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ABSTRACT

X-ray computed tomography (CT) is a powerful tool for non-

invasive cardiac imaging. However, radiation dose is a ma-

jor issue. In this paper, we propose an iterative reconstruc-

tion method that reduces the radiation dose without compro-

mising image quality. This is achieved by exploiting prior

knowledge in two ways: the reconstructed object is assumed

to consist of both stationary and dynamic regions over time

and the dynamic region is assumed to have sparse structures

after a proper sparsifying space-time transform. Experiments

on simulation data and a real μCT cardiac mouse dataset show

that, with comparable image quality, the radiation dose can

be substantially reduced compared to conventional acquisi-

tion/reconstruction protocols.

Index Terms— cardiac CT, iterative reconstruction, re-

gion based SIRT, dynamic CT, 4D CT, dose reduction

1. INTRODUCTION

Cardiac CT is a versatile tool for noninvasively visualizing

the interior of the heart at different phases in the cardiac cycle.

Its use ranges from preclinical studies [1] to the prediction of

coronary artery disease and CT-assisted cardiac interventions

[2].

To prevent motion artifacts in the reconstructed images,

the heart is typically imaged at multiple phases of the car-

diac cycle. A straightforward and well established approach

is retrospective electrocardiogram (ECG) gating. In this tech-

nique, the heart is imaged multiple times at each angle while

an ECG trace is recorded. Afterwards, the projection images

are ordered according to their corresponding phase in the car-

diac cycle and an image of the heart at each cardiac phase

is reconstructed. Because multiple projection images are ac-

quired at each scanning angle, radiation dose is a major issue.

Previous studies report an estimated radiation dose of 12 mSv,

which is the equivalent of 600 chest radiographs [3].

In a straightforward approach, radiation dose can be de-

creased simply by reducing the number of projections per

phase bin. This will, however, give rise to limited data arti-

facts which may result in erroneous diagnosis or conclusions.

A solution can be found in specific reconstruction algorithms,

which allow for reducing the number of projections per phase

bin without compromising image quality. Several methods

have already been suggested in the literature.

A first class of methods regards the heart as a spatiotem-

porally 4D object in which the 3D reconstructions of the heart

at different phases of the cardiac cycle are connected by a de-

formation model. If the deformation model is known a pri-

ori, it can be integrated into Filtered BackProjection (FBP) or

Simultaneous Iterative Reconstruction Technique (SIRT) to

produce artifact-free reconstructions [4, 5]. Other techniques

have been proposed to estimate the deformation parameters

[6, 7], in case no a priori deformation model is available.

These techniques, however, either assume rigid deformation

or need high quality reconstructions of the different cardiac

phases.

In a second class of methods, prior knowledge about the

structure of the heart is assumed throughout the reconstruc-

tion process (e.g., sparseness in some transform domain). A

standard approach consists of minimizing the total variation

in the spatial and/or temporal domain [8, 9, 10] or with re-

spect to an a priori high quality reconstruction [11]. Other

examples include the incorporation of a nonlocal means filter

in the reconstruction algorithm [12].

In this contribution, we propose an iterative reconstruc-

tion algorithm that exploits two types of prior knowledge.

Firstly, the reconstructed object is assumed to consist of sta-

tionary and dynamic regions. This is a realistic assumption

for breath hold scanning protocols or in small animal imaging,

where only the heart motion is relevant and the lung associ-

ated motion can often be neglected. This assumption leads to

accurate reconstruction quality in the stationary region, with-

out having to make any assumptions about its sparsity like the

methods proposed in [8, 9, 11, 12]. Secondly, the dynamic re-

gion is assumed to have sparse structures after a proper sparsi-

fying space-time transformation. This leads to more accurate

reconstruction quality in the dynamic region as well. Unlike

the methods proposed in [4, 5, 6, 7], our method works with-

out the need of estimating a deformation model, which is of-

ten error-prone and time-consuming. The proposed algorithm

is validated with phantom data and applied to a real cardiac

μCT dataset.
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Fig. 1. Flowchart of the rSIRT-4D algorithm, illustrated with images from the cardiac mouse μCT dataset.

2. METHOD

In section 2.1, some notations and concepts of CT are intro-

duced. Since this introduction is rather brief, the reader is

referred to [13, 14] for more details. The proposed approach,

named rSIRT-4D (region based dynamic SIRT), is explained

in section 2.2.

2.1. Notations and concepts

Assume that the cardiac cycle is split up into L phases by

means of the ECG trace. For every l = 1, . . . , L, the recon-

structed image of the scanned object at the lth phase bin is

represented on a pixel grid consisting of N pixels of which

the pixel values are ordered in a column vector xl ∈ R
N .

The vector pl ∈ R
M , referred to as the measured projection

data, contains the log-corrected measured projection values

(M in total) for the lth phase bin. Define Wl ∈ R
M×N as

the forward projection matrix that models the data acquisition

proces for the lth phase bin. The weight at the jth column

and ith row of Wl represents the contribution of the j th pixel

of xl to the ith projection value of pl. Typically, the goal of

algebraic reconstruction methods is to find xl such that the

projection distance ||Wlxl − pl|| is minimal for some norm

|| · ||. A well-established iterative method that minimizes the

(weighted) projection distance is SIRT [15]. In SIRT, such a

minimum is calculated starting from an initial reconstruction

x
(0)
l = 0 with the iterative process

x
(k+1)
l = x

(k)
l +ClW

T
l Rl(pl −Wlx

(k)
l ) , (1)

where Rl ∈ R
M×M and Cl ∈ R

N×N are defined as

the diagonal matrices with inverse row sums and inverse

column sums of Wl, respectively. Finally, define p =
(pT

1 ,p
T
2 , . . . ,p

T
L)

T ∈ R
LM as the vertical concatenation

of all projection data, x = (xT
1 ,x

T
2 , . . . ,x

T
L)

T ∈ R
LN as

the vertical concatenation of all phase bin reconstructions

and W as the block diagonal matrix consisting of blocks

W1,W2, . . . ,WL. The projection distance for the full prob-

lem is defined as ||Wx − p||. In low-dose protocols where

the number of projection images per phase bin is low, directly

minimizing ||Wx − p|| for x (e.g., by applying SIRT sepa-

rately on each projection data subset pl) will typically result

in a solution x that is fully dominated by noise. However, by

imposing constraints on the solution x, the set of possible so-

lutions becomes smaller and the final solution is typically less

influenced by artifacts and noise. This approach is followed

in rSIRT-4D, where the reconstruction is assumed to consist

of stationary and dynamic regions over time and a sparsifying

space-time transformation sets a restriction on the pixels in

the dynamic region.

2.2. rSIRT-4D

The proposed rSIRT-4D algorithm is visualized with the flow-

chart in Fig. 1. Let IV ∈ {0, 1}N×N be the binary diago-

nal matrix representing the operator that sets all pixels be-

longing to the stationary region to 0, i.e., (IV x)i = 0 if i
is a pixel index corresponding to the stationary region and

(IV x)i = (x)i otherwise. Analogously, the binary diago-

nal matrix IS ∈ {0, 1}N×N is defined as the operator setting

all pixels in the dynamic region to 0. Furthermore, define

R ∈ R
LM×LM and C ∈ R

N×N as the diagonal matrices

with inverse row sums and inverse column sums of W , re-

spectively. The rSIRT-4D algorithm can now be formulated

as the iterative process in Algorithm 1. From the flowchart in

Fig. 1 and code line 5 in Algorithm 1, one can notice that the

inner most loop calculates two updates: A traditional SIRT

update for the stationary region using all available projection

data p and an update for the dynamic region using only the

projection data corresponding to the relevant phase bin [16].

Since the update for the stationary region is based on all avail-

able projection data p, image quality in the stationary region

greatly improves. Also, pixels in the stationary region are

forced to be the same at all phase bins, thereby reducing the
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Algorithm 1 rSIRT-4D

1: x(0) ← 0
2: for k = 1, . . . , #iterations do
3: for l = 1, . . . , L do
4: x

(k+1)
l ← x

(k)
l + ISCW TR(p−Wx(k))

+ IV ClW
T
l Rl(pl −Wlx

(k)
l )

5: end for
6: if nfilt | k then
7: x(k+1) ← BM4D(x(k+1)) // apply only to the

// dynamic region

8: end if
9: end for

size of the solution space. Because the update for the dy-

namic region is computed using the projection difference of

the previous estimate, this also improves the image quality

in the dynamic region to some extent. To further enhance

the quality in the dynamic region, a spatial-temporal block

matching filter (BM4D), as described in [17], is applied to

the dynamic region, at every nfilt iterations. The forward and

backward projection operations were implemented with the

ASTRA toolbox [18].

3. EXPERIMENTS

In this section, the rSIRT-4D method is validated with both

simulation (Section 3.1) and real data (Section 3.2) expe-

riments. As a validation measure, the relative root mean

squared error (RRMSE) is utilized. The rSIRT-4D recon-

struction is compared to the standard SIRT and FBP recon-

struction (calculated independently for each phase bin), to

the rSIRT reconstruction [16] and to the SIRT reconstruction

where at each nfilt iterations the BM4D filter is applied to

the entire reconstruction domain. The latter is referred to as

SIRT-BM4D. For all algorithms and subsequent experiments,

the parameter value nfilt = 20 was chosen. The dynamic

region, for which a mask is needed in rSIRT and rSIRT-4D,

was indicated manually. For automatic detection methods the

reader is referred to [16].

3.1. Experiment with the XCAT phantom

A first validation of the proposed method is performed with

the XCAT human simulation phantom [19]. A breath holding

protocol was assumed, hence only the motion induced by the

heart is considered. An online synchronization scanning ap-

proach was simulated, i.e., projections corresponding to each

phase bin were generated subsequently by simulating radio-

graphs only if the ECG signal is at a specific phase. Further-

more, the projection angles associated with each phase bin

projection dataset were shifted with a small sub-angular shift,

to assure that no projection angle is sampled twice. The pro-

jections were simulated with a parallel beam geometry and

Poisson distributed noise was applied assuming an incoming

beam intensity of 4 × 104 (photon count). Apart from FBP,

each reconstruction method was applied with 200 iterations.

3.2. Cardiac mouse dataset

A cardiac mouse dataset was acquired with a SkyScan 1176

μCT scanner. It contains projection images of a mouse’s tho-

rax at 515 equiangular directions over a full 360◦ range. At

each angle, a total of 20 projection images were captured. An

ECG signal was measured simultaneously. Projections were

retrospectively ordered in 5 phase bins according to the peri-

odic ECG signal. If multiple images were assigned to a bin

at a certain projection angle, the images were averaged. If no

image could be assigned to a bin at a certain projection an-

gle, the projection image of the nearest angular neighbor was

assigned to the bin.

Define {θi}i=1,...,515 as the ordered set of equiangular

projection directions. For each phase bin, we selected 1/5th

of the available projection images, defined by the set of angles

Ωj = {θi | i mod 5 = j} where j represents the phase bin

index, i.e., j = 1, . . . , 5. This reduced dataset can be regarded

as a dataset obtained with an online synchronization method.

Note that this procedure would expose the scanned animal to

only 20% of the radiation that was applied for acquiring the

full dataset. All reconstruction methods are applied on this

reduced projection data set and compared to a ground truth

image (see Fig. 5(a)) that was generated by the application of

SIRT on the full projection dataset.

4. RESULTS

4.1. Experiment with the XCAT phantom

The experiment with the XCAT phantom was repeated for a

varying number of projections per phase bin. The RRMSE as

a function of the number of projections per phase bin is dis-

played in Fig. 2. The reconstructions based on 30 projections

per phase bin can be observed in Fig. 3. It is clear that, espe-

cially if few projections are available per phase bin, rSIRT-4D

outperforms all other reconstruction methods with respect to

the RRMSE metric.

4.2. Cardiac mouse dataset

The RRMSE as a function of iteration number is displayed

in Fig. 4. A good trade-off between reconstruction quality

in the dynamic (see Fig. 4(c)) and in the stationary region

(see Fig. 4(b)) can be found at 200 iterations for all meth-

ods. The corresponding reconstructions of the last phase bin

are displayed in Fig. 5. Both the dynamic and the station-

ary region are more accurately reconstructed with rSIRT-4D

with respect to all other reconstruction methods, including

SIRT-BM4D. Especially the fine structures are more accu-

rately reconstructed by rSIRT-4D (see Fig. 5(e)) in compar-

ison to SIRT-BM4D (see Fig. 5(c)).
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(c) Dynamic ROI

Fig. 2. The RRMSE in function of the number of projections per phase bin for the XCAT phantom.

(a) Ground truth (b) SIRT (c) SIRT-BM4D (d) rSIRT (e) rSIRT-4D

Fig. 3. Ground truth (the border between static and dynamic region is indicated with a red curve) and reconstructions of the 5th

phase bin of the XCAT phantom generated by the different algorithms with 200 iterations. For each phase bin, 30 projections

were simulated.

0 100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

Iteration Number

R
R

M
S

E

FBP
SIRT
SIRT−BM4D
rSIRT
rSIRT−4D

(a) Full reconstruction domain

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

Iteration Number

R
R

M
S

E
 s

ta
tio

na
ry

 R
O

I FBP
SIRT
SIRT−BM4D
rSIRT
rSIRT−4D

(b) Stationary ROI

0 100 200 300 400 500

0.1

0.15

0.2

0.25

Iteration Number

R
R

M
S

E
 d

yn
am

ic
 R

O
I FBP

SIRT
SIRT−BM4D
rSIRT
rSIRT−4D

(c) Dynamic ROI

Fig. 4. The RRMSE in function of the iteration number for the cardiac mouse μCT dataset.

(a) Ground truth (b) SIRT (c) SIRT-BM4D (d) rSIRT (e) rSIRT-4D

Fig. 5. Ground truth (the border between static and dynamic region is indicated with a red curve) and reconstructions of the 5th

phase bin of the cardiac mouse dataset generated by the different algorithms with 200 iterations.

5. CONCLUSION

The proposed rSIRT-4D method is able to reconstruct 4D im-

ages of comparable quality with respect to conventional meth-

ods, using fewer projection data. Using the same amount of

data, rSIRT-4D provides substantially improved reconstruc-

tion quality in the stationary and dynamic region.
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