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Abstract

Constrained spherical deconvolution (CSD) of diffusion-weighted MRI (DW-MRI) is a

popular analysis method that extracts the full white matter (WM) fiber orientation

density function (fODF) in the living human brain, noninvasively. It assumes that the

DW-MRI signal on the sphere can be represented as the spherical convolution of a

single-fiber response function (RF) and the fODF, and recovers the fODF through the

inverse operation. CSD approaches typically require that the DW-MRI data is sam-

pled shell-wise, and estimate the RF in a purely spherical manner using spherical basis

functions, such as spherical harmonics (SH), disregarding any radial dependencies.

This precludes analysis of data acquired with nonspherical sampling schemes, for

example, Cartesian sampling. Additionally, nonspherical sampling can also arise due to

technical issues, for example, gradient nonlinearities, resulting in a spatially dependent

bias of the apparent tissue densities and connectivity information. Here, we adopt a

compact model for the RFs that also describes their radial dependency. We demon-

strate that the proposed model can accurately predict the tissue response for a wide

range of b-values. On shell-wise data, our approach provides fODFs and tissue densi-

ties indistinguishable from those estimated using SH. On Cartesian data, fODF esti-

mates and apparent tissue densities are on par with those obtained from shell-wise

data, significantly broadening the range of data sets that can be analyzed using CSD.

In addition, gradient nonlinearities can be accounted for using the proposed model,

resulting in much more accurate apparent tissue densities and connectivity metrics.

K E YWORD S

Cartesian sampling, diffusion MRI, gradient nonlinearities, (multitissue) spherical

deconvolution, multishell sampling, response function

1 | INTRODUCTION

Diffusion-weighted MRI (DW-MRI) can probe tissue microstructure in

a completely noninvasive manner, in vivo. This is achieved by measur-

ing the signal attenuation due to the random motion of water mole-

cules within the tissue of interest (Stejskal & Tanner, 1965). In brain

white matter (WM) fibers, the coherent arrangement imparts a

directional dependence on the DW signal (Moseley et al., 1990). By

measuring this signal along several noncollinear directions, it is possi-

ble to estimate the local WM fiber orientations (Dell'Acqua &

Tournier, 2019). This information can be used to perform fiber

tractography and investigate the long-range connections between dif-

ferent regions in the brain (Jeurissen, Descoteaux, Mori, &

Leemans, 2019).
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A widely used approach to estimate the local fiber orientations is

spherical deconvolution (SD) (Tournier, Calamante, & Connelly, 2007;

Tournier, Calamante, Gadian, & Connelly, 2004), which estimates the

fiber orientation density function (fODF) in each voxel, irrespective of

the amount of underlying WM fiber populations. SD assumes that the

DW signal in a single WM voxel, when sampled in many directions

with a constant b-value (i.e., sampled on a single shell), can be repre-

sented as the spherical convolution of the WM response function

(RF) and the fODF. The WM RF is the DW signal of a single bundle of

coherently oriented WM fibers. If this function is known, it is possible

to deconvolve the signal with the RF to infer the fODF.

While SD can provide high-quality fODF estimates in pure WM,

in voxels partially containing other tissue types a single RF is no longer

appropriate and produces unreliable, noisy fiber orientation estimates.

To address this issue, multitissue SD (MT-SD) of multishell DW-MRI

data exploits the unique b-value dependences of the different tissue

types to tease them apart (Jeurissen, Tournier, Dhollander, Connelly, &

Sijbers, 2014). By sampling the DW signal with multiple b-values

(i.e., multiple shells) and estimating the RFs for each tissue type, it is

possible to find the apparent tissue densities as well as the fODFs.

The WM RF is of critical importance for the accurate estimation

of the fODF. Ideally, it corresponds to the DW signal that would be

acquired for a unit volume of WM coherently aligned along a single

axis. It can be obtained directly from the data by selecting voxels that

are deemed to contain a single coherent fiber bundle (Tournier

et al., 2004, 2007) either by explicit thresholding of brain regions with

high fractional anisotropy (FA) (Tournier et al., 2004), or through

recursive calibration of the fiber response (Tournier, Calamante, &

Connelly, 2013). Because the signal response for each b-value is a

function over the sphere, spherical harmonics (SH) basis functions are

a natural candidate for a parametric representation. However, a limi-

tation of using SH coefficients is that their estimation requires the

DW measurements to be densely distributed on shells in b-space.

Due to this, data acquired with sparse shell samplings cannot be read-

ily analyzed with SD. In addition, nonspherical sampling schemes such

as Cartesian sampling used in diffusion spectrum imaging (DSI)

(Wedeen, Hagmann, Tseng, Reese, & Weisskoff, 2005) or CUbe and

SPhere acquisitions (Scherrer & Warfield, 2012) preclude SD-analysis

as well.

Moreover, the physical laws that govern magnetic fields can lead

to nonspherical DW sampling. Indeed, the Maxwell equations that

describe the DW gradients imply transverse magnetic field components

that contribute to undesirable spatial dependencies of the b-values and

DW directions across the brain (Bammer et al., 2003; Baron, Lebel,

Wilman, & Beaulieu, 2012; Borkowski & Krzy _Zak, 2018; Mesri, David,

Viergever, & Leemans, 2019). As the magnitude of these concomitant

fields increases with the square of the gradient strength, high quality

data sets acquired with strong gradients, like those of the Human

Connectome Project (HCP), are subjected to significant nonlinearities

(Sotiropoulos et al., 2013). However, the SH representation of the RFs

assumes perfect spherical sampling with spatially invariant b-values,

an assumption that is invalidated as a result of these nonlinearities.

Second-order tensor models have also been used to represent

RFs and are compatible with nonspherically sampled DW data sets

(Anderson, 2005; Dell'Acqua et al., 2007; Kaden, Knösche, &

Anwander, 2007). However, their inability to accurately represent the

nonmonoexponential decay of the DW signal at higher b-values limits

their applicability in modern DW data sets (Jensen & Helpern, 2010).

The Simple Harmonic Oscillator-based Reconstruction and Estimation

(SHORE) basis is capable of describing both the angular and radial

dependencies of the DW signal (Özarslan, Koay, & Basser, 2013), but

requires a larger number of parameters to achieve this.

In this work, we employ a compact higher-order tensor model

that provides an accurate description of the tissue RFs over a continu-

ous range of b-values and directions, and we apply it to SD of non-

spherically sampled DW data sets.

Note that Guo, Leemans, Viergever, Dell'Acqua, and de

Luca (2020) simultaneously proposed a multishell SD approach that

could, in principle, also be used to perform SD of nonspherically sam-

pled DW data.

2 | THEORY

2.1 | Spherical deconvolution

SD assumes that the DW signal results from the spherical convolution

of the RF and the fODF:

Sb gð Þ=
ð
S2
Rb g;nð Þf nð Þdn=Rb� f ð1Þ

with Sb(g) the measured DW signal for some magnetic field gradient

direction g (with jgj = 1) and at a constant b-value. The signal response

at a constant b-value of a single fiber population along a direction n

for a gradient direction g is denoted with Rb(g;n). The quantity of

interest, the fODF f(n), represents the density of fibers in the direction

n. If Rb(g;n) is known, the fODF can be obtained from the measured

signal Sb(g) using SD:

f̂ nð Þ=Rb g;nð Þ�−1Sb gð Þ ð2Þ

Since deconvolution is ill-conditioned, a nonnegativity constraint

is typically imposed to prevent unphysical negative amplitudes in the

estimated fODF, a technique referred to as constrained SD (Tournier

et al., 2007).

2.2 | RF parametrization

2.2.1 | Per b-value parametrization

Currently, RFs are parametrized per b-value using real-valued SH

coefficients (truncated up to a maximum harmonic order l = lmax):
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Rb gð Þ=
Xlmax

l=0

Xl

m= − l

cml Y
m
l gð Þ ð3Þ

where Rb(g) is the signal response at a constant b-value for a single

fiber population along the z-axis, Ym
l are the SH basis functions, and

cml are the series coefficients (Tournier et al., 2007). As Rb(g) exhibits

antipodal symmetry in q-space, only even orders need to be consid-

ered. In addition, as WM tissue RFs can be assumed to exhibit axial

symmetry about the z-axis, only the m =0 SH, also known as the zonal

SH (ZSH), have to be taken into account:

Rb gð Þ=
Xlmax

l=0,2, ���
c0l Y

0
l gð Þ ð4Þ

Typically, the series is truncated at lmax = 8 for anisotropic tissue

types such as WM, resulting in five coefficients to describe the single-

shell response (Tournier et al., 2013). While the ZSH representation is

compact, it can only describe the angular dependency of the DW sig-

nal. This precludes RF representation of data with nonspherical acqui-

sition schemes. It also means that, in the case of multishell data, the

ZSH coefficients are estimated separately for each shell (Jeurissen

et al., 2014).

2.2.2 | Across b-value parametrization

Some authors have modeled tissue RFs for variable b-values using a

second-order tensor model, also known as the diffusion tensor imag-

ing (DTI) model (Anderson, 2005; Dell'Acqua et al., 2007; Kaden

et al., 2007):

R b,gð Þ= S0e−bD gð Þ ð5Þ

with S0 the signal with no diffusion-weighting and D(g) the apparent

diffusivity in a particular gradient direction g:

D gð Þ=
X3
i, j=1

giDijgj ð6Þ

When constraining the DW signal to be axially symmetric

(AS) about a known axis, the DTI model simplifies to just three param-

eters: S0, axial diffusivity and radial diffusivity. In this work, this model

will be called the DTI AS model. For isotropic RFs, the DTI model

requires just two parameters: S0 and mean diffusivity (MD). This iso-

tropic model will be referred to as DTI ISO. In principle, such

responses enable SD of multishell, as well as nonspherically sampled

data. However, the DTI model is known to be a poor fit for data with

high b-values. To address this issue, the model can be extended with

a fourth-order tensor, also known as the diffusion kurtosis imaging

(DKI) model (Jensen & Helpern, 2010):

R b,gð Þ= S0e−bD gð Þ+ b2W gð Þ ð7Þ

with

W gð Þ=
X3

i, j,k, l=1

gigjWijklgkgl ð8Þ

As opposed to the full DKI model, we assume axial symmetry

about a known axis, requiring only six parameters to represent an

anisotropic RF across shells (referred to as DKI AS), and three parame-

ters for isotropic RFs (referred to as DKI ISO). A derivation of AS and

isotropic fourth-order tensors is given in the appendix. Note that this

simplification is similar in spirit to the model proposed by Hansen,

Shemesh, and Jespersen (2016), where axial symmetry was used to

reduce minimal acquisition requirements for DKI.

To account for a nondecaying signal component not modeled by

DKI, an additional offset parameter C is added to the RF model

(Alexander et al., 2010):

R b,gð Þ= S0e−bD gð Þ+ b2W gð Þ +C ð9Þ

resulting in a total of seven parameters to represent an anisotropic RF

across shells (DKI AS + offset), and four parameters in the case of iso-

tropic RFs (DKI ISO + offset).

To ensure that the signal can only decrease with increasing b-

value in any gradient direction we enforce that, for all b � [0, bmax]:

dS
db

≤ 0 ð10Þ

as in Tabesh, Jensen, Ardekani, and Helpern (2011). Combining Equa-

tions (9) and (10) results in the following linear constraint:

TABLE 1 Breakdown of the number of parameters of the models
used to represent the different tissue compartments. The full models
without symmetry constraints (DTI and DKI) are included for
comparison, but were not used in any experiments. The acronyms
“AS” and “ISO” refer to axial symmetry about the z-axis and isotropic
symmetry, respectively. The amount of parameters contributed by
each term γ in Equation (9) is denoted with nγ. The total amount of
parameters is denoted with nγ

Model type Symmetry nS0 nD nW nC nγ

DTI Point 1 6 0 0 7

DKI Point 1 6 15 0 22

DTI AS Point + axial 1 2 0 0 3

DKI AS Point + axial 1 2 3 0 6

DKI AS + offset Point + axial 1 2 3 1 7

DTI ISO Isotropic diffusion 1 1 0 0 2

DKI ISO Isotropic diffusion 1 1 1 0 3

DKI ISO + offset Isotropic diffusion 1 1 1 1 4

Abbreviations: AS, axially symmetric; DKI, diffusion kurtosis imaging.
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2W gð Þbmax−D gð Þ≤0 ð11Þ

The total amount of parameters nθ for each response model, as

well as their symmetry constraints are listed in Table 1.

2.3 | Implementation of the deconvolution
operation

The single-shell constrained SD operation can be formulated as a con-

strained linear least squares problem of the form:

x̂ = argmin
x

Ax−yj jj j22 subject to Cx ≥0 ð12Þ

where x is the unknown column vector of coefficients of the fODF, y

is the column vector of DW signal intensities measured on a single

shell in q-space, A is the matrix relating the fODF coefficients to the

measured DW signal by means of spherical convolution, and C is the

matrix relating the fODF coefficients to the fODF amplitudes, effec-

tively enforcing nonnegativity of the fODF.

The convolution matrix A can be decomposed as:

A=QR ð13Þ

where Q is the matrix relating the coefficients of the single-shell signal

to the signal amplitudes, and R is the single-shell forward convolution

matrix in coefficient space. When using the SH basis to represent the

functions on the sphere, Q contains the SH basis functions evaluated

along the gradient directions, and R can be constructed directly from

the ZSH coefficients of the single-shell response. For a detailed expla-

nation on how to construct R from the ZSH coefficients, see appendix

2 of Tournier et al. (2007).

Jeurissen et al. (2014) showed that Equation (12) can be adapted

to accommodate m shells in q-space:

x̂ = argmin
x

A1

..

.

Am

2
664

3
775x−

y1

..

.

ym

2
664

3
775

��������

��������

��������

��������

2

2

subject to Cx ≥0 ð14Þ

where yi is the column vector of q-space samples on the ith shell and

Ai a matrix relating the fODF coefficients to the DW signal intensities

measured on the ith shell through spherical convolution. As in Equa-

tion (13), the convolution matrices Ai can be decomposed as:

Ai =QiRi ð15Þ

where Qi is the matrix relating the coefficients of the signal at the ith

shell to the corresponding amplitudes, and Ri is the forward convolu-

tion matrix in coefficient space for the ith shell. When using the SH

basis to represent the functions on the sphere, Qi contains the SH

basis functions evaluated along the gradient directions of the ith shell

and Ri can be constructed directly from the ZSH coefficients of the

response as explained above.

In this work, Equation (14) is generalized to accommodate m arbi-

trary q-space samples:

x̂ = argmin
x

a1

..

.

am

2
664

3
775x−

y1

..

.

ym

2
664

3
775

��������

��������

��������

��������

2

2

subject to Cx ≥0 ð16Þ

where yi are the individual q-space samples and ai a vector relating

the fODF coefficients to the ith q-space sample through spherical

convolution. The convolution vector ai can be decomposed as in Equa-

tions (13) and (15):

ai = qiRi ð17Þ

F IGURE 1 Graphical representation of the diffusion-weighted
(DW) sampling points in q-space for data set 1: spherical (a) and
Cartesian sampling (b). The points are color coded according to the
magnitude of the q-vector
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where qi is a vector relating the coefficients of the signal at the

b-value of the ith q-space sample to the amplitude of the ith q-space

sample, and Ri is the forward convolution matrix in coefficient space

for the b-value of ith q-space sample. When using the SH basis to

represent the functions on the sphere, qi contains the SH basis func-

tions evaluated along the gradient direction of the ith q-space sample

and Ri can be constructed from the ZSH coefficients of the signal

response for the b-value corresponding to the ith q-space sample

as explained earlier. Because the response model in Equation (9)

does not provide ZSH coefficients directly, we instead obtain ZSH

coefficients for each q-space sample by evaluating Equation (9) at the

b-value corresponding to the ith q-space sample and fitting a ZSH

series. Note that this conversion to ZSH is of low computational com-

plexity, as the combined axial and point symmetry of the RF requires

evaluation of Equation (9) only on a quarter-circle (e.g., see Figure 4).

Note the data in vector y of Equations (14) and (16), the equations

are left untouched and that the SD operation is performed directly

on y without any interpolation.

As Equations (12), (14), and (16) are all convex linear least

squares problems, they can be solved efficiently using quadratic

programming.

3 | METHODS

3.1 | Data acquisition and preprocessing

Written informed consent was obtained from a healthy adult volun-

teer according to institutional guidelines. DW-MRI data were acquired

in a single session with both a multishell sampling scheme (DW data

set 1a) and a Cartesian sampling scheme (DW data set 1b). The single-

session acquisition facilitates the alignment of all DW volumes across

both data sets to allow a straightforward comparison of both sampling

strategies. A graphical representation of the q-space points of both

sampling schemes can be appreciated in Figure 1, with j q j/
ffiffiffi
b

p
. The

data were acquired on a 3 T Siemens Magnetom Prisma system

equipped with a 32-channel receiver head coil using a pulsed gradient

spin echo sequence, with a repetition time TR of 4,500ms and an

echo time TE of 74ms. Additional acquisition parameters were: voxel

size = 2.5 ×2.5 ×2.5mm3, matrix = 88×88, slices = 58, parallel imag-

ing acceleration factor = 2 (GRAPPA), band width = 2,470Hz/Px. For

EPI distortion correction, an additional b =0 s/mm2 image was

acquired with reversed phase encoding.

• Data set 1a (spherical sampling): q-space was sampled at seven

shells with b-values 0; 250; 500; 1,000; 2,000; 3,000; and 4,000 s/

mm2 containing 11, 45, 45, 45, 45, 66, and 66 directions, respec-

tively, uniformly distributed using electrostatic repulsion (Jones,

Horsfield, & Simmons, 1999).

• Data set 1b (Cartesian sampling): q-space was sampled at an

equally spaced Cartesian grid, truncated at b = 4,000 s/mm2),

resulting in a total of 267 directions (including 10 volumes with

b = 0 s/mm2)

The combined data set (i.e., data sets 1a + 1b) was preprocessed

using a state-of-the-art pipeline (Tournier et al., 2019) consisting of:

denoising (Veraart et al., 2016), Gibbs-ringing correction (Kellner,

Dhital, and Reisert, 2016), model-based affine motion and distortion

correction (Bai & Alexander, 2008), and bias field correction (Tustison

et al., 2010). After preprocessing, the combined data set was split up

again in data sets 1a and 1b.

To investigate the effect of the gradient nonlinearities on

the fODF parameters, a data set from the HCP was used. This

data set is supplied with a map that describes the spatial dependen-

cies of the diffusion sampling scheme as a result of these

nonlinearities.

Data set 2 (spherical sampling): A preprocessed data set from the HCP

was used (Glasser et al., 2013) with four shells with b-values 5; 1,000;

2,000; and 3,000 s/mm2 and 18, 90, 90, and 90 directions, respec-

tively. In addition to the standard HCP preprocessing pipeline, bias

field correction was performed (Tustison et al., 2010).

To verify the generalizability of our method to even higher

b-values, we used an HCP MGH data set:

F IGURE 2 Deviations of the b-value due to gradient
nonlinearities in data set 2: (a) deviation as a function of position
(averaged across directions), and (b) distribution of b-values in a
b = 3,000 s/mm2 shell (within a single voxel, delineated by the white
square in (a))
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Data set 3 (spherical sampling): A preprocessed HCP MGH data set

was used (Glasser et al., 2013) with five shells with b-values 0; 1,000;

3,000; 5,000; and 10,000 s/mm2 and 40, 64, 64, 128, and 256 direc-

tions, respectively.

3.2 | Estimating tissue RFs

To estimate the RFs from the data, voxels that were deemed to con-

tain just one of the three tissue types (WM, GM, or cerebrospinal fluid

[CSF]) were selected by thresholding FA and MD:

• WM: FA > 0.8 and MD < 0.6 μm2/ms.

• GM: FA < 0.1 and MD < 0.6 μm2/ms.

• CSF: FA < 0.1 and MD > 3 μm2/ms.

These DTI metrics were obtained using a weighted linear least

squares estimator (Veraart, Sijbers, Sunaert, Leemans, & Jeurissen,

2013). They were estimated from DW data that includes high b-values,

which is known to result in biased DTI metrics Veraart et al. (2011).

Note however, that these metrics were used solely to select

0 1000 2000 3000 4000
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140

(a)

(b)

(c)

DTI
DKI
DKI + offset
ZSH

0 1000 2000 3000 4000

10 2

0 1000 2000 3000 4000
10 -4

10 -2

10 0

10 2

10 4
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GM

CSF

F IGURE 3 Comparison of the radial component of tissue
responses predicted by the candidate models and the zonal spherical
harmonics (ZSH) model for (a) white matter (WM), (b) gray matter
(GM), and (c) cerebrospinal fluid (CSF) using data set 1a. Note that in
Figure 3a the red and yellow dotted lines overlap F IGURE 4 Comparison of the angular component of the white

matter (WM) response predicted by the candidate models and the
zonal spherical harmonics (ZSH) model using spherically sampled data,
at different b-values. The polar angle θ corresponds with the angle
between the b-vector and the z-axis. The data points are the
measured signals for the ensemble of WM voxels with their principal
eigenvector aligned with the z − axis (or equivalently the θ = 0 axis)
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representative voxels for each tissue type. The DW signals for all

single-tissue voxels were then concatenated into a vector y of length n.

In the case of anisotropic tissue types (such as WM), prior to fitting, the

gradient directions for each voxel were rotated such that the principal

eigenvector coincided with the z-axis (Tournier et al., 2004). For each

of the above models, the response parameter vector θ was estimated,

resulting in a single tissue RF for the whole brain:

θ̂= argmin
θ

y−R b,g,θð Þj j22 ð18Þ

where R(b, g, θ) is the signal predicted by one of the candidate models

for a given b-value. Note that in principle, recursive calibration could

also be used to estimate the RF (Christiaens, Sunaert, Suetens, &

Maes, 2017; Tax, Jeurissen, Vos, Viergever, & Leemans, 2014;

Tournier et al., 2013).

3.3 | Spherically sampled data experiments

MT responses were modeled with the various models described in

Section 2.2 and compared to the state-of-the-art ZSH (with lmax = 8)

using the spherically sampled data set 1a. Comparison of the signal

responses obtained with each of these models was performed in both

the angular (for WM) and the radial domain for WM, GM, and CSF. In

addition, the apparent densities of WM, GM, and CSF obtained with

said models were compared to those obtained with the state-of-the-

art ZSH responses.

To compare the models quantitatively, the root mean squared

residual (RMSR) as well as the Akaike Information Criterion (AIC)

(Burnham & Anderson, 1998) were employed. The former only takes

into account the goodness of fit:

RMSR=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i=1

ε̂2i

vuut ð19Þ

with the residual ε̂i defined as the difference between the measured

signal yi and R bi,gi, θ̂
� �

, the signal predicted by the candidate model:

ε̂i = yi−R bi ,gi, θ̂
� �

ð20Þ

The latter also includes a penalty depending on the total amount

of response parameters nθ:

AIC= n log
1
n

Xn
i=1

ε̂2i

 !
+2nθ ð21Þ

The stability of the AIC was assessed for each tissue type using

the classical bootstrap as in Ferizi et al. (2014). For each bootstrap

sample (out of a total of 100), a set of DW samples was selected

with replacement in each shell and the RFs were then estimated.

Next, the AIC values were calculated for each model and ranked in

ascending order, where the lowest AIC value (i.e., the highest ranking)

TABLE 2 Response function model comparison in terms of RMSR
and AIC for WM, GM, and CSF, performed on data set 1a. The total
amount of parameters nθ is included in the parentheses after each
model name

WM model type (nθ) RMSR AIC

DTI AS (3) 12.423 3.02744 × 105

DKI AS (6) 11.370 2.92103 × 105

DKI AS NF (7) 11.369 2.92098 × 105

GM model type (nθ) RMSR AIC

DTI ISO (2) 34.077 4.30829 × 105

DKI ISO (3) 33.717 4.29532 × 105

DKI ISO + offset (4) 33.705 4.29491 × 105

CSF model type (nθ) RMSR AIC

DTI ISO (2) 30.551 3.62269 × 105

DKI ISO (3) 30.184 3.60991 × 105

DKI ISO + offset (4) 29.630 3.59029 × 105

Abbreviations: AIC, Akaike Information Criterion; AS, axially symmetric;

CSF, cerebrospinal fluid; DKI, diffusion kurtosis imaging; GM, gray matter;

RMSR, root mean squared residual; WM, white matter.

F IGURE 5 Response function model Akaike Information Criterion (AIC) ranking distributions obtained from the bootstrapping experiment.
The rows correspond to the model type and the columns are the ranking of AIC scores in each bootstrap sample
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corresponded to the model that best described the data while

avoiding overfitting.

3.4 | Generalizability to higher b-values

The generalizability of our method to higher b-values was tested by

fitting the DKI + offset and ZSH models to an ensemble of single-

tissue voxels from data set 3 and comparing the signal responses in

the radial domain up to b = 10,000 s/mm2.

3.5 | Nonspherically sampled data experiments

3.5.1 | Cartesian sampling

The RF model parameters of DKI AS + offset (for WM) and DKI ISO +

offset (for GM and CSF) were estimated from the spherically sampled

data (data set 1a) and the Cartesian sampled data (data set 1b), to

F IGURE 6 Comparison of the apparent densities (left) and the
fiber orientation density functions (fODFs) (right) obtained with the
candidate response models and the zonal spherical harmonics (ZSH)
model on data set 1a. The apparent densities are shown as RGB maps:
cerebrospinal fluid (CSF) (red), gray matter (GM) (green), and white
matter (WM) (blue)

F IGURE 7 Relative differences (%) between the apparent
densities obtained with the candidate response models and those
obtained with the zonal spherical harmonics (ZSH) model on data
set 1a
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ensure that the estimated RFs did not depend on the sampling strat-

egy. Finally, the apparent tissue densities were estimated from data

set 1b and compared to those obtained from data set 1a.

3.5.2 | Spherical sampling with gradient
nonlinearities

The HCP data sets are supplied with a gradient nonlinearity map that

enables the calculation of the true DW gradients based on the

assumed gradients. Figure 2 a shows the relative deviation (in %) from

the nominal b-values of this gradient nonlinearity map. In practice, this

map consists of a spatially dependent linear transform L(r) which maps

each gradient vector g of the assumed DW sampling scheme to its

true direction and magnitude g0(r) (Bammer et al., 2003):
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g0z rð Þ
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Because the diffusion weighting scheme is spatially dependent,

the MT-SD convolution matrix has to be adjusted for each voxel. In

addition, the linear transform L(r) also imposes an angular dependency

on the b-values. Figure 2b depicts the distribution of the true b-values

in a b = 3,000 s/mm2 shell of a HCP data set.

MT-CSD was performed using the DKI + offset model both with

and without taking into account the gradient nonlinearities. The

fODFs as well as the apparent densities of WM, GM, and CSF

obtained with both approaches were compared to assess the detri-

mental effects of not accounting for gradient nonlinearities. To assess

the impact of gradient nonlinearities on fiber tracking, we also com-

pared connectivity information obtained with both approaches. First,

10 million tracks were generated using probabilistic whole brain fiber

tracking using second-order integration (Tournier, Calamante, &

Connelly, 2010). Next, tracks were subjected to SIFT2 to improve the

quantitative nature of the whole-brain tractogram (Smith, Tournier,

Calamante, & Connelly, 2015). Finally, a whole brain connectivity

matrix was obtained using the Desikan–Killiany parcellation and

excluding self-connections (Desikan et al., 2006). For each brain

F IGURE 8 Histogram of the relative
differences across the brain (%) between
the apparent densities obtained with the
candidate response models and those
obtained with the zonal spherical
harmonics (ZSH) model on data set 1a
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parcel, we obtained the total connectivity to all other parcels by sum-

ming the rows of the connectivity matrix and compared these num-

bers between both approaches.

4 | RESULTS

4.1 | Spherically sampled data experiments

Using the spherically sampled data set 1a, the signal predicted by the

various response models was compared to that predicted by the

state-of-the-art ZSH. Figure 3 shows the tissue response (averaged

over the unit sphere) predicted by the different models as a function

of b-value.

For WM, the DTI AS model fails to accurately predict the signal

over the entire range of b-values: for low b-values (0–250 s/mm2) it

underestimates the signal, for intermediate b-values (500–2,500 s/mm2)

it overestimates the signal, and for high b-values (>2,500 s/mm2) the

signal is underestimated (Figure 3a). In contrast, the DKI AS model can

predict the signal response accurately over the entire range of b-values.

The signal response predicted by the DKI AS + offset model is equiva-

lent to that predicted by the DKI AS model. The same trends can be

observed in GM when using the isotropic models (Figure 3b).

In CSF, the DTI ISO model is able to describe the signal for

b-values up to 500 s/mm2. For higher b-values, the signal is under-

estimated considerably. The DKI ISO model is able to describe the sig-

nal for b-values up to 1,000 s/mm2, but for higher b-values,

considerable underestimation of the signal remains. Finally, the offset

F IGURE 9 (a–c) Angular
deviation (in degrees) of the
largest fiber orientation density
function (fODF) peak obtained
with the candidate response
models from that obtained with
the zonal spherical harmonics
(ZSH) model and (d) distribution
of the deviations depicted in

Figure 9a–c
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parameter of the DKI ISO NF model allows the accurate prediction of

the CSF response over the entire range of b-values, with the predic-

tion closely matching that of the ZSH model (Figure 3c).

In Figure 4, the angular WM responses predicted by the various

response models were compared to the ZSH responses. Depending

on the b-value and orientation, the DTI AS model substantially over-

estimate and underestimate the signal, whereas the DKI AS and DKI

AS + offset responses resemble the ZSH response much more closely.

A quantitative comparison of the various models with the ZSH

can be appreciated in Table 2, which contains the RMSR, as well as

the AIC values of the model fits. For all three tissues, moving from

DTI to DKI improves both the RMSR and the AIC considerably, as

could already be appreciated qualitatively from Figures 3 and 4. The

addition of the offset parameter also improves these metrics, but this

improvement was only substantial for CSF. This is further confirmed

by the results of the AIC bootstrap experiment, which are shown in

Figure 5. For all three tissue types, the DTI model consistently has the

lowest AIC ranking, and is outranked by the DKI models. For WM and

GM, the addition of the offset parameter improves the AIC ranking in

the majority but not all of the bootstrap samples, indicating that both

higher order models are closely tied. In CSF, on the other hand, the

DKI ISO + offset model is the most appropriate, as it is consistently

ranked first.

Figure 6 shows the MT-SD apparent tissue density maps and a

close-up of the fODFs estimated using the various response models.

The shape and orientations of the fODFs are largely unaffected by

F IGURE 10 (a–c) Deviation
of the amount of fiber orientation
density function (fODF) peaks
obtained with the candidate
response models from those
obtained with the zonal spherical
harmonics (ZSH) model and
(d) distribution of the deviations
depicted in Figure 10a–c
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the choice of response model. To aid comparison of the tissue density

maps, Figure 7 shows the relative differences in tissue density (in %),

compared to the ZSH model. Figure 8 depicts the distributions of the

relative difference maps of Figure 7.

When using the DTI models, in voxels predominantly containing

CSF, the densities of CSF and GM are underestimated down to −3

and −5%, respectively, and WM densities are overestimated up to

13%. In voxels containing mostly GM, the densities of CSF and WM

are consistently overestimated up to 7 and 32%, respectively,

whereas the density of GM is underestimated down to −26%. In

voxels containing predominantly WM, the densities of WM and CSF

are overestimated up to 25 and 6%, respectively, and GM densities

are underestimated down to −23%.

For the DKI models, in voxels containing predominantly CSF, WM

densities are overestimated up to 11%, whereas CSF and GM densi-

ties are underestimated down to −3 and −5%, respectively. In voxels

F IGURE 11 Generalizability to high b-values: comparison of the
radial component of tissue responses predicted by the diffusion
kurtosis imaging (DKI) + offset model and those predicted by the
zonal spherical harmonics (ZSH) for data set 3 with b-values up to
b = 10,000 s/mm2

F IGURE 12 Comparison between the radial component of the
tissue responses predicted by the diffusion kurtosis imaging (DKI)
+ offset using the spherically sampled data set (full lines), those
predicted by the DKI + offset using the Cartesian sampled data set
(dashed lines), and those predicted by the zonal spherical harmonics
(ZSH) model using the spherically sampled data set (dots)

F IGURE 13 Comparison between the angular component of the
white matter (WM) responses predicted by the diffusion kurtosis
imaging (DKI) + offset using the spherically sampled data set, those
predicted by the DKI + offset using the Cartesian sampled data set,
and those predicted by the zonal spherical harmonics (ZSH) model
using the spherically sampled data set, for various b-values
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containing mostly GM, WM densities are overestimated up to 14%

and CSF and GM densities are underestimated down to −1 and

− 10%, respectively. In voxels containing predominantly WM, WM

densities are overestimated up to 3%, whereas CSF and GM densities

are underestimated down to −0.5 and − 2%, respectively.

The tissue densities estimated with the proposed DKI + offset

RFs exhibit no noticeable differences throughout the brain (less than

0.1%) with those estimated using the state-of-the-art ZSH.

Figure 9 shows the angular deviation of the largest fODF peak

obtained with the candidate response models from that obtained with

the ZSH model. When using the DTI model, considerable deviations

up to 20� can be observed. Note that these large deviations occur pri-

marily in voxels with partial volume effect between tissue types.

These deviations reduced considerably when using the DKI model,

with deviations mostly associated to voxels with CSF partial volume

effect. The angular deviations of the peaks obtained with the DKI

+ offset model were less than 0,3�.

Figure 10 shows the deviation of the amount of peaks obtained

with the candidate models from those obtained with the state-of-

the-art ZSH model. When using the DTI model, the amount of peaks

are underestimated by 1 in 0.2% of the voxels, overestimated by 1 in

27% of the voxels, and overestimated by 2 in 8% of the voxels.

When using the DKI model, the amount of peaks are underestimated

by −1 in 0.3% of the voxels, overestimated by 1 in 3% of the voxels,

and overestimated by 2 in 0% of the voxels. When using the DKI

+ offset model, almost no deviations existed compared to the ZSH

model.

4.2 | Generalizability to higher b-values

Figure 11 shows the comparison of the DKI + offset and ZSH models

in the radial domain up to b = 10,000 s/mm2. The signal predicted by

the proposed model (which models also the radial dependency),

F IGURE 14 Comparison of the apparent densities (left) and the
fiber orientation density functions (fODFs) (right) obtained with the
diffusion kurtosis imaging (DKI) + offset model using both spherically
sampled data (a) and Cartesian sampled data (b). The apparent
densities are shown as RGB maps: cerebrospinal fluid (CSF) (red), gray
matter (GM) (green), and white matter (WM) (blue)

F IGURE 15 The effect of gradient nonlinearities on the apparent
tissue densities obtained with multitissue-spherical deconvolution
(MT-SD): relative errors of tissue densities (%) when not taking into
account the gradient nonlinearities in the diffusion kurtosis imaging
(DKI) + offset model. The values in the whole brain range between
−10 and +34% for WM, between −25 and +12% for gray matter
(GM), and between −6% and +6% for cerebrospinal fluid (CSF)
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closely matches the signal predicted by the ZSH model (which is per-

formed per shell, effectively not modeling the radial dependency).

4.3 | Nonspherically sampled data experiments

4.3.1 | Cartesian sampling

Figures 12 and 13 depict the signal responses predicted by the DKI

+ offset model, estimated with both the spherically (data set 1a) and

Cartesian sampled data sets (data set 1b). Figure 12 shows the

predicted signal response in the radial domain. As a reference, the sig-

nal predicted by the ZSH from data set 1a is also shown. Figure 13

shows the estimated WM signal response in the angular domain,

including the signal predicted by the ZSH. The estimated signal

responses remained the same when either a spherical or Cartesian

sampling scheme were used.

Figure 14 demonstrates the application of MT-SD to a

Cartesian sampled data set with the DKI + offset RFs. The tis-

sue densities that are estimated from data set 1b are very

close to those estimated from data set 1a with the state-of-

the-art ZSH.

4.3.2 | Spherical sampling with gradient
nonlinearities

MT-SD was performed on data set 2 using the DKI + offset response

model, both with and without taking into account the gradient nonlin-

earities. Figure 15 shows that the estimated tissue densities were

biased up to +34% for WM and −25% for GM in areas where the non-

linearities are the most severe, with a lesser but still noticeable effect

on CSF densities. Figure 16 shows the histogram of these differences

across the whole brain.

Figure 17 shows the relative connectivity bias of each brain par-

cel when not taking into account gradient nonlinearities. While the

orientation and shape of the fODFs was largely unaffected by the gra-

dient nonlinearities, the bias in densities caused large differences in

the total “connectivity strengths” of each brain parcel, with relative

differences of up to +7% in the cerebellum and down to −15% in the

frontal lobe.

F IGURE 16 The effect of gradient
nonlinearities on the apparent tissue
densities obtained with multitissue-
spherical deconvolution (MT-SD):
histogram of the relative errors in
apparent tissue densities across the brain
(%) in data set 2, when not taking into
account the gradient nonlinearities in the
diffusion kurtosis imaging (DKI) + offset

model. The values in the whole brain
range between −10 and+34% for WM,
between −25 and +12% for gray matter
(GM), and between −6 and +6% for
cerebrospinal fluid (CSF)

F IGURE 17 The effect of gradient nonlinearities on connectivity
measures obtained with whole-brain fiber tracking: relative errors in
total connectivity of each parcel to all other parcels (%), when not
taking into account the gradient nonlinearities in the diffusion kurtosis
imaging (DKI) + offset model. The values in the whole brain ranged
from −15 to +9%
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5 | DISCUSSION

In this work, we adopted a compact RF model for the purpose of

(MT) SD that, in addition to the angular dependency, also describes

the radial dependency. This allows MT-SD of nonspherically sampled

DW-MRI data.

In the past, a second-order tensor model has been used to repre-

sent tissue responses (Anderson, 2005; Dell'Acqua et al., 2007). Such

a model can be evaluated at arbitrary b-values, potentially enabling

MT-SD of nonspherically sampled DW-MRI data. However, in this

work we showed that this model is not compatible with high b-value

data sets typically used for SD (see Figures 3b,c and 4). Indeed, at

higher b-values, the signal decay is no longer monoexponential, and a

higher-order tensor model is required. To address this issue, we devel-

oped a RF model based on DKI, which can accurately describe the

WM and GM responses across b-values.

At high b-values, we observed a nondecaying component in the

CSF response, which cannot be described by the DKI model. As DW-

MRI data is generally noncentral chi distributed (den Dekker &

Sijbers, 2014), for low signal to noise ratios, even if all of the true sig-

nal has decayed, there will still be a nonzero-mean signal (Jones &

Basser, 2004). Including an additional offset parameter allowed the

accurate prediction of the CSF response (see Figure 3c). For WM and

GM, this parameter only marginally improved the description of the

signal (see Figure 5). However, at low signal-to-noise ratios, this

parameter could become important to account for the noise floor in

GM and WM as well. Note that, in the case of WM and GM, the offset

parameter could also account for a nondecaying component caused by

trapped water (Jbabdi, Sotiropoulos, Savio, Graña, & Behrens, 2012).

To reduce the complexity of the full DKI model (including the off-

set), we imposed axial symmetry around a known axis (in the case of

WM), or isotropic diffusion (in the case of CSF and GM). This reduced

the number of parameters from 23 to 7 and 4, respectively, enabling a

very compact representation of the tissue responses across b-values.

In contrast, the state-of-the-art approach which estimates the RF per

shell using the ZSH basis functions requires 5 (lmax = 8) and 1 (lmax = 0)

parameters per shell to model WM and GM/CSF, respectively. Despite

the low number of parameters, the proposed model provides signal

responses almost equivalent to the state-of-the-art ZSH.

5.1 | Implications of using an inappropriate
response model

The use of an inappropriate model for the MT RFs can severely bias

the resulting apparent tissue densities. As Figure 7 shows, there are

systematic deviations in the densities across the entire brain when a

second-order model is used to describe tissue responses. Because the

DTI AS model severely underestimates the WM signal for b-values

exceeding b = 1,000 s/mm2, the WM densities can exhibit a bias of up

to +32% in voxels containing multiple tissue types, especially near

WM/GM interfaces. Conversely, the GM densities are under-

estimated down to −26% (see Figure 8). When employing the fourth-

order models, these deviations are greatly reduced, but are still visible

in voxels containing CSF. By adding the offset parameter, these devia-

tions are reduced below 0.1%, as the CSF response is now modeled

accurately (see Figure 3c).

5.2 | Generalizability to higher b-values

The proposed model is based on a Taylor series expansion about

b = 0 s/mm2. This means that it only provides an accurate approxima-

tion for b-values in the vicinity of b = 0 s/mm2, potentially invalidating

the model at very high b-values. However, using a dMRI data set with

b-values as high as b = 10,000 s/mm2, we demonstrated that it is able

to closely predict MT signal responses across the entire b-value range.

While this does not completely rule out potential issues, it demon-

strates that the proposed model is able to accommodate also more

exotic data sets featuring high b-values with a large degree of

accuracy.

5.3 | Implications for nonspherically sampled data

The ZSH coefficients cannot be estimated directly from non-

spherically sampled data, as they only describe the angular depen-

dency of the tissue responses. In contrast, the parameters of the

proposed response model are estimated using all DW measurements

simultaneously and allow the accurate description of the signal for a

continuous range of b-values. As a result, our approach facilitates

(MT) SD analysis of a much broader range of nonspherically sampled

data sets, such as DSI.

5.4 | Implications for data affected by gradient
nonlinearities

Nonspherical sampling cannot only be intrinsic to the DW scheme,

but the result of gradient nonlinearities as well. Due to this, the true

b-values can deviate significantly from their assumed values (see

Figure 2), and they cannot be accounted for if the RF is estimated per

shell. As a consequence, the apparent tissue densities can be biased

as much as 34% (see Figures 15 and 16). Using the proposed

approach, gradient nonlinearities can be accounted for, resulting in

much more accurate apparent tissue densities. This could benefit

studies employing apparent tissue densities obtained from data

acquired with strong gradient amplitudes (Calamante, Jeurissen,

Smith, Tournier, & Connelly, 2018; Chamberland et al., 2019; St-Jean,

Chamberland, Viergever, & Leemans, 2019).

5.5 | Implications for downstream processing

Biases in the fODF, either due to an inappropriate response model or

as a result of gradient nonlinearities, can have implications for any
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methods and studies that use fODF-based metrics. The fODF ampli-

tude or AFD, which is used as a marker for intra-axonal volume frac-

tion will be biased, complicating biological interpretation and

potentially leading to misleading findings (see Figures 6–8 and 15).

Fiber tracking is also sensitive to such biases as it typically employs an

fODF amplitude threshold as a termination criterion. As such, biased

fODF amplitudes can lead to streamlines ending prematurely or too

far into the cortex (Jeurissen et al., 2014). Furthermore, quantitative

tractography approaches such as SIFT employ the fiber densities to

improve the fit between the streamline reconstruction and the under-

lying DW images (Smith, Tournier, Calamante, & Connelly, 2013). As

the proposed method can provide more accurate apparent fiber densi-

ties in the presence of significant gradient nonlinearities, it will directly

improve the quantitative nature of tractography and connectomics

studies employing SD in combination with high gradient strengths

(Roine et al., 2019). Indeed, considerable changes in connectivity (up to

+9% and down to −15%) were observed as a consequence of gradient

nonlinearities, which are accounted for with the proposed method. In

light of the implications mentioned above, we encourage always

accounting for gradient nonlinearities when working with HCP data

(Mesri et al., 2019).

5.6 | Potential bias due to intravoxel incoherent
motion effects at low b-values

A potential limitation of the proposed model is that for data acquired

with b-values ranging between 0 and 500 s/mm2, intravoxel incoher-

ent motion or free water effects might come into play. The proposed

response model might no longer be appropriate, and the addition of

an additional second-order compartment corresponding to fast diffu-

sion could improve the signal prediction across all b-values.

6 | CONCLUSION

We adopted a model for tissue responses that describes both the

angular and radial dependencies. Currently, the state-of-the-art ZSH

basis functions only describe the signal in the angular domain, which

precludes (MT) SD analysis of nonspherically sampled data sets. In

addition, DTI-based models are incapable of describing the signal

across a wide range of b-values, whereas the proposed model pro-

vides responses equivalent to the state of the art. Because of the con-

tinuous representation of the signal in the radial domain, a broader

range of (nonspherically sampled) DW data sets can be processed

using (MT) SD. In addition, gradient nonlinearities can be accounted

for, allowing more accurate downstream processing.
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APPENDIX

The components Ti1 i2…im
j1 j2…jn

of an (m, n) tensor T transform between two

coordinate systems (denoted by the primed and unprimed indices)

according to the tensor transformation law (using the Einstein-

summation convention):

Ti01 i
0
2 ���i0m

j01 j
0
2 ���j0n

=Ri01
i1
… Ri0m

im
Rj1
j01
… Rjn

j0n
Ti1 i2 ���im

j1 j2 ���jn ðA1Þ

The factors Rk0
k are the partial derivatives of the coordinate trans-

form xk
0
(xk):

Rk0
k =

∂xk
0

∂xk

This transformation law can be exploited to find the relations

between the components of a tensor subject to specific spatial sym-

metries. In this case, to find the components of an axially symmetric

tensor aligned along the z-axis, we choose a rotation about the z-axis.

The indices 1, 2, and 3 correspond to the x, y, and z-axes, respectively.

The coordinate transform can then be written as:

x1
0
= x1cosθ + x2sinθ

x2
0
= −x1sinθ + x2cosθ

x3
0
= x3

Or more compactly:

xk
0
=Rk0

k x
k

For θ small, we can use a first-order Taylor approximation for the

trigonometric functions and write (Jeffreys, 1931):

Rk0
k ≈δ

k0
k + ck

0
k ðA2Þ

with δk
0
k the Kronecker delta and ck

0
k hollow and antisymmetric:

ck
0
k =

0 θ 0

−θ 0 0

0 0 0

0
B@

1
CA

Applying the tensor transformation law (A1) to a fourth-order

tensor W and using expression (A2) results in:

Wijkl =Wi0 j0k0 l0

+ ci0 iWij0k0 l0 + c j0 jWi0 jk0 l0 + ck0kWi0 j0kl0 + cl0 lWi0 j0k0 l
ðA3Þ

Demanding that W is invariant means that the coordinate trans-

formation does not affect its components:

Wi0 j0k0 l0 =Wijkl ðA4Þ

Combining Equations (A3) and (A4), this implies:

ci0 iWij0k0 l0 + c j0 jWi0 jk0 l0 + ck0kWi0 j0kl0 + cl0 lWi0 j0k0 l =0 ðA5Þ

Checking Equation (A5) for all possible (i0 , j0 , k0 , l0) tuples will result

in restrictions on the components of Wijkl. For example, choosing the

tuple (1, 2, 3, 3) and assuming that W is fully symmetric in all of its

indices implies the following restriction:

W2233 =W1133 ðA6Þ

In an analogous way, we find an additional restriction:

3W1122 =W1111 =W2222 ðA7Þ

For the componentW3333, no restrictions are found, which means

that it is an independent component.
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