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ABSTRACT

In this paper, we study the influence of the beam shape of

Terahertz (THz) radiation on the image formation in THz

computed tomography and how to account for it in the recon-

struction process. This is accomplished by first considering

the beam shape in the forward projection using a modified

Radon transform and then inverting this transform to con-

struct new inversion techniques. Simulation experiments

show that, compared to conventional back projection, directly

incorporating the beam shape in the Radon transform can

significantly improve image quality in terms of the mean

squared error and the Structural Similarity Index.

Index Terms— Computed tomography, Terahertz imag-

ing, Radon transform, Beam shape

1. INTRODUCTION

THz tomography has a wide range of application domains,

including the study of biological materials (e.g., human breast

tumors [1], human bones [2]), artwork and ancient artefacts

examination [3–5], as well as security and surveillance [6–8].

It is a non-invasive and non-destructive imaging method and

is, unlike X-ray radiation, non-ionizing.

A common projection model in X-ray CT is the Radon

transform [9], and most CT reconstruction methods are based

on the mathematics of this transform. When this model is ap-

plied for THz radiation, the wave-like nature of the radiation

needs to be considered due to the larger wavelength compared

to X-ray. Effects such as refraction, reflection, diffraction and

the THz beam shape need to be taken into account when deal-

ing with THz radiation.

This paper studies specifically the effects of the THz beam

profile on simulated sinogram data. To compensate for the ef-

fects caused by the shape of the THz beam, we incorporate the

beam shape into a modified Radon Transform. The inverse of

this modified transform is then used to define a reconstruction

method that accounts for the THz beam shape.

2. THZ RADON TRANSFORM

In X-ray CT, the 2D Radon transform is defined as follows

[9]:

Rθ(ρ) =

+∞
∫∫

−∞

f(x, y)δ(ρ− x cos θ − y sin θ)dxdy (1)

with θ the projection angle and ρ the offset of the shift along

the projection line. In this model, the beam is approximated

by a line with zero width, which is a good approximation if

the wavelength of the radiation is small compared to the size

of the object. In THz tomography, this assumption no longer

holds, and the beam shape must be considered [10]. The in-

tensity profile of the beam in THz imaging typically resem-

bles a Gaussian distribution [11], which can be described as

follows:

I(r, z) = I0

(

w0

w(z)

)2

e
−

2r2

w2(z) (2)

with r the radial distance from the center axis of the beam, z

the axial distance from the beam’s focus, and I0 the intensity

at the center of the beam. The function w(z) represents the

beam’s width and is given by:

w(z) = w0

√

1 +

(

z

zR

)2

(3)

with w0 = w(0) the beam’s waist radius, λ the wavelength

and zR the Rayleigh range (zR =
πw2

0

λ
). For simplicity, we

proceed in 2D, thereby assuming that the object f(x, y, z) is

constant in the z-direction, which is equivalent to using the

new 2D beam profile (Fig. 1):

I2D(x, y) = I0

√

π

2

w2
0

w(y)
e
−

2x2

w2(y) (4)

To account for the beam shape, we alter the Radon transform

by convolving the image f(x, y, z) with the Gaussian beam

intensity, giving us the THz Radon transform [11]:

pθ(ρ) =

∫∫

f ∗ I2Dθ (x, y)δ(ρ− x cos θ − y sin θ)dxdy

(5)

with ∗ a 1D convolution perpendicular to the projection di-

rection and I2Dθ the intensity profile rotated over an angle of

θ which defines the projection direction (Fig. 2).



Fig. 1: Intensity profile (in mm) for a beam with wavelength

λ = 1 mm and beam width w0 = 3 mm.

Fig. 2: Visualisation of the THz Radon transform.

As an example, we apply this transform to a (250 × 250
pixels) phantom consisting of 4 circles over 250 different an-

gles (over 180 degrees) to generate the sinogram pθ(ρ). The

goal now is to find an inversion method that reconstructs the

original image f(x, y) from pθ(ρ) (Fig. 3).

3. RECONSTRUCTION

3.1. Constant beam

In the limit where the Rayleigh length goes to infinite, find-

ing the inverse of the THz Radon transform is fairly simple,

because then the width of the intensity becomes constant:

lim
zR→∞

I2D(x, y) = I0

√

π

2
w0e

−
2x2

w2
0 = I2D(x, 0) (6)

(a) (b) (c)

Fig. 3: (a) Example image consisting of 4 circles with diam-

eters ranging from 8 mm to 12 mm, (b) Sinogram calculated

with the Radon transform, (c) Sinogram calculated with the

THz radon transform (for a beam with wavelength λ = 1 mm

and w0 = 3 mm).

Now I2D(x, y) is independent of y and it is possible to invert

Eq. (5):

f(x, y) =
1

4π2

∫ π

0

∫ +∞

−∞

|ω| exp (iω cos θx+ iω sin θy)

·

∫

pθ(ρ)e
−iωρdρ

∫

I2D(τ, 0)e−iωτdτ
dωdθ

(7)

Note that Eq. (7) is a combination of a deconvolution with

I2D(τ, 0) and the inverse Radon transform (also known as the

filtered back projection (FBP) [12]). So if we define p′θ(ρ
′) as

the sinogram deconvolved with I2D(τ, 0) we can write Eq. (7)

in the two steps:

f(x, y) =
1

4π2

∫ π

0

∫ +∞

−∞

|ω| exp (iω cos θx+ iω sin θy)

(
∫

e−iρ′ωp′θ(ρ
′)dρ′

)

dωdθ

(8)

With:

p′θ(ρ
′) =

1

2π

∫

eiρ
′ν

∫

pθ(ρ)e
−iνρdρ

∫

I2D(τ, 0)e−iντdτ
dν (9)

3.2. General case

When the Rayleigh length is comparable to w0 or smaller,

finding the inverse transformation is more challenging, be-

cause of the beam shape’s (I2D) dependence on y. We sim-

plify this problem, by first defining p′θ(ρ
′) again as our sino-

gram deconvolved with I2D(τ, 0) (see Eq. (9)) and then ap-

plying the inverse Radon transform, resulting in h(x, y), the

solution in the constant beam limit (zR → ∞):

h(x, y) =
1

4π2

∫ π

0

∫ +∞

−∞

|ω| exp (iω cos θx+ iω sin θy)

·

(
∫

e−iωρ′

p′θ(ρ
′)dρ′

)

dωdθ

(10)

The relation between h(x, y) and f(x, y) can then be ex-

pressed as:

h(x, y) =

√

2

π

zR

w0

+∞
∫∫

−∞

δ(y′(y′ − y) + x′(x′ − x))

· exp

(

−
2z2R(x− x′)2

w2
0y

′2

)

f(x′, y′)dx′dy′

(11)

The variable h(x, y) can already be calculated from the sino-

gram pθ(ρ), so to find f(x, y) we only need to inverse the

transform described by Eq. (11). The inverse of this transfor-

mation (let us call it H) is not obvious, but for now we can

at least find the adjoint transformation applied to an arbitrary

function g(x, y):



HTg (x, y) =

√

2

π

zR

w0

+∞
∫∫

−∞

δ(y(y − y′) + x(x − x′))

· exp

(

−
2z2R(x

′ − x)2

w2
0y

2

)

g(x′, y′)dx′dy′

(12)

which will be used in the next subsection.

3.3. Correction matrix H

The structure of Eq. (11) is similar to that of the Radon trans-

form, so the same iterative methods will be employed to cal-

culate f(x, y) from h(x, y). For this, a matrixH representing

the transformH is needed, but first we take a closer look at the

delta function in the transform. The delta function describes

a circle going through the coordinates (0, 0) and (x, y) and is

quite difficult to construct a matrix with, as the arc lengths of

circles need to be calculated.

The easier option is to use Eq. (12) to create HT instead

[13]. Here, the delta function describes straight lines passing

through (x, y) , perpendicular to the radial direction in (x, y)
(Fig. 4).
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Fig. 4: Path of the line integration of H (blue) and HT (red)

for (x, y) = (0.1,0.3).

3.4. Reconstruction methods

When the matrix H is constructed, there are 3 different meth-

ods for reconstruction possible. The first one (method 1) is by

applying Eq. (10) to p (pθ(ρ) discretized) to find h (h(x, y)
discretized) and then using H to iteratively approximate x

(f(x, y) discretized). However, keep in mind that Eq. (10) is

a combination of a deconvolution with I2D(τ, 0) and the in-

verse Radon transform. Therefore, a second method (method

2) consists of rewriting W , the matrix describing the THz

forward projection, as a combination of the matrix C (rep-

resenting the convolution with I2D(x, 0)), an X-ray forward

projectionWX-ray and a correction matrix H , all of which can

be written as sparse matrices:

Wx = CWX-rayHx = p (13)

Solving this linear system will result in the desired recon-

struction, for method 1 that system is:

Hx = W
−1

X-rayC
−1p (14)

The problem with the second approach is that the matrix

C causes this system to converge very slowly. The best

method seems to be the middle ground between method 1

and 2, which is deconvolvingp with I2D(τ, 0) and then using

WX-ray and H to iteratively solve the linear equation:

WX-rayHx = C−1p (15)

to find x. Which is equivalent to stating that C−1 is a pre-

conditioner for our problem.

4. RESULTS

Our reconstruction methods are compared in Fig. 5. First a

blurred sinogram is generated with the THz Radon transform

and then the original example image is reconstructed with X-

ray FBP and the 3 proposed methods.

(a) (b) (c)

(d) (e) (f)

Fig. 5: (a) Example image from Fig. 3, (b) Sinogram calcu-

lated with the THz radon transform (for a beam with wave-

length λ = 1 mm and w0 = 3 mm), (c) blurred sinogram back-

projected using X-ray FBP, (d) using method 1, (e) 2 and (f)

3.

To evaluate our reconstruction methods the mean squared er-

ror (MSE) and the Structural Similarity Index (SSIM) [14] of

each image are compared to the ground truth (Fig. 5(a)).

Image MSE SSIM

FBP 0.0057 0.88

Method 1 0.0034 0.93

Method 2 0.0280 0.94

Method 3 0.0013 0.98



(a) (b) (c)

(d) (e) (f)

Fig. 6: (a) Example image consisting of 4 concentric circles

and 8 radial lines creating a spider web , (b) Blurred sinogram

backprojected using X-ray FBP, (c) using the constant beam

reconstruction method, (d) using method 1, (e) 2 and (f) 3

(using a beam with wavelength λ = 1 mm and w0 = 3 mm).

From the MSE, SSIM and visual comparison, it is clear that

all 3 methods reduce the blurring caused by the beam shape.

However, in the process, method 1 and 2 have created extra

artefacts, especially method 2, which has a higher MSE than

even FBP. Method 3 seems to perform best. Next, the radial

and angular component of the reconstruction methods on a

spider web-like phantom are tested (Fig. 6).

The result from the constant beam method (which is the same

as method 1 without compensating for H) indicates that H

does not have a large influence on the radial component of

the forward projection. This can be explained by looking at

the path of the delta function (Fig. 4). Consequently, a large

difference between the concentric circles of method 1 and 3

is not expected. Due to its slow convergence, method 2 per-

formed worst. To quantify the convergence rates, the condi-

tion number κ was calculated for each method for a forward

projection with a resolution of 50 × 50 and 50 angles. κ1 =

3.9·104, κ2 = 4.4·1017 and κ3 = 2.0·1010, clearly demonstrat-

ing the slowness of method 2.

Image MSE SSIM

FBP 0.071 0.57

Constant beam 0.035 0.78

Method 1 0.025 0.86

Method 2 0.119 0.69

Method 3 0.020 0.85

Another noticeable aspect of the methods is the appearance of

a black spot in the center of the image. This is likely caused

by the approximations made by discretizing HT and may

therefore be solved by constructing the matrix H instead.

5. DISCUSSION

In the limit where the Rayleigh range (zR) approaches infinity

(resulting in a constant beam width) we succeeded at finding

the inverse of the THz Radon transform, which turned out to

be an adjusted form of FBP (constant beam approximation).

In the case of a non-constant beam, we were able to split the

forward projection into three parts: a convolution C , an or-

dinary forward projection WX-ray and a correction matrix H .

The inverse of C and WX-ray are calculable, but the inverse

of H is not, resulting in three methods to approximate the

original image. Method 1: apply the constant beam method

first and then use H and HT to improve the approximation

iteratively; method 2: write all 3 components as sparse matri-

ces to iteratively approximate the image; method 3: use C−1

as a preconditioner and then reconstruct the image with the

matrices WX-ray and H .

The constant beam approximation is fast, but only works

well for beams of which the Rayleigh length is large com-

pared to the beam’s waist radius or when the image is close to

constant in the angular direction. With method 1, this approx-

imation can be quickly improved, but this method does not

converge well to the ground truth, which is more noticeable

the more iterations are used. Method 2 should theoretically

give the best results but is not viable because of its extremely

slow convergence. Method 3 also has a high condition num-

ber compared to method 1, but not nearly as big as for method

2 and seems to be the most reliable of the methods consis-

tently resulting in good reconstructions.

6. CONCLUSION

In this paper, a modified version of the Radon transform is

proposed that incorporates the (Gaussian) beam shape in THz

CT. Additionally, this beam shape is accounted for in the re-

construction, by using the inverse of this THz Radon trans-

form. If the beam width is constant, the inverse transform

exists, but if the beam width changes, iterative methods are

needed. This is done by splitting the projection into three

parts, a convolution, an ordinary forward projection and a

correction. The inverse of the convolution and the projection

transformations are known, but the inverse of the correction is

not. This results in three different methods for reconstruction

depending on which part is done iteratively. The performance

of these methods were then quantified in terms of accuracy

and speed of convergence. The overall best method seems to

be using the convolution as a preconditioner and using itera-

tive methods to approximate the reconstruction.
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