√√√ N∑
n=1

X2
n (2.33)

follows a non-central chi (χ) distribution with signal parameter

µ =

√√√√ N∑
n=1

µ2
n (2.34)

and scale parameter σ. The PDF of S, pS(s;µ, σ), has the formal expression

pS(s;µ, σ) = µN/2−1s

σ2 e
−(s2+µ2)

2σ2 IN/2−1(µs
σ2 )u(s), (2.35)

with IN/2−1(·) the (N/2 − 1)th order modified Bessel function of the first kind.
Observe that the Rician distribution is a special case of the non-central chi (nc-χ)
distribution for N = 2. The intensity of the the composite image Scomp(x, y)
in GRAPPA is constructed with the SoS method follows a non-central chi
(nc-χ) distribution.
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2.6.3 Signal-to-noise ratio

Signal-to-noise ratio (SNR) is a measure commonly used in science and engineering.
It compares the level of an expected/desired signal to the level of background noise.
In its most basic formulation, it is defined as the ratio of the power of the signal
(which is the information) and the power of the background noise (unwanted signal).
Hence, a high SNR implies the level of background noise is quite small compared
to the desired signal. Naturally, a high SNR is advantageous. Indeed, SNR can be
used as a measure of quality control. It can be used as an optimization criterion
for the design of the RF receptor coils, where the zero mean white Gaussian noise
process e(t) should be maintained low in comparison to the desired signal v(t),
see Eq. (2.23). While this is the most natural and rigorous way to define the
SNR in MRI, it is more practical to provide quality measures that relate to the
reconstructed MR image. An alternative SNR definition, which is widespread
among the MRI community, is

SNR(x, y) = I(x, y)
σNoise(x, y) , (2.36)

where I(x, y) is a magnitude noise-free image, reconstructed with any method and
evaluated at (x, y), and σNoise(x, y) the standard deviation of the “reconstructed”
noise image at (x, y). In a very few cases, this SNR can be calculated analytically, for
example in the case of fully-sampled coil by coil reconstruction. In practice, deriving
the noise model of the final reconstructed image is often infeasible, and instead,
this value is estimated with ad-hoc algorithms [Sijbers et al., 1998b,Sijbers et al.,
2007,Aja-Fernández et al., 2008,Koay et al., 2009,Rajan et al., 2010,Maximov
et al., 2012, Manjón et al., 2015, Aja-Fernández et al., 2015a, Poot and Klein,
2015,Veraart et al., 2016,Pieciak et al., 2017]. This constitutes the technique called
noise mapping, which is out of the scope of this dissertation. We refer the reader
to [Aja-Fernández and Vegas-Sánchez-Ferrero, 2016b] for a comprehensive review
on noise mapping.

2.7 Algebraic reconstruction techniques

2.7.1 Linear Inverse Fourier problem

Let us focus on the single-coil reconstruction problem of Eq. (2.1), and assume that
the continuous image ρ(r) can be approximated with a finite series expansion as
follows [Fessler, 2010]:

ρ(r) =
N∑
n=1

xnv(r − rn), (2.37)

where v(·) denotes the object basis function, rn denotes the center of the nth
translated basis function, and N is the number of parameters [Fessler, 2010]. Then,
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by substituting Eq. (2.37) into Eq. (2.1) we arrive at

s(kp) =
N∑
n=1

apnxn, ∀p ∈ Z, (2.38)

with
apn =

∫
Ω
v(r − rn)e−2πi〈kp,r〉dr, ∀p ∈ Z, n = 1, ..., N. (2.39)

Commonly, the basis functions are highly localized (approximations of the Dirac
delta in the limit), so it is very common to simplify Eq. (2.39) into

apn ≈ e−2πi〈kp,rn〉, ∀p ∈ Z, n = 1, ..., N. (2.40)

If that is so, and if we further assume that the number of sampling points is
finite, M then, by defining y = (s(k1), s(k2), ..., s(kM ))T , x = (x1, x2, ..., xN )T ,
and A = {am,n} ∈ CM×N the so-called Fourier encoding matrix, where

am,n = e−2πi〈km,rn〉, (2.41)

the MR reconstruction problem (without noise) is often posed as an algebraic linear
inverse problem

Given y = Ax

determine x. (2.42)

Without further assumptions on the k-space data y, this problem is not always
solvable. If the k-space data are acquired in a Cartesian scheme, fulfilling the
Nyquist conditions with M the total number of k-space points, and rn samples
of the FOV with N = M , then it can be shown that A is nothing more than a
(scaled) DFT matrix (2D or 3D depending on whether r ∈ R2 or r ∈ R3). The
inverse of A therefore exists, hence x can be calculated analytically, in fact with
very efficient algorithms such as the IFFT.

When other non-Cartesian k-space schemes are used, this is no longer possible. In
the interesting case of undersampling, M << N , and thus A is no longer invertible,
since the problem is undetermined. Furthermore, the presence of noise makes that
the equality y = Ax never holds. In this case, with undersampling k-space data
and noise, the MR Image reconstruction problem can be cast as an optimization
problem.

2.7.2 MR Image reconstruction as an optimization prob-
lem

Let us consider the more realistic MRI acquisition model [Fessler, 2010]

y = Ax+ n, (2.43)

where n ∈ CN is white complex Gaussian noise. Such a model can easily mimic a
multi-coil acquisition system by augmenting the matrix A with the coil sensitivities,
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and also by considering that y now concatenates all k-space data that is acquired
in the L coils. When necessary in this PhD thesis, we will differentiate between the
encoding matrix A for one single-coil and for a multi-coil system (in chapter 7 for
instance). In this chapter, however, we will use A indistinctly for both cases.

Naïvely, without further information, x is often reconstructed by solving the
following linear least-squares (LLS) optimization problem:

min
x∈CN

||y −Ax||22. (2.44)

Given the Gaussian noise statistics of n, this formulation is equivalent to the
Maximum Likelihood (ML) estimator [den Dekker and Sijbers, 2014], which we will
further describe in chapter 4. The solution of Eq. (4.15) can sometimes be derived
analytically as,

x = (AHA)−1
AHy, (2.45)

where AH is the Hermitian matrix of A and where we have assumed that (AHA)
is invertible. For the accelerated case (undersampled k-space data), the LS
problem does not always provide a satisfactory solution since the problem is
ill-conditioned [Fessler, 2010]. To circumvent this, the MR optimization problem
often accommodates more complex cost functions than a simple l2 norm as well as
new constraints on the solution x.

2.7.3 Phase-constraint formulation

A very powerful constraint on x is the so-called phase-constraint formulation
[McGibney et al., 1993,Samsonov et al., 2004,Bydder and Robson, 2005,Samsonov
et al., 2010,Blaimer et al., 2016]. Since x is a complex valued image, it can be
written as

x = Ψx+, (2.46)

with x+ ∈ RN+ the magnitude image, Ψ = diag(eiψx) being a diagonal matrix
whose diagonal contains the entries of the vector eiψx , and where ψx ∈ RN is the
phase of x. If the phase ψx is known, then the phase-constraint MR reconstruction
problem is given by

min
x+∈RN+

||y − Ãx+||
2
2, (2.47)

with Ã = AΨ. The required phase estimate, ψ̂x, can be obtained from a low
resolution recovered image in [Lustig et al., 2007] since normally the phase image
varies slowly compared to magnitude images. Details are provided in subsection
7.3.3 of chapter 7.

2.7.4 Prior knowledge and regularization

In practically all situations, we have certain knowledge about the type of image we
expect to recover. For example, we may expect that the target image is smooth
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or that its Fourier spectrum obeys a particular type of pattern. There are infinite
ways to model prior knowledge on x, but practically all of them can be formally
described by the so-called prior term, a mathematical function of the image x,
Φ(x). The rationale behind the prior term is that the lower Φ(x) is, the more x is
in agreement with the prior knowledge we have.

If prior knowledge is incorporated, the reconstruction problem is often recast as a
constrained optimization problem [Lustig et al., 2007,Figueiredo et al., 2007,Lustig
et al., 2008] in the form of

min
x∈CN

Φ(x) s.t. ||y −Ax||22 ≤ ε, (2.48)

where the constraint on x is called the data fidelity condition. That is, we look
for the solution x which adheres the most to our a priori knowledge, so effectively
it minimizes Φ(x), but at the same time is a plausible solution to have generated
the acquired k-space data y (data fidelity term). The value ε in the data fidelity
condition is usually set below the expected noise level [Lustig et al., 2007].

Sometimes, prior knowledge is introduced in a different problem setting than that
of Eq. (2.48). Instead of a constraint formulation, the following problem is also
considered

min
x∈CN

||y −Ax||22 + λΦ(x), (2.49)

where now, Φ(x) is often called a regularization term, and λ the corresponding
regularization parameter. Such parameter controls the importance of the regular-
ization compared to the data fidelity term. Both types of formulations, Eq. (2.48)
and Eq. (2.49) could be shown to be equivalent by using tools from optimization
theory. Such a link is established in subsection 7.3.1.

One of the main contributions of this PhD thesis is a novel prior knowledge for
a specific type of MR images (see chapter 7). To put that work into context, we
briefly describe below the most common types of prior knowledge or regularization
terms in the MR image reconstruction field.

2.7.4.1 Quadratic regularization

One the oldest methods to incorporate regularization is through quadratic regular-
ization, also known as Tikhonov regularization:

Φ(x) = ||R(x− x0)||22, (2.50)

where both the matrix R and the reference image x0 can be defined in multiple
ways. If R = I, being I the identity matrix, and x0 = 0, we obtain the classical
version of Tikhonov regularization. Observe that x is complex so the prior here is
imposed on both the real and imaginary part. A reference image could be available
from a previous MR scan or can be estimated iteratively. Another common option
for R is the choice of a finite difference matrix [Fessler, 2010], which promotes a
smooth image (if x0 = 0) where neighboring pixel values are similar. The resulting
minimization problem is particularly well-behaving and simple. However, the choice
of a finite difference matrix leads to smoothed image edges [Fessler, 2010].
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2.7.4.2 Total Variation

Very popular in MR image reconstruction is the concept of Total Variation (TV).
It was introduced in the image processing field in the nineties, by Rudin and
Osher [Rudin et al., 1992]. Initially conceived for image denoising, TV has become
a very powerful technique beyond simply image denoising, e.g., in image restoration,
image inpainting, or image reconstruction. The TV of a continuous image I(r) is
defined as

ITV =
∫
||∇I(r)||1dr, (2.51)

where ∇I(r) is the gradient of I(r), and || · ||1 denotes the l1 norm. In practice,
the integral is discretized, thereby giving a discrete TV in terms of absolute finite
differences, which implements the gradient operator in a discrete setting. For
example, in that discrete setting, the following prior is normally used:

Φ(x) = ||Rx||1, (2.52)

where R is a finite difference matrix [Fessler, 2010]. Observe that the main
fundamental difference of a discrete TV compared to a quadratic finite differences-
based prior is just the use of the l1 norm. In contrast to a quadratic regularizer,
TV preserves edges much more accurate. It can be shown that minimizing the TV
of an image leads to piece-wise constant images, with the appealing property that
edges are sharply defined, and noise-type variations, are substantially removed. TV,
however, can produce MR images with the undesirable appearance of cartoon-type
images, also known, as staircase effect. To avoid such an effect, generalizations
of TV have been proposed, for example, high order TV, where the gradient is
replaced by differential operators of high order. Another interesting extension
of TV is the so-called non-local TV, where the gradient in Eq. (2.51) is replaced
by the non-local gradient. Non-local TV is described more in-depth in chapter 7
(subsection 7.3.5).

2.7.4.3 Sparsity

Many signals in nature are compressible. This means that they can be represented in
a different domain quite accurately with much fewer coefficients than the dimension
of the signal. Mathematically, if P ∈ CD×N is the matrix that represents x in a
given domain with coefficients θ = Px, then x is said to be compressible in the
domain P if the vector θ contains very few non-zero coefficients, being that number
much smaller than D. A vector which contains a very few number of non-zero
coefficients is informally called a sparse vector. Sparsity is intimately related to the
l0 pseudo-norm. The l0 pseudo-norm is defined as the cardinal of the support of x,
that is, the number of non-zero elements. The lower l0 is, the sparser the vector
is.

That said, if x is compressible, θ is sparse, and the prior term Φ(x) can be defined
as

Φ(x) = ||θ||0 = ||Px||0. (2.53)
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Solving the resulting optimization problem is NP-hard (nondeterministic polynomial
time - hard) in general. The NP concept plays a central role in computational
complexity. The class of NP problems is formed by those computational decision
problems whose solution can be given in a non-deterministic polynomial time. An
optimization problem is NP-hard if it is at least as hard as the hardest problems in
the NP class. In plain words, an NP-hard problem is, in practice, a computationally
infeasible problem.

To alleviate the computational complexity, the l0 pseudo-norm is replaced by the
l1 norm, giving a tractable optimization problem with very good results:

Φ(x) = ||θ||1 = ||Px||1. (2.54)

Sparsity has been used massively in MR reconstruction with very satisfactory results
in different image representations [Lustig et al., 2007] (e.g., Fourier [Lingala et al.,
2011], Wavelet [Chen and Huang, 2012], [Lai et al., 2016], Curvelet [Candes et al.,
2006], Shearlet [Aelterman et al., 2011], or redundant dictionaries [Ravishankar
and Bresler, 2011,Caballero et al., 2014]). Generalizations of sparsity have also
been given, for example, structural sparsity, where the sparse coefficients in a
given representation domain adhere to certain structural patterns [Pizurica et al.,
2011,Chen and Huang, 2014,Panic et al., 2017].

Undoubtedly the notion of sparsity is linked to the concept of Compressed-Sensing
(CS). The theory behind CS is rather broad and by no means is covered here. A
very extensive mathematical introduction can be found in [Foucart and Rauhut,
2010]. Briefly, the CS theory states that, if the encoding matrix A (see Eq. (2.42))
obeys the so-called Restricted Isometry Property (RIP) for all S-sparse vectors,
(which are those with at most S non-zero entries), and if the unknown vector that
solves Eq. (2.42), x∗, is S-sparse, exact recovery of x∗ is possible by solving an
l1 minimization problem [Candès and Wakin, 2008]. That is, the solution of the
problem

min
x∈CN

||x||1 s.t. y = Ax, (2.55)

is x∗. For the noisy case model, (Eq. (2.43)), the l2 norm error between the solution
of the problem

min
x∈CN

||x||1 s.t. ||y −Ax||22 ≤ ε, (2.56)

and the true vector x∗, is below C1ε where C1 is a given constant [Candès and
Wakin, 2008]. Similar results can be given when vectors are not sparse in the
canonical basis but in the transformed domain defined by P .

Besides sparsity, the RIP condition is critical for CS. The RIP condition is related to
the so-called concept of incoherent sampling. The more incoherent is the sampling,
the more likely the RIP condition holds. For further details about incoherent
sampling, the reader is referred to [Candès and Wakin, 2008]. Before ending this
subsection, it should be noted that though sparsity is an unavoidable condition
for CS, sparsity-based priors could be and in fact have been used in different MR
reconstruction problems where incoherence sampling is not required.
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2.7.4.4 Low-rank modeling

Low-rank modeling is probably the most recent type of prior knowledge in MR
image reconstruction. In many cases, the unknown image x can be mapped to a
matrix whose rank is much smaller than the number of columns. Indeed, it has
been recently demonstrated that the local k-space neighborhoods of a fully-sampled
image x can be mapped to a matrix which is rank deficient [Haldar, 2014a,Haldar
and Zhuo, 2015,Kim and Haldar, 2015,Kim et al., 2017b]. In addition, it has been
shown that sparsity in a given domain results in rank-deficient Hankel structured
matrices, which can be exploited in highly undersampled k-space data scenarios [Lee
et al., 2016, Jin et al., 2016]. With all of these methods, the following prior is
defined:

Φ(x) = rank(H(x)), (2.57)

where H(x) is the matrix that is expected to have low rank. A drawback of low-
rank MR image reconstruction is that the resulting cost functions are non-convex
and NP-hard to solve in general. To circumvent this, other priors that encourage
rank-deficient matrices are used instead. Examples include the Schatten norm or
the nuclear norm of H(x), and modifications of those [Haldar, 2014a]. Low-rank
modeling has shown excellent results in MR reconstruction, and the assumptions
the technique relies on are often much more relaxed than those of sparsity and TV.
However, the main drawback of low-rank MR reconstruction is the complicated
optimization problems that result when priors like Eq. (2.57) are employed, or
simplified versions using the types of norm described above.
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3.1 Introduction

This chapter is devoted to presenting the basics of MRI relaxometry, with special
emphasis on T1 mapping. First, the clinical applications of T1 and T2 relaxometry
are described. Next, the most popular pulse sequences for T1 mapping are covered.
The relaxation signal models that result from those pulse sequences are also
explained. At the end of the chapter, we give a short list of current bottlenecks/issues
in MRI relaxometry, such as the most frequent sources of errors, the long acquisition
time, and the specific absorption rate (SAR) limit.

3.2 Clinical applications of T1 and T2

In subsection 1.3.5, the physical basis of the spin-lattice relaxation time, T1, and
spin-spin relaxation time, T2, were briefly described. As the fundamental causes of
the relaxation process differ between types of matter, both the T1 and T2 values
vary among tissues. Indeed, T1 depends on the mobility of the lattice, which could
be very different both across and within different tissues. For instance, the T1
value in lipids is normally shorter than in other tissues since lipids molecules are
less mobile [Van Steenkiste, 2016]. In general, as the T1 value is related to the
macromolecule concentration, water binding, and water content, biological tissues
generally have distinct T1 relaxation times. Furthermore, the same tissue in a
different state (diseased or healthy) could lead to a different T1 value.

3.2.1 Typical T1 and T2 values in the human body

In this section, we present measured T1 and T2 values (Tables 3.1 3.2 respectively)
in different healthy organs and tissues of the human body. It should be noted that
T1 and T2 depend as well on the strength of the B0 field since B0 is related to
the Larmor frequency. Values obtained with a magnetic field strength of 3T are
reported here. For a more complete list of measured T1 and T2 relaxation times,
the reader is referred to [Bojorquez et al., 2017].

3.2.2 Human Brain pathologies characterization

So far, most of the clinical applications of MR relaxometry have focused on the
characterization of pathologies in the human brain. Here we briefly describe the
main findings when relaxometry is applied to the most common human brain
diseases, and its relation to the reported T1 and T2 values. The description that we
give below is by no means exhaustive. The interested reader is referred to [Tofts,
2004], and especially to the specific references that are listed for each type of
disease.
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Table 3.1: Reported T1 at 3 T in healthy tissues and organs of the human body. The
notation mean ± standard deviation (when provided) is used.

Tissue T1 [ms]
White matter 832 ± 10 [Wansapura et al., 1999]
Grey matter 1331 ± 13 [Wansapura et al., 1999]
Cerebrospinal fluid 4391± 545 [Shin et al., 2009]
Fat 450 ± 26 [Rakow-Penner et al., 2006]
Liver 677.5 ± 44.6 [Heye et al., 2012]
Myocardium 1052 ± 23 [Kim et al., 2017a]
Prostate 1530 ± 498 [Fennessy et al., 2012]
Bone Marrow 586 ± 73 [De Bazelaire et al., 2004]
Spleen 1328 ± 31 [De Bazelaire et al., 2004]
Blood 1932 ± 85 [Stanisz et al., 2005]
Muscle (knee) 1420 ± 38 [Han et al., 2003]
Cartilage (knee) 1240 ± 107 [Han et al., 2003]
Synovial fluid (knee) 3620 ± 320 [Han et al., 2003]

Table 3.2: Reported T2 at 3 T in healthy tissues and organs of the human body. The
notation mean ± standard deviation (when provided) is used.

Tissue T2 [ms]
White matter 79.6 ± 0.6 [Wansapura et al., 1999]
Grey matter 110 ± 2 [Wansapura et al., 1999]
Cerebrospinal fluid 2500 [Smith et al., 2008]
Fat 68 ± 4 [De Bazelaire et al., 2004]
Liver 71.7 ± 5.9 [Heye et al., 2012]
Myocardium 45.1 [von Knobelsdorff-Brenkenhoff et al., 2013]
Prostate 80 ± 34 [Bojorquez et al., 2016]
Bone Marrow 49 ± 4 [De Bazelaire et al., 2004]
Spleen 60± 19 [De Bazelaire et al., 2004]
Blood 275 ± 50 [Stanisz et al., 2005]
Muscle (knee) 31.7 ± 1.9 [Han et al., 2003]
Cartilage (knee) 36.9 ± 3.8 [Han et al., 2003]
Synovial fluid (knee) 767 ± 49 [Han et al., 2003]

3.2.2.1 Multiple Sclerosis

T2-weighted qualitative MRI is the standard choice for the diagnosis of Multiple
Sclerosis (MS) disease. However, the increase in T2-weighted signal does not
specifically depend on the pathology. In contrast, several studies have demonstrated
that prolonged T1 and T2 relaxation times can be found in MS patients [Lacomis
et al., 1986,Larsson et al., 1988,Miller et al., 1989,Barbosa et al., 1994] in comparison
to those values in normal appearing white matter. Some of the variation of relaxation
time within lesions is caused by the age of MS plaques [Ormerod et al., 1987]. The
observed lesions are also quite heterogeneous. For example, those with axonal
loss expand extracellular spaces, and hence the relaxation times associated with
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those specific lesions are rather different than those related to lesions that are
predominantly cellular with gliosis.

3.2.2.2 Intracranial Tumors

Several studies have demonstrated that T1 values within tumors are significantly
longer than normal white matter values [Englund et al., 1986, Just and Thelen,
1988,Kurki and Komu, 1995]. Although differentiation between tumors cannot be
assessed by only probing T1, important differences have been found: the shortest
T1 values are provided by gliomas and pituitary tumors, where the longest are
reported in glioblastomas [Naruse et al., 1986].

3.2.2.3 Epilepsy

The standard choice for epilepsy studies is computed tomography (CT) and qualita-
tive MRI. Nevertheless, MRI relaxometry has proved to be useful in the detection of
subtle abnormalities [Tofts, 2004]. It has been reported that patients with epilepsy
possess higher T1 relaxation times than those in normal controls [Conlon et al.,
1988]. Statistical significance has been found in the temporal lobes [Conlon et al.,
1988]. Higher T1 values were also found in the hemisphere containing the seizures
focus. On the other hand, the T2 relaxation time in the hippocampal region has
proved to be an objective biomarker assessing the severity of signal abnormalities
in patients with temporal lobe epilepsy [Jackson et al., 1993,Woermann et al.,
1998,Namer et al., 1998,Okujava et al., 2002].

3.2.2.4 Stroke

With post-mortem MRI studies, it has been demonstrated that both T1 and T2
are consistently high within ischemic areas [DeWitt et al., 1987]. The detection
of haemorrhagic change within infarcts has also benefited from probing the T1
relaxation time. Finally, in [Lansberg et al., 2001], and related to the detection
of strokes (within 24 h), it was shown that ROI-based analysis of T2 spin-lattice
relaxation times provides results more sensitive than those obtained by qualitative
analysis.

3.2.2.5 Dementia

Studies have demonstrated that T1 in the white and grey matter is prolonged in
patients with Alzheimer’s disease and especially in multi-infarct dementia, compared
with normal controls [Besson et al., 1985,Erkinjuntti et al., 1987,Ebmeier et al.,
1987]. It should be noted, however, that using T1 quantification alone is not enough
to distinguish between patient groups.

Besides, T2 relaxometry has been performed in the hippocampus, showing an
increase of the T2 value compared to control subjects. Furthermore, the T2 values
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correlated with the severity of functional and cognitive impairment. Moreover,
increased iron content in the substantia nigra has been reported in studies of
patients with Parkinson’s disease. Iron accumulation results in shortening of
T2 relaxation times. Several studies have shown shorter T2 values in the basal
ganglia [Ye et al., 1996]. Finally, it has been reported that T2 relaxation times are
shorter in the putamen and globus pallidus in Parkinson’s-plus syndromes than
in healthy subjects or subjects with classical Parkinson’s disease [Drayer et al.,
1986,Martin et al., 1998,Vymazal et al., 1999].

3.2.3 Other applications beyond the Human Brain

With the exception of the human brain, the heart is the most popular organ
where MRI relaxometry has shown its potential. Recently, advancement has been
made in T1 relaxometry of the heart, allowing to characterize infiltrative and
diffuse myocardial diseases [Li et al., 2012b,Xue et al., 2013,Kellman and Hansen,
2014,Jellis and Kwon, 2014]. T1 relaxometry has also been applied to monitoring
changes in contrast agent concentration [Caravan et al., 1999,Caravan et al., 2009].
T1 relaxometry is also often used in perfusion studies [Peeters et al., 2004,Kershaw
and Buckley, 2006]. Another application of T1 relaxometry is the analysis of the
human knee cartilage [Bron et al., 2013].

3.3 T1 mapping: the ingredients

In this section, we will cover the basics of T1 mapping, since most of the work in
this PhD thesis has been focused on T1 MRI relaxometry.

The goal of quantitative MR T1 mapping is to probe the spin-lattice relaxation
time T1 at different spatial positions of the scanned object, thereby creating a
spatial map of T1. To that end, T1 mapping involves three consecutive processes.
First, the choice of a specific pulse sequence is needed. The applied pulse sequence
disturbs the net nuclear magnetization vector from the equilibrium, and leads
the spin ensemble system to the relaxation phase (see chapter 1). Different pulse
sequences create different ways in which the longitudinal magnetization recovers,
leading to different relaxation models. Those models always depend on T1, but
also on user-defined parameters, such as timing points or flip angles. The next step
is to form the so-called T1-weighted image. Indeed, since the T1 should be probed
at different spatial positions, spatial-encoding is necessary. Hence, the k-space
data are acquired, and MR images are reconstructed with techniques described in
chapter 2. Those images are acquired with different timing points or flip angles
so as to “sample” the prescribed relaxation model, given by the pulse sequence at
hand. This dataset of MR images is called the T1-weighted data set (see Fig. 3.1).
Finally, from this set of T1-weighted images, T1 is inferred by voxel-wise fitting the
prescribed relaxation model to the intensity of the images.

In the succeeding section, we briefly review the most common pulse sequences that
are used in T1 mapping as well as the most popular T1 relaxation signal models. It
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is assumed that T1-weighted images are reconstructed with the k-space techniques
explained in the previous chapter, therefore no further discussion is given about
this topic.

(a) T1-weighted image (Sagittal-Coronal-Axial view)

(a) T1 map (Sagittal-Coronal-Axial view)

Figure 3.1: T1-weighted image of the normal human brain (a) and the corresponding T1
map (b). Figure obtained with permission from [Van Steenkiste, 2016].

3.4 Typical pulse sequences for T1 mapping

There are multiple ways to perform T1 mapping [Stikov et al., 2015]. In this section,
we cover the two most popular techniques, which in fact have been used in the
work presented in chapters 5 and 6. Those are the Inversion Recovery (IR) and
Variable Flip Angle (VFA) sequences, respectively.

3.4.1 Inversion Recovery (IR)

The gold standard pulse sequence to probe the T1 value is the Inversion Recovery
(IR) sequence [Stikov et al., 2015]. It dates back to the late 1940s, when initial
NMR experiments were conducted [Drain, 1949,Hahn, 1949]. With this method,
an inversion pulse, normally αz = 180◦ pulse, flips the net nuclear magnetization
vector from the z-axis to the −z-axis. Next, the system returns to the equilibrium
obeying the Bloch relaxation equations (Eq. (1.20)). Since the MR receptor is only
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sensitive to the transversal magnetization component, the longitudinal component
is tipped in the transverse plane with an αx′ = 90◦ pulse. The time period between
the 180◦ pulse and the 90◦ pulse is denoted as TI, which stands for Inversion Time.
At t = TI, the longitudinal magnetization vector, Mz(t), takes the expression
of:

Mz(TI) = Mz′(TI) = Mz(0)(1− e−
TI
T1 ) +M

t=0+
z′ e−

TI
T1 . (3.1)

With the assumption that M t=0+
z′ = −Mz(0), we obtain the popular formula in IR

sequences:
Mz(TI) = Mz′(TI) = Mz(0)(1− 2e−

TI
T1 ). (3.2)

In Fig. 3.2, a schematic diagram of a typical IR sequence is shown, whereas the
effect of the inversion recovery sequence on the longitudinal magnetization vector
Mz(t) is depicted in Fig. 3.3.

Figure 3.2: Inversion Recovery sequence. The longitudinal net nuclear magnetization
vector is flipped by a 180◦ pulse. After an inversion time, TI, the longitudinal component
is tipped into the transverse plane with a 90◦ pulse, thereby creating an FID signal.

Figure 3.3: Effect of the inversion recovery sequence on the net nuclear longitudinal
magnetization vector as seen in the RF-rotating frame.

The IR module, that is, the sequence of pulses shown in Fig. 3.3, is accompanied by
an image module, or readout module, where the k-space data are acquired. Most
popular readout modules are those based on a multi-shot type of acquisition, where
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one or several k-space lines are acquired per TR, though single-shot IR sequences
also exist [Ordidge et al., 1990,Clare and Jezzard, 2001]. These image readouts are
most often based on elementary SE and GRE readout, which were described in
subsection 1.3.6.

Probably, the most popular IR readout is the TSE sequence. With IR-TSE [Weigel
et al., 2007], several numbers of phase encoding lines are acquired per TR (see
Fig. 2.4). The number of phase encoding lines per TR, which in subsection 2.3.3
was denoted by Ny/TR, is also called echo train length (ETL) or turbo factor
(TF). The ETL cannot be arbitrarily increased since, apart from the T2 decay
already commented (see subsection 2.3.3), specific absorption rate (SAR) limits
are undesirably reached [Weigel et al., 2007] (see subsection 3.6.2 for more details).
For an extended coverage of IR readouts, the interested reader is referred to [Van
Steenkiste, 2016] and especially [Stikov et al., 2015].

3.4.1.1 2D multi-slice and 3D IR sequences

IR T1 mapping is often performed with 2D multi-slice sequences, and slightly less
common, with 3D sequences as well.

In a 2D multi-slice IR sequence, while the spins of the first slice are reaching the
equilibrium, additional slices are excited. Several 2D multi-slice schemes can be
considered, which in turn determines the number of slices per TR that can be
acquired. A more in-depth description of the type of multi-slice IR sequences can be
found in [Van Steenkiste, 2016,Bernstein et al., 2004]. Here, we briefly summarize
three of them: sequential, interleaved and distributed IR sequence.

In a sequential IR acquisition, the slices are arranged consecutively in an IR-
module (see Fig. 3.4.(a)) in an odd-even type ordering. That is, immediately after
the signal of the first slice have been measured in the corresponding readout module,
the third slice is probed with a selective 180◦ pulse followed by a 90◦ pulse. After
the readout module of the third slice, the fifth slice is probed and so on. When all
odd slices have been probed, the process is repeated for even slices.

In a sequential IR acquisition, the number of slices that can be accommodated
within one TR is severely restricted. In general, this type of acquisition is only
efficient if TI is very short. With an interleaved IR acquisition, the time
between the 180◦ pulse and the reception of the echo is used to play out IR modules
for other slices, see Fig. 3.4.(b). The efficiency of an interleaved IR acquisition
is substantially higher than that of a sequential IR acquisition.

In a distributed IR acquisition, the idle time that is yet present in an interleaved
IR acquisition is used to play out the inversion module or the read-out sequences
for slices that may not be covered during the same TR (see Fig. 3.4.(c)). While the
most efficient approach, a drawback of this approach is that the TR, TI, and the
number of slices are coupled together, and this limits the flexibility of choices for
TR and TI [Listerud et al., 1996].

While less popular, there exist 3D IR sequences [Szumowski et al., 2012,
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(a)

...

(b)

......
......
...

(c)

...

Figure 3.4: Acquisitions schemes for multi-slice IR sequences: (a) sequential IR acquisition,
(b) interleaved IR acquisition, and (c) distributed IR acquisition. The white box represents
the IR module, whereas the blue box represents the readout module. The solid line between
boxes indicates the idle time, and the number denotes the slice index. Figure based
on [Bernstein et al., 2004,Van Steenkiste, 2016].

Jablonowski et al., 2013, Hodel et al., 2014] which result in higher SNR, and
avoid the partial volume effects caused by the slice gap in 2D multi-slice IR se-
quences. Nevertheless, the latter are yet faster than 3D IR sequences [McKenzie
et al., 2006].

3.4.2 Variable Flip Angle (VFA)

VFA T1 mapping consists of the acquisition of a range of steady-state spoiled
gradient recalled (SPGR) echo MR images over a set of flip angles [Christensen
et al., 1974,Homer and Beevers, 1985,Fram et al., 1987]. Since steady-state MR
sequences can use much shorter repetition times (TR) [Nataraj et al., 2017] than
classical inversion/saturation recovery sequences, high-resolution T1 maps can be
acquired in clinically feasible scanning time [Deoni et al., 2003].

Important in VFA T1 mapping is the concept of spoiling. All of the T1 mapping
techniques assume that there is no residual transverse magnetization at the end of
TR. This is a very reasonable assumption if TR >> T2, which is the case of an IR
sequence. However, since VFA sequences use very short TR, it is necessary to get rid
of the residual magnetization after TR. This technique is called spoiling [Stikov et al.,
2015], and is a standard tool for SPGR sequences that are used for VFA.

In contrast to IR sequences, VFA T1 mapping always employs GRE readout
(Fig. 3.5). Moreover, VFA is often applied with 3D sequences [Jara et al., 1993,Han
et al., 2015,Dietrich et al., 2015,Kemper et al., 2016].
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Figure 3.5: To achieve a steady state, a train of RF pulses with same flip angle α are sent
with a very short TR. Figure based on [Stikov et al., 2015].

3.5 T1 model fitting

Once the longitudinal net nuclear magnetization has been probed for different
inversion times or flip angles, a T1 model is voxel-wise fitted to the intensity of the
images. The T1 value which gives the “best” fit according to a specific criterion
represents the estimate of the underlying T1. Formally, inferring the T1 value is an
estimation problem, and in this regard, chapter 4 is fully dedicated to cover the
basics of parameter estimation theory incorporating statistical knowledge. Apart
from the fitting criterion or estimation procedures, a fundamental issue is the choice
of an accurate relaxation signal model. The most popular relaxation models for IR
and VFA sequences are reviewed below.

3.5.1 Relaxation signal models for T1 mapping

T1 relaxation signal models are dependent on the pulse sequence at hand. An
assumption that we made is that the reconstructed MR images are, up to a constant
factor, K, equal to the transversal component of the net nuclear magnetization
vector, Mx′y′ . Hence, the magnitude image f is proportional to the magnitude of
Mx′y′ that is,

f ∝ |Mx′y′ |. (3.3)

The transversal component Mx′y′ is related to the longitudinal component, which
obviously depends on T1, through a simple multiplication with a complex number,
which models the projection of Mz on the x-y plane with a given flip angle. This
complex-valued number also includes the effect of attenuation due to T2 or T ∗2
among other factors.

3.5.1.1 Inversion Recovery (IR)

With a GRE readout, if a perfect spoiling of Mxy after the 180◦ is assumed,
the longitudinal component Mz at t = TI takes the expression of [Barral et al.,
2010]

Mz = Mz(0)(1 + e−
TR
T1 − 2e−

TI
T1 ). (3.4)

Similarly, with an SE readout, Mz is given by [Barral et al., 2010]

Mz = Mz(0)(1− e−
TR
T1 + 2e−

TR−TE/2
T1 − 2e−

TI
T1 ). (3.5)
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Note that if TR >> T1, both models converge into the popular model of Eq. (3.2).
With a GRE readout, if the two initial flip angles, α1 and α2, are not exactly 180◦
and 90◦, respectively, the following model is known to be more accurate

Mz = Mz(0)1− cos(α1)e−
TR
T1 − (1− cos(α1))e−

TI
T1

1− cos(α1) cos(α2)e−
TR
T1

. (3.6)

Likewise, for an SE readout, when the third flip angle is not exactly 180◦, the
following model is preferable

Mz =Mz(0)1− cos(α1) cos(α3)e−
TR
T1 − cos(α1)(1− cos(α3))e−

TR−TE/2
T1

1− cos(α1) cos(α2) cos(α3)e−
TR
T1

−Mz(0) (1− cos(α1))e−
TI
T1

1− cos(α1) cos(α2) cos(α3)e−
TR
T1

(3.7)

In both cases, Mx′y′ ∝ Mz sin(α2). Since both the flip angles and the TR are
constant for varying TI, the magnitude signal f can always be modeled as

f(TI) = |a+ be
TI
T1 |, (3.8)

where a and b are real values, and where b = −2a when TR >> T1 and perfect
180◦ is assumed. This signal model (Fig. 3.6) is used in chapter 5.
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Figure 3.6: Two different curves of the IR signal model (Eq. (3.8)) for varying TI.

3.5.1.2 Variable Flip Angle (VFA)

In an SPGR echo sequence, the longitudinal component of the net nuclear magne-
tization vector, Mz, under a steady-state regime with a flip angle α 6= 180◦, can be

63



MRI Relaxometry: the basics

written as

Mz = Mz(0)(1− e−
TR
T1 )

1− e−
TR
T1 cos(α)

(3.9)

and thus Mx′y′ ∝Mz sin(α). Hence, a popular model for the magnitude signal f
is

f(α) = K(1− e−
TR
T1 ) sin(α)

1− e−
TR
T1 cos(α)

, (3.10)

where the unknown parameter K > 0 includes multiplicative factors such as Mz(0),
and the attenuation due to T ∗2 relaxation for a fixed TE [Teixeira et al., 2017]. The
signal model of Eq. (3.10) is plotted in Fig. 3.7 for two values of T1 representing
white and grey matter.
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Figure 3.7: Two different curves of the SPGR/VFA signal model (Eq. (3.10)) for varying α.

3.6 Current challenges in MRI relaxometry

3.6.1 Sources of Errors

The clinical utility of MRI relaxometry depends fundamentally on the ability
to provide relaxation data with high accuracy and reproducibility [Deoni, 2010].
Unfortunately, there are important sources of errors that prevent MRI relaxometry
from fulfilling such requirements.

3.6.1.1 Motion

Subject motion is always a source of error in MRI. Subject motion can occur
during the k-space acquisition process, having negative effects on image quality,
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e.g., ghosting and blurring artifacts. Furthermore, in quantitative MRI, and in
particular in MRI relaxometry, as the acquisition of the complete data set is
relatively slow, the presence of motion is very likely, and hence images are prone to
be misaligned.

The most straightforward way to correct for motion is to spatially register the T1
or T2-weighted images to a target image, using general-purpose image registration
similarity measures. This is a challenging task since the intensity of the images
varies spatially but also temporally. Furthermore, the inherent interpolation in the
registration step invalidates statistical assumptions on the acquired images, which
are needed to derive optimal statistical estimators, as described in chapter 4.

Recently, model-based approaches for inter-image motion correction have been
introduced, where the signal model is included in the registration step [Xue et al.,
2013,Hallack et al., 2014,Ramos-Llordén et al., 2015a,Ramos-Llordén et al., 2017].
One of the main contributions of this PhD thesis is a model-based unified approach
for simultaneous motion and T1 estimation by means of a Maximum Likelihood
framework. In this approach, motion parameters and the motion-free T1 map are
optimally estimated by properly accounting for the data statistics. Chapter 5 is
completely devoted to presenting this work.

3.6.1.2 Flip angle inhomogeneity

Accurate knowledge of flip angle is important for accurate T1 and T2 estimation.
However, the nominal flip angles, those who are selected in the scanner software,
may differ from those that are transmitted. The main causes are RF pulse profile
errors and inhomogeneity effects in the tissues. Transmitted flip angles vary across
the volume of the slice. For 3D imaging, the profile effect can be tolerated if the
anatomy of interest lies in the center portion of the volume [Deoni, 2010], where
the flip angle is approximately uniform. For 2D multi-slice imaging, the profile
effect will create a variation through the image slice [Deoni, 2010]. Minimization of
the flip angle related errors can be achieved by means of improved RF pulse design
or calibration of the transmitted flip angle field [Deoni, 2010].

The transmitted flip angle can be also measured. The simplest technique is dubbed
the double-angle approach, where two spin-echo images are acquired with flip angles
of α and 2α, respectively, and very long TR . The transmitted flip angle is then
calculated as the ratio between signal intensities. There are faster but more complex
methods for flip angle correction. In most of them, an estimation of the amplitude
of the B1 field is first obtained [Stollberger and Wach, 1996,Yarnykh, 2007,Sacolick
et al., 2010,Chavez and Stanisz, 2012]. This technique is called B1 mapping. Then,
the correct flip angle is obtained with a direct relation between the B1 pulse and
the flip angle (see Eq. (1.17)).
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3.6.1.3 Fitting procedures

There is no unique choice for the best criterion in MRI relaxometry model fitting. It
is often common to find T1 and T2 mapping techniques that estimate the underlying
T1 or T2 with closed-form formulas, resulting from the approximation of models.
It is also common for relaxometry practitioners to use standard fitting algorithms
as black-box procedures. Probably, the most popular type of fitting algorithms
for MRI relaxometry are those based on least-squares fitting, such as Levenberg-
Marquardt or Gaussian Newton methods. Those algorithms implicitly assume the
least-squares approach as the criterion of goodness of fit, that is, they seek for the
model that best fits the noisy relaxation signal in the l2 sense.

Those solutions may provide adequate estimates of T1 and T2 at first sight, but when
the quest for highly accurate and precise T1/T2 mapping is in play, substantially
more accurate and precise estimators can be obtained if tools from the theory
of statistical parameter estimation theory are learned. In fact, the naïve use of
fitting procedures can also be considered an important source of errors in MRI
relaxometry.

Indeed, still, a large set of algorithms disregard the knowledge of data statistics, in
the sense that they are not derived from a statistical principle. Knowledge of MR
noise is often only used to generate a realistic simulation framework in order to
assess the accuracy and precision of given estimators in a Monte Carlo simulation
setting, and nothing more. However, if the very nature of the intensity of MR
images as random variables is considered right from the beginning, and the data
distributions are accounted for, optimal estimators can be derived in a rigorous way,
with theoretically proven qualities that have been there long before MRI relaxometry
was born. Statistical parameter estimation theory provides scientists and engineers
with “a guide of action” to estimate T1 and T2 values with rigorous estimators that
are likely to have better performance than algorithms applied in a blind manner.
Interestingly, this theory gives a justification for the use of least-squares approaches
under specific conditions of the data distribution, where, for that specific case, they
are shown to be statistically optimal. During this PhD thesis, we try to advocate
an MRI relaxometry approach that uses sophisticated algorithms from statistical
parameter estimation theory. The use of those algorithms has proved to improve
the accuracy and precision of T1 mapping substantially. While our inclinations for
the application of statistically optimal estimators to relaxometry is evident, by no
means that implies that these algorithms should be applied totally disregarding
the relaxation signal models. A message we transmit along this dissertation is that
if statistically optimal algorithms are tailored or adapted to the singularities of the
relaxation model at hand, not only accuracy and precision but also computational
efficiency can be gained. As a proof of this, we refer the reader to chapter 6.

3.6.2 Specific Absorption Rate (SAR)

The specific absorption rate (SAR) is a measure of the rate at which energy is
absorbed when the human body is exposed to an RF pulse [Jin, 1998]. The SAR
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value is proportional to ||B0||22, the square of α, and the fraction of duration of the
RF pulse, D [Bottomley et al., 1985,Hennig, 1988, Ibrahim et al., 2001]:

SAR ∝ ||B0||22α
2D. (3.11)

With a TSE sequence, the echo train of RF pulses transfers a high RF energy,
resulting in high values of SAR [Oshio and Feinberg, 1991]. To reduce the SAR,
the number of slices that are acquired within one TR can be decreased. Another
option is to use RF pulses with lower flip angles at the expense of a decrease in
contrast and SNR [Weigel et al., 2007].

3.6.3 Acquisition time

The total acquisition time of a T1-weighted data set is always proportional to
the number of T1-weighted images. The total scan time of a single slice of a
T1-weighted image with Cartesian TSE was already given in subsection 2.3.3. For a
2D multi-slice IR sequence with N phase-encoding lines, the total scan time TScan
is given by

TScan = N
TRNex
ETL , (3.12)

where Nex is the total number of slices divided by the number of slices acquired
per TR [Van Steenkiste, 2016]. Though VFA sequences may use a much shorter
TR than IR sequences, the latter, which are still the gold standard, requires a
considerably long TR. Therefore, the acquisition time of a T1-weighted data set is
substantially long. The acquisition can be speeded up by acquiring less T1-weighted
image, however, this may come at the expense of a decrease in the accuracy and
precision of the estimated T1 map. Acquiring a T2-weighted image often requires less
acquisition time than acquiring a T1 weighted image since much shorter TR values
can be used. However, T2 mapping is normally performed with a substantially
higher number of images than T1 mapping [Poon and Henkelman, 1992,Björk et al.,
2016]. Therefore, T2 relaxometry also demands a relatively long scan time.
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4.1 Introduction

The relaxation models that were described in the previous chapter are mathematical
entities that relate the intensity of the voxels of the T1-weighted images to the
underlying relaxation parameters. Obviously, relaxation models cannot cover all
aspects that occur in the relaxation process. As such, the task of estimating
relaxation times is always prone to errors. Refining those models will eventually
lead to more accurate relaxometry techniques. However, as was described in chapter
2, the intensities of the acquired MR images are always polluted with random noise,
and should, therefore, be considered as random variables. In consequence, if we are
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given another set of T1-weighted images, acquired under the same conditions, the
estimated relaxation parameters will vary, even though the estimator is based on
exactly the same relaxation model. Random errors cannot be cured by improving
the relaxation models, and are unavoidable in every scientific measurement. The
theory that deals with the estimation of parameters from random variables is called
statistical parameter estimation theory. This chapter is devoted to presenting to the
reader the basics of this theory, with emphasis on statistical estimators, which have
been extensively employed in this PhD thesis. We describe the desirable properties
of statistical estimators after which we focus on two special estimators that have
been employed in this work. Those estimators are the Maximum Likelihood (ML)
estimator and the non-linear least squares (NLLS) estimator.

4.2 Statistical parameter estimation theory

4.2.1 Definition of statistical estimator

Suppose we have observed a realization ofN random variablesX = (X1, X2, ..., XN )T
whose PDF is parametric in an unknown parameter vector θ ∈ RP . We would
like to estimate that parameter vector. To do so, with the vector of realizations
x = (x1, x2, ..., xN )T , from now on called observations, we construct the vector
θ̂ = g(x1, x2, ..., xN ), where g(·) is any vector-valued function with P components
and N variables. Vector θ̂ is called an estimate of θ. If we repeat the experiment,
we will obtain new observations, and we will then get a different estimate. Those
estimates are realizations of the random variable θ̂(X) = g(X1, X2, ..., XN ), which
is called a statistical estimator of θ [Papoulis and Pillai, 2002].

4.2.2 Properties of statistical estimators

4.2.2.1 Accuracy and Precision

We say that an estimator is accurate if the associated estimates are on average close
to the true value. The accuracy is formally described by the bias of the estimator,
which is defined as

bias(θ̂(X)) = E{θ̂(X)} − θ, (4.1)
where E{θ̂(X)} is the expectation of the random vector θ̂(X). The lower the
bias, the more accurate is the estimator. An estimator is unbiased if its bias is
zero. An estimator is asymptomatically unbiased if the bias tends to zero when
N →∞.

On the other hand, the precision is related to the average spread of the estimates,
i.e., how much the estimates change when the experiment is repeated. Precision
is a desirable property of an estimator. The precision of an estimator is formally
described by its variance vector, that is by

var(θ̂(X)) = ([Cθ̂(X)]11
, [Cθ̂(X)]22

, ..., [Cθ̂(X)]PP )T , (4.2)
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low accuracy low accuracy high accuracy high accuracy
low precision high precision low precision high precision

Figure 4.1: Difference between accuracy and precision when aiming at the center.

where Cθ̂(X) is the covariance matrix of the random vector θ̂(X). The “smaller”
var(θ̂(X)), the more precise the estimator is. Hereafter, we just simply write
variance of an estimator, though naturally we refer to the vector of variances of
the estimator’s components. Ideally, an estimator should have a high accuracy
and precision. In Fig. 4.1, we illustrate the difference between accuracy and
precision. Another popular performance measure of a statistical estimator is the
mean squared error (MSE). The MSE combines both the bias and the variance in
a single expression,

MSE(θ̂(X)) = E{||θ̂(X)− θ||22} =
P∑
p=1

[var(θ̂(X))]p +
P∑
p=1

[bias(θ̂(X))]2p. (4.3)

Observe that an estimator can be more accurate than another one, while having a
higher MSE. An estimator that has the lowest possible MSE is considered optimal
in MSE sense. An overarching difficulty to obtain optimal estimators in MSE sense
is that the criterion of Eq. (4.3) is dependent on the true but unknown parameter
θ, and, in most of the cases, the optimal estimator in MSE sense depends as well
on the unknown θ. Thus, though optimal, the estimator is unrealizable, and hence
of no practical interest.

Instead, it is much more common to derive optimal estimators in terms of accuracy
and precision by focusing on each property separately. A very generalized approach
is to restrict the search for best estimators to those which are unbiased, and, from
that set of estimators, select those or the one with the highest precision. In principle,
it is also possible to seek for estimators with the highest possible precision, and
next focus on increasing the accuracy. However, this approach leads to irrelevant
results, since we can easily construct an estimator with an arbitrary low variance,
in particular zero, but being the resultant estimator a constant, it would be severely
biased for all but one possible value of θ. On the contrary, estimators with the
highest possible accuracy, that is those which are unbiased, are necessarily not
constant. From the class of unbiased estimators, we can perfectly seek for the one
with the highest precision or, equivalently, the one with minimum variance for
all θ. The reason is that, in contrast to the MSE optimality criterion, it is often
possible to find realizable unbiased estimators that have the highest precision for
all θ.
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Such an estimator is called the uniformly minimum variance unbiased estimator
(UMVUE). A rich part of statistical parameter estimation theory is devoted to the
quest for that estimator. We will elaborate on this topic in subsection 4.2.2.3 and
subsection 4.2.2.4, but we will first present another appealing property of every
statistical estimator.

4.2.2.2 Consistency

An estimator is consistent if it converges in probability to θ when the number of
observations tends to infinity, that is, for every ε > 0 [van den Bos, 2007],

lim
N→∞

Pr(||θ̂(X)− θ||2 > ε) = 0, (4.4)

with Pr(·) being the probability. An estimator is consistent if it is asymptoti-
cally unbiased and its variance tends to zero, though the converse is not true.
Furthermore, an estimator may be consistent but biased for finite N .

4.2.2.3 Uniformly minimum variance unbiased estimator (UMVUE)

The UMVUE for the parameter θ is formally defined as the estimator θ̂UMVUE(X)
that fulfills

var(θ̂UMVUE(X)) ≤ var(θ̂(X)) for all θ̂(X) with bias(θ̂(X)) = 0. (4.5)

The word uniformly implies that the condition must hold for all possible values that
θ takes. That strong condition may lead to situations where the UMVUE does not
exist. Fig. 4.2 illustrates the importance of the uniform property for the UMVUE. In

(a) θ̂UMVUE(X) = θ̂3(X) (b) UMVUE does not exist.

Figure 4.2: Graphical illustration of the UMVUE.

Fig. 4.2.(a), the lowest variance for all values of θ is achieved with estimator θ̂3(X).
Hence, it is the UMVUE. On the contrary, in Fig. 4.2.(b), θ̂3(X) only possesses
the lowest variance for θ > θ0, where for θ ≤ θ0 the minimum variance is achieved
with θ̂2(X). Thus, we conclude that for the case (b), the UMVUE does not exist.
If the UMVUE exists, the Rao-Blackwell-Lehmann-Scheffe theorem serves as a
guide to obtain that estimator. The theorem, whose proof can be found in [Kay,
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1993], dictates that, if θ̂(X) is an unbiased estimator of θ, and T = T (X) is a
sufficient statistic for θ, then the estimator θ̂Rao(X) = E{θ̂(X)|T (X)}, where the
expectation is taken over all possible realizations that the random variable T can
take, does not depend on θ (hence is a realizable estimator), and is still unbiased.
Furthermore, it has a lower or equal variance than θ̂(X) for all values that θ
takes and, importantly, provided T is a complete statistic, it is the UMVUE. For a
definition of a sufficient and complete statistic the reader is referred to [Papoulis
and Pillai, 2002].

The Rao-Blackwell-Lehmann-Scheffe theorem gives us the necessary steps to con-
struct the UMVUE, however, finding a complete sufficient statistic T may not be
an easy task. In the search for the UMVUE, one can ask whether there exists
a lower bound on the variance of all unbiased estimators. That bound may not
necessarily be reached by any estimator, but if an estimator does, obviously that
estimator is the θ̂UMVUE(X). This line of thinking gives us another technique to
seek for θ̂UMVUE(X), but first we need to confirm the existence of such a lower
bound.

4.2.2.4 Efficiency

Let us denote with pX(x;θ) the joint PDF of the random variables (X1, X2, ..., XN )T
evaluated at vector observation x. Furthermore, let us assume that the following
regularity condition holds:

E

{
∂ log pX(x;θ)

∂[θ]p

}
= 0, with p = 1, ..., P. (4.6)

If that is so, we have that for any unbiased estimator θ̂(X):

Cθ̂(X) < I
−1(θ), (4.7)

where I(θ) ∈ RP×P is the so-called Fisher information matrix evaluated at θ,
whose components are given by

[I(θ)]ij = E

{
∂ log pX(x;θ)

∂[θ]i
∂ log pX(x;θ)

∂[θ]j

}
(4.8)

for i = 1, ..., P and j = 1, ...., P , and where the symbol < means that the matrix
Cθ̂(X) − I

−1(θ) is semidefinite positive. The inequality of Eq. (4.7) is known as
the Cramér-Rao Lower Bound (CRLB). A direct consequence of the CRLB is the
following inequality on the variance:

[var(θ̂(X))]p ≥ [I−1(θ)]pp, with p = 1, ..., P. (4.9)

Therefore, the CRLB establishes a limit to the highest precision that can be
obtained with an unbiased estimator. An estimator which reaches the CRLB,
that is, that turns inequality Eq. (4.7) into an equality is said to be efficient. An
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estimator that reaches the CRLB asymptotically is named asymptotically efficient.
An efficient estimator is always the UMVUE, but the converse is not true. Indeed,
an efficient estimator may not exist but still the UMVUE can be obtained, as it is
depicted in Fig. 4.3.

(a) θ̂3(X) is efficient (b) θ̂3(X) is not efficient
and hence the UMVUE. but is the UMVUE.

Figure 4.3: Graphical illustration of the relation between efficiency and the UMVUE.

The CRLB is an extremely useful tool in estimation theory since it allows us
to confirm that an estimator is the UMVUE, in a more practical way than the
Rao-Blackwell-Lehmann-Scheffe theorem. Furthermore, if the bound is not reached,
at least it provides a benchmark against which we can compare the performance of
any unbiased estimator [Kay, 1993].

The CRLB can also be interpreted from a pure information theory point of view. In-
deed, the Fisher information matrix is a way of measuring the amount of information
that random variables (X1, X2, ..., XN )T carry about parameter θ.

An intuitive, very common interpretation is based on the curvature of log pX(x;θ)
when considered to be a function of θ. Intuitively, the sharper log pX(x;θ) is around
its global maximum, the more information random variables (X1, X2, ..., XN )T
contains about θ. Indeed, when the curvature of log pX(x;θ) is rather pronounced
around that maximum, e.g, θ∗, this can be interpreted, from a probabilistic point
of view, as if the neighborhood values were very unlikely to be the underlying
parameter which would have produced the observed random vector x, at least
in comparison to θ∗. If the curvature is, instead, low, there are several values of
θ in the neighborhood that may have produced the same observation vector x
with similar likelihood. The curvature of an N -dimensional function around its
maximum is described by its Hessian matrix, and the Hessian matrix of the function
log pX(x;θ) (w.r.t. θ) is what is called the observed Fisher information matrix.
The Fisher information matrix, I(θ), is merely the expectation of the observed
Fisher information matrix. Hence, the Fisher information matrix describes the
average curvature of log pX(x;θ). Other interpretations of the Fisher information
matrix from an information theory point of view are related to the concepts of
score vector and its covariance matrix, and dissimilarity measures between PDFs
in information geometry [Duchi, 2016].

When function pX(x;θ) is interpreted as a function of θ for fixed x, it is called the
likelihood function, which is denoted as L(θ;x). Its natural logarithm, logL(θ;x),
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is called the log-likelihood function. The likelihood function constitutes the main
ingredient in the construction of the powerful and popular Maximum Likelihood
(ML) estimator. Not surprisingly either, if an efficient estimator exist, it can only
be the ML estimator [Papoulis and Pillai, 2002].

4.3 Maximum Likelihood estimators

ML estimators are based on the maximum likelihood principle. Unintentionally,
we have already described this principle when we related the Fisher information
matrix to the information that (X1, X2, ..., XN )T contain about θ. According to
the maximum likelihood principle, given a PDF pX(x;θ), it is reasonable to choose
as estimate that value of θ that most likely caused the observations (x1, x2, ..., xN )T
to occur. For fixed x, such a value is the maximum point of the likelihood function,
L(θ;x). Such a value is called an ML estimate for θ, and is defined as,

θ̂ML = arg max
θ

L(θ;x), (4.10)

or by using the negative log-likelihood function L(θ;x) = − logL(θ;x),

θ̂ML = arg min
θ
L(θ;x). (4.11)

The corresponding random vector θ̂ML(X) is called the ML estimator of θ. In the
literature one often encounters the following expression for θ̂ML,

θ̂ML = arg min
θ

N∑
n=1
Ln(θ;xn), (4.12)

where Ln(θ;xn) is the negative log-likelihood function of the random variable
Xn. This particular expression arises when the elements of the vector of random
variables (X1, X2, ..., XN )T are independent. Then, the joint probability density
function, pX(x;θ), is the product of the PDFs of the set of random variables
(X1, X2, ..., XN )T , and the logarithm transforms such an expression into a finite
sum. The reader should be aware, however, that this is a particular case of the
more general expression of Eq. (4.11).

The maximum likelihood principle is the most popular approach to obtaining
practical estimators, since it is a “turn-the-crank” procedure [Kay, 1993] and can
be applied to a wide range of problems provided we know the formal expression for
pX(x;θ). ML estimators have excellent asymptotic properties. In this section, we
stress some of the particular features of the ML estimator, and we list its optimal
asymptotic properties.

4.3.1 Distinctive properties of ML estimators

The ML estimator enjoys an invariance property [van den Bos, 2007]. Suppose that
θ̂ML(X) is the ML estimator of θ. Furthermore, suppose that φ is an unknown
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parameter that depends on θ via the function relationship φ = s(θ). Then, the
ML estimator of φ is the output of s(·) when the input is θ̂ML(X).

Moreover, if an efficient estimator exists, it is necessarily the ML estimator. Indeed,
the CRLB inequality becomes an equality when the elements of the statistical
estimator θ̂(X) fulfill [van den Bos, 2007]

[θ̂]p − [θ]p =
P∑
j=1

[I−1(θ)]pj
∂ log pX(x;θ)

∂[θ]j
, with p = 1, ..., P, (4.13)

for all possible values of θ. When evaluating at θ = θ̂ML, the expression on the right
becomes zero, and hence θ̂ = θ̂ML. Therefore, the corresponding ML estimator
θ̂ML(X) is efficient.

4.3.2 Asymptotic optimality

Under some regularity conditions, the ML estimator converges in distribution to
a multi-variate normal distribution with mean the unknown parameter θ, and
with covariance matrix the inverse of the Fisher information matrix (evaluated
at θ) [Papoulis, 1977]. As a consequence of convergence in distribution, the ML
estimator is therefore asymptotically unbiased and efficient. Furthermore, the ML
estimator is also a consistent estimator.

4.4 Non-linear least-squares estimators

Our line of thinking to design optimal statistical estimators has been to consider
the class of unbiased estimators and determine the one with minimum variance.
We have seen that for a large number of observations, the ML is the most appealing
estimator because it is asymptotically unbiased and efficient, and consistent as well.
In this last section, we present a class of estimators, called non-linear least-squares
(NLLS) estimators which, though they do not share optimal statistical properties
(except for particular cases that we will point out), are one of the most studied
and employed estimators in the history of modern science. This class of estimators
is based on the concept of least-squares, a method which dates back to 1795
when Gauss employed it in his studies about planetary motion [Kay, 1993]. NLLS
estimators are rather simple to implement since they do not require knowledge
about the joint PDF of the random variables (X1, X2, ..., XN )T , from which the
parameter is estimated.

4.4.1 The Least-Squares approach

Let us suppose that the expectation of each of the random variables Xn depends
on θ as

E{Xn} = φn(θ), (4.14)
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where φn(θ) for n = 1, ..., N is a deterministic model. With the LS approach, we
seek to minimize the squares of the differences between the realizations xn and the
model (Eq. (4.14)). Such a difference is often called the residual. Formally, an LS
estimate θ̂LS of θ is defined as

θ̂LS = arg min
θ

N∑
n=1

(xn − φn(θ))2
. (4.15)

That is, the LS estimate θ̂LS is that value of θ that yields the least sum of squares
of the differences or residuals. The corresponding random vector θ̂LS(X) is the
NLLS estimator if φn(·) is a non-linear function of θ, and it is termed the Linear
LS (LLS) estimator if φn(·) is a linear function of θ. Since practically all of the
models considered in this PhD thesis are non-linear, we will focus on the NLLS case.
Sometimes, the squared differences in Eq. (4.15) are multiplied by deterministic
values wn in order to weight the contribution of every residual differently. If that
is so, the term weighted NLLS is used. Unweighted (or equivalently, uniformly
weighted) NLLS estimators are sometimes called ordinary NLLS estimators to
make the distinction clear.

4.4.2 Properties and connection to ML estimators

NLLS estimators, both weighted and ordinary, share the invariance property of the
ML estimators. Indeed, observe that the proof for the invariance property [van den
Bos, 2007] is essentially valid for every extremum estimator (estimators that are
obtained by minimizing a certain cost function). Nevertheless, we cannot make
any claim about optimal properties of the NLLS estimator, unless statistical
information of (X1, X2, ..., XN )T is given. The interested reader can find some of
those conditions in [van den Bos, 2007].

In certain cases, NLLS estimators are equal to ML estimators. If pX(x;θ) is
the joint PDF of independent Gaussian random variables with mean φn(θ) and
standard deviation σn, the ML estimator of θ, with this set of Gaussian random
variables, is identical to the WLLS estimator with wn = 1/σ2

n. If σn = σ for every
n, the ML estimator is equal to the ordinary NLLS estimator.
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5.1. Introduction

5.1 Introduction

Quantitative T1 mapping is a Magnetic Resonance Imaging (MRI) technique in
which the spin-lattice relaxation time T1 of tissues is measured [Tofts, 2004]. Because
T1 depends on biophysical properties, it is used as biomarker in a broad range of
diseases, such as multiple sclerosis [Larsson et al., 1989], epilepsy [Conlon et al.,
1988] and Alzheimer’s disease [Erkinjuntti et al., 1987], as well as in the measurement
of perfusion [Detre et al., 1992] and blood flow [Cheng, 2007]. Hence, its accurate
and precise estimation is of uttermost importance [Tofts, 2004,van den Bos, 2007].
In order to quantify T1, a set of T1-weighted images with different sequence settings
needs to be acquired [Tofts, 2004,Trzasko et al., 2013,Van Steenkiste et al., 2017].
From this set, a spatial map of T1 values can be calculated by fitting a known
relaxation model at every voxel. Evidently, to obtain a meaningful T1 map, spatial
correspondence between the images in the acquired series is crucial [Huizinga et al.,
2016]. However, due to patient motion and/or apparent spatial shifts introduced
by the scanner (e.g., scanner drift [Foerster et al., 2005]), T1-weighted images are
often misaligned.

To deal with this problem, T1-weighted images are commonly spatially registered
prior to the estimation of the T1 map [Deoni et al., 2003,Warntjes et al., 2007].
This is often done by choosing one T1-weighted image as a target and subsequently
registering the remaining T1-weighted images to this target image by using a
similarity measure such as Mutual Information (MI) [Studler et al., 2010,Bron
et al., 2013].

Such an approach, however, suffers from inherent problems. First, the specific
relation between the intensity value as a function of time of the (aligned) voxels is
ignored. Second, the registration is not driven by a global optimization criterion
that considers all T1-weighted images simultaneously. Even more problematic
is the fact that current motion correction is a preprocessing step prior to the
estimation of the T1 values. Such a two-step processing pipeline lacks a feedback
mechanism between the image registration and the T1 map estimation step. As a
result, registration errors will propagate to the estimation step, leading to biased
estimates [Ramos-Llordén et al., 2015a].

Recently, progress in registration of T1-weighted images was made by the intro-
duction of model-based approaches. Such techniques integrate the signal model
connecting the series of images (such as a T1 relaxation model) into the registra-
tion step. State-of-the-art model-based methods have shown to outperform the
conventional two-step approach in terms of accuracy, for example, in myocardial
T1 mapping [Xue et al., 2013,Hallack et al., 2014]. Unfortunately, they all come
with serious limitations for precise and accurate T1 mapping, mainly because differ-
ent criteria for registration and estimation are heuristically combined [Xue et al.,
2013,Hallack et al., 2014]. Since they do not constitute a truly unified framework,
the output of the algorithms cannot be related to the optimal value of a given
global information-based criterion. As a consequence, it is doubtful whether all
the information gathered in the series of T1-weighted images, including the data
statistics [Sijbers et al., 1998a,van den Bos, 2007], is optimally exploited.
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In this chapter, we propose an integrated model-based image registration and T1
estimation approach, where the motion parameters and T1 map are jointly esti-
mated using a unified global information criterion, more specifically, the maximum
likelihood (ML) criterion [Sijbers et al., 1998a, Sijbers et al., 1999, den Dekker
and Sijbers, 2014]. By combining models of T1 relaxation, motion, and noise
into one statistical model of the T1-weighted images, we are able to restore the
original motion-free T1 map using a joint ML estimator. The unified ML framework
allows accounting for the statistical noise model, the relaxation model, and the
motion model simultaneously, exploiting, in addition to the temporal information,
knowledge on data statistics. The large-scale ML optimization problem is solved by
alternating between the estimation of motion and relaxation parameters in an effi-
cient and robust manner, making use of block coordinate descent [Fessler and Kim,
2011] and Majorize-Minimize (MM) algorithms [Varadarajan and Haldar, 2015].
Exact convergence properties of the algorithm are presented, demonstrating that
the proposed iterative procedure leads to the ML estimates in a computationally
efficient way.

We thoroughly validate the proposed joint maximum likelihood estimator (MLE)
with realistic Monte Carlo (MC) simulations and compare it with the conventional
two-step approach as well as the newest state-of-the-art model-based approach
of Hallack [Hallack et al., 2014]. We show that substantially more accurate T1
maps as well as motion parameters can be obtained with our proposed joint MLE.
Additionally, the T1 maps estimated with the joint MLE are superior in terms of
the root-mean-square error (RMSE). Apart from simulation experiments, we also
quantitatively evaluate the performance of the joint MLE in a controlled experiment
involving real T1-weighted data. Further, we validate it with two in vivo human
brain T1-weighted data sets corrupted by patient motion, showing its applicability
in real-life scenarios.

The remainder of this chapter is organized as follows. In section 5.2, the image
model used to construct the joint MLE is presented. Section 5.3 is devoted to the
joint MLE algorithm. Section 5.4 describes the experiments of which the results
are presented in section 5.5, which is followed by a discussion in section 5.6. Finally,
conclusions are drawn in section 5.7.

5.2 Theory

The derivation of the joint MLE requires a parametric statistical model of the
images. This section is devoted to the derivation of such a model, which comprises
a relaxation signal model, a motion model, and a statistical noise model.

5.2.1 Relaxation signal model

As explained in chapter 3, in the absence of noise, the evolution of the magnitude
MRI signal in each voxel of a series of N T1-weighted images can be described by a
parametric model {fn(κ, T1)}Nn=1, where κ denotes a vector of nuisance parameters.
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The exact expression for this T1-relaxation model depends on the pulse sequence
that is used. In this work, we use the Inversion Recovery (IR) sequence, being the
gold standard for T1-mapping [Tofts, 2004]. Note that signal models corresponding
with other sequences, such as SPGR sequences or MOdified Look-Locker Inversion
recovery (MOLLI) [Messroghli et al., 2004], can be accommodated within our
framework as well. For the IR sequence, we employ the common three parameter
magnitude relaxation model given in Eq. (3.8).

To model the noiseless T1-weighted images, we use a vector notation for the spatially
varying parameters T1, a and b. Let r = (x, y, z)T be a vector in the Cartesian
coordinate system in which they are defined. Then, a 3D spatial T1 map ofM voxels
can be defined as a column vector, T1 ∈ RM×1, where [T1]m represents T1 defined
at the spatial point rm, indexed by voxel m. Similarly, we define a ∈ RM×1 and
b ∈ RM×1 as the parameter maps of a and b. For ease of readability and to alleviate
the notation, we introduce the parameter vector κ = (aT , bT )T ∈ R2M×1. The
relaxation model for the noiseless n-th T1-weighted image is then given by

fn(κ,T1) = |a+ b ◦ e−
TIn
T1 |, (5.1)

with fn(κ,T1) ∈ RM×1, where ◦ and | · | denote the point-wise or Hadamard
product, and point-wise modulus operator, respectively.

5.2.2 Motion model

In what follows, we will restrict the motion model of the unified ML framework
to inter-image motion, that is, motion between the 3D T1-weighted images, as
in [Hallack et al., 2014]. In section 5.6, we further elaborate on extensions of the
unified ML framework in which intra-image motion is incorporated, in particular,
motion between the slices of a multi-slice T1-weighted image.

The effect of inter-image motion is modeled by assuming that fn(κ,T1) is observed
in a different Cartesian coordinate system rn for each acquisition n = 1, ..., N . In
this work, we illustrate the joint MLE with rigid motion. Hence, the spatial point
rnm, with m = 1, ...,M , is related to the reference-system point rm, through a rigid
transformation matrix, Mθn ∈ R4×4 (in homogeneous coordinates), parameterized
by

θn = (txn, tyn, tzn, αn, βn, γn)T , (5.2)

with txn, tyn, tzn the translation parameters and αn, βn, γn the Euler angles of the
three elementary rotation matrices around axis x, y and z, respectively [Goldstein
et al., 2014]. In our work, the reference system r is defined similarly as the intrinsic
coordinate system which MATLAB uses to represent 3D images. That is, axis x
points in the direction of increasing column index while y points in the direction of
increasing row index. Finally, the axis z is aligned with the direction of increasing
index of the third dimension. The origin of this coordinate system is the center of
the 3D image. Furthermore, in multi-slice acquisitions the axis z is aligned with
the slice-encoding direction.
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The noiseless T1-weighted image observed at rn can be modeled as the output
of a linear operator that applies rigid motion, Hθn{·}, and whose input is the
unobserved fn(κ,T1). Because Hθn{·} is linear, the input-output relation can be
concisely written in matrix form as:

f̃n(θn,κ,T1) = Hθnfn(κ,T1), (5.3)

where f̃n(θn,κ,T1) is the motion-corrupted noiseless T1-weighted image acquired
at TIn andHθn ∈ RM×M is the matrix representation of the linear motion operator
Hθn{·}. To design Hθn ∈ RM×M , we use the method proposed in [Larkin et al.,
1997], where it was demonstrated that each of the rotation matrices of Mθn can
be decomposed as the product of three shear matrices. Each of the shearings
is implemented very efficiently with Fast Fourier Transforms (FFT). Translation
is implemented using an FFT as well 1. With the FFT approach, the motion
operator Hθn can be shown to be unitary, which means that its inverse is given
by HH

θn
, where the superscript H denotes the Hermitian conjugate. Hence, the

motion operatorHθn is reversible, i.e., when applied to an image, this image can be
retrieved by applying HH

θn
to the output of this operation. The unitarity property

of the motion operator will turn out to be useful in the derivation of the joint MLE
algorithm. Details of the exact analytical expression of Hθn and the proof of the
unitarity property are provided in subsection A.1.

5.2.3 Statistical noise model

In practice, acquired T1-weighted images are inherently disturbed by noise. A
typical data distribution for magnitude T1-weighted images is the Rice distribution
[Gudbjartsson and Patz, 1995], whose expression was given in Eq. (2.32). In this
work, we will illustrate the proposed joint MLE by deriving it for the case of
independent Rician distributed voxels, with different noise standard deviation σ
for each voxel m and for each acquisition n. As explained in subsection 2.6.2,
this is an accurate noise model for magnitude images that are reconstructed with
SENSE [Aja-Fernández and Tristán-Vega, 2013]. It is also a valid noise model for
magnitude images that are reconstructed with GRAPPA jointly with the SMF
method. If, instead of SMF, SoS is used in combination of GRAPPA, the data
distribution can be well approximated at high SNR by a Gaussian distribution with
a spatially variant variance [Aja-Fernández et al., 2015b]. The derivation of the
joint MLE for Gaussian distributed data will be covered in subsection 5.3.5.

1The FFT approach implicitly assumes that images are of limited-support, both in the frequency
and space domain. Since an image cannot be of limited-support in both domains simultaneously,
aliasing may occur, which appears in the form of image distortions. In practice, however, for
images that contain background and are not piece-wise constant, like those that are used in this
work, aliasing becomes negligible.
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5.3 Joint MLE

Let sn ∈ RM×1, with n = 1, ..., N , denote an actual, noisy T1-weighted image
acquired at inversion time TIn. Assuming Rician distributed data, it follows from
Eq. (2.32) and the motion-corrupted noiseless T1-weighted model Eq. (5.3) that the
PDF of the voxels [sn]m, m = 1, . . . ,M , of this image is given by

p[sn]m([sn]m|[f̃n]m, [σn]m) = [sn]m
[σn]2m

e
−([sn]2m+[f̃n]2m)

2[σn]2m I0

(
[sn]m[f̃n]m

[σn]2m

)
u([sn]m).

(5.4)

Furthermore, if all voxels are assumed to be independent, the joint PDF of the voxels
constituting the image sn is given by the product of the PDFs of the individual
voxels, i.e., psn(sn|f̃n,σn) =

∏M
m=1 p[sn]m([sn]m|[f̃n]m, [σn]m). Similarly, the joint

PDF of the supposedly independent voxels of a set of N T1-weighted images
{sn}Nn=1 is given by

ps(s|f̃ ,σ) =
N∏
n=1

psn(sn|f̃n,σn) (5.5)

with s = (sT1 , . . . , sTN )T , f̃ = (f̃T1 , . . . , f̃TN )T and σ = (σT1 , . . . ,σTN )T . Note that
this joint PDF depends on the unknown parameters θ = (θT1 ,θT2 , ...,θTN )T ,κ and
T1 via f̃ and can hence be written as ps(s|θ,κ,T1,σ). To construct the MLE of
these parameters, the likelihood function must be derived. The likelihood function is
obtained from the joint PDF, Eq. (5.5), by replacing the independent variables s by
the actual acquired voxel intensity values - that is, by numbers - and the supposedly
fixed, exact parameters θ,κ and T1 by independent variables. The likelihood
function is, therefore, a function of the parameters considered as independent
variables and is parametric in the acquired voxel intensities, from now on called
observations [van den Bos, 2007]. To express this, the likelihood function is written
as L(θ,κ,T1|s). Strictly speaking, the likelihood function also depends on σ.
However, in our work, we assume that σ can be estimated prior to the construction
of the joint MLE using tailored noise estimation described in subsection 2.6.3.
Hence, we omit the explicit σ-dependence in the notation.

To simplify the notation, let us define the parameter vector τ = (θT ,κT ,T T1 )T .
The joint MLE τ̂ML of τ from the observations s is that value of τ that maximizes
the likelihood function L(τ |s), or equivalently, minimizes the so-called negative
log-likelihood function Ls(τ |s) , − logL(τ |s) with respect to τ , i.e.,

τ̂ML = arg min
τ
Ls(τ |s). (5.6)

It follows from Eq. (5.5) that Ls(τ |s) can be written as

Ls(τ |s) =
N∑
n=1
Lsn(θn,κ,T1|sn), (5.7)

with Lsn(θn,κ,T1|sn) = − log psn(sn|f̃n,σn).
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As the joint MLE can not be found analytically, one has to resort to numerical
optimization algorithms. In order to solve this very-large-scale optimization problem,
a cyclic block-coordinate descent (cBCD) method was used [Fessler and Kim, 2011].
cBCD methods work by iteratively minimizing the cost function Ls(θ,κ,T1|s) with
respect to a subset of the optimization variables, holding the remaining variables
fixed, where in each iteration, the roles of the optimization and fixed variables are
reversed [Hong et al., 2016]. The utility of the cBCD algorithm relies on a smart
selection of the subset of optimization variables. In the case of our joint MLE, this
subset is chosen to contain the motion parameters or the relaxation parameters. In
this way, the very-large-scale optimization problem is separated into more easily
solvable problems.

Indeed, alternating between the motion estimation problem and the relaxation
estimation problem, the joint MLE is found in an efficient way. Moreover, the
cBCD method assures that Ls(θ,κ,T1|s) decreases at every iteration [Fessler and
Kim, 2011]. Therefore, convergence to at least a local minimum is guaranteed [Fan
et al., 1998]. In summary, the cBCD-based joint MLE is obtained by the following
iterative recursive procedure:

θ̂(t+1) = arg min
θ

N∑
n=1
Lsn(θn, κ̂(t), T̂1

(t)
|sn), (P.1)

{κ̂(t+1), T̂1
(t+1)
} = arg min

κ,T1

N∑
n=1
Lsn(θ̂(t+1)

n ,κ,T1|sn), (P.2)

with θ̂(0) = θini, κ̂(0) = κini and T̂1
(0) = T1ini the initial values of the parameters θ,

κ and T1, respectively. This procedure is terminated when the number of iterations
exceeds tmax or the relative decrease E(t) of Ls(θ,κ,T1|s) between two consecutive
iterations is below a fixed tolerance, Emin. A detailed description of the problems
(P.1) and (P.2) is provided in subsections 5.3.1 and 5.3.2, respectively. Furthermore,
a pseudo-code of the joint MLE algorithm is shown in subsection 5.3.3, whereas its
implementation is described in subsection 5.3.4.

5.3.1 Problem 1 (P.1): estimation of the motion parame-
ters

The motion estimation problem adopts a particularly simple structure when the
relaxation parameters are fixed. If no dependence of {θn}Nn=1 through index n is
assumed, as is done here, the minimization can be decoupled into N optimization
problems, which can be implemented very efficiently by parallel operations. The
parameters {θn}Nn=1 enter the linear motion operator in a non-trivial way, which
renders the analytical calculation of the derivatives infeasible. Fortunately, the low
dimensionality of the N minimization problems, involving only six variables each,
allows us to use a derivative-free optimization method. In our approach, simulated
annealing (SA) minimization is performed [Press et al., 2007], which is known for
its ability to avoid being trapped in local minima and its robustness to functions
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with complex structure [Eglese, 1990,Goffe et al., 1994,Press et al., 2007,Bertsimas
and Nohadani, 2010]. Each time, motion estimates from the previous iteration t
are used as initial guesses.

5.3.2 Problem 2 (P.2): estimation of the relaxation param-
eters

In contrast to P.1, the relaxation parameter estimation problem is a very-large-
scale minimization problem. Derivative-free algorithms such as SA are therefore
impractical to use. Quasi-Newton algorithms, on the other hand, may produce
critical memory storage problems, due to the large dimensionality of the Hessian
matrix approximation. Furthermore, line searches dramatically slow down the
algorithm [Nocedal and Wright, 2006].

The optimization method of choice for solving this minimization problem is the
use of a Majorize-Minimize (MM) framework [Hunter and Lange, 2004], which
yields a voxel-wise independent algorithm, allowing a computationally efficient
implementation. Here, we sketch the basics of the MM algorithm applied to the
estimation problem at hand. The reader is referred to [Hunter and Lange, 2004]
for further details.

Let J(κ,T1) =
∑N
n=1 Lsn(θ̂(t+1)

n ,κ,T1|sn) be the cost function of P.2 that we seek
to minimize w.r.t. κ and T1. MM algorithms are defined through the following
recursive minimization problem:

{κk+1,T k+1
1 } = arg min

κ,T1
G(κ,T1|κk,T k1 ), (5.8)

where G(κ,T1|κk,T k1 ) is a new user-designed cost function. It can be demonstrated
that the sequence of iterates κk,T k1 obtained from Eq. (5.8) converges to a local
minimum of J(κ,T1) if G(κ,T1|κk,T k1 ) is what is called in the optimization
literature a surrogate function of J(κ,T1). The properties that characterize a
surrogate function are

1. J(κ,T1) ≤ G(κ,T1|κk,T k1 ) ∀κ,T1

2. J(κk,T k1 ) = G(κk,T k1 |κk,T k1 ).

Obviously, to really benefit from the MM algorithm, the surrogate function
G(κ,T1|κk,T k1 ) should be easier to minimize than the original cost function
J(κ,T1). A key result is presented by Varadarajan and Haldar [Varadarajan
and Haldar, 2015], showing that the following function is a valid surrogate function
of − log p[sn]m([sn]m|[f̃n]m, [σn]m):

1
2[σn]2m

(
[f̃ (t+1)
n (θ̂(t+1)

n ,κ,T1)]m − [s̆kn]m
)2 + Cmn (k) (5.9)

with Cmn (k) a constant independent of κ and T1,

f̃ (t+1)
n (θ̂(t+1)

n ,κ,T1) = H
θ̂

(t+1)
n

fn(κ,T1), (5.10)
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and

[s̆kn]m = [sn]m
I1

(
[sn]m[f̃(t+1)

n (θ̂(t+1)
n ,κk,T k1 )]

m

[σn]2m

)
I0

(
[sn]m[f̃(t+1)

n (θ̂(t+1)
n ,κk,T k1 )]

m

[σn]2m

) (5.11)

with I1(·) the first order modified Bessel function of the first kind.

Note that f̃ (t+1)
n (θ̂(t+1)

n ,κ,T1) describes the motion-corrupted synthetic T1-weighted
image, whereas s̆kn, from now on called the Bessel image, is the actual acquired
image sn corrected with a Bessel correction factor. A surrogate function for
Lsn(θn,κ,T1|sn) is now obtained by summing Eq. (5.9) over m, i.e.,

Gn(κ,T1|κk,T k1 ) = ||W 1/2
n

(
H
θ̂

(t+1)
n

fn(κ,T1)− s̆kn
)
||

2

2
+ Cn(k) (5.12)

with Wn = diag{ 1
2σ2

n
}. By summing Gn(κ,T1|κk,T k1 ) over n, we would obtain a

global surrogate function for J(κ,T1). At this point, the main benefit of apply-
ing the MM framework is that the relaxation estimation problem has now been
transformed into a collection of weighted non-linear least squares (NLLS) prob-
lems, avoiding complicated minimization with Bessel functions. However, we still
can further simplify the problem and convert it into a fully separable (voxel-wise
independent) NLLS problem. To that end, we apply another surrogate function
G∗n(κ,T1|κk,T k1 ) to each Gn(κ,T1|κk,T k1 ). It is easy to demonstrate that if
G∗n(κ,T1|κk,T k1 ) is a surrogate function for Gn(κ,T1|κk,T k1 ), it is also a valid sur-
rogate function for Lsn(θn,κ,T1|sn). Therefore, we finally define G(κ,T1|κk,T k1 )
as

G(κ,T1|κk,T k1 ) =
N∑
n=1

G∗n(κ,T1|κk,T k1 ). (5.13)

The choice for G∗n(κ,T1|κk,T k1 ) is a separable quadratic surrogate (SQS) function
[Muckley et al., 2015], which, when applied to our problem at hand, takes the
expression,

G∗n(κ,T1|κk,T k1 ) = ||fn(κ,T1)− ρn(κk,T k1 )||22 + C∗n(k), (5.14)

with

ρn(κk,T k1 ) = fn(κk,T k1 ) + σ∗HH

θ̂
(t+1)
n

Wn

(
s̆kn −Hθ̂

(t+1)
n

fn(κk,T k1 )
)

(5.15)

and σ∗ = 2 min
n,m

[σn]2m. The complete derivation of G∗n(κ,T1|κk,T k1 ) can be found

in section A.2 of appendix A. With G∗n(κ,T1|κk,T k1 ), minimization of Eq. (5.13) is
nothing more than fitting the relaxation model fn(κ,T1) to the “residual” images
ρn(κk,T k1 ) with n = 1, ..., N in a least squares sense. Therefore, it is a completely
separable optimization problem and hence it can be implemented in parallel for
every voxel m. This is the main distinct characteristic of the joint MLE that we
present in this work, which makes it an efficient method to be used in practice.
Once the model-fitting is performed, the new iterate serves to update the “residual”
images. This process is repeated until k > kmax or EJ (k) < EJmin where EJ (k)

is the analogous of E(t) for J(κ,T1). The final iterate yields the new κ̂(t+1) and
T̂1

(t+1), which are then used as input in the motion estimation problem P.1.

90



5.3. Joint MLE

5.3.3 Initialisation

Although convergence to a local minimum is guaranteed, convergence to the global
minimum, which corresponds with the MLE estimate, cannot be proved, since
Ls(θ,κ,T1|s) is non-convex. To increase the chances of finding the global minimum,
providing good initial values is crucial. In our approach, initial values were obtained
using the conventional approach (CA), which consists of image registration prior
to voxel-wise relaxation model fitting. A sequential estimation to initialize unified
motion model-based approaches was also used in [Fogtmann et al., 2014], with
very good results, and we found it a robust method to initialize our joint MLE. In
particular, firstly, the initial motion parameters θini were obtained by registering the
set of T1-weighted images based on maximization of MI between the images [Mattes
et al., 2003,Pluim et al., 2003]. All images were pairwise registered to the reference
system r with a pyramidal multi-resolution scheme of three levels. Bi-cubic
interpolation was used. The number of iterations of the internal optimization
algorithm was set to a very high value (> 900) to ensure convergence of the
motion parameter estimation. Next, the relaxation parameters κini and T1ini were
voxel-wise estimated from the registered images using the MLE based on Rician
distributed data [Sijbers et al., 1999]. To compute the MLE, a Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi-newton algorithm [Nocedal and Wright, 2006] was
used with exact analytical derivatives. The spatially variant standard deviation,
which is required for the MLE, was estimated with the method of [Aja-Fernández
et al., 2015b]. By using the CA as initialization, we have invariably found that the
estimated T1 maps, T1ML, are superior in terms of accuracy and RMSE compared
to those obtained with the CA. Furthermore, simulation results have shown that
the joint MLE is stable and robust to occasional inaccuracies in the CA-based
initial motion parameters.

Pseudo-code of the joint MLE algorithm is presented in Algorithm 1, and an
illustrative flow-chart is shown in Fig. 5.1. In practice, the joint MLE requires as
input, apart from the initial motion and relaxation parameters, an estimate of the
spatially variant standard deviation σ, σ̂. Such an estimate is obtained with the
method of [Aja-Fernández et al., 2015b] directly applied to the acquired images
{sn}Nn=1.

5.3.4 Parameters selection, code implementation and com-
putational cost

The proposed joint MLE was implemented in MATLAB and run on a computer
with an Intel i7-4770K processor consisting of four cores at 3.5 GHz. The machine
had 32 GB of RAM. The SA algorithm of P.1 was implemented using the MATLAB
routine simulannealbnd with the default parameters. The NLLS fitting of P.2 was
performed by the MATLAB routine lsqnonlin using the Levenberg-Marquardt
(LM) [Nocedal and Wright, 2006] method, also with the default parameters. The
tolerance criteria and the maximum number of iterations to halt the algorithm were
chosen to be EJmin = 10−2 and Emin = 10−3, and tmax = kmax = 10, respectively.
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Algorithm 1 Pseudo-code of the joint MLE algorithm.

1: initialize t = 0, σ = σ̂, θ̂(0) = θini, T̂1
(0) = T1ini and κ̂(0) = κini

2: while E(t) ≥ Emin and t < tmax do
3: Solve (P.1) to get θ̂(t+1)

4: Set k = 0 (P.2 begins)
5: κk = κ(t) and T k1 = T

(t)
1

6: while EJ (k) ≥ EJmin and k < kmax do
7: Calculate f̃ (t+1)

n (θ̂(t+1)
n ,κk,T k1 ) with Eq. (5.10)

8: Calculate ρn(κk,T k1 ) with Eq. (5.15)
9: Voxel-wise NLLS fitting of fn(κ,T1) to ρn(κk,T k1 ) so as to get κk+1

and T k+1
1

10: Calculate EJ (k) and set k = k + 1
11: end while
12: Set κ̂(t+1) = κk and T̂1

(t+1) = T k1 (P.2 ends)
13: Calculate E(t) and set t = t+ 1
14: end while
15: θML = θ̂(t) and T1ML = T̂1

(t)

To exploit the highly parallelizable structure of the joint MLE, MATLAB parallel
computing tools were used to estimate θn for each value of n separately. Similarly,
the voxel-wise NLLS relaxation model fitting was performed in a parallel manner
by dividing the spatial grid into eight non-overlapping 3D blocks. Finally, a mask
was used to avoid calculation of the relaxation parameters in background areas,
hence speeding up the implementation.

The computational time per iteration of the joint MLE algorithm is dominated
by the voxel-wise T1 fitting, which depends linearly on the number of voxels M ,
depending in turn on the Field-of-View (FOV) and the voxel size. With relatively
little effort to optimize our code, and using the MATLAB parallel tools mentioned
earlier, the voxel-wise T1 fitting took approximately 8 min to process a series of
N = 8 T1-weighted images with M ≈ 105 voxels. Overall, with the tolerance
criterion described above, the average number of total iterations (external plus
internal) was roughly 15, providing precise and accurate θML and T1ML in an
average time of 2.2 hours. Note that migration of the MATLAB code to C++
would produce a much faster implementation, especially if multi-threading is
used for the highly parallelizable relaxation estimation problem [Fogtmann et al.,
2014].

5.3.5 Gaussian approximation for GRAPPA+SoS

When GRAPPA reconstructed data is combined with SoS, the statistical distribution
of the composite magnitude image can be well approximated with a non-stationary
nc-χ distribution, where both the variance and the (effective) degrees-of-freedom
parameter, Leff, are spatially non-stationary (i.e., vary from voxel to voxel) [Aja-
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Figure 5.1: Flow-chart of the joint MLE algorithm.

Fernández and Tristán-Vega, 2013]. Since the MM framework was originally
developed for the nc-χ distribution [Varadarajan and Haldar, 2015], the application
of the proposed joint MLE is straightforward provided an estimate of Leff for every
voxel is available. Unfortunately, practical estimators of spatial maps of Leff are, to
the authors’ knowledge, not yet available in the literature. Nevertheless, for high
SNR, a Gaussian distribution with spatially variant σ has been proved to be an
accurate model in replacement of the nc-χ model [Aja-Fernández et al., 2015b]. In
this case, the joint MLE is even simpler than it was for the Rician case. Indeed, it
can easily be shown that

Lsn(θn, κ̂(t), T̂1
(t)
|sn) = ||W 1/2

n

(
Hθnfn(κ̂(t), T̂1

(t))− sn
)
||

2

2 (5.16)

and
Lsn(θ̂(t+1)

n ,κ,T1|sn) = ||W 1/2
n

(
H
θ̂

(t+1)
n

fn(κ,T1)− sn
)
||

2

2
. (5.17)

The same SA optimization algorithm as before can be used to minimize Eq. (5.16)
for solving the motion estimation problem (P.1). To simplify the minimization
of Eq. (5.17) for solving the relaxation parameter estimation problem (P.2), we
can apply directly the SQS function on Lsn(θ̂(t+1)

n ,κ,T1|sn), avoiding the Bessel
correction step. Indeed, the relaxation parameter estimation problem is again a
NLLS fitting of fn(κ,T1) to a different ρn(κk,T k1 ) where just s̆kn in Eq. (5.15) has
to be replaced by sn, the actual acquired images.
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5.4 Experiments

The proposed joint motion and T1 MLE was validated using both simulated and real
data. Moreover, its performance was compared to that of the CA with MI-based
registration [Pluim et al., 2003], and a recently proposed model-based approach of
Hallack et al. [Hallack et al., 2014].

5.4.1 Simulated T1-weighted data

A set of 3D IR-SE T1-weighted images {sn}Nn=1 affected by inter-image motion (as
in Eq. (5.3)) and noise was simulated from ground truth T1 and proton density
maps. The ground truth T1 map was created from the BrainWeb anatomical model,
using reported T1 values in human brain tissue at 3T [Gold et al., 2004,Wright
et al., 2008]. For the three main brain tissues, white matter, grey matter and
cerebrospinal fluid (CSF), the reference values were 838ms, 1607ms, and 4300ms,
respectively. The ground truth proton density map was created in a similar fashion.
The size of both 3D maps was 111× 93× 71 with an isotropic voxel size of 1.5mm.
From these maps, a set of IR-SE T1-weighted images was simulated based on [Barral
et al., 2010] with TR/TE = 10000 /14 ms, and N = 8 logarithmically equidistant
inversion times {TIn}Nn=1 between 20 ms and 8000 ms. The three consecutive
RF pulse angles were set to 180◦, 90◦ and 180◦. In the next step, we randomly
generated ground truth motion parameters {θn}Nn=1. Each of the six rigid motion
parameters followed an independent Gaussian Random Walk (RW) [Fogtmann
et al., 2014] along the temporal dimension n.

More precisely, the motion parameters were generated as

θn = c+ θn−1 +wn, (5.18)

where c ∈ R6×1 denotes the motion drift and wn ∈ R6×1 a vector valued, zero
mean, Gaussian random variable with covariance matrix Σ = σ2

RWI, with σRW
the standard deviation of each of the elements of wn and I the 6 × 6 identity
matrix. The reference system r was chosen to be r1, hence θ1 = 0. Finally, to
account for noise, Rician distributed images {sn}Nn=1 were simulated [Sijbers and
den Dekker, 2004] with spatially variant noise maps. Synthetic spatially variant
noise maps were generated based on a realistic noise pattern that was presented
in [Aja-Fernández et al., 2015b]. This pattern was derived from a real parallel MRI
acquisition [Aja-Fernández et al., 2014].

The proposed joint motion and T1 MLE was compared to that of the CA with MI-
based registration [Pluim et al., 2003] (the initialization technique for the joint MLE)
and a recently proposed inter-image model-based approach of Hallack et al. [Hallack
et al., 2014]. The MI-based rigid registration step of the CA was implemented
using the first image of the series as a reference. Details of the implementation
were already given in subsection 5.3.3. The remaining MI registration parameters
were set to those provided in the MATLAB built-in code. Hallack’s method was
implemented by following the guidelines provided in [Hallack et al., 2014]. Just
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like the joint MLE, it was initialized with the CA. The parameters κ and T1
were estimated with the LM algorithm. Hallack’s algorithm was stopped when
either the decrease of the cost function between iterations was below Emin, or the
number of iterations exceeded tmax. Two types of simulation experiments were
performed:

5.4.1.1 Exp.1: Performance as a function of SNR

In a first set of experiments (Exp.1), the performance of the joint MLE as a function
of the SNR of the T1-weighted image data set was tested. To that end, motion
parameters {θn}Nn=1 were generated with σRW = 0.4 mm/degree and no drift.
After fixing the motion parameters, T1-weighted image data sets with SNR values
between 20 and 100 were simulated, where the SNR is defined as the spatial mean of
the ratio of the reference noise-free T1-weighted image and the standard deviation
noise map of this reference image. For each SNR, NMC = 15 MC simulations were
generated.

5.4.1.2 Exp.2: Performance as a function of the type of motion

In a second set of experiments (Exp.2), the performance of the joint MLE was
evaluated for different types of motion (and fixed SNR = 40). For completeness,
we also included a case without motion.

a) Low Abrupt motion (LA-m). The motion parameters were generated as in
Exp. 1, i.e., without drift/tendency and with σRW = 0.4 mm/degree.

b) High Abrupt motion (HA-m). The motion parameters were generated without
drift/tendency and with σRW = 1.5 mm/degree.

c) Rotational motion (R-m). The motion parameters were generated with drift
parameter vector c = (0, 0, 0, 0.5, 0.5, 0.5)T and σRW = 0.4 mm/degree. Note
that it follows from Eq. (5.18) and Eq. (5.2) that in this scenario only the
rotation parameters are affected by drift.

d) Translational motion (T-m). The motion parameters were generated with
c = (0.5, 0.5, 0.5, 0, 0, 0)T and σRW = 0.4 mm/degree.

e) No motion (No-m). No motion was applied, i.e., f̃n(θn,κ,T1) = fn(κ,T1).

For all types of motion, extreme values as well as mean values for each of the
six rigid parameters along the temporal dimension n are shown in the second
column of Table 5.1. For each type of motion, NMC = 15 simulations, i.e., noisy
T1-weighted image data sets, were generated (with fixed motion parameters and
SNR= 40).

To assess the ability of each method to estimate the T1 map, the following perfor-
mance measures were used:
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(a) Relative bias. The bias quantifies the accuracy of the estimator. For each
voxel, the relative sample bias was calculated as ( ¯̂

T1−T1)/T1, where ¯̂
T1 is the

sample mean of the NMC estimates T̂1 and T1 is the true value. A measure
of the overall accuracy of the T1 map was obtained by calculating the spatial
mean of the absolute value of the relative sample bias, using a brain mask to
avoid the skull.

b) Relative standard deviation. The standard deviation quantifies the precision
of the estimator. For each voxel the relative sample standard deviation was
calculated as std(T̂1)/T1, and an overall precision measure was obtained by
taking the spatial mean of these relative sample standard deviations, using
the same brain mask.

c) Relative root-mean-square error (relative RMSE). The RMSE is a measure
that incorporates both accuracy and precision. For each voxel, the relative
sample RMSE was calculated as

√
(T̂1 − T1)2/T1. An overall RMSE measure

was obtained by calculating the spatial mean of these relative sample RMSE
values, again within the same brain mask.

To assess the ability of each method to estimate motion, the following performance
measures were used:

d) Relative motion error, defined as

||θ̂ − θ||2/||θ||2. (5.19)

e) Motion component relative bias, defined as

1
N

N∑
n=1
|([θ̂n]j − [θn]j)/[θn]j |, (5.20)

with [θn]j the jth component of θn and [θ̂n]j the sample mean of the NMC
estimates [θ̂n]j .

5.4.2 Ground-truth based real experiment

In order to assess the performance of the joint MLE with an actual T1-weighted data
set corrupted by motion, we performed a controlled experiment. The experiment
comprised the acquisition of two data sets. Firstly, we acquired an IR T1-weighted
data set of a (static) watermelon. In a second step, we deliberately introduced
motion between the acquisition of each of the acquired 2D multi-slice T1-weighted
images. In particular, we manually translated and rotated the watermelon after the
complete acquisition for a fixed TI. From this data, estimated T1 maps were obtained
with the CA, Hallack’s method and the joint MLE. We then quantitatively compared
these T1 maps to the estimated T1 map of the first dataset, which was unaffected
by motion and hence can be considered as a reasonable ground-truth.
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Both IR T1-weighted data sets were acquired with a 3T MRI scanner (MAGNETOM
Prismafit, Siemens) using a 32-channel head coil. The IR T1-weighted data sets
comprised N = 8 T1-weighted multi-slice images whose inversion times were
logarithmically spaced between 300 and 6000 ms. For each inversion time, we
acquired a 2D multi-slice image with a 2D interleaved multi slice IR TSE sequence
[Bernstein et al., 2004] (see also subsection 3.4.1.1). The Echo Train Length (ETL)
was 10 and TR/TE = 7920/8.8ms. Each multi-slice image was acquired within
approximately 3 min. The total scan time was about 24 minutes. The acquisition
plane was axial and the acquisition matrix was 256× 256× 40 with an anisotropic
voxel size of 1× 1× 4 mm3 and no slice gap. Magnitude data were reconstructed
using the SENSE method (acceleration factor of 2) [Pruessmann et al., 1999]. The
coordinate system of the image with the highest inversion time was chosen to be
the reference system r. An estimated SNR of the reference image, as defined in
subsection 5.4.1.1, was found to be 26. The estimation of the SNR was performed
with the Expectation-Maximization-based method of De Vore [DeVore et al., 2000]
adapted for local estimation [Aja-Fernández et al., 2015b] to work with one single
image (3× 3 neighborhoods were used). The ground-truth T1 map was estimated
with a voxel-wise MLE based on Rician data [Sijbers et al., 1999], where the noise
standard deviation map was estimated in a preprocessing step using the method
described in [Aja-Fernández et al., 2015b].

5.4.3 In vivo T1-weighted data

We validated the joint MLE with two in vivo human brain data sets suffering from
involuntary patient motion.

5.4.3.1 In vivo axial human brain data

An IR T1-weighted data set of a healthy 26-year old male volunteer was acquired
with a 3T MRI scanner (MAGNETOM Skyra, Siemens) using a 20-channel head coil.
For each inversion time, we acquired a 2D multi-slice image with an interleaved 2D
multi-slice IR TSE sequence [Park et al., 1985,Bernstein et al., 2004]. The sequence
parameters were: ETL = 4 and TR/TE = 8040/18 ms. Each multi-slice image was
acquired within 2.5 min approximately. The IR T1-weighted data set comprised
N = 7 T1-weighted multi-slice images whose inversion times were logarithmically
spaced between 50 and 3200 ms. The total scan time was about 19 minutes. The
acquisition plane was axial and the acquisition matrix was 128× 128× 25 with an
anisotropic voxel size of 1.9 × 1.9 × 6 mm3 and a slice gap of 10%. The SENSE
method was employed to reconstruct the magnitude data with an acceleration
factor of 3. Noise maps were obtained with the method of [Aja-Fernández et al.,
2015b]. We estimated an SNR of 24.3 with the method of [DeVore et al., 2000]. In
this case, the reference image was the one with lowest inversion time.
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5.4.3.2 In vivo sagittal human brain data

An IR T1-weighted data set of a healthy 28-year old male volunteer was acquired
with a 3T MRI scanner (MAGNETOM Prismafit, Siemens) using a 32-channel head
coil. As in the previous in vivo experiment, we acquired for each inversion time a
2D multi-slice image with an interleaved 2D multi-slice IR TSE sequence [Bernstein
et al., 2004]. The sequence parameters were: ETL = 10 and TR/TE = 5000/4.8
ms. Each multi-slice image was acquired within 2 min approximately. The IR
T1-weighted data set comprised N = 14 T1-weighted images whose inversion times
were logarithmically spaced between 100 and 3000 ms, giving a total acquisition
time of 28 min. The acquisition plane was sagittal and the acquisition matrix
was 256× 256× 40 with an anisotropic voxel size of 1× 1× 4 mm3 and no slice
gap. Magnitude data were reconstructed with the GRAPPA method with SoS
reconstruction (acceleration factor of 3) [Griswold et al., 2002]. The image with the
lowest inversion time was chosen as a reference. We estimated an SNR of 55 with a
locally adapted ML estimator (3× 3 neighborhoods) assuming an nc-χ distribution.
Due to the high SNR, we relied on results of [Aja-Fernández et al., 2015b] and used
the version of the joint MLE algorithm adapted for spatially variant Gaussian noise
(subsection 5.3.5). Noise maps were obtained with the method of [Aja-Fernández
et al., 2015b]. The CA was implemented with a Gaussian MLE where the noise
standard deviation was estimated with the method described in [Aja-Fernández
et al., 2015b].

5.5 Results

5.5.1 Simulated T1-weighted data

5.5.1.1 Exp.1: Performance as a function of SNR

Overall relative T1 bias, standard deviation and RMSE results are shown in
Fig.5.2.(a-c). For the whole range of SNR, the joint MLE allows a much more
accurate estimation of the T1 map than Hallack’s method and especially than
the CA. In terms of precision, CA obtains the best result, followed by the joint
MLE and Hallack’s method. However, in terms of the overall RMSE, the joint
MLE performs best for all values of the SNR. Furthermore, the box-plot shown
in Fig. 5.2.(d) demonstrates the superiority of the proposed joint MLE in terms
of motion estimation. To complement the results, maps of the absolute value of
the relative sample bias for the three methods are shown in Fig. 5.3.(b-d), along
with the simulated ground truth in Fig. 5.3.(a). A close look at the bias maps
corroborates the poor performance of the CA compared to the joint MLE. It is also
clearly seen that the bias map of Hallack’s method presents much higher values
than that of the joint MLE, especially in white/grey matter surroundings.
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(a) (b)

(c) (d)

Figure 5.2: Results of Exp.1: (a) relative T1 bias, (b) relative T1 standard deviation, (c)
relative T1 RMSE and (d) box plots of the relative motion error, as a function of the SNR.

5.5.1.2 Exp.2: Performance as a function of the type of motion

Bar charts representing the overall T1 accuracy, precision and RMSE for the four
cases of motion and the no-motion scenario are shown in Fig. 5.4. In light of
these results, it can be concluded that the joint MLE yields the most accurate T1
maps in all the four considered motion scenarios, followed by Hallack’s method.
Furthermore, the performance of all methods seems to be fairly insensitive to the
type of motion considered. Even though the highest precision was consistently
obtained with the CA, its overall relative RMSE is much higher compared to
Hallack’s method and especially to the joint MLE, which again produces the best
T1 maps in RMSE sense. The case of no-motion is particularly interesting. In such a
scenario, the CA performance drastically improves in terms of accuracy and RMSE,
though its precision decreases. In the absence of motion, the error propagation of
the CA approach is negligible, and hence, the overall relative accuracy of the CA
approaches the one obtained with the joint MLE, which is yet the highest. The
decrease in precision of the CA can be understood as follows. In the absence of
motion, the interpolation (and hence smoothing) effects that are inherent to the
registration step of the conventional two-step approach become marginal, hence
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Figure 5.3: Results of Exp.1: (a) Mid-axial slice of the 3D ground truth T1 map, and
maps of the absolute value of the relative sample bias [in %] for (b) CA, (c) Hallack’s
method and (d) joint MLE, for SNR = 40.

not contributing to a reduction in the variability of the estimates.

The motion component relative bias for each of the six components are reported
in Table 5.1. For the no-motion case, the motion component relative bias is not
well-defined (division by zero). Instead, we report the motion component absolute
bias.

The best results are highlighted in shaded gray. In 27 of 30 cases, the joint MLE
achieved the highest accuracy in both the translation and rotation parameters.
Sometimes, this improvement is even more than 5-fold compared to the CA. In
general, Hallack’s method provides more accurate T1 estimates than CA, which is
in agreement with previously reported results [Hallack et al., 2014,Huizinga et al.,
2016]. Nonetheless, further substantial improvement can be obtained if the joint
MLE is used. To illustrate the quality of the motion estimation, we have shown
graphs, as a function of n, of the ground-truth and estimated motion parameters
for one of the rotational motion (R-m) simulations in Fig.A.1.

It is also important to notice that the occasionally poor CA-based motion initial-
ization does not prevent the joint MLE from producing the most accurate motion
estimates. This highlights another feature of the joint MLE: it is fairly robust to
scenarios where the CA-based motion initialization is relatively poor.
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(a) (b) (c)

Figure 5.4: Results of Exp.2: (a) relative T1 bias, (b) relative T1 standard deviation and
(c) relative T1 RMSE.

5.5.2 Ground-truth based real experiment

A top-axial and a mid-axial slice of the estimated T1 maps for the CA, Hallack’s
method and the joint MLE are shown in Fig. 5.5.(c-e) and Fig. 5.5.(m-o), whereas
the ground truth T1 map and the T1 map estimated without motion correction are
displayed in Fig. 5.5(a-b) for the top-axial slice and in Fig. 5.5.(k-l) for the mid-axial
slice. From this experiment, it can be observed that more detailed T1 maps can
be obtained with the joint MLE in comparison to Hallack’s method and especially
to the CA. Aside from the presence of a large number of outliers in the T1 maps
obtained with the CA and Hallack’s method, which are drastically reduced with
the joint MLE, fine structural details seem better preserved with our proposed
method. This observation is confirmed by inspecting the magnified regions. The
heterogeneity of the T1 values in those regions, as noticed from the ground-truth T1
map, is better maintained with the joint MLE. See for instance the delineation of
low T1 value structures in Fig. 5.5.(f-j). Note as well that artifacts in the T1 maps,
as shown in Fig. 5.5.(p-t) (green arrow), are considerably mitigated with the joint
MLE. Quantitative validation of the estimated T1 maps was based on spatial maps
of the absolute value of the relative errors [%]. Those maps are shown in Fig. 5.6.
In accordance with our previous discussion, the spatial distributions of the relative
errors further indicate the good performance of the joint MLE in comparison to
competing methods. It is manifestly clear that the error maps of Hallack’s method
and the CA present much higher values than that of the joint MLE. To complement
the quantitative analysis, we calculated an overall relative error, within a mask
neglecting the background, in a similar fashion as done in Exp.1. Numerical results
are in agreement with the observation made from the spatial maps. We found that
the joint MLE produced the T1 map with the lowest overall relative error. Indeed,
the overall relative error for the without motion correction case, the CA, Hallack’s
method and the joint MLE was 87%, 20.2%, 19.7% and 15.1%, respectively. To
further complement the quantitative analysis, graphs of the motion parameter
estimates for the three methods are shown in Fig.A.2.
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Table 5.1: Results of Exp.2: for four types of motion (column 1), the maximum and mean
values of the motion parameters (column 2), and the motion component relative bias
for each of the six components for CA, Hallack’s and the joint MLE method (columns
3-5) are shown. For the no-motion case, the motion component absolute bias is reported
instead of the motion component relative bias since the latter metric is not well-defined
for parameters that are equal to zero.

Type Motion (max / mean) CA Hallack Joint MLE

LA-m

tx (2.5 / 0.98 mm) 8.4 % 4 % 1.1 %
ty (1.4 / 0.88 mm) 1.4 % 2.1 % 0.4 %
tz (1 / 0.38 mm) 33.5 % 30.9 % 5.3 %
α (0.2 / 0.003 degree) 63.5 % 20.6 % 9.5 %
β (-0.2 / -0.06 degree) 90 % 43.8 % 19.1 %
γ (0.57 / 0.26 degree) 75.4 % 57.5 % 6.8 %

HA-m

tx (-9.4 / -4.4 mm) 2.3 % 3.9 % 0.1 %
ty (-2.3 / 0.08 mm) 30 % 12.9 % 2.4 %
tz (4.6 / 2 mm) 27 % 19.8 % 13.5 %
α (-2.1 / -0.51 degree) 4.9 % 10.5 % 6.4 %
β (3.7 / 1.9 degree) 1.4 % 2 % 0.9 %
γ (1.3 / 0.5 degree) 4.9 % 18.2 % 19.6 %

R-m

tx (-0.8 / -0.4 mm) 5.5 % 3.4 % 1.2 %
ty (1.1 / 0.8 mm) 2.3% 3.1 % 1.1 %
tz (0.3 / 0.02 mm) 466 % 166 % 29.8 %
α (3.2 / 1.5 degree) 2.1 % 1.3 % 0.7 %
β (3.1 / 1.5 degree) 1.6 % 0.9 % 1.1 %
γ (1.9 / 1.1 degree) 2.9 % 5 % 0.13 %

T-m

tx (2.9 / 1.4 mm) 1.3 % 1.9 % 0.8 %
ty (2.8 / 1.9 mm) 1.2 % 3 % 1.1 %
tz (2.1 / 1.2 mm) 2 % 2.6 % 0.8 %
α (-0.3 / -0.2 degree) 26.7 % 64.7 % 20.7 %
β (-0.8 / -0.3 degree) 121.15 % 17.2 % 4.7 %
γ (-0.5 / -0.2 degree) 91.1 % 27.1 % 21.7 %

No-m

tx (0 / 0 mm) 0.012 0.032 0.009
ty (0 / 0 mm) 0.112 0.077 0.03
tz (0 / 0 mm) 0.078 0.159 0.086
α (0 / 0 degree) 0.0281 0.0133 0.01
β (0 / 0 degree) 0.083 0.057 0.019
γ (0 / 0 degree) 0.0201 0.0183 0.011

5.5.3 In vivo T1-weighted data

5.5.3.1 In vivo axial human brain data

A mid-axial and a top-axial slice of the estimated T1 map for the three methods
are shown in Fig. 5.7.(b-d) and Fig. 5.7.(f-h), respectively. The estimated T1 maps
without motion correction are shown in Fig. 5.7.(a) and Fig. 5.7.(e). The presence
of outliers in the T1 map when motion correction is not applied is not completely
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Figure 5.5: Two axial slices of a watermelon T1 map. Top-axial slice: (a) ground-truth
(no motion), (b) without motion correction, (c) CA, (d) Hallack’s method, (e) joint MLE.
Magnified regions are shown in (f-j). Mid-axial slice: (k) ground-truth (no motion), (l)
without motion correction, (m) CA, (n) Hallack’s method, (o) joint MLE. Magnified
regions are shown in (p-t).

avoided with the CA. Indeed, it can be clearly observed that outliers are still
present, in particular at the interfaces between ventricles and white matter (green
arrow) for the mid-axial slice, and in the interfaces between white and grey matter
for the top-axial slice Fig. 5.7(f). The T1 map produced by Hallack’s method seems
free from outliers in the mid-axial but not in top-axial slice Fig. 5.7(g) (green
arrow). The joint MLE provides T1 maps which do not suffer from this issue. The
motion parameter estimates obtained with the three methods are shown in Fig. A.3.

5.5.3.2 In vivo sagittal human brain data

Two mid-sagittal slice of the estimated T1 map for the three methods are shown in
Fig. 5.8(b-d) and Fig. 5.8(j-l), respectively. In Fig. 5.8(a) and Fig. 5.8(i) estimated
T1 maps for the no motion correction case are presented.
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In this case, the estimated T1 map with the CA is almost free from outliers,
which are widespread when no motion correction is accomplished, see magnified
regions in Fig. 5.8.(e-f) and Fig. 5.8.(m-n). However, the CA sacrifices the final
resolution of the T1 map. It is clear that in the T1 map obtained with Hallack’s
method and especially in that obtained with the joint MLE, structure details are
better defined and contours better delineated, particularly in the interfaces between
white/grey matter and CSF. Visual differences between the T1 maps provided by
Hallack’s method and the joint MLE can be discerned as well. For example, the
CSF infiltrating the cortical folds (see Fig. 5.8.(g-h)) seems better defined with
the joint MLE. In addition, yet a (reduced) number of outliers can be detected
in the T1 map estimated with the Hallack’s method. See for example, Fig. 5.8.(o).
Such outliers, as in the in vivo axial experiment, are not present provided the joint
MLE is applied. The motion parameter estimates of this experiment are shown in
Fig.A.4.

5.6 Discussion and Future work

We presented a unified model-based approach for simultaneous motion correction
and T1 mapping that jointly estimates the motion parameters and the T1 map
using a maximum likelihood estimator (MLE). The proposed joint MLE possesses
optimal statistical properties, which are shared by neither the conventional two-step
approach (image registration prior to T1 estimation) nor other heuristic integrated
model-based methods.

Using realistic MC simulation experiments, it was shown that the proposed joint
MLE outperforms existing T1 mapping methods in terms of both accuracy and
RMSE, next to providing more accurate motion parameter estimates. Results
of the controlled experiment based on ground-truth real data are in line with
the findings of MC simulations. We have shown that detailed and meaningful
T1 map can be recovered with the joint MLE under the influence of manually
induced, severe motion. Quantitative comparison against a ground-truth T1 map
demonstrates the superior quality in T1 map restoration compared to CA and
Hallack’s method.

Furthermore, the optimal unified ML framework has been validated with in vivo
human brain data experiments, suffering form involuntary motion. From these
experiments, it has become evident that motion correction is indispensable in T1
mapping, even when subject motion is relatively small. Interestingly, yet recognizing
the limitation of visual assessment in quantitative MRI, some of the rigorously
derived statistical conclusions from the MC simulations can be noticed in the two
whole brain human data sets. For instance, the arguably poorer motion estimation
performance of the CA compared to model-based registration approaches, already
reported by [Hallack et al., 2014, Huizinga et al., 2016] and confirmed by our
MC results (see Fig. 5.2.(d) and Table 5.1), may be the cause of the presence of
outliers in the estimated T1 map and the loss of fine details. The presence of
a small number of outliers in the estimated T1 map with Hallack’s method can
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be attributed to its non-optimal/heuristic design. While improvement in motion
estimation compared to CA has been demonstrated, optimality in terms of T1
estimation cannot be theoretically and empirically guaranteed. In contrast, our ML
framework combines, in a single integrated approach, the benefits of model-based
registration techniques with optimal T1 map restoration based on statistical theory,
where the noise statistics are properly accounted for.

On top of that, our careful algorithm design avoids heavy computational burden.
Note that the voxel-wise T1 fitting task, which contributes most to the computational
cost of the proposed joint MLE, is often also included in the iterative loop of other
model-based integrated methods. Consequently, the computation time per iteration
is comparable.

The proposed ML framework can be extended in different ways without compro-
mising its optimal statistical properties. Extension to other MRI sequences or
modalities is straightforward by substituting a properly modified parametric signal
model for Eq. (5.1). Such potential extensions include T2 and T ∗2 mapping [Sijbers
et al., 1998c]. Moreover, multi-component T2 mapping would benefit as well from
the proposed ML framework [Björk et al., 2016]. Furthermore, it is worthwhile
mentioning that when the joint MLE proposed in this work is applied to the partic-
ular case of T1 mapping using the spoiled gradient recalled echo (SPGR) sequence,
its computational efficiency can even be further improved by using the recently
proposed fast non-linear least squares T1 estimator NOVIFAST [Ramos-Llordén
et al., 2016] for solving the voxel-wise NLLS problems in P.2.

Extensions towards the inclusion of different types of motion, e.g., non-rigid
motion, are also possible but require further study, which is considered future
work. In this work, we have assumed a motion model which accounts for inter-
image motion, that is, motion between each of the 3D T1-weighted images. Although
this model left aside intra-motion effects, which is known to affect the k-space
reconstruction process, we have not observed any derived ghosting artifacts in the in
vivo reconstructed T1-weighted images. It should be noted that, to deal with such
kind of motion, navigators [Welch et al., 2002] or advanced k-space reconstruction
methods with motion correction [Cordero-Grande et al., 2016] can be applied in
conjunction with the joint MLE. However, though intra-image motion may be
alleviated with such techniques, image registration, that is, inter-image motion
correction, will remain necessary, which further emphasizes the relevance of the
unified ML framework. Finally, it is relatively straightforward to extend the ML
framework to cope with inter-slice motion, that is, motion occurring between the
acquisition of 2D slices of a T1-weighted dataset. An outlook to such an extension,
which is especially relevant for image acquisition methods that acquire 3D volumes
slice by slice sequentially, such as Echo Planar Imaging (EPI) sequences [Fogtmann
et al., 2014], is given in subsection A.4.
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5.7 Conclusions

In quantitative MR T1 mapping, it is common practice to register the T1-weighted
images prior to T1 map estimation. However, as demonstrated in this chapter, this
conventional two-step approach lacks high accuracy motion estimation and leads
to biased T1 estimates. Hence, we have proposed a rigorous unified framework
for simultaneous motion and T1 estimation using a Maximum Likelihood (ML)
estimator. It has been demonstrated that the proposed joint MLE outperforms the
conventional approach as well as a recently proposed model-based method [Hallack
et al., 2014] in terms of motion and T1 estimation accuracy and RMSE. Our ML
framework, which uses an efficient algorithm, has been validated in a controlled
experiment with real T1-weighted data and also with two in vivo human brain
data sets. We believe that the unified ML framework possesses serious advantages
over the conventional approach to replace it in clinical scenarios where precise and
accurate T1 estimates are the ultimate goal.
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Figure 5.6: Maps of the absolute value of relative error with respect to the ground-truth
T1 map. Top-axial slice: (a) without motion correction, (b) CA, (c) Hallack’s method, (d)
joint MLE. Mid-axial slice: (e) without motion correction, (f) CA, (g) Hallack’s method,
(h) joint MLE.
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Figure 5.7: Two axial slices of a whole human brain T1 map. Mid-axial slice: (a) without
motion correction, and corrected with (b) CA, (c) Hallack’s method, (d) joint MLE.
Top-axial slice: (e) without motion correction, and corrected with (f) CA, (g) Hallack’s
method, (h) joint MLE.
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Figure 5.8: Two mid-sagittal slices of a whole human brain T1 map. First mid-sagittal slice:
(a) without motion correction, (b) CA, (c) Hallack’s method, (d) joint MLE. Magnified
regions are shown in (e), (f), (g) and (h), respectively. Second mid-sagittal slice: (i)
without motion correction, (j) CA, (k) Hallack’s method, (l) joint MLE. Magnified regions
are shown in (m), (n), (o) and (p), respectively.
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6.1 Introduction

Quantitative T1 mapping is a Magnetic Resonance Imaging (MRI) technique that
deals with the estimation of the spin-lattice relaxation time (T1) in biological
tissues [Tofts, 2004]. The spin-lattice relaxation time has proved to be an excellent
biomarker in a broad range of diseases, such as multiple sclerosis [Larsson et al.,
1989], epilepsy [Conlon et al., 1988] and Alzheimer’s disease [Erkinjuntti et al.,
1987]. Due to the large spectrum of potential applications, there is an increasing
interest in turning quantitative T1 mapping into a mature and robust MR modality
that can be routinely used in clinical practice. In this effort, the longstanding goal is
to provide accurate high-resolution spatial maps of T1 in a short time frame [Deoni
et al., 2003]. To that end, a plethora of T1 mapping techniques have been proposed
during the last decades (see [Stikov et al., 2015] for a recent review). Among them,
the Variable Flip Angle (VFA) technique, also known as the variable nutation angle
method, has gained increasing popularity [Deoni et al., 2003]. This is mainly due
to its superior time efficiency compared to other T1 mapping techniques, such as
the traditional Inversion Recovery (IR) technique [Stikov et al., 2015].

VFA T1 mapping consists of the acquisition of a range of steady-state spoiled
gradient recalled echo (SPGR) MR images over a set of flip angles [Christensen
et al., 1974,Homer and Beevers, 1985,Fram et al., 1987]. Since steady-state MR
sequences can use much shorter repetition times (TR) [Nataraj et al., 2017] than
classical inversion/saturation recovery sequences, high resolution T1 maps can be
acquired in real-time clinical acquisition [Deoni et al., 2003]. Importantly, the
fact that the SPGR signal model can be easily linearized, an observation which
dates back to 1977 [Gupta, 1977], has encouraged researchers to develop fast linear
T1 estimation algorithms [Deoni et al., 2003,Chang et al., 2008], rendering the
estimation time of the T1 map negligible in comparison to the acquisition time.
With such computationally inexpensive algorithms, real-time high resolution T1
mapping can be achieved. The simplicity and efficiency of the T1 estimation
step are among the main reasons why VFA T1 mapping has drastically grown in
popularity, with DESPOT1 (Driven Equilibrium Single Pulse Observation of T1)
being the most widespread algorithm [Deoni et al., 2003]. Unfortunately, the price
to pay with such linear estimators is a loss of accuracy, since the linearization of
the SPGR model becomes inexact in the presence of noise, thereby introducing a
noise-induced bias. For that reason, some researchers still adhere to more accurate
non-linear least squares (NLLS) estimators, which can be shown to have optimal
statistical properties for clinically achievable signal-to-noise ratios [den Dekker and
Sijbers, 2014]. However, NLLS estimators require the use of non-linear optimization
algorithms, which are typically much slower than linear algorithms, can be difficult
to implement, and are prone to convergence issues if not properly initialized.

Encouraged by such an apparent trade-off between speed and statistical optimality,
we present a novel NLLS optimization algorithm for VFA T1 mapping which
combines the best of both worlds: high accuracy and precision in a low computation
time. The method, which we dubbed NOVIFAST (being an acronym for NOn-
linear VarIable Flip Angle data baSed T1 estimator), shares the same favorable
statistical properties as the de facto standard NLLS optimization algorithm, the
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Levenberg-Marquard (LM) algorithm, but with a much lower computation time,
being comparable to that of DESPOT1. To derive NOVIFAST, we follow a
fundamentally different approach compared to conventional NLLS optimization
algorithms. Instead of attempting to decrease the NLLS criterion in each iteration,
we seek for the NLLS estimates by solving the root-finding problem that arises
when the first-order conditions for optimality are imposed. In this derivation, we
make use of the special structure of the SPGR signal model to come up with a
surprisingly simple set of non-linear equations which resembles a purely linear
system. Those non-linear equations are then solved iteratively in a very short
number of iterations. We study NOVIFAST’s convergence in a framework of
fixed-point algorithms theory, thereby revealing its good convergence properties.
Monte-Carlo based simulations are used to evaluate NOVIFAST’s performance and
compare it with that of NLLS optimization algorithms (i.e., the Gauss-Newton
(GN) and LM algorithm), DESPOT1, and the Iterative Re-Weighted Linear Least
Squares (IRWLLS) method proposed by Chang et al. [Chang et al., 2008]. Finally,
NOVIFAST is validated with a set of in-vivo human brain SPGR MR images.

The structure of the remainder of the chapter is as follows. In section 6.2, the
SPGR signal model is described as well as the most popular VFA T1 mapping
algorithms. In section 6.3, the complete derivation of NOVIFAST is given and its
convergence properties are presented. Experiments are described in section 7.4 and
the corresponding results are presented in section 6.5. Next, possible extensions
are described (section 6.6), and the main conclusions are summarized at the end of
the chapter (section 6.7).

6.2 Background

6.2.1 SPGR signal model

The basis of VFA SPGR method was already described in subsection 3.4.2. Here,
we repeat them for clarity. The VFA SPGR method for T1 mapping is based
on the acquisition of a set of MR images where the images are acquired with
different/variable non-zero flip angles (FAs), but constant TR and TE. Since the
images are differently T1-weighted, T1 mapping can be performed by voxel-wise
fitting a prescribed mathematical model to the set of MR images. A very popular
model for the noiseless (magnitude) steady-state SPGR signal intensity {sn}Nn=1
is the model presented in Eq. (3.10). Each of the signals samples sn can be hence
described by [Teixeira et al., 2017]:

sn(K,T1) = K(1− e−
TR
T1 ) sin(αn)

1− e−
TR
T1 cos(αn)

, for n = 1, ..., N, (6.1)

where {αn}Nn=1 denotes the FAs, with αn 6= 180◦ for every n, and N is the
total number of FAs used (or images collected). In reality, the signal {sn}Nn=1
is always corrupted by noise. Therefore, the measured noisy SPGR samples
yn, for n = 1, ..., N , can be considered as realizations of random variables whose
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distribution depends parametrically on K and T1. Given a set of samples {yn}Nn=1,
inferring the values of the unknown underlying T1 and K (assuming TR and αn to
be known) is an estimation problem. A wide variety of estimators may be defined.
In this work, we focus on the ordinary, i.e., unweighed, NLLS estimator, as well as
heuristic linear least squares (LLS) estimators, since these types of estimators are
the most popular ones in VFA T1 mapping. In the succeeding section, we review
the most common NLLS optimization algorithms to solve the NLLS estimation
problem, as well as the heuristic linearized variants. We discuss their pros and
cons, after which we present our novel NLLS method.

6.2.2 NLLS estimation problem

For a given data set {yn}Nn=1, the ordinary NLLS estimator is defined as

{K̂, T̂1} = arg min
K,T1

N∑
n=1

(
yn − sn(K,T1)

)2
. (6.2)

Such an optimization problem cannot be solved analytically and hence one has to
resort to numerical algorithms. A straightforward, though naive, approach to find
K̂ and T̂1 would be to perform a grid-search in the domain of the optimization
variables. That is, the cost function of Eq. (6.2) is evaluated in a sufficiently
dense grid and then, the minimum value is retained. However, the multiple
function evaluations make this technique computationally demanding. Instead,
optimization algorithms that attempt to find the local minima are commonly
employed. Perhaps, the main representative of this class of algorithms is the full
Newton algorithm [Nocedal and Wright, 2006]. A downside of this algorithm is
that it is considerably time-consuming due to the need of line searches and the
computation of the Hessian matrix. To solve NLLS estimation problems, it is
often better to exploit the quadratic structure of the cost function, as is done by
the celebrated Gauss-Newton (GN) and Levenberg-Marquard (LM) [Levenberg,
1944,Marquardt, 1963] algorithms, which are, by far, the most popular NLLS
optimization algorithms. Both algorithms are briefly reviewed below.

6.2.2.1 Gauss-Newton (GN)

Let us define r(K,T1) = (r1(K,T1), ..., rN (K,T1))T , where rn(K,T1) = yn −
sn(K,T1) are the so-called residuals of the NLLS problem. The GN algorithm can
be derived by linearly approximating r(K,T1) around a given estimate (Kk, T k1 ) [No-
cedal and Wright, 2006],

r(K,T1) ≈ r(Kk, T k1 ) + Jr(Kk, T k1 )∆, (6.3)

where Jr(Kk, T k1 ) is the Jacobian matrix of r(·, ·), evaluated at (Kk, T k1 ). The
vector ∆ = (K,T1)T − (Kk, T k1 )T is called the step vector. After substituting
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Eq. (6.3) into Eq. (6.2), and equating the gradient of the cost function with respect
to ∆ to zero, we arrive at the normal equations:

J̃r(Kk, T k1 )∆ = −Jr(Kk, T k1 )Tr(Kk, T k1 ), (6.4)

with J̃r(Kk, T k1 ) = Jr(Kk, T k1 )TJr(Kk, T k1 ). Provided J̃r(Kk, T k1 ) is non-singular,
a condition implicitly assumed in the GN algorithm, the step vector can be obtained
analytically for each iteration, which, for the dimensions of the problem at hand
(2× 2), can be done with a negligible computational effort. The GN algorithm can
also be interpreted as an inexact full Newton algorithm where the Hessian matrix
is approximated to avoid the computational burden [Nocedal and Wright, 2006].
The GN algorithm works well close to the minimum, however, it may not converge
at all if it is not initialized properly [Marquardt, 1963,Dan et al., 2002]. Rigorous
conditions to prove local convergence1 are given in [Chen and Li, 2005].

6.2.2.2 Levenberg-Marquardt (LM)

The LM algorithm [Levenberg, 1944,Marquardt, 1963] can be seen as a generaliza-
tion of the GN algorithm. Like GN, the LM algorithm can be derived from the
normal equations (Eq. (6.4)), but this time J̃r(Kk, T k1 ) is modified to

J̃r(Kk, T k1 ) + λ diag
(
J̃r(Kk, T k1 )

)
, (6.5)

where λ is a user-controlled parameter which may be updated at each iteration,
and diag

(
J̃r(Kk, T k1 )

)
is a diagonal matrix whose entries are the elements on the

diagonal of J̃r(Kk, T k1 ). When λ→ 0, the calculated step vector ∆ approaches the
GN step obtained by solving Eq. (6.4). When λ increases, ∆ approaches a gradient
descent step where each component is weighted according to diag

(
J̃r(Kk, T k1 )

)
.

At initial iterations, λ is set to a non-zero value. The LM algorithm behaves
as a modified gradient descent method at early iterations, assuring the desirable
descent-property, but mimics GN as it gets closer to the minimum. This is achieved
by progressively decreasing λ towards zero. LM is slightly more computationally
demanding than GN, but it converges for initializations that are far away from the
solution, where GN often fails [Marquardt, 1963]. In this sense, LM shows global
convergence properties and is, therefore, the preferred method of choice in common
NLLS problems.

6.2.3 Heuristic linearized variants

Both GN and LM make use of the quadratic expression of the NLLS cost function
but, as general-purpose NLLS algorithms, they do not consider the particular

1In optimization theory’s parlance [Chen and Li, 2005,Lanckriet and Sriperumbudur, 2009],
local convergence means that convergence is assured if the initial approximation is close enough
to a stationary point. In contrast, global convergence implies convergence for any arbitrary
initialization. Note that this terminology does not deal with the character of stationary points,
e.g., local/global minima, but just refers to convergence to stationary points.
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structure of the SPGR signal model described by Eq. (6.1) . Indeed, by dividing
both sides of Eq. (6.1) by sin(αn), and then rearranging the equation, it can be
shown that Eq. (6.1) can be written as [Gupta, 1977]:

sn
sinαn

= c2
sn

tanαn
+ c1 for n = 1, ..., N, (6.6)

with
c1 = K(1− c2), c2 = exp (−TR/T1), (6.7)

and where it has been assumed that αn 6= 90◦ and αn 6= 270◦ in order for tanαn
to be well-defined. The linear relation of Eq. (6.6) (w.r.t. c1 > 0 and c2 > 0) is
substantially exploited in several LLS-based algorithms, which we briefly review
hereunder.

6.2.3.1 DESPOT1

The DESPOT1 algorithm, proposed by Deoni et al. [Deoni et al., 2003], aims to
estimate c1 and c2 in a linear regression framework. Indeed, in the absence of noise,
sn

tanαn may be considered as the regressor variables and sn
sinαn as the regressand

counterparts. In the noisy case, {sn}Nn=1 is not observable and hence DESPOT1
replaces {sn}Nn=1 by {yn}Nn=1, after which c1 and c2 are estimated by linear least
squares (LLS) regression. DESPOT1 presents the lowest computational cost since
it is an analytical estimator (i.e., it gives the estimates in a closed-form expression).
However, as it strongly relies on the linear relation described by Eq. (6.6), and
this relation no longer holds when {sn}Nn=1 is replaced by {yn}Nn=1, a bias is
introduced, which becomes more pronounced at low signal-to-noise ratio [Chang
et al., 2007].

6.2.3.2 Iterative Re-Weighted Linear Least Squares (IRWLLS)

To increase the accuracy of DESPOT1, Chang et al. [Chang et al., 2008] suggested
to include a weighting function for each of the samples n = 1, ..., N . The linear
regression approach is then transformed into a weighted linear regression approach,
where the weights are derived based on uncertainty propagation theory. Since the
optimal weights depend on the parameters to be estimated, Chang et al. proposed
an iterative approach where the parameters c1 and c2 are estimated using a weighted
linear least squares estimator of which the weights are updated iteratively. This
iterative re-weighted linear least squares (IRWLLS) method effectively outperforms
DESPOT1 in terms of accuracy. However, there is no guarantee that the final
estimates share the same optimal properties as a pure NLLS approach. Furthermore,
the convergence of the iterative procedure is not guaranteed. Consequently, the
algorithm may in fact diverge.
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6.3 Method

NOVIFAST is derived directly from the NLLS problem (Eq. (6.2)), and should thus
be classified as an NLLS optimization algorithm. Interestingly, in its derivation, the
particular structure of the SPGR model is exploited, which resembles the approach
that was used in the linearized, but sub-optimal DESPOT1 and IRWLLS algorithms.
This way, NOVIFAST combines the best of both worlds: the accuracy/precision
of NLLS estimators and the computational speed of heuristic linear algorithms.
Since NOVIFAST is not a general-purpose NLLS-based algorithm, we present its
complete derivation below. In section 6.3.2, the main features of the algorithm
are described and its pseudo-code is presented. Convergence properties are briefly
covered in section 6.3.2 and thoroughly studied in subsection B.2.

6.3.1 Derivation of NOVIFAST: exploiting the structure of
the SPGR model

With a slight abuse of notation, let us define sn(c) = sn(c1, c2) as the SPGR
model of Eq. (6.1), but parameterized by linear coefficients c1 and c2 given by
Eq. (6.7). With this change of variables, we can derive the NLLS estimates for
c = (c1, c2)T and from these calculate the NLLS estimates K̂ and T̂1. The NLLS
cost function w.r.t. c is given by

L(c) =
N∑
n=1

(yn − sn(c))2
, (6.8)

and the first-order conditions necessary to locate the stationary points can be
shown to be:

∂L
∂c1

= 2
N∑
n=1

(
yn − sn(c)

) sinαn
1− c2 cosαn

= 0 (6.9)

∂L
∂c2

= −2
N∑
n=1

(
yn − sn(c)

) sn(c) cosαn
1− c2 cosαn

= 0. (6.10)

The NLLS estimate, by construction, must fulfill this system of non-linear equations.
In principle, the complexity to solve Eq. (6.9) and Eq. (6.10) makes this approach
unattractive, and probably that is the main reason that existing NLLS optimization
algorithms for VFA T1 mapping do not attempt to follow this line of thinking.
However, the particular structure of sn(c), a rational function of sines and cosines,
in combination with certain algebraic rules, as those exposed by Dimitrov and
Kamenski for rational functions in chemical kinetics [Dimitrov and Kamenski,
1991], yields a surprisingly simple set of non-linear equations, which can be solved
iteratively. Indeed, if we substitute sn(c) in Eq. (6.9) by its rational expression,
and use the term 1− c2 cosαn as common denominator, which is never zero, we
get

N∑
n=1

yn(1− c2 cosαn)− c1 sinα
(1− c2 cosαn)2 sinαn = 0. (6.11)
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By rearranging and canceling terms, Eq. (6.9) can be written as

c1

N∑
n=1

sin2 αn

(1− c2 cosαn)2 + c2

N∑
n=1

yn sinαn cosαn
(1− c2 cosαn)2 =

N∑
n=1

yn sinαn
(1− c2 cosαn)2 . (6.12)

Similarly, Eq. (6.10) can be expressed as

c1

N∑
n=1

sn(c) sinαn cosαn
(1− c2 cosαn)2 + c2

N∑
n=1

ynsn(c) cos2 αn

(1− c2 cosαn)2 =
N∑
n=1

ynsn(c) cosαn
(1− c2 cosαn)2 . (6.13)

If we define the (N × 1) vectors a, ã, b and z as

a =
(

y1 cosα1
1− c2 cosα1

,
y2 cosα2

1− c2 cosα2
, ...,

yN cosαN
1− c2 cosαN

)T
, (6.14)

ã =
(
s1(c) cosα1
1− c2 cosα1

,
s2(c) cosα2
1− c2 cosα2

, ...,
sN (c) cosαN
1− c2 cosαN

)T
, (6.15)

b =
(

sinα1
1− c2 cosα1

,
sinα2

1− c2 cosα2
, ...,

sinαN
1− c2 cosαN

)T
, (6.16)

z =
(

y1
1− c2 cosα1

,
y2

1− c2 cosα2
, ...,

yN
1− c2 cosαN

)T
, (6.17)

the previous system of non-linear equations is concisely expressed as(
〈b, b〉 〈b,a〉
〈b, ã〉 〈a, ã〉

)
︸ ︷︷ ︸

A(c)

(
c1
c2

)
︸ ︷︷ ︸
c

=
(
〈b, z〉
〈z, ã〉

)
︸ ︷︷ ︸
v(c)

, (6.18)

where 〈·, ·〉 is the usual inner-product for vectors in Euclidean spaces. Note that
even though we have omitted the dependence on c in the definition of Eq. (6.14)
and Eq. (6.16), the 2× 2 matrix A(c) depends on the linear coefficients, and the
2× 2 vector v(c) does so as well. Eq. (6.18) is the basis of NOVIFAST. Although
the equation is non-linear in c, it resembles a purely linear system. If the variation
of A(c) and v(c) w.r.t. c were negligible, a simple 2× 2 inversion technique would
suffice to find the root of Eq. (6.18). Since this is not the case, a natural approach is
to solve it iteratively, thereby still exploiting the semi-linear structure. We propose
an iterative technique where, given that A(c) and v(c) are known, c is solved
linearly, after which A(c) and v(c) are updated with the new guess. The repetition
of those two steps constitutes our algorithm, which we dubbed NOVIFAST.

6.3.2 NOVIFAST: algorithm definition

Equations of the form A(c)c = v(c) often appear in discretization schemes for time
differential equations [Weickert and Viergever, 1998]. A common method for its
solution is what is called a semi-implicit technique [Weickert and Viergever, 1998]:
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an iterate ck derived from the k-th iteration is used to evaluate A(c) and v(c),
and the following linear equation w.r.t. ck+1 is solved:

A(ck)ck+1 = v(ck). (6.19)

Cramer’s rule [Robinson, 1970] allows us to obtain ck+1 explicitly:

ck+1
1 =

∣∣∣∣∣∣
〈b, z〉 〈b,a〉

〈z, ã〉 〈a, ã〉

∣∣∣∣∣∣∣∣∣∣∣∣
〈b, b〉 〈b,a〉

〈b, ã〉 〈a, ã〉

∣∣∣∣∣∣
, ck+1

2 =

∣∣∣∣∣∣
〈b, b〉 〈b, z〉

〈b, ã〉 〈z, ã〉

∣∣∣∣∣∣∣∣∣∣∣∣
〈b, b〉 〈b,a〉

〈b, ã〉 〈a, ã〉

∣∣∣∣∣∣
, (6.20)

where | · | denotes the determinant of a matrix, and we have made the assumption
that the denominator of both expressions is non-zero for every c. In subsection
B.2.1 we elaborate on this assumption. We are then ready to define the NOVIFAST
algorithm through the following pseudo-code (Algorithm 2):

Algorithm 2 Pseudo-code of NOVIFAST.
1: Given parameters: TR and flip angles {αn}Nn=1
2: Initial values: Kini and T1ini
3: c02 ← exp (−TR/T1ini)
4: c01 ← Kini(1− c02)
5: k ← 0
6: ck ← (ck1 , ck2)T

7: while convergence is not met do
8: Solve Eq. (6.19) with solutions of Eq. (6.20)
9: k ← k + 1

10: end while
11: return K̂ = ck1/(1− ck2) and T̂1 = −TR/log ck2

Below, we pinpoint some of the most interesting properties of NOVIFAST.

• Convergence points are roots of Eq. (6.9) and Eq. (6.10)
If NOVIFAST converges to some c?, it is necessarily a root of Eq. (6.9) and
Eq. (6.10). To see this, one only needs to take limits when k → ∞ on both
sides of Eq. (6.19), and use the fact that both A(c) and v(c) are continuous
functions of c. Hence, limit point c? meets A(c?)c? = v(c?), and it is a solu-
tion of Eq. (6.18), or equivalently a root of Eq. (6.9) and Eq. (6.10). Therefore,
the algorithm is well defined.

• Good convergence properties
With NOVIFAST, the only required stopping criterion is to check that the
norm of the difference between consecutive iterates is below a fixed tolerance.
There is no need to assure the descent property. This is an advantage in terms
of computation time when compared to descent-based algorithms such as GM
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or LM. Indeed, in a complete metric space, if limk→∞ ||ck+1 − ck||2 = 0, then
limk→∞ c

k = c?, which, as we have seen, is undoubtedly a root of Eq. (6.9)
and Eq. (6.10). Conditions to meet limk→∞ ||ck+1 − ck||2 = 0 are thoroughly
studied in subsection B.1.2 under the framework of fixed-point algorithms
theory. Converge conditions are empirically checked in subsection B.2.2,
where it is shown that they hold most likely for realistic clinically achievable
signal-to-noise ratios.

• Low cost per iteration
Furthermore, the cost per iteration of NOVIFAST is quite low, since it
amounts to calculate two quotients of determinants of just 2 × 2 matrices.
The cost per iteration is similar to that of IRWLLS, and also to the total
cost of DESPOT1. Importantly, NOVIFAST aims to get the NLLS estimates
(see first bullet point), whereas both IRWLLS and DESPOT are modified
heuristic algorithms.

• Robustness and high convergence rate
NOVIFAST is rather insensitive to initial values Kini and T1ini, and con-
vergence is usually reached within 2-4 iterations with the same tolerance
criterion as LM or GN algorithms. This makes NOVIFAST an ideal algo-
rithm to be used in practice. Like LM, NOVIFAST shows global convergence
properties, but it converges considerably faster. This is in agreement with
results provided in [Dimitrov and Kamenski, 1996], and also with those of our
previous work [Ramos-Llordén et al., 2016]. In subsection B.1.2, we provide
evidence for these claims, and we experimentally check the conditions with
an MC analysis in subsection B.2.2.

• Simplicity
NOVIFAST does not need any tuning parameter in contrast to LM, and its
implementation is straightforward.

6.3.3 NOVIFAST as an exact, analytical method

It is not difficult to demonstrate that in the noise-free case, that is, when yn = sn,
the NLLS estimates coincide with the ground-truth values, and that they can be
obtained analytically. Indeed, in the noiseless case, the ground-truth value cGT =
(c1GT, c2GT)T = (KGT(1− c2GT), exp (−TR/T1GT))T is the global minimum of L
since we have yn = sn , sn(cGT), thus L(cGT) = 0 . Due to the linear relationship
of Eq. (6.6), cGT can be linearly expressed in terms of just two samples from
{sn}Nn=1. Since the NLLS estimate is equal to cGT, it can also be expressed this
way, and thus K̂ and T̂1 can be derived as a closed-form expression. Therefore, in
the absence of noise, DESPOT1 becomes an exact method, but it is not clear what
happens with iterative algorithms, since LM and GN, by design, do not exploit the
particular structure of the SPGR signal. Remarkably, in the absence of noise, and
due to the semi-linear structure of Eq. (6.18), NOVIFAST becomes an exact and
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analytical method as well, in the sense that it provides the ground-truth values
with just one iteration. Indeed, for noiseless data, the following relations can be
shown to be true:

〈b, z〉 = c1GT〈b, b〉+ c2GT〈b,a〉 (6.21)
〈z, ã〉 = c1GT〈b, ã〉+ c2GT〈a, ã〉. (6.22)

If we substitute 〈b, z〉 and 〈z, â〉 in the numerators of Eq. (6.20) by the expressions
of Eq. (6.21) and Eq. (6.22), and we make use of determinant properties, it is
possible to prove that ck+1

1 = c1GT and ck+1
2 = c2GT for k = 0, 1, ....

The interested reader may find the mathematical proof of this result in subsection
B.3. In short, NOVIFAST shares with DESPOT1 that just one iteration is needed
to provide the ground-truth parameters. This correspondence with DESPOT1
may be useful to better understand the convergence behavior of NOVIFAST in
realistic conditions, when noise is present. Of course, we remark that in such
real conditions, DESPOT1 is not optimal whereas NOVIFAST is a truly NLLS-
based algorithm. For instance, as is shown in subsection B.2.2, NOVIFAST’s
convergence conditions are very likely to hold at clinically achievable signal-to-noise
ratio values, and the number of iterations required to reach convergence decreases
with increasing signal-to-noise ratio. This is not surprising since we already know
that in the asymptotic case of an infinitely high SNR NOVIFAST must be an exact
and analytical algorithm. In contrast, there is no theoretical reason why the GN
algorithm or the LM algorithm would require fewer iterations to converge when
the signal-to-noise ratio increases.

6.4 Experiments

We validated NOVIFAST with Monte Carlo (MC) simulation and in vivo human
brain experiments. For the simulation experiments, we generated noisy SPGR
magnitude data yn, n = 1, ..., N , as realizations of statistically independent random
variables that follow a Rician distribution, where the signal parameter is given by
sn(KGT, T1GT), withKGT and T1GT the ground-truthK and T1 values, respectively,
and the noise standard deviation is denoted by σ. We employed the Rician
distribution model since it is the most common statistical model for magnitude
MR images [Gudbjartsson and Patz, 1995, den Dekker and Sijbers, 2014]. The
noise standard deviation σ is parameterized as σ = KGT/SNR90◦ , with SNR90◦ the
maximum signal-to-noise ratio per pixel for an image acquired with an FA of 90◦
and TR > 6×T1 [Cheng and Wright, 2006]. Such a definition of the signal-to-noise
ratio is commonly used in other works on VFA SPGR T1 mapping [Cheng and
Wright, 2006, Chang et al., 2008]. However, for better interpretation, we will
additionally utilize the conventional signal-to-noise ratio (SNR) that is used in
quantitative MRI:

SNR = 1
N

N∑
n=1

sn
σ
. (6.23)
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We illustrate the performance of NOVIFAST with common sequence settings that
are reported in the literature. We used a repetition time TR of 5 ms [Cheng and
Wright, 2006], and two sets of FAs, namely {2◦, 9◦, 19◦} [Cheng and Wright, 2006]
and {2◦, 3◦, 4◦, 5◦, 7◦, 9◦, 11◦, 14◦, 17◦, 22◦} [Deoni et al., 2004,Cheng and Wright,
2006]. We denote the FA sets as AN=3 and AN=10, respectively.

6.4.1 MC simulation experiment with synthetically gener-
ated SPGR MR signals

First, experiments with simulated SPGR MR signals were set up to compare the
performance of NOVIFAST in terms of convergence and computational efficiency
to that of GN, LM, DESPOT1, and IRWLLS. To investigate the convergence
properties of GN, LM, and NOVIFAST, ideally, we could check whether the final
iterates provided by all of them truly correspond to the global minimum of the
NLLS cost function. However, this approach is infeasible since we would need to do
so for all possible noisy SPGR signals. Instead, we followed a more modest approach
which is common practice when a new VFA T1 mapping algorithm is introduced.
Since convergence failure may introduce a bias in the final estimates, and as this
bias is not intrinsic to the NLLS estimator but rather to the optimization algorithm,
we could detect convergence pathologies by analyzing those estimates. By using
realistic MC simulations, we assessed the statistical performance of GN, LM, and
NOVIFAST, as if they were considered as different estimators.

All algorithms were run in Matlab, using both GN and LM implemented within
the Matlab function lsqnonlin. Although both GN and LM have been described
in the domain of K and T1 , we implement them in the c domain, with an exact,
analytical Jacobian. This provides a fair comparison with DESPOT1, IRWLLS,
and NOVIFAST, which are genuinely conceived in the c domain. We set the
initial value of λ in the LM formulation to the recommended value in lsqnonlin.
IRWLLS, GN, LM and NOVIFAST were halted with the same tolerance criterion:
the relative l2 norm between consecutive iterates was set to 10−6. The maximum
number of iterations was set to 1000.

The experiment setup for the MC simulation was the following.

1. We chose either AN=3 or AN=10 as FA set.

2. We fixed KGT = 1 and generated ground-truth SPGR signals, {sn}Nn=1, with
ten different values of T1GT logarithmically spaced between 500 ms and 2500
ms.

3. For each of the ten ground-truth signals {sn}Nn=1, we generated NMC = 105 re-
alizations of Rician distributed noisy signals {yn}Nn=1. For each noisy dataset,
SNR90◦ was selected among the following list of values: {80, 150, 250, 300}.
Those values are within the range of SNR90◦ commonly used in similar
MC-based analyses in the literature [Cheng and Wright, 2006,Chang et al.,
2008].
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4. The five algorithms were run with the same input datasets {yn}Nn=1. In order
to check the influence of initialization, we chose a constant initialization for all
range of T1GT. We studied the robustness of NOVIFAST against the rest of
the methods with respect to poor initialization. To that end, we selected two
different configurations: 1) Kini = 0.5 and T1ini = 1000 ms, and 2) Kini = 0.5
and T1ini = 500 ms.

The computational time, in milliseconds, amounts the total CPU time of the
algorithms’ execution for given input data {yn}Nn=1. All algorithms were run on an
Intel®Xeon®CPU E5-2680 v2 with 25 MB of cache clocked at 2.8 GHz.

6.4.2 MC simulation with synthetic 3D T1 phantom

Prior to validating NOVIFAST with in vivo SPGR MR images, we conducted an
MC-based simulation with a synthetically generated set of SPGR MR images. We
used realistic SNR values achievable in practice, realistic ground-truth T1GT and
KGT maps (with a wider range of values than those in the previous experiment,
including T1 beyond that of white/grey matter, and we mimicked clinically realistic
noise conditions, e.g., spatially variant noise maps. Specifically, several sets of
noise-free 3D SPGR MR images (following Eq. (6.1) with TR = 5 ms and with
FAs given by the AN=10 FA set) were created based on ground-truth T1GT and
KGT maps. Those maps were estimated from a simulated IR gradient recalled
echo sequence, with similar settings as those given in [Ramos-Llordén et al., 2017].
The size of both 3D maps was 111 × 93 × 71 with an isotropic voxel size of 1.5
mm. Next, noisy Rician distributed images were generated, similarly as in section
6.4.1, but this time with a spatially variant σ. We employed similar noise maps as
those reported in [Pieciak et al., 2017], and we scaled them so as to get spatially
averaged SNR90◦ values of 400 and 500 (and corresponding SNR values of 12.3
and 15, respectively). Those values are within the range of SNRs encountered
in practice [Bouhrara and Spencer, 2017]. For each of those values of SNR90◦ ,
NMC = 104 noisy realizations were generated.

T1 maps were estimated by applying DESPOT1, IRWLLS, LM and NOVIFAST
in a voxel-wise manner, with a mask including only brain tissue voxels2. Code
parallelization was not performed, and all algorithms were run with the same
parameters as in the first experiment. Likewise, they were initialized with constant
K and T1 maps. The initial values were Kini = 0.5 and T1ini = 1000 ms. Algorithms
were stopped using the same criterion as in the first experiment. For each algorithm,
the total computation time as well as the spatially averaged relative bias, standard
deviation (Std.), and RMSE were reported.

2Initial experiments showed that the GN algorithm did not converge for most of the voxels
in the phantom. Therefore, we decided not to include GN in the MC experiment to avoid a
drastic increase in total time, which would have rendered the experiment infeasible for NMC = 104

repetitions.
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6.4.3 In vivo human brain set of SPGR MR images

A set of SPGR MR images of a healthy 28-year old male volunteer was acquired
with a 3T MRI scanner (MAGNETOM Prismafit, Siemens) using a 32-channel
head coil. For each FA given in the AN=10 set, a 256× 256× 24 image (voxel size
1×1×5 mm3) was acquired with a 3D FLASH sequence. The sequence parameters
were: TR/TE = 7.8/3.48 ms and BW = 320 Hz. B1 shimming was implemented
with SIEMENS’s TrueForm mode. Parallel imaging was not applied and magnitude
MR images were reconstructed with the adaptive combine method [Walsh et al.,
2000]. An SNR = 23 was estimated with the method of [Aja-Fernández et al., 2015b].
The total scan time per FA was about 1 min. In order to show that NOVIFAST
does not require a careful initialization, and can be initialized with a constant map,
we chose for all the algorithms T1ini = 500 ms and Kini = 3 · 106 (being the average
value of the estimated K map obtained with DESPOT1). Algorithms were stopped
according to the same criteria as used in the first experiment, and identical tuning
parameters were used. Similar to the previous experiment, all algorithms were
applied voxel-wise with a mask including only brain tissue voxels.

6.5 Results

6.5.1 MC simulation with synthetically generated SPGR
MR signals

In this section we only present the results for the AN=10 FA set with initialization
Kini = 0.5 and T1ini = 1000 ms. Results forKini = 0.5 and T1ini = 500 ms, as well as
results for the AN=3 FA set (with both initializations), are presented in subsection
B.4. In Fig. 6.1, we show box-plots for the T1 estimates obtained with the five
algorithms under test. A box-plot-based visualization allows us to see whether there
exist statistically significant differences in the population of the sample estimates
of T1 [Krzywinski and Altman, 2014]. In that box-plot visualization, horizontal
magenta lines, representing the values of T1GT, are intentionally marked for ease of
interpretation. To illustrate the speed performance, the average computation time
is displayed in Fig. 6.2. Results for the second initialization, both regarding the
statistical performance and the computation time, are presented in Fig. B.8 and in
Fig. B.9.

A first, general observation that we can already point out is that less accurate
and precise T1 estimates are obtained if heuristic linearized estimators, such as
DESPOT1 and IRWLLS, are employed. This can be attributed simply to the
statistical superiority of the NLLS estimator over modified linear versions. It is
true, though, that the difference becomes less noticeable with increasing SNR, and
is less drastic for the AN=3 FA data set. The most interesting observations are
those related to GN, LM, and NOVIFAST. From Fig. 6.1 it is clear that GN is
sensitive to initialization. The local-convergence behavior of GN evidently degrades
for T1GT > 1000 ms, yielding a systematic bias which persists over the whole
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Figure 6.1: Box-plots of the T1 estimates that are obtained with the five SPGR VFA
optimization algorithms. Tukey-style whiskers are shown that extend to a maximum of
1.5 × IQR beyond each box, with IQR the interquartile range (corresponding with the
length of each box) [Krzywinski and Altman, 2014]. Ground-truth T1 values are marked
with horizontal magenta lines to ease interpretation (Case of AN=10 FA set and fixed
initialization of Kini = 0.5 and T1ini = 1000 ms).

range of SNRs. Observe that for T1GT > 1223 ms, the GN interquartile ranges
(IQRs), covering the middle 50% of the sample, do not cover T1GT. It can also
be observed that the corresponding IQRs are approximately clustered around
1000 ms, i.e, T1ini, and the variability of the estimates greatly reduces for that
regime. Note as well that the length of the GN boxes in Fig. 6.1.(c) and Fig. 6.1.(d)
becomes very small for T1GT > 1748 ms (see black arrows pointing the boxes). This
behavior is due to convergence failure, since GN is stagnating at the initialization,
as we observed in a large number of MC realizations. This is also reflected by
the method’s computation time in Fig. 6.2, which massively grows for high T1GT,
since GN was only stopped when it reached the maximum number of iterations.
The LM algorithm and, especially, NOVIFAST present a remarkable insensitivity
to initialization, providing very similar results. Results presented in subsection
B.4 confirm that the same conclusions hold when the second initialization was
employed. Indeed, in that case, NOVIFAST and LM also manifest a substantial
robustness to poor initial values in contrast to GN, which starts to fail as soon as
the value of T1GT = 715 ms is reached.

Having shown that both LM and NOVIFAST have good global convergence proper-
ties, what distinguishes them is, as we have already mentioned, their computational
speed. Due to the negligible cost per-iteration and the rapid convergence, the
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average computational time of NOVIFAST is overall more than one order lower
than LM. Indeed, averaged over SNRs and T1GT, NOVIFAST is 20 times faster.
This speed gain increases with SNR, since the number of iterations needed for
NOVIFAST to converge asymptomatically decreases to one as the SNR approaches
infinity, i.e., NOVIFAST, unlike LM, asymptotically approaches an exact, analytical
estimator. By observing Fig. 6.2, it is clear that NOVIFAST’s computational time
is nearly constant, around 0.16 ms. The reported computational time of NOVI-
FAST seems similar to that of IRWLLS, but NOVIFAST’s statistical performance
is considerably higher. Indeed, being a heuristic algorithm, the convergence of
IRWLLS in l2 norm does not imply that the NLLS cost function is effectively
minimized. Readers can check that the same conclusions that are drawn in this
subsection also hold for the AN=3 FA set (subsection B.4).

6.5.2 MC simulation with synthetic 3D T1 phantom

The overall accuracy (bias), precision (Std.), RMSE and computational time are
shown in Table 6.1 and 6.2 for SNR90◦ = 400 and SNR90◦ = 500, respectively. Bias
and RMSE maps for one particular mid-axial slice are shown in Fig. 6.3 (for the
case SNR90◦ = 500).
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Figure 6.2: Total computation time of each of the five optimization algorithms for the MC
simulation-based experiment (Case of AN=10 FA set and fixed initialization of Kini = 0.5
and T1ini = 1000 ms).
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NOVIFAST: A fast algorithm for VFA MRI T1 mapping

As expected, LM and NOVIFAST provide nearly identical accuracy, precision, and
RMSE. Nevertheless, NOVIFAST provides the NLLS estimated 3D T1 map in
about 23 s, whereas it takes around 10 min for LM to do so. The accuracy of
NLLS-based algorithms is drastically higher than that of DESPOT1 and IRWLLS
(at least 6×) and the RMSE is lower as well, confirming the statistical superiority of
the NLLS estimator over heuristic modifications. Finally, observe that NOVIFAST
is consistently faster than IRWLLS.

Figure 6.3: Bias and RMSE maps of a mid-axial slice of a synthetic 3D T1 map (SNR90◦ =
500) obtained with DESPOT1, IRWLLS, LM, and NOVIFAST. The computation times
are shown as well.

Table 6.1: Quantitative results obtained with DESPOT1, IRWLLS, LM, and NOVIFAST,
when estimating a synthetic 3D T1 map (SNR90◦ = 400).

Bias [%] Std. [%] RMSE [%] Time [s]
DESPOT1 2.48 13.45 13.68 6.2
IRWLLS 3.13 11.45 11.87 31.38
LM 0.32 11.03 11.03 640.19
NOVIFAST 0.32 11.03 11.03 23.19
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6.5.3 In vivo human brain set of SPGR MR images

Although we are not able to assess the statistical performance of the five methods
with real data, due to the overarching issue of lacking a noise-free ground truth,
interesting observations can be made about convergence and total computation time.
Estimated T1 maps of two mid-axial slices are shown in Fig. 6.4. A constant initial
map is not an impediment for NOVIFAST to estimate a reliable T1 map, which is
not the case for GN (observe the magenta arrow on the lowest part of the brain,
where the estimated T1 value remains constant and equal to 500 ms). Interestingly,
several outliers are manifestly clear in the T1 map that was estimated with LM.
Those outliers are located on the boundary between cerebrospinal fluid and grey
matter. No outliers were observed in the T1 maps estimated with DESPOT1,
IRWLLS, and NOVIFAST. Differences between the T1 maps of the latter three
methods are, as expected, visually indistinguishable, and statistical claims can only
be made based on the previous MC simulations. DESPOT1 and NOVIFAST are
the only methods that can provide this high-resolution 3D T1 map in less than 1
min, where the NOVIFAST speed gain over IRWLLS and LM is about 4× and
40×, respectively.

Figure 6.4: Two mid-axial slices of the estimated 3D T1 map with the five VFA SPGR
algorithms for the in vivo MR experiment.

Table 6.2: Quantitative results obtained with DESPOT1, IRWLLS, LM, and NOVIFAST,
when estimating a synthetic 3D T1 map (SNR90◦ = 500).

Bias [%] Std. [%] RMSE [%] Time [s]
DESPOT1 1.58 10.38 10.5 6.2
IRWLLS 1.99 9.0 9.23 30.15
LM 0.24 8.80 8.81 637.81
NOVIFAST 0.24 8.80 8.80 22.1
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It should be noted that the SPGR model of Eq. (6.1) neglects partial volume effects,
which may be relevant for highly non-isotropic voxels, as those of the dataset used
in this experiment. Furthermore, there may exist incomplete spoiling, which may
introduce related T2 decay effects [Heule et al., 2016]. These remarks are intrinsic
to modeling and not to the choice of the algorithm. Indeed, NOVIFAST is always
applicable wherever DESPOT1 and IRWLS are.

6.6 Future work

NOVIFAST can be extended in several ways. In this work, it has been presented
as an ordinary NLLS optimization algorithm, but extension to the weighted NLLS
estimator is possible (see [Dimitrov and Kamenski, 1991] for more details). Fur-
thermore, NOVIFAST can be applied to other MR data sequences than SPGR. For
example, it is well known that the completely balanced TrueFISP sequence can be
modeled as a quotient of rational functions, where the (three) linear parameters
encode the T1 and T2 values [Scheffler and Hennig, 2003]. NOVIFAST can be
reformulated for TrueFISP, since the semi-linear structure of Eq. (6.18) also ap-
pears when fitting a quotient of rational functions [Dimitrov and Kamenski, 1996].
Finally, NOVIFAST can be embedded in a Maximum-Likelihood (ML) framework,
aiming at fully exploiting the statistical knowledge of the data [Sijbers et al., 1998a].
Indeed, it has been shown that an ML estimation problem with non-central χ or
Rician distributed data is equivalent to iteratively solving a collection of NLLS
subproblems [Varadarajan and Haldar, 2015,Ramos-Llordén et al., 2017]. Each
of those NLLS subproblems can be solved with NOVIFAST, greatly boosting the
speed of the overall ML estimation procedure.

6.7 Conclusions

In VFA T1 mapping, it is common to use heuristic linear estimators such as the
famous DESPOT1 method [Deoni et al., 2003] or the IRWLLS method of Chang
et al. [Chang et al., 2008]. They are preferred despite the superiority of NLLS
estimators in terms of accuracy and precision, since optimization algorithms for
NLLS estimators are much slower than linear estimators, and are also prone to
initialization issues. In this work, we reconcile these two separate frameworks by
proposing a novel NLLS method, NOVIFAST, which reports the NLLS estimates
more than twenty times faster than conventional NLLS optimization algorithms,
thereby merging the best of both approaches, i.e., accurate and precise T1 mapping
with a very short computation time. Furthermore, minimal pre-processing is needed
for NOVIFAST, since the algorithm can be initialized with constant T1 maps. We
believe that NOVIFAST is a good candidate to be included in every processing
pipeline for high-quality, robust, and efficient VFA T1 mapping.
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7.1. Introduction

7.1 Introduction

In MRI, the acquired samples, a.k.a. the k-space data, are samples of the Fourier
transform of the spatial magnetization distribution (the image) [Fessler, 2010]. From
sampling theory, it is well-known that if the k-space is sampled with a Cartesian
scheme fulfilling the Nyquist condition, exact recovery of the finite support image
is possible [Trzasko and Manduca, 2009]. However, if the number of k-space data
points is reduced, the Nyquist condition is violated, making the inverse problem
of image reconstruction ill-posed without prior knowledge [Trzasko and Manduca,
2009].

Fortunately, prior knowledge comes in different forms. It can be included by
exploiting image properties, such as smoothness, both in the image and Fourier
domain [Ying et al., 2004,Knoll et al., 2012], sparsity in a specific image represen-
tation [Lustig et al., 2007] (e.g., Fourier [Lingala et al., 2011], Wavelet [Chen and
Huang, 2012], [Lai et al., 2016], Curvelet [Candes et al., 2006], Shearlet [Aelterman
et al., 2011], structural sparsity, where the sparse coefficients in a given representa-
tion domain adhere to certain structural patterns [Pizurica et al., 2011,Chen and
Huang, 2014,Panic et al., 2017], redundant dictionaries [Ravishankar and Bresler,
2011,Caballero et al., 2014]), number of discrete gray levels [Segers et al., 2013],
minimal Total Variation (TV) [Block et al., 2007], [Liang et al., 2011], [Knoll et al.,
2011], limited image support [Haldar, 2014a], [Haldar and Zhuo, 2015], or spatial
constraints [Kelm et al., 2009,Velikina and Samsonov, 2014,Haldar et al., 2008].
Additionally, prior knowledge can come from anatomical information derived from
a training dataset [Gindi et al., 1993,Cao and Levin, 1995] or can be extracted
from reference images [Hanson et al., 1996].

In this work, we introduce a novel type of prior knowledge for MR images that
possess, apart from heterogeneous regions, a number of quasi-constant intensity
regions. That is, the magnitude range is assumed to be partially discrete. Partial
discrete tomography has recently successfully been introduced as a prior in X-ray
tomography [Batenburg and Sijbers, 2011,Dabravolski et al., 2014] and electron
tomography [Batenburg et al., 2009, Roelandts et al., 2012], however, to the
authors’ knowledge not yet in MRI. There is a number of MRI applications where
the partially discrete assumption may be exploited. Implants MR imaging is a
paradigmatic example, where the homogeneous composition of implants naturally
leads to partially discrete images [Juanpere et al., 2011]. Contrast-enhanced MRI
sequences also produce images that meet the partial discreteness assumption, e.g.
contrast-enhanced MR Angiography (MRA) [Lustig et al., 2007]. Finally, the use
of specific pulse sequences, such as T2-weighted or short tau inversion recovery
(STIR) sequences, may produce hyper-intense regions in brain cyst imaging [Preece
et al., 2006].

Specifically, our contribution is the following. We mathematically formalize the
partial discreteness property and propose a decomposition of every image into its
partial discreteness representation and its residual form. The partial discreteness
representation is constructed from 1) an auto-learned Gaussian Mixture Model
(GMM) [Figueiredo and Jain, 2002] specifically designed to fulfill the partial dis-
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creteness assumption and 2) the fusion of the a posteriori probability maps with
intensity information, both derived from the GMM and the image itself. Because
partially discrete images admit an accurate partial discreteness representation, we
enforce sparsity in the residual form to promote this type of solution in the recon-
struction of under-sampled MR images. In this work, the partial discreteness prior
is implemented in a phase-constrained MR reconstruction formulation [McGibney
et al., 1993, Samsonov et al., 2004, Bydder and Robson, 2005, Samsonov et al.,
2010,Blaimer et al., 2016] with the common assumption of a smoothly varying
phase image [Lustig et al., 2007], [Haldar, 2014a].

We illustrate the potential of the partial discreteness prior by showing examples
of applications with under-sampled simulated and real k-space data. Thereby,
the proposed partially discrete reconstruction method is compared to popular
reconstruction methods.

This chapter is organized as follows. In section 7.2, we present the novel partial
discreteness prior, which is incorporated in a constrained optimization method
in section 7.3. Sections 7.4 and 7.5 illustrate the application of this method to a
variety of under-sampling scenarios, in comparison with competitors reconstruction
methods. These sections also summarize a sensitivity analysis of the proposed
method to various parameters and deviations from assumptions. Finally, future
work and conclusions are given in sections 7.6 and 7.7, respectively.

7.2 Partial discreteness

7.2.1 Phase-constraint formulation

Partial discreteness is applicable to magnitude images only. Therefore, the con-
straint reconstruction problem with prior knowledge (Eq. (2.56)) should be restricted
to the set of real and positive images (as in Eq. (2.47)), as follows

min
x∈RN+

Φ(x) s.t. ||y − Ãx||22 ≤ ε, (7.1)

with Ã defined as in subsection 2.7.3.

7.2.2 A Bayesian model for partial discreteness

Consider the following decomposition of a magnitude image into a piece-wise
homogeneous part and a texture part:

x =
K∑
k=1

xAk︸ ︷︷ ︸
piece-wise homogeneous part

+ xĀ︸︷︷︸
texture part

, (7.2)
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where A = ∪Kk=1Ak represents the union of K disjoint homogeneous regions (i.e.,
pixel sets) of x, and Ā is the texture region. For each pixel n = 1, ..., N , xĀ ∈ RN+
and xAk ∈ RN+ are defined as

[xĀ]n =
{

[x]n, if n ∈ Ā
0, if n /∈ Ā

(7.3)

and

[xAk ]n =
{
ηk, if n ∈ Ak
0, if n /∈ Ak,

(7.4)

respectively, with ηk the constant intensity of the homogeneous set Ak. In this work,
we assume that |Ak| � 1,∀k. While ideally suited to describe partially discrete
images, this model is unpractical since the location, cardinality, and intensity of
the sets {Ak}Kk=1 are unknown in practice.

Keeping Eq. (7.2) in mind, in this subsection we approximate Eq. (7.2) with a
realizable model, effectively preserving the distinct characteristics of partially
discrete images. To that end, a Bayesian framework is proposed which relies on 1)
a Gaussian Mixture Model (GMM) that captures the particular intensity properties
of Eq. (7.2) and 2) an unsupervised Bayesian probabilistic segmentation. The
proposed methodology allows us to identify the different sets and estimate the
probabilities that a pixel belongs to each of these sets (probabilistic segmentation)
in an unsupervised manner. In what follows, we start with the construction of the
GMM. The probabilistic segmentation is described afterwards. With these two
main ingredients, we present the Bayesian model for partially discrete images in
subsection 7.2.3. With the partial discreteness property formalized, the partial
discreteness prior is then defined.

7.2.2.1 The GMM construction

We consider the pixels’ intensities of the image x, (x1, ..., xN )T , as a vector of
realizations of a random variable, X : Ω 7→ R+. We assume that each pixel
n = 1, ..., N only belongs to one specific, unknown set Ak or Ā. Assigning a
probability to the event that a pixel belongs to a specific set, we define:

P (n ∈ Ak) = πk, with k = 1, ...,K, (7.5)

P (n ∈ Ā) = πĀ = 1−
K∑
k=1

πk, (7.6)

where it is assumed that the probabilities πk and πĀ are independent of the pixel n,
and no a priori spatial information is incorporated. Hence, in what follows, we will
denote P (n ∈ A) as P (A). Each of the pixels’ intensities, x1, ..., xN , is assumed to
have been generated by one (randomly selected and unknown) element of a set of
K + 1 random sources. The source-conditional distributions of the random variable
X are characterized by the conditional PDFs pX|Ak(x) and pX|Ā(x) [Papoulis and
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Pillai, 2002]. It is reasonable to assume that the individual conditional PDFs for
the homogeneous sets all belong to the same location-scale family. There are several
distributions that belongs to the class of location-scale family. In this work, we
chose Gaussian distributions. Gaussian PDFs are well-behaving functions and easy
to handle, which simplify posterior calculation and analysis. The conditional PDF
of set Ak thus take the form of

pX|Ak(x; ηk, σk) = 1√
2πσ2

k

e
− (x−ηk)2

2σ2
k , (7.7)

where the dispersion of X around the specific discrete value ηk is represented by
the standard deviation σk. A small value of σk reflects the typical low dispersion
of such homogeneous regions. Of course, that does not mean that no intensity
variations are allowed, as these always occur in real scenarios.

The conditional PDF pX|Ā(x;θĀ) models the random variable X in the texture
part. Texture modeling through statistical distributions is beyond the scope of this
work. The interested reader is referred to [Zhu et al., 1998,Huang and Mumford,
1999, Awate et al., 2006]. We deem that the shape of pX|Ā(x;θĀ) can be well
modeled by a mixture of Gaussian PDFs, and therefore θĀ are the GMM parameters.
The use of a GMM for pX|Ā(x;θĀ) should be seen as a way to describe arbitrarily
complex distributions [Permuter et al., 2003] and not as an attempt to model
quasi-discrete components, as in the case of pX|Ak(x; ηk, σk). Simple application of
the law of total probability [Papoulis and Pillai, 2002] with events {n ∈ Ak}Kk=1
and {n ∈ Ā}, yields the final GMM:

pX(x;θ) =
K∑
k=1

πkpX|Ak(x; ηk, σk) + πĀpX|Ā(x;θĀ), (7.8)

with θ = (θA,θĀ)T and where θA = {πk, ηk, σk}Kk=1.

7.2.2.2 Bayesian probabilistic segmentation

Bayes’ theorem [Papoulis and Pillai, 2002] now allows us to derive the a posteriori
probabilities P (Ak|x) and P (Ā|x) as

P (Ak|x) =
πkpX|Ak(x; ηk, σk)

pX(x;θ) , (7.9)

P (Ā|x) =
πĀpX|Ā(x;θĀ)

pX(x;θ) , (7.10)

respectively. These a posteriori probabilities denote the probabilities of a pixel
belonging to each of the K + 1 sets given that its intensity is equal to x. If
Eqs. (7.9-7.10) are evaluated for each pixel n = 1, ..., N , we obtain what is dubbed
throughout this work, probability maps, that is, pk ∈ [0, 1]N and pĀ ∈ [0, 1]N
which are pixel-wise defined as

[pk]n =
πkpX|Ak(xn; ηk, σk)∑K

k=1 πkpX|Ak(xn; ηk, σk) + πĀpX|Ā(xn;θĀ)
(7.11)
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(a) A partially discrete image (b) P (A1|x)

(c) P (Ā|x) (d) P (A2|x)
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�(�2|�)

�(� |�)
(0.56,  0.44,   0)

�(�1|�)

�(�2|�)
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(e) RGB visualization of probability maps

Figure 7.1: Illustration of probability maps for a partially discrete image.

and

[pĀ]n =
πĀpX|Ā(xn;θĀ)∑K

k=1 πkpX|Ak(xn; ηk, σk) + πĀpX|Ā(xn;θĀ)
. (7.12)

Given a pixel, its a posteriori probability of belonging to a specific set can be
determined from the corresponding probability map. This Bayesian framework
frames a probabilistic segmentation scheme. Indeed, it is not possible to strictly
assign pixels to specific sets but, instead, the probability of this assignment can
be inferred. Another relevant point of the Bayesian segmentation is that not just
local but global information is considered. This information is derived through
pX(x;θ). An illustration of the probabilistic segmentation associated to a partially
discrete image is shown in Fig.7.1. These maps constitute the core of the partial
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discreteness representation that we propose in the next subsection 7.2.3.

7.2.3 The partial discreteness prior

Given a partially discrete image x, and its associated GMM pX(x;θ), the partial
discreteness representation of x, denoted as P(x) ∈ RN+ , is defined as:

P(x) =
K∑
k=1

ηkpk + xρ ◦ pĀ, (7.13)

where ◦ denotes the Hadamard product and xρ is a spatially filtered version of
x with a circularly symmetric Gaussian filter with standard deviation ρ in the
image domain. For partially discrete images, the partial discreteness representation
essentially behaves as Eq. (7.2).

Behavior in homogeneous regions
In a homogeneous region Ak′ , the pixels’ intensities minimally vary with respect to
the mean ηk′ . When the probability maps for the homogeneous regions are evaluated,
all except the one associated to Ak′ approximate zero. This is due to the fact that
their conditional PDFs {pX|Ak(x; ηk, σk)}K

k=1 are highly concentrated around their
mean and when evaluated far from their mode they rapidly fall off to zero. As a
consequence, each of the P (Ak|x) with k 6= k′ vanishes as well. Furthermore, it is
assumed that the lack of intensity dispersion that characterizes the homogeneous
regions is not captured by pX|Ā(x;θĀ), which is the case if pX|Ā(x;θĀ) is nearly
zero for x ∈ ηk. Therefore, exclusively the remaining probability map of Ak′ , pk′ , is
approximately one. Hence, the partial discreteness representation becomes

P(x) ≈ ηk′pk′ ≈ xAk′ , (7.14)

as desired.

Behavior in texture regions
In texture regions, the characteristic intensity variability is solely represented by
the conditional PDF pX|Ā(x;θĀ). As a result, we get

P(x) ≈ xρ ◦ pĀ ≈ xρ. (7.15)

Note that P(x) does not exactly approach x but a Gaussian filtered version of x.
The use of the Gaussian filter should be seen as a way to make partial discreteness
a stable representation under very high spatial frequency perturbations that do
not correspond to the original texture x. In our experiments, the value ρ = 2 was
consistently used. With this value, the corresponding cut-off frequency is high
enough to preserve structural details. Note that in the limit case, which corresponds
to ρ = 0, P(x) ≈ x, since the Gaussian kernel degenerates into a delta function.
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Behavior in the frontier between regions
In the frontier between regions, none of the a posteriori probabilities has a prevailing
effect (see zoomed image of Fig. 7.1.(e)). Indeed, P(x) is a mixture of intensities.
Particularly, the intensity along a given profile which crosses two regions is a
(convex) combination of two values. If the two regions are a homogeneous region
Ak and the texture region Ā, such values are the mean ηk and xρ, the filtered
texture. The closer we are to Ak, the higher pk = 1−pĀ is. Thus, P(x) approaches
ηk. The nearer we are to Ā, the larger pĀ is and P(x) then approaches xρ. If the
interface divides two homogeneous regions, let’s say Ak and Ak′ , then P(x) is a
convex combination of the two corresponding mean values, that is, ηk and ηk′ .

In summary, P(x) ≈ x for partially discrete images. Therefore, instead of the
strict but unpractical model of Eq. (7.2), we can fairly justify the employment of
the partial discreteness representation for the kind of images targeted in this work.
Based on this representation, the partial discreteness prior for the optimization
problem (7.1) can be defined. We first note that a partial discreteness representation
P(x) can be assigned to every image x. In practice, this implies that the number
of homogeneous regions K is given and we have estimates of the GMM parameters,
θ̂ = (θ̂A, θ̂Ā)

T
, (details about the GMM learning procedure are presented in

subsection 7.3.2). Then, the estimated probability maps can be constructed pixel-
wise from Eqs. (7.11-7.12) by replacing the given GMM parameters by the GMM
estimates.

A partial discreteness representation is now obtained by substituting the estimated
probability maps and {η̂k}Kk=1 in Eq. (7.13). The thus obtained partial discreteness
representation P(x) is unique for each x. More interestingly, every image x can be
represented through its partial discreteness representation, including images that
are not strictly partially discrete. Indeed, every image x ∈ RN+ can be decomposed
as

x = P(x) + (I − P)(x), (7.16)

where I : RN 7→ RN is the identity operator. The usefulness of this decomposition
is that the second term, the residual form, serves as a measure of the partial
discreteness error for all types of images. On the one hand, a partially discrete
image is well represented by its partial discreteness representation, so its residual
form, (I − P)(x), can be assumed to be small. On the other hand, images that do
not obey the partial discreteness assumption possess a non-negligible residual form.
Obviously, the prior Φ(·) should be defined in agreement with this reasoning.

For partially discrete images, (I − P)(x) is almost zero except along edges. Since
edges generally represent only a small fraction of the partially discrete image, we
can justify that the residual form is sparse. Searching for the x that has the sparsest
residual form implies to make the l0 (pseudo) norm of the residual form minimal.
As this combinatorial optimization problem is intractable, it is common practice to
resort to other sparsity-inducing norms, such as the l1 norm, the lp (0 < p < 1)
semi-norms or other non-convex functionals such as log penalty functions [Trzasko
and Manduca, 2009]. To illustrate partial discreteness, we use the l1 norm in our
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experiments. Hence, we define our partial discreteness prior Φ(·) as

Φ(x) = ||(I − P)(x)||1. (7.17)

7.3 Method

In this section, we propose a new reconstruction method that incorporates the
partial discreteness (PD) prior term Eq.(7.17). The method will be denoted by the
acronym PD.

7.3.1 Split Bregman reconstruction algorithm

In most of the MRI reconstruction algorithms the inequality constrained problem
(Eq. (7.1)) is transformed into an unconstrained problem of the form

min
x∈RN+

J(x, λ) (7.18)

with
J(x, λ) = Φ(x) + λ

2 ||Ãx− y||
2
2. (7.19)

Solving this new unconstrained problem is equivalent to solving (Eq. (7.1)) if
and only if λ is selected according to the Karush-Kuhn-Tucker (KKT) conditions
[Trzasko and Manduca, 2009]. Otherwise, the unconstrained solution, that is,
the solution of (Eq. (7.18)), may not meet the data fidelity condition. Within
the KKT approach, the optimal λ is called the KKT multiplier [Bertsekas, 1975].
Unfortunately, the analytic determination of the KKT multiplier is rather difficult
or, in most of the cases, even impossible [Trzasko and Manduca, 2009]. As an
alternative to the KKT technique, several iterative optimization algorithms replace
the original problem (Eq. (7.1)) by a sequence of unconstrained minimization
problems (as (Eq. (7.18))) where the cost function J(·, λ) is augmented to account
for the constraints [Nocedal and Wright, 2006]. These subproblems are iteratively
solved in combination with an update of some of the parameters included now
in the augmented cost function. This class of algorithms includes penalty-based
methods [Bertsekas, 1975], Augmented Lagrangian (AL) methods [Wu and Tai,
2010,Birgin and Martínez, 2012], and Split Bregman methods [Osher et al., 2005,Cai
et al., 2009,Goldstein and Osher, 2009]. Ideally, the sequence of solutions of each
subproblem asymptotically approaches the original KKT solution, i.e., it solves
problem (Eq. (7.1)). In this work, to illustrate its potential, the Split Bregman
method is chosen for the following practical reasons: it is numerically more stable
than penalty-based methods [Goldstein and Osher, 2009] and it is simpler than AL
methods. It should be noted that partial discreteness is not limited to a specific
optimization algorithm. More recent optimization algorithms can be used as well,
such as SpaRSA (Sparse Reconstruction by Separable Approximation) [Wright
et al., 2009].
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With the Split Bregman method, J(·, λ) is modified with the so-called Bregman
distance [Bregman, 1967]. We refer the reader to [Goldstein and Osher, 2009]
for a more detailed explanation. After some algebra, it can be demonstrated
[Goldstein and Osher, 2009] that this method adopts the following simplified
recursive scheme:

x(t+1) = arg min
x∈RN+

Φ(x) + λ

2 ||Ãx− b
(t)||

2
2, (7.20)

b(t+1) = b(t) + y − Ãx(t+1). (7.21)

The parameters update is done in Eq. (7.21), through the modified data vector
b [Goldstein and Osher, 2009]. Each of the unconstrained minimization problems
(Eq. (7.20)) is solved with a modified version of the Majorize-Minimize (MM)-based
algorithm proposed by Muckley et al. [Muckley et al., 2015], with the non-linear
conjugate gradient method. Exact convergence properties for these subproblems
can be demonstrated [Muckley et al., 2015]. Further details on the MM-based
algorithm, details on how to impose the real positivity constraint, as well as the
analytical derivation of the gradient of Φ(x) are provided in subsection C.1.1.

7.3.2 GMM learning

Estimating the GMM parameters, θ̂ = (θ̂A, θ̂Ā)
T
, is often called GMM training

or learning. To learn the GMM, a set of samples drawn from the GMM, and a
learning criterion are required.

7.3.2.1 Training data

If a dataset of fully-sampled reconstructed partially discrete images from the same
object is a priori available, it can be used to train the GMM. However, in this work,
we focus on the automatic application of the algorithm, and the GMM is learned in
situ from an image reconstructed from under-sampled k-space data. Specifically, in
our experiments, the GMM is trained with the magnitude of a low-resolution image
xLR calculated at the beginning of the algorithm. Such image is obtained as follows:
an NHamm-point symmetric Hamming window is applied to the under-sampled
k-space data y and then, an inverse Fourier transform of the windowed k-space
data is calculated. It is assumed that the center of the k-space is fully sampled.
Additionally, the GMM can be retrained every TGMM iterations in order to keep
track of the variations in the GMM along the reconstruction process.

7.3.2.2 GMM learning criterion

To train the GMM described by Eq. (7.8), we use the algorithm proposed by
Figueiredo and Jain [Figueiredo and Jain, 2002]. In this algorithm, the Minimum
Message Length criterion is implemented. It estimates the parameters of each
component as well as the optimal number of components (i.e., the total number of
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classes) of the GMM. Another benefit of this learning algorithm is that a careful
initialization is not required, as opposed to ML expectation-maximization based
methods [Figueiredo and Jain, 2002].

7.3.2.3 The selection of K

Once the GMM described by Eq. (7.8) is learned, the number of homogeneous
regions K should be selected and the corresponding conditional PDFs for the
homogeneous regions, {pX|Ak(x; η̂k, σ̂k)}K

k=1, should be detected. In our work, we
advocate for a manual selection of K, prior to the application of the PD algorithm.
In this approach, K is selected by visual inspection of the image obtained by basic
zero-filled (ZF) reconstruction. For most images we investigated, at least two
homogeneous regions can be discerned: a background and a hyper-intense region.
The corresponding conditional PDFs are easily identified by selecting those with the
lowest and highest estimated mean, respectively. The remaining conditional PDFs
are arranged in ascending order with respect to their standard deviation. Selecting
K ≥ 3 homogeneous regions may enhance the performance of the PD if the partially
discrete image at hand is indeed constituted of more homogeneous regions than just
the background and a hyper-intense region. This was illustrated in a simulation
experiment that was set up to evaluate the sensitivity of the PD method to the
selection of K and which is described in subsection C.2.1 If K = 3, in addition to
the conditional PDFs associated with the background and hyper-intense region, the
conditional PDF with the lowest standard deviation is chosen. If K = 4, also the
second conditional PDF is selected and so on. In the experiments that we performed
to compare PD with state of the art reconstruction methods, we consistently set
K equal to 2, which can be considered as a conservative choice.

7.3.3 Parameters selection

For convex reconstruction problems with noiseless under-sampled data y, indepen-
dent of the λ selection in Eq. (7.20), the iterative solutions of the Split Bregman
method asymptotically satisfy the data fidelity condition (Ãx = y) and monotoni-
cally decrease the prior term [Goldstein and Osher, 2009]. For non-convex prior
terms, such as partial discreteness, and with noisy data y, as in Eq. (7.1), conver-
gence to the global minimum cannot be guaranteed. Fortunately, in this situation,
the Split Bregman algorithm has been experimentally observed to converge, even
though theoretical proof is still lacking [Liu et al., 2013,Chartrand, 2009,Li et al.,
2012a,Wang et al., 2014,Estellers et al., 2012].

To achieve a good performance, a careful initialization x(0) and an adequate
selection of λ are of great importance. Our choice for x(0) is the magnitude of the
low-resolution reconstructed image xLR. This image was used as well for training
the GMM. Our magnitude image |xLR| lacks details and texture is hardly preserved,
but it has important advantages for partial discreteness: 1) artefacts are not so
strongly manifested as in other x(0) choices (e.g., Tikhonov regularization on x),
and 2) the background area is easily discernible. Consequently, the initial partial
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discreteness representation, P(|xLR|), does not undesirably magnify artefacts, and
more important, the background is already accurately represented by P(|xLR|).
The low resolution image xLR also serves to estimate the phase ψx. From this
image, the principal complex argument is voxel-wise calculated [Lustig et al., 2007].
With the estimated phase image, ψ̂x ∈ (−π, π]N , Ã is defined.

The basis for defining the weighting λ parameter is the following simple rule: the
better the type of image we are reconstructing adheres to a partially discrete image,
the lower λ should be. Furthermore, the design of λ should take into account
that the prior term Φ(·) is often several orders of magnitude larger than the data
fidelity l2 norm. Empirically, we have corroborated that a satisfactory formula in
our experiments was the following:

λ = 2(1− r) · 103, (7.22)

with 0 ≤ r < 1 a value which we term the partial discreteness degree. In practice,
the more constant we expect the hyper-intense regions to be, the closer r should
be to 1. The closer r is to 0, the less relevant the partial discreteness prior
becomes.

The pseudo code of the proposed PD image reconstruction algorithm is presented
in Fig. 3.

Algorithm 3 Pseudo-code of the PD algorithm.
1: ψ̂x ← Phase-estimation{xLR}
2: Ψ̂ = diag(eiψ̂x)
3: Ã = AΨ̂
4: θ̂ = [θ̂A, θ̂Ā]← GMM-learning{|xLR|}
5: Define P(·) with θ̂ as in subsection 7.2.3
6: set t = 0, x(0) = |xLR|, b(0) = y
7: while t < Tmax and ||x(t+1) − x(t)||2 ≥ Tol do
8: x(t+1) = arg minx∈RN+ Φ(x) + λ

2 ||Ãx− b
(t)||22

9: b(t+1) = b(t) + y − Ãx(t+1)

10: if t = vTGMM for any v ∈ N+ then
11: θ̂ = [θ̂A, θ̂Ā]← GMM-learning{x(t+1)}
12: Define P(·) with θ̂ as in subsection 7.2.3
13: end if
14: t← t+ 1
15: end while
16: x̂ = x(t)

7.3.4 Multi-coil extension

The proposed method can be extended to be applicable to multi-coil acquisitions. In
that case, the algebraic linear model (Eq. (2.43)) should be extended. Let yr ∈ CM

143



PD: a Novel Prior for MR Image Reconstruction

be the k-space data acquired by the r-th coil, with r = 1, ..., R. The relation with
the reconstructed image xr is again

yr = Axr + nr. (7.23)

Each of xr ∈ CN is related to the true magnitude partially discrete image x ∈ RN+
through the coil sensitivities, cr ∈ CN , as xr = CrΨx with Cr = diag(cr). If we
call yT = (yT1 ,yT2 , ...,yTR) and Ã = ABlockΨ with

ABlock =


A 0 · · · 0
0 A · · · 0
...

... . . . ...
0 0 · · · A



C1
C2
...
CR

 , (7.24)

partial discreteness can be applied as in subsection 7.3.1.

7.3.5 Relation to Non-Local Total Variation (NLTV)

Because partially discrete images are composed of several homogeneous regions with
very low-intensity variation, it may be tempting to reconstruct them with spatially-
adapted versions of TV-based methods, such as Non-Local (NL) TV algorithms
[Gilboa and Osher, 2007,Gilboa and Osher, 2008, Liang et al., 2011]. Here, we
provide an insightful comparison between NLTV and our partial discreteness
prior. While NLTV accounts for the low-intensity variation using concepts rooted
in calculus of variations and measure theory [Gilboa and Osher, 2007], partial
discreteness uses tools from Bayesian inference and unsupervised learning and
clustering.

Aside from being different in nature, both approaches handle prior information very
differently. On one hand, partial discreteness promotes quasi-constant images in an
explicit fashion, through the partial discreteness representation, i.e., an image. On
the other hand, NLTV does it indirectly, through the non-local gradient [Gilboa
and Osher, 2007,Sawatzky, 2011]. Indeed, in NLTV algorithms, the spatial gradient
of x, included in the original TV measure, is replaced by the non-local gradient of
x: a vector ∇wmx ∈ RN which at pixel m is defined as [Liang et al., 2011]

[∇wmx]n = √wmn(xm − xn) with n = 1, ..., N, (7.25)

where W , {wmn} ∈ RN×N+ is the graph matrix. In order to define the NLTV
term, first the l2 norm of each ∇wmx with m = 1, ..., N is taken and then, the l1
norm of the resulting vector is calculated [Liang et al., 2011]. The graph matrixW
plays the role of adaptive mechanism and weights the intensity differences according
to the image spatial content. A large weight wmn is assigned to two similar pixels,
therefore penalizing deviation in intensity. Intensity deviations of pairs of dissimilar
pixels must not contribute to the NLTV term, hence, zero values are selected in
this case. The interested reader is referred to [Liang et al., 2011] for a more specific
interpretation. At this point, a pertinent observation can be made. NLTV still
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needs a learning mechanism to account for the image structure and thus to define
W . This means that the performance of NLTV can not be separately assessed from
the learning process. In fact, since the graph matrix W is the tool which most
leverages NLTV performance, it should be very carefully designed. Yet, the selection
of an appropriate similarity metric for weighting the pixels is still arguable and
application-dependent [Gilboa and Osher, 2007,Sawatzky, 2011], not to mention
the computational complexity of exhaustive searches in patch-based similarity
algorithms [Sawatzky, 2011]. Fortunately, the problem with the similarity metrics
is circumvented with partial discreteness. The learning mechanism is naturally
embedded into the GMM, which carries its own sophisticated learning/clustering
procedure, based on Bayesian inference. The special image features of partially
discrete images are condensed in the partial discreteness representation, derived
from the unified framework presented in subsection 7.2.2.

We emphasize the importance of the GMM in the construction of the partial
discreteness prior. Its employment in MRI is not new. For instance, it has been
used for unsupervised segmentation [Van Leemput et al., 1999b] and bias field
correction [Van Leemput et al., 1999a,Mai et al., 2011]. On top of that, it has been
exploited as prior knowledge in model-based image restoration problems, where
it has shown excellent results [Yang et al., 2015]. Certainly, in the Compressed
Sensing (CS) field, it has been recently proved [Renna et al., 2014] that exact
signal reconstruction drawn from a GMM is achievable with a substantially lower
number of measurements than commonly required with other sparse recovery
methods.

7.4 Experiments

In this section, we describe the experiments that were carried out to evaluate
the performance of the proposed PD algorithm. First, PD was compared against
commonly used reconstruction methods, conducting experiments on simulated as
well as real k-space data. Next, dedicated simulation experiments on a digital
phantom were performed to test the sensitivity of the algorithm to (i) the pre-
selected number of homogeneous regions, K, (ii) phase profiles that do not satisfy
the assumption of a slowly varying phase, and (iii) intensity inhomogeneity or bias
field [Fan et al., 2003,Vovk et al., 2007]. In all experiments, the starting point was
a fully sampled data set which was retrospectively under-sampled. Throughout,
validation was not only based on visual assessment but also on quantitative results.
We employed the following measures to evaluate the reconstruction quality: the Peak
Signal-to-Noise Ratio (PSNR) [Ravishankar and Bresler, 2011], the Quantitative
Index based on Local Variance (QILV) [Aja-Fernández et al., 2006], the High
Frequency Error Norm (HFEN) [Ravishankar and Bresler, 2011] and the Feature
Similarity Index Metric (FSIM) [Zhang et al., 2011].
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7.4.1 Comparison of PD with popular reconstruction meth-
ods

Comparative experiments were conducted on simulated as well as real k-space data.
Different types of under-sampling scenarios were considered, namely, structural
and random patterns. In this way, we show that PD does not require any specific
assumption on the type of sampling, in contrast to common CS-based reconstruction
methods [Haldar et al., 2011]. PD was compared against the basic ZF reconstruction
as well as three conventional reconstruction methods dedicated to the reconstruction
of under-sampled data, namely:

1. SparseMRI, proposed by Lustig [Lustig et al., 2007], which implements the
concept of CS including, as prior terms, TV and l1-wavelet sparsity. The
Matlab code is publicly available [Lustig, ].

2. CS+NLTV, proposed by Lian [Liang et al., 2011], which incorporates NLTV
in the CS framework.

3. LORAKS proposed by Haldar [Haldar, 2014a]. LORAKS assumes images to
have small finite support compared to the Field Of View (FOV) and/or a
slowly varying phase. The Matlab code is publicly available [Haldar, ,Haldar,
2014b].

SparseMRI was applied with the built-in parameters, except for the TV weight
and the number of iterations. Those values were extensively varied until no further
artefacts reduction could be achieved. LORAKS was implemented with the built-in
parameters. Experiments with different settings did not provide any remarkable
difference. We followed the guidelines presented in the original work [Liang et al.,
2011] to implement CS+NLTV. Parameter settings were chosen according to the
recipe in the original work. Regarding PD, the length of the Hamming window
NHamm was set in all experiments to 50. PD was stopped with the following
parameters: Tmax = 8 and Tol = 10−4. For simplicity and speed, we did not
retrain the GMM. Regarding the weighting parameter λ, the corresponding r
value is mentioned. The number of discrete classes was in all experiments set to
K = 2.

7.4.1.1 Simulated k-space data

For the simulation experiment, a 256 × 256 actual magnitude brain MR image
(Fig. 7.2.(a)) was used as ground-truth. The image was acquired with an Inversion
Recovery (IR) pulse sequence on a 3T Siemens scanner with a 32-channel. A
smoothly varying phase was simulated by Legendre polynomials up to the second
degree. Legendre polynomials were used because of their demonstrated suitability
for simulating slow-varying intensity profiles [Styner et al., 2000]. The resulting
complex image was polluted with additive complex-valued white Gaussian noise
with uncorrelated real and imaginary parts of equal standard deviation σ. The

146



7.4. Experiments

value of σ was chosen such that the signal-to-noise ratio (SNR), defined as

SNR = x

σ
, (7.26)

with x the spatial mean of the magnitude image x, was equal to 10. From the
noisy, complex-valued image, k-space samples on a Cartesian grid were generated
using the linear model of Eq. (2.43). Single-coil data were mimicked with structural
under-sampling: a pseudo-radial sampling mask (Fig. 7.2.(b)) with 70% of non-
acquired k-space points. This procedure was repeated NRuns = 20 times with
different noise realizations. We chose a moderate value of the partial discreteness
degree, r, i.e., r = 0.1, which was observed to give reconstructed images with good
details preservation.

7.4.1.2 In vivo human knee k-space data

In this experiment, in vivo 3D fully sampled k-space data of a human knee were
employed. The k-space data, available at [Lustig and Vasanawala, ], were acquired
with a 3D Fast Spin Echo (FSE) pulse sequence on a 3T scanner with a eight-channel
coil. From the 3D k-space data, 2D slice reconstruction was accomplished. We
applied an inverse Fourier transform [Haldar, 2014a] along the third dimension, and
then, one and the same mid-sagittal 2D k-space slice was extracted per each coil.
This approach is valid since the 3D Fourier transform is a separable operator [Jain,
1989]. The corresponding k-space slices (320 × 320) were under-sampled with a
random phase-encoding mask of 50% of missing k-space lines (Fig. 7.3.(b)).

For ease of comparison, and because publicly available Matlab codes of SparseMRI
and LORAKS only permit single-coil reconstruction, each of the eight 2D k-space
data sets was reconstructed independently. To create a final image per method,
the eight reconstructed images were combined using the Sum of Squares (SoS)
method [Larsson et al., 2003]. Since the FSE sequence produces a highly bright
and constant area in the cartilage region, it is reasonable to assume the partial
discreteness holds even more than in the simulation experiment. Therefore, for PD,
we increased the r value to 0.9.

7.4.1.3 In vivo human brain k-space data

To finish the experiments section, we validate PD in a truly multi-coil reconstruction
scheme, where coil sensitivities estimation is required. In vivo 3D fully sampled
k-space data were used again, this time, from a human brain. K-space data were
acquired with a 3T scanner with eight coils. To allow for 2D slice reconstruction,
we followed the same routine as in the knee experiment. Specifically, we applied an
inverse Fourier transform along the second dimension and then, one and the same
mid-axial 2D k-space slice was extracted per each coil. The resulting k-space slices
(230× 180) were under-sampled with a 2D variable density random mask of 75% of
missing k-space points (Fig. 7.4.(b)).
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Coil sensitivities, {cr}R=8
r=1 , were estimated with the SoS method [Larsson et al.,

2003] from the undersampled data. Next, the initial low-reconstructed image
xLR was obtained as xLR = AH

BlockyNHamm where AH
Block denotes the Hermitian

transpose of ABlock and yNHamm are the under-sampled k-space data filtered with
a Hamming window (NHamm = 50). The phase ψx was estimated from xLR as
well. From ψ̂x, Ψ was determined after which Ã was redefined as proposed in
subsection 7.3.4. Finally, PD was applied with the same Split Bregman method.
As in the brain simulation experiment, r = 0.1 was selected. We also compared
PD with the ZF reconstruction, calculated as AH

Blocky, and with the CS+NLTV
method. In both cases, the coil estimation procedure was done in exactly the same
manner as for PD.

7.4.2 Sensitivity analysis of the PD method

This subsection summarizes the main results of a sensitivity analysis of the proposed
PD method to various parameters and deviations from assumptions. The analysis
is based on dedicated simulation experiments, which are extensively discussed in
subsection C.2 of the Appendix C.

7.4.2.1 Sensitivity to the pre-selected number of homogeneous regions K

To test the sensitivity to the pre-selected number of homogeneous regions K, a
dedicated simulation experiment was conducted on a digital phantom image. This
simulation experiment is described in subsection C.2.1.

7.4.2.2 Sensitivity to non-slowly varying phase

As described in subsection 7.3.3, the required estimate of the image phase is
obtained from a low-resolution image xLR. The rationale for this procedure is
that real-life phase images are often slowly varying. Note that a slowly varying or
smooth phase is a common assumption in MR image reconstruction methods [Lustig
et al., 2007]. Nevertheless, phase images may also have significantly higher spatial
frequency content [Zhao et al., 2012], especially when gradient echo instead of spin
echo imaging sequences are used [Feng et al., 2013]. To study the sensitivity of the
PD algorithm to non-slowly varying phase, we carried out a simulation experiment
(cfr. subsection C.2.2), in which the performance of PD for three different phase
profiles was evaluated.

7.4.2.3 Sensitivity to bias fields

Bias fields are undesired low-frequency signals induced by inhomogeneities in the
magnetic fields of the MRI system [Juntu et al., 2005]. The presence of a bias
field may challenge the main assumption underlying the PD method, namely that
the image to be reconstructed contains regions of quasi-constant intensity. To
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evaluate the performance of the PD method in the presence of a bias field, dedicated
simulation experiments were conducted on a digital phantom. These simulation
experiments are described in subsection C.2.3. Bias fields with different degrees of
variation were considered.

7.5 Results

7.5.1 Comparison of PD with popular reconstruction meth-
ods

7.5.1.1 Simulated k-space data

The expected value of the magnitude of the reconstructed images, that is, the
sample mean over the NRuns realizations are shown in Fig. 7.2. Root-Mean-Squared
Error (RMSE) maps are presented as well. Numerical results are provided in
Table 7.1.

(a) Ground (b) Sampling (c) Fully sampled (d) ZF
truth mask

(e) SparseMRI (f) CS+NLTV (g) C-LORAKS

(h) G-LORAKS (i) S-LORAKS (j) PD

Figure 7.2: Visual results for the experiment with simulated k-space data. The sample
mean of the magnitude of the reconstructed images are shown in companion of the RMSE
maps. To highlight small errors, the colorbar range of the RMSE maps was adapted to
[0, T ], where T is 40% of the maximum value which was found in all RMSE maps (i.e.,
considering altogether).

From Fig. 7.2, it can be observed that SparseMRI and CS+NLTV, though successful
in removing noise, do not recover a high resolution image. Their RMSE maps
reveal substantial structural errors, mainly located at edges. This observation
agrees with what was already pointed out in [Haldar, 2014a] for SparseMRI. As
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Table 7.1: Quantitative results for the experiment with simulated k-space data.

PSNR [dB] QILV HFEN FSIM
Fully sampled 35.3 0.998 0.070 0.990
ZF 28.7 0.747 0.235 0.903
SparseMRI 34.6 0.907 0.153 0.938
CS+NLTV 33.4 0.921 0.141 0.934
C-LORAKS 33.2 0.930 0.121 0.952
G-LORAKS 31.1 0.953 0.134 0.940
S-LORAKS 33.5 0.976 0.112 0.953
PD 34.5 0.986 0.090 0.962

expected, edges are slightly better preserved with CS+NLTV [Liang et al., 2011].
All LORAKS versions and specially PD restore images with substantially higher
resolution than ZF, SparseMRI and CS+NLTV. Indeed, their RMSE maps exhibit
a noisy pattern with a very moderate structural degradation effect. This is expected
if reconstruction methods succeed in recovering high-resolution missing k-space
data (see the fully sampled case).

Among all LORAKS versions, S-LORAKS seems to perform best. However, still
some (small) structural details errors can be observed. These are considerably
attenuated with PD though. Numerical results are in agreement with visual findings.
PD obtains the best result (disregarding the fully sampled scenario), in terms of
QILV, HFEN, and FSIM. PD is closely followed by S-LORAKS, while there is a
significant difference compared to CS+NLTV and SparseMRI. The highest PSNR
for SparseMRI might be attributed to its noise removal capability, having a relevant
effect specially in the background. With an Intel Core i7-4770K 3.5 GHz (32 GB
RAM) processor, the average time for LORAKS reconstruction was about 10 min.
The Singular Value Decomposition (SVD) incorporated in the method is probably
the reason of such a computational burden. As already mentioned in subsection 7.3.5,
the calculation ofW for the CS+NLTV method is computationally quite expensive.
With the parameters chosen as those recommended in the original work [Liang
et al., 2011], the average computation time for CS+NLTV was about 8 min. PD
was able to reconstruct images within roughly 4 min. The main computational
effort is in the GMM learning. Note that when the GMM parameters are known,
each of the subproblems of the Split Bregman method can be rapidly implemented
with the MM algorithm presented in section C.1. Clearly, the fastest algorithm
is SparseMRI with a computation time sometimes below 1 min. It should be
noted that all algorithms were implemented in Matlab. A C++ implementation
would greatly speed up all algorithms. This holds especially for the graph matrix
calculation of CS+NLTV and the GMM learning for PD.

7.5.1.2 In vivo human knee k-space data

Reconstructed SoS images as well as the absolute error maps (with the magnitude of
the fully sampled image as ground truth), are shown in Fig. 7.3, while quantitative
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results are reported in Table 7.2. We can draw similar conclusions about the

(c) ZF (d) SparseMRI

(a) Fully sampled (e) CS+NLTV (f) G-LORAKS

(b) Sampling mask (g) S-LORAKS (h) PD

Figure 7.3: Visual results for the experiment with real k-space data of the knee. The SoS
reconstructed images are shown in companion of the absolute errors maps. To highlight
small errors, the colorbar range of the absolute error maps was adapted to [0, T ], where T
is 40% of the maximum value which was found in all absolute error maps (i.e., considering
altogether).

Table 7.2: Quantitative results for the experiment with in vivo human knee k-space data.

PSNR [dB] QILV HFEN FSIM
ZF 29.84 0.454 2.96 · 105 0.887
SparseMRI 30.29 0.620 2.72 · 105 0.860
CS+NLTV 30.33 0.710 2.67 · 105 0.888
G-LORAKS 30.15 0.798 2.48 · 105 0.893
S-LORAKS 27.78 0.847 2.45 · 105 0.837
PD 27.92 0.857 2.41 · 105 0.883

performance of PD in comparison to the rest of the methods. The artefacts
manifested due to the random sampling are partially removed by SparseMRI and
CS+NLTV, but both methods failed in recovering highly detailed clinical relevant
areas, for example, the contours in the cartilage region. PD restored a higher
detailed image as can be seen as well by looking at the errors map. Concerning
the LORAKS versions, we first notice that C-LORAKS failed to converge (results
not shown). G-LORAKS was able to recover a better defined cartilage but still
it is largely outperformed by S-LORAKS and PD. Reconstructed images with
S-LORAKS are slightly less accurate than those obtained by PD, as is manifest
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in the metrics of Table 7.2. Certainly, PD scores best for metrics which are
specially conceived to assess small details preservation, that is, QILV and HFEN.
The best FSIM case for G-LORAKS may be understood if we notice that G-
LORAKS provides a good balance between artefacts suppression and structural
details preservation. Finally, the highest PSNR for CS+NLTV could be largely
based on its ability for artefacts removal. The computational time of all methods,
for each coil, were very similar to the times reported in the simulation experiment
and hence they are not repeated here.

7.5.1.3 In vivo human brain k-space data

Undoubtedly, it can be seen from Fig. 7.4 that the magnitude of the reconstructed
image with PD possesses higher resolution than the image restored with CS+NLTV
and specially ZF. A closer look at zoomed images (Fig. 7.4.(j-l)) reveals that the
interfaces between white/gray matter are better preserved with PD compared to
CS+NLTV. Absolute error maps also demonstrate that higher structural errors
are more widely manifested with CS+NLTV than with PD. Quantitative results in
Table 7.3 further suggest the superiority of PD in detail preservation and resolution
enhancement. PD ranked best for three of the four metrics. Nevertheless, it is

(a) Fully sampled (b) ZF (c) CS+NLTV (d) PD

Figure 7.4: Visual results for the experiment with real k-space data of the brain. The
magnitude of the multi-coil reconstructed images are shown (top row) in companion of
the absolute error maps (middle row (b-d)). To highlight small errors, the colorbar range
of the absolute error maps was adapted to [0, T ], where T is 40% of the maximum value
which was found in all absolute error maps (i.e., considering altogether). Zoomed region
for each case are shown in the bottom row.

also clear that NLTV outperforms PD in noise suppression. This is not surprising
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Table 7.3: Quantitative results for the experiment with in vivo human brain k-space data.

PSNR [dB] QILV HFEN FSIM
ZF 28.76 0.547 17.99 0.888
CS+NLTV 31.06 0.844 11.70 0.930
PD 31.50 0.995 8.340 0.926

since the NLTV prior term, incorporated in the CS+NLTV method, has proved to
be a very effective denoising mechanism [Gilboa and Osher, 2008]. Indeed, the first
application of the TV measure in the image processing field was noise removal [Rudin
et al., 1992]. It is interesting to remark that our partial discreteness prior does not
attempt to remove noise but to recover the unknown partially discrete image using
a priori information, which we carefully modeled from its special structure. Neither
the GMM nor the Bayesian probabilistic segmentation were designed to tackle
noise. However, showing its flexibility, our partial discreteness prior can easily
accommodate a simple regularization term in companion of the partial discreteness
representation to cope with noise while still exploiting all the potential of this novel
image representation. For the reader’s interest, we point out that the a posteriori
probability maps derived from the GMM have a broad range of applications for
MR reconstruction, tissue-selective filtering being one of them. A reduced list of
these applications and some extensions of the GMM are given at the end of the
conclusion section.

7.5.2 Sensitivity analysis of the PD method

7.5.2.1 Sensitivity to the pre-selected number of homogeneous regions K

The results of the experiment show a clear gain in reconstruction quality if at
least one homogeneous region (e.g., background) is chosen. A further substantial
improvement was achieved by also incorporating the hyper-intense region (K = 2).
The optimal value of K for the phantom image was found to be equal to 4, which
demonstrates that for particular partially discrete images, the performance of PD
can be further improved by selecting K higher than 2. Obviously, the optimal value
of K will depend on the image to be reconstructed. Note that in the experiments
that we performed to compare PD with state-of-the-art reconstruction methods
(see subsection 7.4.1), K was consistently set equal to 2, which can be considered
as a conservative choice.

7.5.2.2 Sensitivity to non-slowly varying phase

As expected, the performance of PD degrades for highly-varying phase profiles,
which indicates the importance of the smooth phase assumption. However, it was
also found that PD is robust to moderate phase variations.
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7.5.2.3 Sensitivity to bias fields

The results of the simulation experiments show that, in general, the performance of
PD deteriorates when the degree of variation of the bias field increases. In addition,
since not all homogeneous regions may be equally affected, a bias field may also
influence the optimal choice of K, suggesting that in the presence of a severe bias
field, a conservative choice of K is advisable, as is further motivated in subsection
C.2.3. In that subsection, we also elaborate on the possibility of improving the
robustness of the PD method by including a bias field correction technique.

7.6 Future work

Accelerating the reconstruction of individual MR images with undersampled k-
space data effectively reduces the total scanning time of quantitative MRI (qMRI)
modalities, such as relaxometry. In this sense, partial discreteness is of undeniable
help to shorten the long acquisition time of T1 and T2 mapping. However, it
becomes natural to wonder whether the information provided by the relaxation
model can be integrated into the reconstruction method, aiming at exploiting the
coupled information in the dataset of T1 or T2-weighted images. This idea will be
touched lightly at the end of the conclusions section (section 7.7). In this section,
we give an outlook and discuss the possible ways to include relaxometry information
in the PD method, thereby leading to unprecedentedly high acceleration ratios for
MRI relaxometry acquisitions.

Essentially, there are two methodologies so as to include relaxation model informa-
tion. We can include relaxometry information by exploiting inter-image redundancy
along the parametric dimension, that is, the dimension given by the number of
images. Alternatively, the relaxation model can be included explicitly in the recon-
struction framework. We will call the methods that relate to the first methodology
implicit reconstruction approaches, whereas the second class of methods will be
called simply relaxation model-based reconstruction techniques.

7.6.1 PD as an implicit relaxation reconstruction method

Inter-image redundancy is the key characteristic to be captured along the para-
metric dimension. The parametric dimension could be represented by time, e.g.,
inversion times for an IR T1-weighted images dataset, or echo times for a multi-
echo T2 weighted image sequence, but could be of different nature as well, e.g.,
flip angles for an SPGR T1-weighted data set. Inter-image redundancy has been
employed by using principal component analysis [Petzschner et al., 2011], imposing
smoothness on the relaxation signal model [Velikina et al., 2013], or, more recently,
by encouraging spatiotemporal low-rankness [Zhao et al., 2015,Peng et al., 2016,Lee
et al., 2016].

An extension of the GMM of partial discreteness to a multivariate GMM can simply
accommodate the desirable inter-image redundancy along the second dimension.
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In the original formulation, the intensity of the pixel was modeled as a random
variable X : Ω 7→ R+. Now, we are given a set of images xs with s = 1, ..., S, and
where S is the number of T1 or T2-weighted images. We model the intensity curve,
that is the intensity values from the relaxation model that can be obtained by
focusing one given pixels, as a random vector X = (X1, ..., XS)T . Hence, for a
fixed pixel n, the vector of intensity values is a realization of the random vector
X.

We then assume that X follows a multivariate GMM model, where each component
is a S-dimensional Gaussian distribution. The covariance matrix of each of the
components of the GMM now captures the intensity of a particular class, and its
(temporal) evolution along the parametric dimension. Constraints on the covariance
matrix of each GMM component may be enforced so as to promote highly correlated
consecutive variables, e.g., Xs and Xs+1.

Finally, we note that the multivariate GMM model extension can be applied beyond
relaxometry, allowing a joint reconstruction of a set of MR images, for example,
in accelerated dynamic MRI [Otazo et al., 2015], diffusion-weighted MRI or 3D
imaging [Setsompop et al., 2012].

7.6.2 PD as a relaxation model-based reconstruction method

Implicit relaxation methods exploit the redundancy along the inter-image dimension,
without including the relaxation model in the reconstruction process. Hence, the
estimation of spatial T1 and T2 maps is performed only after the reconstruction of
the whole undersampled k-space data set. That is, implicit relaxation methods are
yet two-step approaches.

With model-based reconstruction approaches, on the other hand, the optimization
problem is completely reformulated, since the relaxation model is included in the cost
function, and now spatial T1 or T2 maps are the variables to be reconstructed, (i.e.,
estimated). Relaxation model-based reconstruction methods have been recently
proposed for T2 mapping [Huang et al., 2012] and T1 mapping [Block et al.,
2009,Wang et al., 2017]. All of these methods incorporate some kind of prior
knowledge of the relaxometry maps, being either smoothness by means of Tikhonov
regularization [Block et al., 2009], or joint sparsity in the wavelet domains of steady-
state magnetization, equilibrium, and T1 maps (those three maps are estimated
simultaneously) [Wang et al., 2017].

The extension of the PD method to a relaxation model-based reconstruction method
is conceptually simpler than if we do so in an implicit scheme (see subsection 7.6.1).
The main drawback is that the resulting optimization problem is substantially
more complicated to solve. Indeed, the partial discreteness prior term Φ(·) can be
trivially extended to account for all of the S T1 or T2-weighted images, by applying
the partial discreteness representation to each of the N images that constitute the
collected dataset. However, the data fidelity term of Eq. (7.1) should be modified
to account for the relaxation model, giving a more complicated cost function. Since
the new the data fidelity term is a non-quadratic function, the MM technique
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of [Muckley et al., 2015] cannot be applied directly, so other optimization algorithms
should be conceived.

Obviously, clever options that exploit the partial discreteness representation in a
unified way are possible, leading to higher acceleration rates. For example, the
partial discreteness prior can be directly applied to the relaxometry maps, instead
of the individual relaxometry-weighted images. Finally, it is important to mention
that, unlike two-step approaches, model-based approaches have the benefit that,
since they constitute a single approach, they can be formally seen as T1 or T2
estimators. Note that with a two-step approach this is not possible. Note that the
statistical properties of these estimators can be studied in a systematic way using
the theory presented in chapter 4.

7.7 Conclusions

In this work, we have presented a novel prior, partial discreteness, for the reconstruc-
tion of MR images with quasi-constant intensity regions as well as heterogeneous
regions. We have shown that every image can be additively decomposed into its
partial discreteness representation and its residual form. The partial discreteness
representation, which is based on a GMM, embodies the basic features of partially
discrete images: constant intensity in homogeneous regions and texture in hetero-
geneous regions. Exploiting this partial discreteness representation in MR image
reconstruction, by enforcing sparsity on the residual form, we have been able to
reconstruct highly detailed images from under-sampled data with structural and
random under-sampling schemes, namely, pseudo-radial, random phase-encoding
and pseudo-random variable density sampling. In this work, partial discreteness
has been implemented in a phase-constrained formulation where the phase map
was estimated from a low-resolution image. Hence, we have implicitly made the
common assumption of smoothly varying phase images [Lustig et al., 2007,Haldar,
2014a]. Furthermore, it seems that no special assumptions on the type of sampling
pattern seem to be required for partial discreteness.

Experiments performed on both simulated and real k-space data have shown that the
newly proposed reconstruction method PD performs competitively with and often
better than state-of-the-art reconstruction methods such as SparseMRI, LORAKS
and CS+NLTV. The results suggest that PD allows better texture preservation than
SparseMRI (CS with TV prior), avoiding the staircasing effect, and even CS+NLTV.
This is because, in the partial discreteness representation, which is the core of PD,
edges are modeled not solely based on intensity or its gradient but merely based
on Bayesian (a posteriori) probabilities of GMM classes. Enforcing sparsity on the
residual form instead of the (non-local) gradient, as (non-local) TV promotes, is
less restrictive. Furthermore, PD outperforms LORAKS in terms of computation
time, while providing images as highly detailed as LORAKS does. Finally, we
note that the probabilistic image presentation in PD inherently leads to tissue
classification embedded in a Bayesian framework (provided K is chosen carefully
and tissues can be assumed to be homogeneous). A posteriori probability maps
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derived from the GMM may be used for tissue segmentation [Van Leemput et al.,
1999b], texture analysis or tissue-selective filtering schemes [Vegas-Sánchez-Ferrero
et al., 2010,Ramos-Llordén et al., 2015b].
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A
Appendix to Chapter 5

In section A.1 we provide details on the motion operator Hθn . In subsection
A.2, we prove Eq. (5.14) and Eq. (5.15), which gives a complete description of the
MM framework used in P.2. In section A.3, we show graphs of estimated motion
parameters for the in vivo experiments and one of the simulation experiments
described in subsection 5.4.1.2. Finally, section A.4 discusses an extension of the
joint MLE to account for intra-image motion.

A.1 Details on motion operator Hθn

In this section, an explicit expression of the motion operatorHθn is derived. Further-
more, we sketch the proof for its unitarity property, i.e.,HH

θn
Hθn = HθnH

H
θn

= I,
with I the identity matrix. Specific details can be found in [Condat et al.,
2008], [Jain, 1989] and especially in [Larkin et al., 1997].

Let rnm be a spatial point related to the reference-system point rm through a rigid
transformation matrix Mθn ∈ R4×4:(

rnm
1

)
= Mθn

(
rm
1

)
. (A.1)

The rigid transformation matrix Mθn ∈ R4×4, which includes 3D rotation and
translation, can then be written as [Poot, 2010,Goldstein et al., 2014]:

Mθn =
(
R(αn, βn, γn) tn
0T 1

)
, (A.2)
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with tn = (txn, tyn, tzn)T a vector of translation parameters, 0T a 1×3 zero vector,
and R(αn, βn, γn) ∈ R3×3 the product of three elementary rotation matrices(
Rx(αn), Ry(βn) and Rz(γn)

)
describing rotations around the x, y and z axis,

with angles αn, βn and γn, respectively. With such parametrization, we get

rnm = Rx(αn)Ry(βn)Rz(γn)rm + tn. (A.3)

Let f(·) be spatially-continuous function (a relaxation model in our problem). Then,
to calculate f(rnm), the following spatial transformations on f(·) are consecutively
applied:

1. 3D translation: fT(r) = f(r + tn)

2. Rotation around x axis fRot-x(r) = fT(Rxr)

3. Rotation around y axis fRot-y(r) = fRot-x(Ryr)

4. Rotation around z axis fRot-z(r) = fRot-y(Rzr)

Indeed, by evaluating fRot-z(·) at rm, we get f(rnm).

In a discrete domain, each of the previous four operations is represented by linear
operators, hence matrices, that we denote as HT, HRot-x, HRot-y, and HRot-z,
respectively. Note that we have omitted the dependence on the motion parameter
for the sake of notational convenience. As a consequence, the motion operator,
Hθn , can be written as

Hθn = HRot-zHRot-yHRot-xHT, (A.4)

and its Hermitian transpose as

HH
θn = HH

TH
H
Rot-xH

H
Rot-yH

H
Rot-z. (A.5)

It is clear that if HT , HRot-x, HRot-y and HRot-z are unitary, Hθn is unitary as
well.

A.1.1 Sketch of Proof 1: HT is unitary

The translation operatorHT consists of 1) a 3D FFT, 2) a voxel-wise multiplication
with a purely complex exponential whose phase depends linearly on the translation
parameters, and 3) an inverse 3D FFT [Larkin et al., 1997]. By noting that the
multidimensional FFT is a unitary operator [Jain, 1989], the translation operator
can be succinctly written as

HT = FH3D∆F3D, (A.6)

where F3D is the 3D unitary Discrete Fourier Transform (DFT) matrix and ∆ is a
diagonal matrix whose entries are purely complex exponentials. It is known that
∆ is a unitary matrix if and only if the modulus of each diagonal entries is one.
Since this is always true for purely complex exponentials, it demonstrates that HT
is unitary.
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A.1.2 Sketch of Proof 2: HRot-x, HRot-y, and HRot-z are uni-
tary.

For brevity, we present the proof only forHRot-x. The proof forHRot-y andHRot-z
is completely similar. Because Rx(αn) can be decomposed as the product of three
one-dimensional shear matrices [Larkin et al., 1997], it is possible to write

HRot-x = SxSySx, (A.7)

where Sx and Sy are fractional delay filters [Condat et al., 2008], which model
the shearings in the x and y dimension, respectively. Note that these filters can
be implemented efficiently with FFT [Larkin et al., 1997]. If both Sx and Sy are
unitary, HRot-x is unitary as well. Indeed, Sx has essentially the same diagonal
expression as Eq. (A.6), where the role of the 3D DFT matrices is fulfilled by a
(unitary) Fourier matrix which applies an FFT only along the x direction. The
phase of the complex exponential in the diagonal matrix now depends linearly
on the shearing parameter [Larkin et al., 1997], which is a real value. Therefore,
the associated diagonal matrix is unitary. The unitarity property of Sx follows
immediately. The proof for Sy is equivalent, with the exception that the unitary
Fourier matrix now represents an FFT along the y direction. We can prove then
that Sy is unitary and thus HRot-x is unitary. As already mentioned, the proof
for HRot-y and HRot-z are analogous. Combining Proof 1 and Proof 2, the unitary
property of Hθn is demonstrated.

A.2 Separable Quadratic Surrogate (SQS) func-
tion derivation for the joint MLE

In order to get the final version of the joint MLE algorithm, a necessary step was
to obtain a surrogate function for

Gn(κ,T1|κk,T k1 ) = ||W 1/2
n

(
H
θ̂

(t+1)
n

fn(κ,T1)− s̆kn
)
||

2

2
+ Cn(k) (A.8)

with Wn = diag{ 1
2σ2

n
}.

The choice we made in this work was a SQS function [Muckley et al., 2015], that
when applied to Eq. (A.8), yields Eq. (5.14) and Eq. (5.15). Here, we present the
proof of these equations. To that end, we build on results presented in [Muckley
et al., 2015]. In that work, a SQS function was applied to a generic quadratic form
1
2 ||y −Ax||

2
2. Such SQS function had the following expression:

1
2 ||x−

(
xk −D−1

f AH
(
Axk − y

))
||

2
Df

+ ξ, (A.9)

with ξ a constant independent of x and where the matrix Df is defined in such
way that it satisfies Df � AHA, that is, Df −AHA is a positive-semidefinite
matrix. We can easily identify the terms of the quadratic form at hand, i.e.,
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Gn(κ,T1|κk,T k1 ), with the terms of 1
2 ||y −Ax||

2
2, and hence easily define our SQS

function, as

G∗n(κ,T1|κk,T k1 ) = ||fn(κ,T1)− ρn(κk,T k1 )||2Df + C∗n(k), (A.10)

with

ρn(κk,T k1 ) = fn(κk,T k1 )−D−1
f AH(Afn(κk,T k1 )− y), (A.11)

C∗n(k) a constant independent of κ and T1, and where A = W
1/2
n H

θ̂
(t+1)
n

and
y = W

1/2
n s̆kn. After some algebra, we obtain

ρn(κk,T k1 ) = fn(κk,T k1 ) +D−1
f HH

θ̂
(t+1)
n

Wn

(
s̆kn −Hθ̂

(t+1)
n

fn(κk,T k1 )
)
. (A.12)

Before giving an expression for Df satisfying Df � AHA, first we recognize
that

AHA = HH

θ̂
(t+1)
n

W 1/2
n

H
W 1/2

n H
θ̂

(t+1)
n

= HH

θ̂
(t+1)
n

WnHθ̂
(t+1)
n

. (A.13)

Furthermore, it is easy to show that the diagonal matrixWn fulfillsWn � (σ∗n)−1
I

with (σ∗n)−1 being the maximum value along its diagonal, which is,

(σ∗n)−1 ,
1

2 min
m

[σn]2m
. (A.14)

Thus, if Wn � (σ∗n)−1
I, it follows that

HH

θ̂
(t+1)
n

WnHθ̂
(t+1)
n

� (σ∗n)−1
HH

θ̂
(t+1)
n

H
θ̂

(t+1)
n

= (σ∗n)−1
I, (A.15)

since the motion operator is unitary. Therefore, by defining Df as Df , (σ∗n)−1
I,

Df � AHA holds. Note that previous Df definition depends on n and hence the
NLLS problem (Eq. (A.10)) is weighted differently along dimension n. To provide
an unweighted NLLS problem, that is, the version we have presented in 5.3.2, we
set σ∗ = 2 min

n,m
[σn]2m. Clearly Wn � (σ∗)−1

I for all n. Hence, we redefine Df as

Df , (σ∗)−1
I, and trivially we get Df � AHA as desired. By substituting Df

into Eq. (A.12), we arrive at the final expression which is shown in Eq. (5.15).

A.3 Graphs of motion

To illustrate the quality of the motion estimation, in this section, we show the
graphs, as a function of n, of the ground-truth and estimated motion parameters
(for the three methods). In Fig. A.1, we show those graphs for one of the rotational
motion (R-m) simulations of subsection 5.4.1.2.

Fig.A.2 shows the graphs for the ground-truth based real experiments whereas
Fig.A.3 and Fig.A.4 present the curves of the motion estimates for the in vivo
axial and the in vivo sagittal human brain data experiments, respectively.
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A.4 Extension of the joint MLE to account for
intra-image motion

As mentioned in the discussion section (section 5.6), the joint MLE can be extended
to include intra-image motion, in particular, motion between the acquisition of
the different slices of a multi-slice image. A brief outlook to such an extension
is given here. The implementation of the extended algorithm should take into
account the following considerations. First, given an inversion time TIn, the z-th
noiseless and motion-corrupted 2D slice T1-weighted f̃n,z(θn,z,κ,T1) is related to
the unobserved 3D image, fn(κ,T1), through the motion parameters θn,z. Note
that the number of motion parameters scales with Mz × N , where Mz is the
number of slices. Second, the mapping between a 2D slice T1-weighted image and
the noiseless unobserved 3D image also requires a slice-selective profile filter, which
can be included as a matrix δz [Gholipour et al., 2010], just after the motion
operator, that is, f̃n,z(θn,z,κ,T1) = δzHθn,zfn(κ,T1). The final details of the
derivation of the MM algorithm are beyond the scope of this work and therefore
not presented here.
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Figure A.1: Graphs of the ground-truth and estimated motion parameters for one
realization of the simulation experiment with rotational motion: (a) tx, (b) ty, (c) tz,
(d) α, (e) β, (f) γ.

166



A.4. Extension of the joint MLE to account for intra-image motion

2 4 6 8
−0.5

0

0.5

1

1.5

n

t x
 [
m

m
]

 

 

CA

Hallack’s method

Joint MLE

2 4 6 8
0

0.5

1

1.5

n
t y

 [
m

m
]

 

 

CA

Hallack’s method

Joint MLE

(a) (b)

2 4 6 8
−8

−6

−4

−2

0

2

n

t z
 [
m

m
]

 

 

CA

Hallack’s method

Joint MLE

2 4 6 8
−1

0

1

2

3

4

n

α
 [

°
]

 

 

CA

Hallack’s method

Joint MLE

(c) (d)

2 4 6 8
−12

−10

−8

−6

−4

−2

0

n

β
 [

°]

 

 

CA

Hallack’s method

Joint MLE

2 4 6 8
−20

−15

−10

−5

0

n

γ 
[°

]

 

 

CA

Hallack’s method

Joint MLE

(e) (f)

Figure A.2: Graphs of the estimated motion parameters for the ground-truth watermelon
experiment: (a) tx, (b) ty, (c) tz, (d) α, (e) β, (f) γ.
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Figure A.3: Graphs of the estimated motion parameters for the in vivo axial human brain
data experiment: (a) tx, (b) ty, (c) tz, (d) α, (e) β, (f) γ.
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Figure A.4: Graphs of the estimated motion parameters for in vivo sagittal human brain
data experiment. (a) tx, (b) ty, (c) tz, (d) α, (e) β, (f) γ.
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B
Appendix to Chapter 6

B.1 Theoretical study of NOVIFAST’s global con-
vergence

B.1.1 Independence of ck+1
1 and ck+1

2 with respect to ck
1

In this section we demonstrate that the iterative procedure of Eq. (6.20) is indepen-
dent of ck1 , which is assumed to be nonzero. We first observe that in Eq. (6.20) the
dependency of ck+1

1 on ck1 is only via ã, through sn(ck) (see Eq. (6.15)). Moreover,
since ck1 enters linearly in ã, ã/ck1 is independent of ck1 . With the previous con-
siderations, due to the linear property of inner products we can rewrite Eq. (6.20)
as

ck+1
1 =

∣∣∣∣∣∣
〈b, z〉 〈b,a〉

ck
1〈z, ãck1

〉 ck
1〈a, ãck1

〉

∣∣∣∣∣∣∣∣∣∣∣∣
〈b, b〉 〈b,a〉

ck
1〈b, ãck1

〉 ck
1〈a, ãck1

〉

∣∣∣∣∣∣
, ck+1

2 =

∣∣∣∣∣∣
〈b, b〉 〈b, z〉

ck
1〈b, âck1

〉 ck
1〈z, ãck1

〉

∣∣∣∣∣∣∣∣∣∣∣∣
〈b, b〉 〈b,a〉

ck
1〈b, ãck1

〉 ck
1〈a, ãck1

〉

∣∣∣∣∣∣
. (B.1)

Let us now take into account the following lemma regarding the properties of
determinants [Zhang, 1999]:

Lemma 1 If we multiply a column or a row of a matrix by a number, the deter-
minant of that matrix will be multiplied by the same number.
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If we apply Lemma 1, we can factor out ck1 from the second row of the determinants,
with the result that ck1 in the numerator cancels with the same factor in the
denominator. Since â/ck1 does not depend on ck1 , both ck+1

1 and ck+1
2 are independent

of ck1 .

B.1.2 NOVIFAST as a fixed-point algorithm

NOVIFAST can be studied under the umbrella of fixed-point algorithms theory [Kirk
and Brailey Sims, 2001,Burden and Faires, 2010]. This framework allows us to
study the converge properties of NOVIFAST in a systematic way. Let us start with
some observations. As demonstrated in subsection B.1.1, the iterative procedure
of Eq. (6.20), which is part of NOVIFAST, does not depend on ck1 . In other
words, we have that ck+1

1 = g1(ck2) and ck+1
2 = g2(ck2), where the one-dimensional

functions g1(·) and g2(·) are, respectively, the first and second component of
the vector-valued function g(·), defined as g(c) = A−1(c)v(c). An iterative
procedure of the form of ck+1

2 = g2(ck2) is called a fixed-point iteration [Burden
and Faires, 2010,Kirk and Brailey Sims, 2001]. Similarly, a point c∗2 such that
c∗2 = g2(c∗2) is called a fixed-point of g2(·). Accordingly, a point c∗ = (c∗1, c∗2)T with
c∗1 = g1(c∗2) is a solution of Eq. (6.18) if and only if c∗2 is a fixed-point of g2(·).
We also have that if limk→∞ |ck+1

2 − ck2 | = 0, then, provided g1(·) has a bounded
derivative, limk→∞ |ck+1

1 − ck1 | = 0, and trivially limk→∞ ||ck+1 − ck||2 = 0. That
is, NOVIFAST does converge if limk→∞ |ck+1

2 − ck2 | = 0. Therefore, to study
NOVIFAST’s convergence we should focus on analyzing the fixed-point iteration
ck+1
2 = g2(ck2) .

To do so, let us assume that |dg2(c2)/dc2| ≤ L with L < 1 for all c2 ∈ C, where
dg2(c2)/dc2 denotes the derivative of g2(·) with respect to c2, and C is the closed
interval [exp (−TR/T1min), exp (−TR/T1max)] for appropriate T1min and T1max.
Throughout the rest of the document, we dubbed the condition |dg2(c2)/dc2| ≤ L
with L < 1 for all c2 ∈ C as the bound condition. If the bound condition holds, it
can be demonstrated by means of the mean value theorem that [Burden and Faires,
2010]

|g2(c2)− g2(c′2)| ≤ L|c2 − c′2| for every c2 and c′2 ∈ C. (B.2)
Regarding NOVIFAST’s convergence, Eq. (B.2) allows us to show that [Burden
and Faires, 2010]

|ck+1
2 − ck2 | ≤ L|ck2 − ck−1

2 |, k = 1, 2, ... (B.3)

provided all iterates ck2 ∈ C for k = 1, 2, .... In words, the absolute difference
between consecutive iterates always decreases, and the amount of that decrease
is governed by L. Clearly, this implies that if the bound condition holds, then
limk→∞ |ck+1

2 − ck2 | = 0. We can also demonstrate the existence of a unique c∗2, and
hence a single c∗. Indeed, suppose there would exist two fixed-points: c∗2 and c∗2′.
Then, |c∗2 − c∗2′| = |g(c∗2)− g(c∗2′)| ≤ L|c∗2 − c∗2′|. Hence, (1−L)|c∗2 − c∗2′| ≤ 0. Since
L < 1, the last inequality only holds if |c∗2 − c∗2′| = 0, which implies c∗2 = c∗2

′.

A remarkable observation is that, for the problem at hand, the bound condition,
with T1min = 150 ms and T1max = 4500 ms, holds with overwhelming probability

172



B.2. Empirical validation of NOVIFAST’s theoretical properties

for realistic clinically achievable signal-to-noise ratios (SNRs), for typical ground-
truth T1 values of white and gray matter, and for common flip angles and TR
values in the literature. This first shows that the existence of a unique local
maximum is guaranteed with very high probability (minimally 95% for realistic
values of the SNR, see subsection B.2.2 and, in particular, Fig. B.1). It also
substantiates our claims about the good convergence properties of NOVIFAST, since
limk→∞ ||ck+1 − ck||2 = 0 is guaranteed with high probability as well. Furthermore,
the value of L consistently decreases with increasing SNR, which implies that the
velocity of NOVIFAST’s convergence increases. This fact is related to the important
observation that NOVIFAST becomes an exact and analytical algorithm when
applied to noiseless data, as demonstrated in subsection 6.3.3. Before ending this
theoretical study, we would like to emphasize that the bound condition is just a
sufficient condition of convergence for NOVIFAST, but by no means a necessary
condition. Indeed, by checking limk→∞ ||ck+1 − ck||2 = 0 manually, for every
initialization T1ini ∈ [T1min, T1max], we obtained an overwhelming high probability
of convergence. The empirical analysis is presented in next section.

B.2 Empirical validation of NOVIFAST’s theoret-
ical properties

In this section we present the empirical simulation study that was conducted to
check the invertibility of the matrix A(c), appearing in Eq. (6.18), and the global
convergence properties of NOVIFAST.

As in the experimental part of section 7.4, yn with n = 1, ..., N , are realizations
of independent random variables that follow a Rician distribution, where the
signal parameter is given by sn(KGT;T1GT), and the noise standard deviation is
σ = KGT/SNR90◦ . Likewise, TR = 5 ms and the chosen FA sets were the AN=3
and AN=10 set. We tried to cover a much wider range of SNR90◦ values than in the
experiments of section 7.4. To that end, SNR90◦ was varied among the following
list of values: {80, 100, 150, 250, 300, 500, 1000, 2000, 3000, 10000}. An observation
relating to the fact that the data is Rice distributed, which we will exploit in the
experimental analysis, is the following: yn can also be generated as yn = KGTy

′
n,

with y′n being realizations of independent random variables that follow a Rician
distribution, where the signal parameter is given by sn(1;T1GT), and the noise
standard deviation is SNR−1

90◦ . The proof is immediate by virtue of the fundamental
theorem of transformation of random variables [Mood et al., 1963,Papoulis and
Pillai, 2002].

B.2.1 Invertibility of matrix A(c)

A necessary condition for NOVIFAST to be well defined is that the matrix A(c)
is non-singular, or equivalently, that its determinant det(A(c)), is non-zero (see
Eq. (6.19) and Eq. (6.20)). In the first section of this document, it was shown that
since ck1 enters linearly in sn(ck), it can be factored out of the determinant of
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the denominator of Eq. (6.20). Analogously, since yn = KGTy
′
n, KGT can also be

factored out.

Since det(A(c)) can then be written as KGTc1 det(ANorm(c)), where ANorm(c)
does not depend on KGT and c1, det(A(c)) = 0 if and only if det(ANorm(c)) = 0.
The statistics of the random variable det(ANorm(c)) (being a function of y′n) depend
on T1GT, c2, {αn}Nn=1, TR, and SNR90◦ . In a simulation experiment, we empirically
estimated the probability of the event {|det(ANorm(c))| ≤ ε}, with | · | the absolute
value operator and ε a fixed positive constant (ε = 1 in our experiments), for a dense
grid of T1GT, c2, and for the AN=3 and AN=10 FA set. We generated NMC = 105

realizations of y′n with T1GT ∈ [500, 2500] ms. We could not find any single case
where #{|det(ANorm(c))| ≤ ε}/NMC was non-zero, where #{|det(ANorm(c))| ≤ ε}
denotes the number of successful outcomes of the event {|det(ANorm(c))| ≤ ε}.
Since the case det(ANorm(c)) = 0 is contained in that event, we then concluded that
the probability of det(A(c)) = 0 was zero for the experiment conducted.

B.2.2 Global convergence properties

In subsection B.1.2, it was mentioned that the bound condition holds with high
probability for realistic clinically achievable SNRs. Moreover, convergence of
NOVIFAST, in the sense that limk→∞ ||ck+1 − ck||2 = 0, was guaranteed with
overwhelmingly high probabilities. We devote this section to presenting the MC
analysis and its main conclusions. The experimental set up was similar to the
experiment that was conducted to check the invertibility. The function g2(·), apart
from being independent of c1, is also independent of KGT (KGT can also be fac-
tored out from the numerator, and hence it cancels with KGT in the denominator).
Therefore, the statistics of the random variable dg2(c2)/dc2 depend on same pa-
rameters as detNorm(A). Hence, for every T1GT and SNR90◦ , and fixed {αn}Nn=1
and TR (same values as the invertibility-based experiment), we calculated the ratio
#{|dg2/dc2(c2)| ≤ L with L < 1 for all c2 ∈ C}/NMC, being an estimate of the
probability that the bound condition holds. This probability is shown in Fig. B.1.
Clearly, for SNR90◦ ≥ 250, a perfectly achievable value in clinical settings, the
bound probability was close to 100% for all tested values of T1GT. This is true for
the two FA sets used in the experiment.

To study the probability of NOVIFAST convergence in a more general sense, we
were interested in checking if limk→∞ ||ck+1 − ck||2 = 0 for every initialization
T1ini ∈ [T1min, T1max]. To do so, we adopted the following rule: NOVIFAST
converges if 1) the relative norm between two consecutive iterations is below 10−6

and 2) the iteration number is smaller than 1000. If any of these two conditions was
not met, we concluded that NOVIFAST failed to converge. We then counted the
number of successful outcomes, and divided this number by NMC. The resulting
probability estimate is shown in Fig. B.2 and Fig. B.3 for the AN=3 and AN=10
FA set, respectively. As we anticipated, this probability is higher than the bound
condition probability, since the latter is just a sufficient condition. Observe that
for SNR90◦ ≥ 250, the probability of convergence was 100% for all values of T1GT,
independently of the preselected initialization T1ini. Even for extremely low SNR90◦ ,
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difficult to find in actual MR scanners, NOVIFAST converges with overwhelmingly
high probability.

B.3 Mathematical proof of the exactness of NOV-
IFAST in the noiseless case

We divide the mathematical proof in two parts. First, we demonstrate the relations
given in Eq. (6.21) and Eq. (6.22), that is,

〈b, z〉 = c1GT〈b, b〉+ c2GT〈b,a〉 (B.4)
〈z, ã〉 = c1GT〈b, ã〉+ c2GT〈a, ã〉. (B.5)

Next, we make use of these relations to show that NOVIFAST is exact if we
work with noiseless data and it provides ground-truth values with just one itera-
tion.

B.3.1 Proof of Eq. (B.4) and Eq. (B.5)

Eq. (B.4) and Eq. (B.5) hold when we work with noiseless data, i.e., mathematically,
when yn = sn , sn(cGT), with

sn(cGT) = c1GT sin(αn)
1− c2GT cos(αn) . (B.6)

We shall start with the demonstration of Eq. (B.4). By multiplying the numerator
and denominator of bn by 1− c2GT cos(αn), we obtain

〈b, b〉 =
N∑
n=1

sin2(αn) (1− c2GT cos(αn))
(1− c2 cos(αn))2(1− c2GT cos(αn))

=

N∑
n=1

sin2(αn)
(1− c2 cos(αn))2(1− c2GT cos(αn))−

c2GT

N∑
n=1

sin2(αn) cos(αn)
(1− c2 cos(αn))2(1− c2GT cos(αn))

. (B.7)

Let us first focus on the first term on the right side of Eq. (B.7). If we multiply
the numerator and denominator of this term by c1GT, we can easily identify the
expression bnzn inside the sum. Therefore, the first term on the right side of
Eq. (B.7) is equal to 〈b, z〉/c1GT. If we repeat the procedure with the second term
on the right side of Eq. (B.7), we can similarly identify the expression anbn inside
the sum, hence we get c2GT〈b,a〉/c1GT. By rearranging Eq. (B.7) we then arrive
at Eq. (B.4).
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Regarding the proof of Eq. (B.5) we have that

〈b, ã〉 =
N∑
n=1

sn(c) sin(αn) cos(αn)(1− c2GT cos(αn))
(1− c2 cos(αn))2(1− c2GT cos(αn)) =

N∑
n=1

sn(c) sin(αn) cos(αn)
(1− c2 cos(αn))2(1− c2GT cos(αn))−

c2GT

N∑
n=1

sn(c) sin(αn) cos2(αn)
(1− c2 cos(αn))2(1− c2GT cos(αn)) . (B.8)

Let us again first focus on the first term on the right side. Let us multiply
the numerator and denominator by c1GT. By doing so, we can easily identify
the expression ãnsn(cGT)/(1− c2 cos(αn)) inside the sum. We also know that
for noiseless data yn = sn(cGT), and hence ãnsn(cGT)/(1− c2 cos(αn)) = znãn.
Consequently, the first term on the right side of Eq. (B.8) is identical to 〈z, ã〉/c1GT.
Regarding the second term, if we multiply both the numerator and denominator
by c1GT, we identify the expression ãnsn(cGT) cos(αn)/(1− c2 cos(αn)), which in
the noiseless case yields anãn, and we finally get c2GT〈a, ã〉/c1GT. Eq. (B.5) can
then be proved after rearranging terms.

B.3.2 Proof of NOVIFAST’s exactness

NOVIFAST’s exactness means that for noiseless data, ck+1
1 = c1GT and ck+1

2 = c2GT
for k = 0, 1, ... In order to prove this surprising result, we will need, apart from
Eq. (B.4), Eq. (B.5), and Lemma 1, a new Lemma regarding yet another property
of the determinant of a matrix [Zhang, 1999]:

Lemma 2 Adding a scalar multiple of one column to another column in a matrix
does not change the value of the determinant of that matrix.

Equipped with Lemma 2, let us now substitute Eq. (B.4) and Eq. (B.5) into
Eq. (6.20). We will just show the derivation of ck+1

1 = c1GT, as it is identical
for ck+1

2 :

ck+1
1 =

∣∣∣∣∣∣
c1GT〈b, b〉+ c2GT〈b,a〉 〈b,a〉

c1GT〈b, ã〉+ c2GT〈a, ã〉 〈a, ã〉

∣∣∣∣∣∣∣∣∣∣∣∣
〈b, b〉 〈b,a〉

〈b, ã〉 〈a, ã〉

∣∣∣∣∣∣
. (B.9)
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By Lemma 2, Eq. (B.9) is equivalent to

ck+1
1 =

∣∣∣∣∣∣
c1GT〈b, b〉 〈b,a〉

c1GT〈b, ã〉 〈a, ã〉

∣∣∣∣∣∣∣∣∣∣∣∣
〈b, b〉 〈b,a〉

〈b, ã〉 〈a, ã〉

∣∣∣∣∣∣
, (B.10)

which in virtue of Lemma 1 is equal to

ck+1
1 = c1GT

∣∣∣∣∣∣
〈b, b〉 〈b,a〉

〈b, ã〉 〈a, ã〉

∣∣∣∣∣∣∣∣∣∣∣∣
〈b, b〉 〈b,a〉

〈b, ã〉 〈a, ã〉

∣∣∣∣∣∣
= c1GT. (B.11)

B.4 Additional results of the experiment “MC sim-
ulation with synthetically generated SPGR
MR signals”

In this section, we include additional results for the experiment of subsection 6.4.1.
Specifically, statistical results and computation times for the case of the AN=3 FA
set with the initialization Kini = 0.5 and T1ini = 1000 ms are shown in Fig. B.4
and Fig. B.5, respectively. Results for Kini = 0.5 and T1ini = 500 ms are presented
in Fig. B.6 and Fig. B.7. Finally, in Fig. B.8 and Fig. B.9, statistical results and
computation time are displayed for the case of the AN=10 FA set and initialization
Kini = 0.5 and T1ini = 500 ms.
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Figure B.1: Probability that the bound condition holds for g2(·) as a function of T1GT
and SNR90◦ . Results with SNR90◦ > 500 are not shown since the probability was 100%.
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Figure B.2: Probability of NOVIFAST convergence as a function of T1GT and T1ini for the
case of the AN=3 FA set. Results with SNR90◦ > 250 are not shown since the probability
was 100%.
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Figure B.3: Probability of NOVIFAST convergence as a function of T1GT and T1ini for the
case of the AN=10 FA set. Results with SNR90◦ > 250 are not shown since the probability
was 100%.
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(c) SNR90◦ = 250 , SNR ∈ [5.6, 21.3] (d) SNR90◦ = 300, SNR ∈ [6.7, 25]

Figure B.4: Box-plots of the T1 estimates that are obtained with the five SPGR VFA
optimization algorithm. Tukey-style whiskers are shown that extend to a maximum of
1.5 x IQR beyond each box, with IQR the interquartile range (corresponding with the
length of each box) [Krzywinski and Altman, 2014]. Ground-truth T1 values are marked
with horizontal magenta lines to ease interpretation (Case of AN=3 FA data set and fixed
initialization of Kini = 0.5 and T1ini = 1000 ms).
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Figure B.5: Total computation time of each of the five optimization algorithms for the MC
simulation-based experiment (Case of AN=3 FA set and fixed initialization of Kini = 0.5
and T1ini = 1000 ms).
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(c) SNR90◦ = 250 , SNR ∈ [5.6, 21.3] (d) SNR90◦ = 300, SNR ∈ [6.7, 25]

Figure B.6: Box-plots of the T1 estimates that are obtained with the five SPGR VFA
optimization algorithm. Tukey-style whiskers are shown that extend to a maximum of
1.5 x IQR beyond each box, with IQR the interquartile range (corresponding with the
length of each box) [Krzywinski and Altman, 2014]. Ground-truth T1 values are marked
with horizontal magenta lines to ease interpretation (Case of AN=3 FA set with Rician
distributed data and fixed initialization of Kini = 0.5 and T1ini = 500 ms).
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Figure B.7: Total computation time of each of the five optimization algorithms for the MC
simulation-based experiment (Case of AN=3 FA set and fixed initialization of Kini = 0.5
and T1ini = 500 ms).
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Figure B.8: Box-plots of the T1 estimates that are obtained with the five SPGR VFA
optimization algorithm. Tukey-style whiskers are shown that extend to a maximum of
1.5 x IQR beyond each box, with IQR the interquartile range (corresponding with the
length of each box) [Krzywinski and Altman, 2014]. Ground-truth T1 values are marked
with horizontal magenta lines to ease interpretation (Case of AN=10 FA set and fixed
initialization of Kini = 0.5 and T1ini = 500 ms).
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Figure B.9: Total computation time of each of the five optimization algorithms for the MC
simulation-based experiment (Case of AN=10 FA set and fixed initialization of Kini = 0.5
and T1ini = 500 ms).
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C
Appendix to Chapter 7

In section C.1, we provide the implementation details of the minimization problem
included in the Split Bregman method. Furthermore, in section C.2, we describe
the simulation experiments that were conducted to perform the sensitivity analysis
presented in subsection 7.4.2. Whereas subsection 7.4.2 only summarizes the main
results of these experiments, a more detailed description and extensive discussion
can be found in this appendix.

C.1 Implementation details of Eq. (7.20)

For a fixed iteration t of the Split Bregman algorithm, we have to solve the
following minimization problem (subindices have been removed to simplify the
notation):

x∗ = arg min
x∈RN+

Φ(x) + λ

2 ||Ãx− v||
2
2, (C.1)

with v = b(t). To impose the real-valuedness condition, we define vRe = Re(v),
vIm = Im(v), ÃRe = Re(Ã), and ÃIm = Im(Ã), and then solve

x∗ = arg min
x∈RN+

Φ(x) + λ

2

∣∣∣∣∣∣∣∣(ÃRe

ÃIm

)
x−

(
vRe
vIm

)∣∣∣∣∣∣∣∣2
2
. (C.2)

When the problem is formulated in this way, any (gradient based) optimization
algorithm will produce a real-valued solution since all variables are real. Further-
more, to impose the positivity constraint, a projection on the positive orthant
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as [x]+ = (max(x1, 0), ...,max(xN , 0))T can be used in every iteration [Bertsekas,
1982].

Targeting at an efficient implementation of the PD method, we would like to
exploit the fact that matrix Ã is, in the single-coil case, a cascade of an under-
sampling mask, a unitary Fourier matrix (in case of Cartesian sampling), and
a diagonal matrix that includes the phase. Indeed, multiplications of the form
Ãx can be efficiently implemented with the FFT algorithm. However, if we use
the decomposition of Ã in its real and imaginary part, it is not trivial how to
relate the resulting matrices with the FFT. In order to exploit the FFT advantages
and still impose the real positivity constraint, we used a modified version of the
Majorize-Minimize (MM) algorithm recently proposed by Muckley et al. [Muckley
et al., 2015]. We constructed a collection of surrogate functions, i.e., majorizers of
the function

s(x) = Φ(x) + λ

2
∣∣∣∣Ãx− v∣∣∣∣22 , (C.3)

and minimized them, which implies the minimization of s(x) [Muckley et al., 2015].
Surrogate functions for f(x) = 1

2
∣∣∣∣Ãx− v∣∣∣∣22 are presented in Eq. (5) of Muckley

et al. [Muckley et al., 2015] as

g(x,xk) = 1
2

∣∣∣∣∣∣x− (xk −D−1
f ÃH(Ãxk − v))

∣∣∣∣∣∣2
Df

+ ξ, (C.4)

where Df , LI, with L the maximum eigenvalue of ÃHÃ, and where ξ is a
constant. If g(x,xk) is a surrogate function of f(x), i.e., if f(xk) = g(xk,xk) and
f(x) ≤ g(x,xk) for all x, clearly λg(x,xk) + Φ(x) is a surrogate function for
s(x). The benefit of this MM approach is that now we do not need to separate
matrix Ã into its real and imaginary part. Indeed,

xk+1 = arg min
x∈RN+

λg(x,xk) + Φ(x) = arg min
x∈RN+

λ

2 ||x− (∆k
Re + j∆k

Im)||2Df + Φ(x),

(C.5)
with ∆k

Re and ∆k
Im the real and imaginary parts of ∆k, with

∆k = xk −D−1
f ÃH(Ãxk − v). (C.6)

The minimization problem now becomes

xk+1 = arg min
x∈RN+

λ

2 ||x−∆k
Re||2Df + λ

2 ||∆
k
Im||2Df + Φ(x). (C.7)

Because a constant does not affect the minimization, Eq. (C.7) simplifies to

xk+1 = arg min
x∈RN+

γk(x), (C.8)

with γk(x) = λ
2 ||x −∆k

Re||2Df + Φ(x). Since the calculation of the gradient of
γk(x) does not involve any complex number, any method that updates the previous
iteration with a gradient step will produce a real-valued solution. In fact,

∇γk(x) = λL(x−∆k
Re) +∇Φ(x). (C.9)
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In summary, our optimization method involves solving problem Eq. (C.8). For
this purpose, we chose the Fletcher-Reeves nonlinear conjugate gradient (NCG)
method [Nocedal and Wright, 2006], with a step size obtained using the Armijo (line
search) rule [Armijo, 1966,Nocedal and Wright, 2006]. Positivity was imposed (in
each iteration) with [x]+ = (max(x1, 0), ...,max(xN , 0))T [Bertsekas, 1982].

The solution xk+1 serves to update ∆k
Re and hence to update γk(x), which defines

a new optimization problem. This problem is solved again with the NCG method,
from which γk(x) is updated. This process is repeated until the number of iterations
exceeds a given threshold. This process constitutes the whole algorithm to solve
the problem of Eq. (C.1). Since we cannot prove that the problem is convex,
due to the analytical form of P(x), convergence to a global minimum cannot be
assured. However, the combination of steps described above guarantees that s(x)
decreases with each iteration and the algorithm provided satisfactory solutions in
our experiments.

The maximum eigenvalue L of ÃHÃ Here, we prove that L = 1 as in the
work of Muckley et al. [Muckley et al., 2015]. If we work with Cartesian sampling,
Ã = AΨ can be written as Ã = SFΨ where F ∈ CN×N is a unitary Fourier
matrix and S ∈ [0, 1]M×N , with M < N , is the under-sampling matrix. For our
purposes, S can be defined as an identity matrix where M −N rows have been
removed. Those rows are indexed depending on the sampling pattern. First, it is
trivial to see that R = SHS is an N ×N diagonal matrix with only 1s and 0s in
its diagonal. Second, we have that ÃHÃ = ΨHFHSHSFΨ = ΨHFHRFΨ. By
calling PH = FΨ, we have that ÃHÃ = PRPH is already in its diagonal form
and the eigenvalues are those contained in the diagonal of R. Finally, because
eigenvalues only take the value 1 or 0, we have that L = 1.

Multi-coil case In the multi-coil case, it can be demonstrated [Muckley et al.,
2015] that the diagonal matrix Df can be written as

Df , LΨHCΨ, (C.10)

where L is the maximum eigenvalue of the block-matrix conformed by matrix A,
which is again 1. The diagonal matrix C ∈ RN×N+ is defined as

C =
(
CH

1 CH
2 · · · CH

R

)

C1
C2
...
CR

 , (C.11)

where {Cr}Rr=1 are the diagonal matrices that contain the coil sensitivities (subsec-
tion 7.3.4). The gradient in Eq. (C.9) is now replaced by

∇γk(x) = λDf (x−∆k
Re) +∇Φ(x). (C.12)

Note that ∇γk(x) is again real since Df is real. In fact, it is easy to show that
Df = C because C and Ψ commute (they are diagonal) and Ψ is unitary.

189



PD: a Novel Prior for MR Image Reconstruction

C.1.1 Calculation of gradient

Remembering that Φ(x) = ||x− P(x)||1, its (weak) gradient is given by

∇Φ(x) = (I − JP(x))T sgn(x− P(x)), (C.13)

where sgn(·) is the sign function, i.e., sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0
and sgn(x) = 0 if x = 0; I ∈ RN×N is the identity matrix and JP(x) ∈ RN×N is
the Jacobian of P(x). The expression of P(x) is

P(x) =
K∑
k=1

ηkpk + pĀ ◦ xρ, (C.14)

where xρ , Gρ ∗ x with Gρ the Gaussian kernel and ∗ the convolution operator.
To facilitate the Jacobian calculation, note that because the convolution is a
linear operation, if we work purely with vectors and matrices, there exist a matrix
Gρ ∈ RN×N [Jain, 1989] that relates xρ to x as xρ = Gρx and P(x) can be
written as

P(x) =
K∑
k=1

ηkpk + diag (pĀ)Gρx. (C.15)

Because pk and pĀ depend pointwise on x, we have

JP(x) =
K∑
k=1

ηk diag
(
∂pk(xn)
∂xn

)
+ diag

(
∂pĀ(xn)
∂xn

)
Gρx+GT

ρ diag(pĀ), (C.16)

or

JP(x) =
K∑
k=1

ηk diag
(
∂pk(xn)
∂xn

)
+diag

(
∂pĀ(xn)
∂xn

[xρ]n
)

+GT
ρ diag(pĀ). (C.17)

The partial derivatives of the probability maps can be obtained by applying the
quotient rule for derivatives to the posteriori probabilities of Eqs. (7.9-7.10),
i.e.,

∂pk(xn)
∂xn

=
p′X|Ak(xn)pX(xn)− pX|Ak(xn)p′X(xn)

p2
X(xn) , (C.18)

∂pĀ(xn)
∂xn

=
p′
X|Ā(xn)pX(xn)− pX|Ā(xn)p′X(xn)

p2
X(xn) , (C.19)

with p′X(x) , ∂pX(x)
∂x , p′

X|Āk
(x) ,

∂pX|Āk
(x)

∂x , and p′
X|Ā(x) ,

∂pX|Ā(x)
∂x . Obvi-

ously, the derivatives of the Gaussian probability functions can easily be obtained
exactly.
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(a) Ground-truth (b) Sampling mask

Figure C.1: Magnitude image used as ground-truth (a) and sampling mask (b) with 40%
of undersampling.

Finally, it is interesting to note that we do not need to calculate GT
ρ because

∇Φ(x) = (I − JP(x))T sgn(x− P(x)) =

sgn(x− P(x))−
K∑
k=1

ηk diag
(
∂pk(xn)
∂xn

)
sgn(x− P(x))−

diag
(
∂pĀ(xn)
∂xn

[xρ]n
)

sgn(x− P(x))− diag(pĀ) sgn(x− P(x))ρ, (C.20)

with sgn(x− P(x))ρ , Gρ sgn(x− P(x)) = Gρ ∗ sgn(x− P(x)).

C.2 Details of the sensitivity analysis of PD

C.2.1 Sensitivity of the PD method to the pre-selected num-
ber of homogeneous regions K: experiment setup and
results

The digital phantom was constructed as follows. A magnitude image (217 ×
181) (Fig. C.1.(a)) was downloaded from BrainWeb1 [Cocosco et al., 1997]. This
magnitude image was considered as the ground-truth image. A smoothly varying
phase was simulated by Legendre polynomials up to the second degree.

Following the same procedure as in the first simulation experiment (7.4.1.1), complex
valued Gaussian noise was added to create NRuns = 20 complex noisy images.
Again, the SNR, defined by Eq. (7.26), was chosen equal to 10. From these noisy
complex images, under-sampled k-space data were generated with the random
phase-encoding mask which is shown in Fig. C.1.(b). The GMM was learned from
one realization of |xLR|. The optimal number of components (or, classes) was
found to be equal to eight. The partial discreteness degree, r, was set to 0.99. The

1Available at http://brainweb.bic.mni.mcgill.ca/brainweb/
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size of the symmetric Hamming window filter was NHamm = 50. The rest of the
PD parameters were the same as in the previous experiments. The corresponding a
posteriori probability maps related to |xLR| are displayed in Fig. C.2. K was then
varied from zero (no homogeneous region) to eight, the total number of components.
Graphs of the reconstruction quality measures PSNR, QILV, HFEN and FSIM as
a function on K are shown in Fig.C.3. In addition, we also present in Fig.C.4
the expected value of the reconstructed images for different values of K with their
corresponding RMSE maps. The first important observation is that the worst

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure C.2: A posteriori probability maps derived from the GMM (total number of
components is equal to eight) which is learned from the initial low resolution image, |xLR|.
In (a) and (b), the probability maps of the classes with the lowest and highest mean
are shown. The remaining probability maps are shown in (c-h) in ascending order with
respect of the standard deviation.

result is achieved with K = 0. This shows that using the partial discreteness prior
is beneficial, and reconstruction quality is gained if at least one region is assumed
to be constant in intensity. Furthermore, there is a substantial improvement in
terms of all four metrics if the hyper-intense region is also incorporated in the PD
prior. This region corresponds to the CSF in the ventricles, see the a posteriori
probability map displayed in Fig. C.2.(b). The graphs of QILV and FISM show an
optimum at K = 4. This result is not surprising. It follows from the probability
map displayed in Fig. C.2.(d) that the fourth conditional PDF corresponds to the
white matter region. The fact that artifacts are most severely present in this region
may explain why the assumption of a homogeneous white matter region produces
the observed gain in reconstruction quality. See also the reconstructed images in
Fig.C.4. Choosing K higher than four is not preferable in terms of QILV and
FSIM. A possible explanation is that the additional estimated conditional PDFs
are related to regions that can hardly be considered as homogeneous, observe for
example the a posteriori probability maps in Fig. C.2.(e-h). Hence, it is preferable
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Figure C.3: Performance of PD depending on pre-selected number of homogeneous regions,
K.

to consider them as components of the estimated conditional PDF pX|Ā(x; θ̂Ā)
for the texture part. Graphs of PSRN and HFEN follow an expected trend up to
K = 4, showing that reconstruction quality improves when K increases. Above
K = 4, the behavior of both graphs fluctuates. The source of this fluctuation is
unknown to us and we prefer not to speculate about possible explanations.

C.2.2 Sensitivity of the PD method to non-slowly varying
phase: experiment setup and results

The three phase profiles that were added to the ground-truth image (same magnitude
image as in the previous experiment) are shown in Fig. C.5. Phase profile A mimics a
slow-varying phase image. It was constructed using Legendre polynomials up to the
second degree. Phase profile B and phase profile C were created emulating the same
protocol as in [Haldar, 2014a], see for example Fig. 6 in [Haldar, 2014a]. Following
the same procedure as in the previous experiment, complex valued Gaussian noise
was added to create NRuns = 20 complex noisy images. Again, the SNR, defined
by 7.26, was chosen equal to 10. From these noisy complex images, under-sampled
k-space data were produced with the same random phase-encoding mask as in the
preceding experiment (see Fig. C.1(b)). For each phase profile, the low resolution
image xLR was reconstructed using different sizes of the Hamming window, namely,
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NHamm = {20, 50, 100, 200}. In this experiment, we also selected r = 0.99. The
number of homogeneous regions was set to K = 4. Graphs of the reconstruction
quality measures PSNR, QILV, HFEN and FSIM as a function on NHamm are
presented in Fig. C.6, whereas the expected value of the reconstructed images, that
is, the sample mean over the NRuns realizations, are shown in Fig.C.7. These
results show that, not surprisingly, the performance of the PD method decreases
for more rapidly varying phase profiles. Nevertheless, the results also show that
PD is quite robust to moderate phase variations such as those present in phase
profile B. Interestingly, increasing NHamm does not always lead to an improvement
in reconstruction quality, except for the phase profile C case. A plausible reason is
that for phase profiles A and B, most of the phase information is preserved with
moderate values of NHamm, and increasing this number may permit artifacts to be
preserved, hence negatively affecting the initial reconstruction. Considering the
four reconstruction quality metrics, it seems that NHamm = 50 is an optimal value
for profile A and B, since reconstruction quality degrades for higher values. This
result motivated the use of NHamm = 50 in all other experiments described in this
work.

C.2.3 Sensitivity of the PD method to bias field: experi-
ment setup and results

Multiplicative linear bias fields were simulated as C(X + Y ) +B, with X and Y
the spatial coordinates of the image. The bias fields were constructed such that
their lowest value is always located in the top-left corner and their highest value
in the bottom-right corner of the image. Furthermore, the parameters B and C
were varied in such a way that the bias fields always have value ‘1’ in the center of
the brain (corresponding with the green point in Fig.C.8.(a)), and a predefined
decreased/increased value [10−70]% at the top/bottom red points in Fig. C.8. Two
examples of such linear bias fields are shown in Fig.C.8.(a) and Fig.C.8.(c). In
order to generate the biased partially discrete image, that is, the partially discrete
image corrupted by a bias field, we used the same unbiased ground-truth magnitude
image that was used in the previous experiment with phase profile A (see subsection
C.2.2). This complex image was point-wise multiplied by the simulated linear bias
field to finally get the biased partially discrete image. Examples of the magnitude of
the thus obtained biased images are shown in Fig. C.8.(b) and Fig. C.8.(d).

For each of the degrees of variation used in this experiment, which range from
0% (no bias field) to 70% (severe bias field), in increments of 10%, NRuns complex
noisy images were created in the same fashion as in the previous experiment. Next,
under-sampled k-space data were generated, using again the sampling mask shown
in Fig.C.1.(b). The number of homogeneous regions was set to K = 4 and, for
each of the degrees of variation, the GMM was learned from |xLR|. The remaining
parameters were the same as those from the previous experiments. Graphs of the
reconstruction quality measures PSNR, QILV, HFEN, and FSIM as a function of
the degree of bias field variation are shown in Fig. C.6. Moreover, reconstructed
images and RMSE maps are presented in Fig. C.10.
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It follows from these graphs and error maps that the reconstruction quality decreases
with an increasing degree of bias field variation. This effect can easily be understood
by realizing that the presence of a bias field challenges the partial discreteness
assumption. That is, homogeneous regions become less homogeneous due to the
presence of a bias field.

Note that, since not all homogeneous regions may be equally affected, the presence
of a bias field may also influence the optimal choice of K. Indeed, the background
and hyper-intense region (being a localized homogeneous region) are generally less
affected by a bias field than the regions that correspond with K > 2 (such as
the white matter area in this experiment), suggesting that in the presence of a
severe bias field a conservative choice of K is advisable. The effectiveness of such a
strategy was illustrated in the experiment with the in-vivo human k-space data
that was discussed in subsection 7.5.1.2. In that experiment, each of the coil images
xr, r = 1, ..., 8, was reconstructed independently, that is, without knowledge of the
coil sensitivities. That implies that the partially discrete images we tried to restore
were severely affected by bias field, whose source, in this case, was the sensitivity
profile of each coil. In that experiment, we chose K = 2, since the then treated
homogeneous regions (background and hyper-intense region) were not substantially
affected by image inhomogeneities. Instead, most of the bias field variation was
incorporated in the texture part. The results of the experiment show the good
performance of the PD method, despite of the presence of a bias field.

It is also worthwhile to mention that, in a multi-coil acquisition system, if the goal
is to reconstruct the original partially discrete x instead of each xr separately, the
image intensity inhomogeneities which are present in the coil images are captured in
the forward model, via the profiles of the coil sensitivities (see subsection 7.3.4). If
such coil sensitivities are reasonably well estimated, it can be expected that x will
have a very low degree of intensity inhomogeneities, which can be well-handled with
PD. This was the case in the experiment with in vivo human brain k-space data
(see subsection 7.5.1.3), where it was shown that PD succeeded in reconstructing a
partially discrete image from under-sampling multi-coil k-space data. Although
out of the scope of this work, the robustness of the PD method to bias fields can
be improved by including a bias-field correction technique. Prior estimation of the
bias field would allow to include its effect into the forward model, in a similar way
as the coil sensitivities in the multi-coil model (see subsection 7.3.4).

Furthermore, as already mentioned in subsection 7.3.5, the employment of the
GMM has already been proved useful to deal with bias field correction in MR
images, where both the original Gaussian component parameters, that is, mean
and standard deviation, are jointly estimated, together with a slowly-varying bias
field [Van Leemput et al., 1999a,Mai et al., 2011].
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Figure C.4: Visual results for the experiment with different values of K. The sample
mean of the magnitude of the reconstructed images are shown in companion of the RMSE
maps. The colorbar range of the RMSE maps was adapted to [0, T ], where T is 40% of
the maximum value which was found in all RMSE maps.

(a) Phase profile A (b) Phase profile B (c) Phase profile C

Figure C.5: Different profiles of simulated phase images (intensity between −π and π).
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(a) (b)

(c) (d)

Figure C.6: Reconstruction quality of PD for different profiles of phase images, in terms
of (a) PSNR, (b) QILV, (c) HFEN and (d) FSIM. The results are shown as a function of
the Hamming filter window size, NHamm.
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(e) Phase profile B, NHamm = 20 (f) Phase profile B, NHamm = 50
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(k) Phase profile C, NHamm = 100 (l) Phase profile C, NHamm = 200

Figure C.7: Visual results for the experiment with different phase profiles and different
Hamming window size NHamm. The sample mean of the magnitude of the reconstructed
images are shown in companion of the RMSE maps. To highlight small errors, the colorbar
range of the RMSE maps was adapted to [0, T ], where T is 10% of the maximum value
which was found in all RMSE maps.
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(a) Bias field of 10% (b) Biased (c) Bias field of 70% (d) Biased
partially partially

discrete image discrete image

Figure C.8: Examples of multiplicative linear bias fields that were used to check the influ-
ence of bias field on the PD performance are displayed in (a) and (c). The corresponding
biased partially discrete images are shown in (d) and (d).
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Figure C.9: Performance of PD depending on the bias field variation.
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Figure C.10: Visual results for the experiment with different degrees of bias field variation.
The sample mean of the magnitude of the reconstructed images images are shown in
companion of the RMSE maps. Since, for each degree of variation, the ground-truth
image intensity scale differ, the colorbar ranges of the RMSE maps are different.
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Conclusion

MRI relaxometry is a very promising qMRI modality which aims at providing new
insights into a very wide spectrum of human diseases, and also gives a better under-
standing of physiological processes of the human body. This PhD thesis has tried to
emphasize the importance of this modality for current modern radiology. However,
there is a large number of challenges in the current field of MRI relaxometry, and
those should be carefully addressed before blindly relying on image biomarkers
that are derived from T1 or T2 mapping. As is common in other qMRI modalities,
overcoming these challenges is, by no means, an easy task. In this thesis, we have
stated that, perhaps, the main reason why MRI relaxometry is not used routinely in
the clinic is the lack of sufficient accuracy and reproducibility. The long acquisition
protocol of T1 and T2 mapping is referred to as one of the main causes as well.
Since qMRI is definitely an interdisciplinary field, where physicists, radiologists,
engineers, and mathematicians can contribute, the resulting approaches for solving
current problems are radically different.

In this PhD thesis, we have tried to address some of the problems that appear in
MRI relaxometry by using an engineering approach, adopting a signal processing
perspective. Indeed, while inaccurate physical modeling is often attributed as the
main cause of lack of accuracy and reproducibility, little effort has been made
on designing signal/image processing algorithms particularly tailored to MRI
relaxometry. This is particularly surprising especially when MRI relaxometry is
compared to even younger qMRI modalities, such as diffusion MRI (dMRI), where
several groups have set the standards for accurate and precise qMRI estimation
using a plethora of theoretically-grounded parameter estimation techniques and
signal processing algorithms. As in dMRI, an important part of the errors that
end up in unacceptable MRI relaxometry-based biomarkers can be attributed to
the use of naïve and inadequate signal processing algorithms, and also standard,
suboptimal statistical parameter methods. Further, the long protocol time of MRI
relaxometry may be reduced by using sophisticated algorithms based on MRI image
reconstruction theory, thereby avoiding further hardware development.

In chapter 5, we demonstrated that our joint Maximum Likelihood Estimator for
simultaneous motion and T1 estimation in T1 mapping provides more accurate T1
maps than those that are obtained with the conventional approach, in which image
registration is performed prior to the T1 estimation step. There are fundamentally
two reasons for the better performance of our framework. First, when the relaxation
model is integrated into the image registration problem, resulting in a model-
based registration approach, the added temporal information leverages the motion
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estimation step since we do not merely rely on intensity information but on the
underlying model that is behind. Second, and importantly, accurate and precise T1
mapping is doubtful when conventional two-step approaches are in play, even when
the image registration has performed relatively well. The reason is that the image
interpolation included in the image registration step will modify the statistical
assumptions of the data. Deriving the resulting data distribution function is often
impossible. Hence, optimal T1 estimation is no longer possible. The alternative
approach that we proposed is to include the relaxation model and the noise model
into a global statistical model, which accounts for the data statistics. By doing
so, the estimated T1 map in MLE sense not only benefits from model-based
approach registration but is also statistically optimal. As correctly noticed by other
scientists, it can be argued that the unified approach ends up in a computationally
quite demanding optimization problem, thereby encouraging practitioners to still
adhere to the inaccurate conventional two-step technique. Nevertheless, the MLE
framework was designed by paying attention to implementation efficiency, exploiting
advanced methods of optimization theory, such as Majorize-Minimize algorithms,
to transform a large optimization problem into a feasible optimization problem.
These techniques may be applied even beyond MRI relaxometry. On top of that,
the framework admits extensions to more complex motion and relaxation models,
which allows modifications by other users as a “turn-the-crank” procedure.

Careful design of optimization algorithms for relaxometry usually pays off in terms
of computational speed and statistical optimality, as shown in chapter 6. The
optimization algorithm that we developed for VFA T1 mapping, NOVIFAST, was
proved to give the NLLS estimates, ML estimates in case of Gaussian noise, with an
improvement in speed of, at least, twenty times compared to general purpose NLLS
optimizers such as Levenberg-Marquardt and Gauss-Newton. This contribution
exemplifies and highlights one of the main messages of this PhD thesis: it is often
better to develop tailored and specific signal processing algorithms for a given qMRI
modality, relaxometry in this case, rather than using general-purpose algorithms
as black box procedures. Regarding NOVIFAST, we followed a fundamentally
different approach compared to typical optimization toolboxes, such as those of
Matlab, and we directly sought for the NLLS estimates by solving the non-linear
equations that result from the first-order optimality conditions. Nothing seems
exceptional to that point. However, during the derivation, equipped with very basic
algebra rules, we made use of the specific structure that the SPGR model possesses,
a quotient of rational functions, to end up with a semi-linear system of non-linear
equations that could be solved tremendously fast in a very low number of iterations.
With this work, our main message was to show that, with NOVIFAST, there are
no reasons for VFA T1 map practitioners to stay away from NLLS estimators due
to their computational burden and initialization issues, and resort to fast, linear
but suboptimal algorithms, such as DESPOT and IRWLS. As quoted in chapter
6, NOVIFAST can bring the best of both worlds: high accuracy in a very low
computation time.

The last contribution of this work (chapter 7) has been a novel type of prior
knowledge for accelerated MR image reconstruction with undersampled k-space
data. The long acquisition time for reconstruction of an individual MR image is
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the main handicap for MRI to become someday a real-time imaging modality. The
acquisition time issue is even accentuated in qMRI, e.g., in relaxometry, due to the
need to collect several MR images. The reconstruction method that we proposed
in chapter 7, termed partial discreteness, compensates the lack of enough k-space
data measurements with a priori information based on the spatial variation of the
MR image intensity. In particular, partial discreteness exploits the fact that, in
specific regions of MR images, the intensity pattern presents a much lower variation
compared to those regions where the texture is really prominent. Paradigmatic
cases are the background region as well as hyperintense areas that result when
contrast-enhanced pulse sequences are in play. This information is modeled by using
techniques from the machine-learning community, e.g., a Gaussian Mixture Model
(GMM) to capture the salient features of what we called partially discrete images
(those that adhere to our prior information). The proposed method competed very
well with state-of-the-art reconstruction methods, with a radically different way to
model prior information. With this work, we aimed at presenting a fresh approach
for MRI reconstruction as well as making MRI reconstruction practitioners aware
of the incredible potential that machine learning can bring in, a field that now is
in vogue across not only scientists but also technologists.

Partial discreteness presents itself as a technique to accelerate the acquisition
of individual MR images, and hence, is of undeniable utility for reducing the
long protocol time of MRI relaxometry studies. We would like to note that, in
the original paper, as well as in subsection 7.6, we mentioned the possibility to
extend partial discreteness by incorporating information encoded in the fourth
(temporal) dimension. Particularly, the GMM can be generalized to a multivariate
mixture model, fully exploiting the temporal change of intensity that is based on
the relaxometry model at hand. Similarly, the relaxation model can be explicitly
included in the reconstruction method, thereby estimating the T1 or T2 spatial
maps directly. Both extensions were left as future work, and they would have
represented a truly integrated k-space reconstruction approach for MRI relaxometry.
Hopefully, the ingredients that were included in the original partial discreteness
method (chapter 7), as well as the small given outlook to perform such a desirable
unified extension will be helpful in pushing the limits of MRI relaxometry.
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List of Acronyms

This section lists (in alphabetic order) all the acronyms that have been used in this
dissertation.

1D one-dimensional
2D two-dimensional
3D three-dimensional
4D four-dimensional

AL Augmented Langrangian

BFGS Broyden-Fletcher-Goldfarb-Shanno

CA conventional approach
cBCD cyclic block-coordinate descent
CRLB Cramér Rao lower bound
CS compressed sensing
CSF cerebrospinal fluid
CT computed tomography

DESPOT1 driven equilibrium single pulse observation
DFT discrete Fourier transform
DTFT discrete time Fourier transform

EPI echo planar imaging
ETL echo train length

FA flip angle
FFT fast Fourier transform
FID free induction decay
FOV field of view
FSE fast spin echo
FSIM feature similarity index metric
FWHM full with at the half maximum
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GE gradient echo
GMM Gaussian mixture model
GT ground truth
GN Gauss-Newton
GRAPPA generalized autocalibrating partially parallel acquisitions

HFEN high frequency error norm

IDFT inverse discrete Fourier transform
IDTFT inverse discrete time Fourier transform
IQR interquartile range
IR inversion recovery
IRWLLS iterative re-weighted LLS

KKT Karush-Kuhn-Tucker

LLS linear least squares
LM Levenberg-Marquardt
LORAKS Low-rank modeling of local k-space neighborhoods
LR low resolution
LS least squares

MC Monte Carlo
MI mutual information
ML maximum likelihood
MLE maximum likelihood estimator
MM majorize-minimize
MOLLI modified look-locker IR
NOVIFAST NOnlinear VarIable Flip Angle data baSed T1
MR magnetic resonance
MRA MR angiography
MRI magnetic resonance imaging
MS multiple sclerosis
MSE mean squared error

NCG nonlinear conjugate gradient
NLLS nonlinear least squares
NLTV nonlocal TV
NMR nuclear magnetic resonance
NP-hard nondeterministic polynomial time hard

PD partial discreteness
PDF probability density function
pMRI parallel MRI
PSF point spread function
PSNR peak SNR
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QILV quantitative index based on local variance
qMRI quantitative MRI

RF radio frequency
RMSE root MSE
ROI region of interest
RW random walk

SAR specific absorption rate
SE spin echo
SENSE sensitivity encoding
SMASH simultaneous acquisition of spatial harmonics
SMF spatially matched filter
SNR signal-to-noise ratio
SoS sum of squares
SPGR spoiled gradient recalled
SQS separable quadratic surrogate
STI short tau IR
SVD singular value decomposition

TE echo time
TI inversion time
TR repetition time
TSE turbo spin echo
TV total variation

UMVUE uniformly minimum variance unbiased estimator

VFA variable flip angle

ZF zero filled
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List of Symbols

An extensive, but not exhaustive, list of symbols used in this dissertation is included
in this section. Symbols that are not listed are explained in the text or are expected
to be understood directly from the context. In addition to a brief description, the
equation where the symbols are first referred to is included. The symbols that have
not been used in equations are left unlabeled.

Roman alphabet

1x, 1y, 1z Eq. (1.10) unitary vector along axis x, y, and z, respectively
B0 Eq. (1.3) strong static external magnetic field
B1(t) Eq. (1.9) RF magnetic field pulse
Be1(t) Eq. (1.9) envelope of B1(t)
BR(r) Eq. (1.25) coil sensitivity field map
BRot Eq. (1.13) external magnetic field in the RF-rotating frame
CN complex-valued N -dimensional space
CN×M complex-valued N ×M -dimensional matrix space
CX Eq. (2.26) covariance matrix of random vector X
diag(·) diagonal; diag(x) is the matrix with vector x in the

Eq. (2.46) diagonal and zeros everywhere else,
Eq. (6.5) and diag(A), where A is a matrix, is another

matrix whose diagonal contains the diagonal
entries of A.

DM,N (·, ·) Eq. (2.9) two-dimensional Dirichlet kernel of order M and N
E{·} expectation operator
e Eq. (1.21) mathematical constant that is the base of the natural

logarithm (2.71828...)
~ Eq. (1.1) reduced Planck’s constant (1.05 · 10−34J · s)
I(θ) Eq. (4.7) Fisher information matrix of parameter θ
I Eq. (1.1) nuclear spin quantum number
I0(·) Eq. (2.32) zeroth order modified Bessel function of the first kind
IL/2−1(·) Eq. (2.35) (L/2− 1)th order modified Bessel function of the first

kind
J Eq. (1.1) spin vector
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Kb Eq. (2.22) Boltzmann constant
k(t) Eq. (1.35) k-space trajectory
M Eq. (1.4) net nuclear magnetization vector
M0 Eq. (1.4) net nuclear magnetization vector at equilibrium
MRot Eq. (1.12) net nuclear magnetization vector in

the RF-rotating frame of reference
M

t=0+
Rot Eq. (1.18) MRot immediately after the excitation

with B1(t)
pX(·) Eq. (2.25) PDF of random variable X
pX(·) Eq. (2.26) PDF of random vector X
pX|A(·) Eq. (7.7) PDF of random variable X, conditioned to event

A
Rc Eq. (2.22) coil resistance
Rs Eq. (2.22) induced resistance by conductive losses in the

scanning object
Rp(θ) Eq. (1.5) rotation matrix along axis p with angle θ
RN×M real-valued N ×M -dimensional matrix space
RN real-valued N -dimensional space
RN+ RN restricted to non-negative values
Re(·) and Im(·) Eq. (1.24) real and imaginary parts operators
rank(·) Eq. (2.57) rank of a matrix
sgn(·) Eq. (C.13) sign function
T1 Eq. (1.4) spin-lattice or longitudinal relaxation time
T2 Eq. (1.4) spin-spin or transversal relaxation time
T ∗2 Eq. (1.22) transversal relaxation time under the presence

of magnetic inhomogeneities
Wx and Wy Eq. (2.5) FOV of a 2D image along axis x, and y,

respectively
Z Eq. (2.1) set of integer numbers

Greek alphabet

α Eq. (1.17) flip angle
γ Eq. (1.2) gyromagnetic ratio
∆kx and ∆ky Eq. (2.2) sampling intervals of the k-space data

along axis x and y, respectively
∆z slice thickness
ωL Eq. (1.3) Larmor angular frequency
ωRF Eq. (1.9) RF pulse angular frequency
Ω Eq. (1.25) volume enclosed by the RF coil
µ Eq. (1.2) magnetic dipole moment
π Eq. (1.35) ratio of a circle’s circumference to its diameter

(3.14159...)
σ Eq. (2.22) standard deviation of thermal noise in MRI
τp Eq. (1.15) duration of the RF pulse
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〈·, ·〉 Eq. (1.31) inner product for vectors in RN
4 (resp. <) Eq. (4.7) lower (resp. greater) or equal to; A 4 B

(resp. A < B), where A and B are matrices,
means that the matrix A−B is semidefinite negative
(resp. positive)

, Eq. (A.14) equal by definition
| · | Eq. (2.5) |x|, where x is a real value, means the absolute value,

Eq. (2.18) whereas it represents the modulus of x when x is a
complex value.

Eq. (2.26) We also use |A| to denote the determinant of the
matrix A

|| · ||p Eq. (1.3) lp norm with p > 0, ||x||p = (
∑
n |[x]n|

p)
1
p

|| · ||0 Eq. (2.53) l0 pseudo-norm ||x||0 = #{n : [x]n 6= 0}
|| · ||W Eq. (A.9) weighted l2 norm, ||x||W = ||W 1

2x||2
∇(·) Eq. (2.51) gradient operator
◦ Eq. (5.1) Hadamard or point-wise product; v = a ◦ b, where

a and b are vectors with N components,
is another vector v defined as [v]n = [a]n[b]n,
n = 1, ..., N
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