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Abstract 
An X-ray scanning procedure in which the source and detector rotate continuously has many advantages with respect to 
scanning stability and scanning speed. However, in such an acquisition scheme, the acquired projections are motion blurred, 
which should be accounted for. Recently, a method was developed to reconstruct images from motion blurred projections [1]. 
In this work, we extend this method towards discrete tomography in which prior knowledge about the attenuation values of the 
object to be scanned is exploited. Results show that by doing so, more details of the object can be obtained, especially further 
away from the centre of rotation. 
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1  Introduction 
Many Computed Tomography (CT) applications benefit from a reduction in total scan time.  Not only does this lead to a lower 
radiation dose, it also allows the reconstruction of dynamic processes.  Many current CT setups follow a step-and-shoot 
acquisition mode in which the X-ray source and detector (or the object in fixed source/detector systems) are kept still during 
the exposure of the projection measurement. However, when the rotation speed is pushed to the limits of the system, 
reconstruction quality will decrease.  In systems with a fixed source/detector pair and a rotating object, the short bursts of 
acceleration and deceleration of the rotation stage are likely to induce small object movement, leading to alignment artefacts in 
the reconstruction.  On systems with a fixed object and a rotating source/detector pair, precisely controlling the X-ray source 
and detector in between two exposures is challenging and often results in an unstable focal spot, again leading to blurry 
reconstructed images. Moreover, on very fast scans, detector lag or afterglow can result in projection images that partly contain 
the signal of the previous exposures [2]. Therefore, fast but accurate scans can then only be taken if the number of projection 
images is significantly reduced, in turn leading to an insufficient data reconstruction problem, which is known to be hard to 
solve unless prior knowledge about the object is available [3]. 
An alternative acquisition strategy is to keep the X-ray source and detector (or the object, depending on the type of system) in a 
constant motion during measurements. This continuous acquisition mode allows very fast and stable acquisition, but suffers 
from motion blurred projection data as each measurement on a detector is made up of information on a range of project angles.  
In effect, this deliberately induces artefacts similar to those of detector afterglow. Without any correction or advanced system 
modelling, the use of a continuous acquisition scheme can therefore only be considered if many projections are taken (i.e. if the 
detector data are read out at a high frequency), as the data then approximates that of a conventional step-and-shoot acquisition.  
The paradox of continuous acquisition is thus that it can lead to fast acquisitions, but offer accurate results only if it is 
performed slowly.  Recently however, an approach has been proposed in which the angular blurring effect of the continuous 
acquisition model is integrated into the reconstruction framework [1]. It was shown that even with a low number of projection 
images (i.e. with fast acquisition) highly accurate reconstruction quality can be obtained around the centre of rotation. Outside 
of this region, however, this approach offers improved radial resolution but also a decreased tangential resolution. 
In this work, we explore the benefit of exploiting prior knowledge about the scanned object to further increase the area in 
which accurate reconstructions can be acquired. The Discrete Algebraic Reconstruction Technique (DART) is a technique that 
has proven to be very powerful when accurate information about the objects materials is available [3]. 

2  Method 

2.1 Step-and-shoot acquisition mode 
Consider a single step-and-shoot projection measurement of an object represented by the attenuation values �ሺݔ,   :ሻݕ
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�௜௦ሺݐሻ = �଴݁݌ݔ ቀ− ∫ �ሺݔ, �,��ݏሻ݀ݕ ቁ, 

where �଴ denotes is the incident beam intensity and �௧,� = {ሺݔ, �ݏ݋ܿݔ|ሻݕ + �݊݅ݏ =    .denotes the line corresponding to the ݅’th measurement of the scanned data {ݐ

Let � ∈ ℝ� denote the unknown rasterized representation of the object function, and let � ∈ ℝ௟ௗ denote the measured 
projection data with ݈ the number of projection angles and ݀ the number of detector pixels in each projection.  Define the 
function ��,௧: ℝ� →  ℝ as the projection function of an object under a certain angle � at a certain detector position ݐ.  Using 

Beer-Lamberts law, the projection formula can then be linearized to  

௜݌ = −݈݊ ቆ�௜௦ሺݎሻ�଴ ቇ = ∫ �ሺݔ, ��,��ݏሻ݀ݕ = ��,௧ሺ�ሻ 

Let �࢙ ∈ ℝ௟ௗ×� represent the projection matrix of the scanning geometry, i.e. let each value ݓ௜௝  represent the contribution of 

volume pixel ݆ to detector pixel ݅.  The projection function can then be expressed as a linear combination of all pixels in the 
volume: ��,௧ሺ�ሻ = ∑ ௜௝௦ݓ �௝ݒ

௝=ଵ  

This leads to the linear system of equations  
�࢙�  = �, 
 

that represents the reconstruction problem. It can be solved by many different iterative solvers, such as SART, SIRT [4], or the 
Krylov subspace method CGLS [5]. 
 

2.2 Continuous acquisition mode 
For continuous acquisition, each projection exposure ݇, that includes measurement ݅, is 
equivalent to all integrated exposures in the range [�௞ , �௞+ଵ]:  �௜௖ሺݐሻ = �଴Ω ∫ ݌ݔ݁ ቆ− ∫ �ሺݔ, �,��ݏሻ݀ݕ ቇ ݀���+1�� , 
with Ω a normalization parameter.  The continuous motion can be approximated by 
sampling the projection space in the range [�௞ , �௞+ଵ] using � samples, equiangularly 
spaced with an interval Δ.  Larger values of �, and lower values of Δ, lead to more 
accurate approximations, but result in a larger computation burden to compute the 
reconstruction.  Using this discretization by sampling, combined with Beer-
Lambert’s law, the continuous projection model can be written as 
௜݌  = −݈݊ (ͳ� ∑ exp[−���+௦Δ,௧ሺ�ሻ]�

௦=ଵ ). 
 

Clearly, there is no linear correspondence between the projection data ݌௜  and the volume data ݒ௝.  This means that this 

projection model can not be efficiently solved by conventional reconstruction techniques.  The function can be approximated, 
however, by making an additional assumption on the scanned object, namely that small changes in the projection direction lead 
only to small changes in the projection measurements [1].   
Define ݌௜,௦ as the virtual step-and-shoot projection at sampling step ݏ, i.e., ݌௜,௦ = ���+௦Δ,௧ሺ�ሻ.  Define ݌௜,��� as the average 

projection value inside the angular range, i.e., ݌௜,��� = ଵ� ∑ ௜,௦�௦=ଵ݌ . The projection measurement is then 
௜݌  = −݈݊ (ͳ� ∑ exp[−݌௜,௦]�

௦=ଵ ) =  −݈݊ (ͳ� ∑ exp[݌௜,��� − ௜,௦݌ − �[���,௜݌
௦=ଵ ) = ���,௜݌ − ݈݊ (ͳ� ∑ exp[݌௜,��� − �[௜,௦݌

௦=ଵ ). 
 

With ݌௜,��� assumed to be very close to ݌௜,௦ the fact that for small , expሺݔሻ ≈ ͳ +  :௜݌ can be exploited to approximate ,ݔ
௜݌  ≈ ���,௜݌ − ݈݊ (ͳ� ∑ ͳ + p௜,��� − ௜,௦�௦=ଵ݌ ) =  ���,௜݌

1.    (a)                                      (b) 
Figure 1: In a continuous projection, the 
detector integrates photons between �௞ and �௞+ଵ(a) and gathers data about a wedge in 
the Fourier space (b). 



6th Conference on Industrial Computed Tomography, Wels, Austria (iCT 2016) 

www.3dct.at  3 

 

Define �̅̅̅� ∈ ℝ௟�ௗ×� as the projection matrix that simulates forward projections for all ݀ exposures and at all � sampling 
points. The values ̅ݓ௜�+௦,௝௖  represent the contribution of voxel ݒ௝ to measurement ݌௜  at sampling point ݏ inside one continuous 

projection exposure.     ݌௜,��� = ∑ ∑ ௜�+௦,௝௖ݓ̅ �௝ݒ
௦=ଵ

�
૚=࢐  

Finally, define �� ∈ ℝ௟ௗ×� as the projection matrix that simulates ݀ continuous exposure projections.  In essence, each row of �� can be regarded as the summation of the � corresponding rows in �̅̅̅�: ݓ௜௝௖ = ∑ ௜�+௦,௝௖�௦=ଵݓ̅   The measured projection in then ݌௜ ≈ ∑ ௜௝௖ݓ �௝ݒ
૚=࢐ , 

leading to the linear reconstruction problem ��� ≈ �, 
 

which can be easily solved using conventional reconstruction solvers. 
 

2.3 Discrete Tomography 
Conventional algebraic reconstruction solvers search for the reconstructed volume by minimizing some norm.  For example, 

the SIRT method minimizes the weighted projection difference, ‖��� − �‖�૛ , with � the inverse row sums of ��. If sufficient 
data is available, that is, if the projection matrix is long and thin (݈݀ > ݊), the minimum of this optimization function closely 
corresponds to the actual object function.  For scans with insufficient data, however, it occurs that the reconstruction equation, �� = �, holds too many unknowns for the amount of measurements (݈݀ ≪ ݊ሻ. This insufficient data then typically prevents 
the solver from converging to an accurate reconstruction.  This situation occurs if the projection data is truncated, if projections 
data is not acquired from all directions, and if only a few projection images are acquired.  When dealing with very fast scans, 
both the step-and-shoot and continuous exposure models fall into this last category.  In step-and-shoot data, high quality 
projection information is known from only a few directions.  In continuous exposure data, however, low quality projection 
information from all angles is recorded, but is hidden inside only a few detector readouts. 
A common solution to counter insufficient data problems is to exploit available prior knowledge about the scanned object. The 
Discrete Algebraic Reconstruction Technique (DART) uses information about the object densities, and interleaves 
segmentation phases with reconstruction update phases limited to the pixels near the edge of the segmentation (see Fig. 2) [3].  
That way, the reconstruction problem in each DART iteration is smaller in size and thus easier to solve, eventually leading to 
very accurately segmented reconstructions. 
 

 

1. Compute an initial SIRT reconstruction, �ሺ૙ሻ.  Set ݇ = Ͳ.  

2. Create a segmentation ࢙ሺ࢑ሻof �ሺ࢑ሻ by applying (e.g., a global thresholding) segmentation function ℒ�,�, where � 

represents the grey level values corresponding to the attenuation values of each distinct material present in the 
scanned object, and � represents the threshold values in between them. If ݇ is zero or a multiple of 5, automatically 
update � and � by minimizing the projection difference between the segmentation and the measured data [6]: �̂, �̂ = ሻሻ࢑ℒ�,�ሺ�ሺ��‖�,�݊݅݉�ݎ� − �‖ 

3. Compute �ሺ࢑ሻ identical to ࢙ሺ࢑ሻ, but set all pixels that are near the boundary of the segmented object to 0.  The grey 
levels of the nen-zero pixels are considered to be correct in this iteration. 

4. Compute the residual ࢘ሺ࢑ሻ = � − ���ሺ࢑ሻ.  Assuming that all inner pixels were segmented correctly, the residual data 
is the projection data that matches all pixels near the edges of the current segmentation. 

5. Compute a SIRT reconstruction of ࢘ሺ࢑ሻ, limited to the pixels near the boundary of the current segmented objects.  This 
new reconstruction uses the same number of equations to solve a substantially lower number of unknowns, and is thus 

more likely to result in an accurate reconstruction.  Set �ሺ࢑+૚ሻ to ࢙ሺ࢑ሻ, and update it with the new SIRT reconstruction. 
6. Increase ݇ by 1 and return to step 2 until a convergence criterion is met. 

 

Figure 2: Steps of the iterative Discrete Algebraic Reconstruction Technique (DART) as used in Section 3 of this work [3,6]. 
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3  Experiment 
To demonstrate the effect of prior knowledge exploitation on continuous projections, consider a 512x512 binary phantom 
image (Fig.3a) containing 160 circles with a 10 pixel diameter. Parallel beam projection data were simulated with a range of 
projection exposure counts, both with a step-and-shoot and a continuous acquisition model. The sampling factor � was set to 
50. To simulate low radiation and low exposure time scans, Poisson noise was applied with an incident photon count of only �଴ = ʹ5ͲͲ. The open source ASTRA Toolbox [7] was used to compute 300-iteration SIRT and 100-iteration DART 
reconstructions. Fig.3 shows reconstructions for the case of 20 projection exposures. For validation, the root-mean-square-
errors were computed of all reconstructions inside three different areas: close to the centre of rotation (inner), extended 
(middle) and the full volume (outer) (see Fig3.a).  The SIRT reconstructions were first segmented using Otsu’s thresholding 
method.  Fig.4 shows the results of this experiment. 
 

 
           (a) phantom                (b) SIRT, step-and-shoot     (c) DART, step-and shoot      (d) SIRT, continuous              (e) DART, continuous 

Figure 3: (a) Binary phantom image.  Note that three circular areas are marked (inner, middle, outer). (b-e) Reconstructions with 20 
projection exposures with all the discussed acquisition and reconstruction models. 

 
                          (a) inner circle                                                   (b) middle circle                                                 (c) outer circle 

Figure 4: Root-mean-square-error in three different areas all the discussed acquisition and reconstruction models as a function of angle count.    

Considering Fig.3, one can clearly see that near the centre, the reconstruction quality of the continuous acquisition is of a much 
higher quality than that of the step-and-shoot approach. However, near the edge of the volume, the opposite is true. Due to the 
high noise component in the projection data, the application of DART provides little benefit to the quality of the step-and-
shoot reconstruction. On the other hand, for the continuous reconstructions, DART does prove to be beneficial as more circles, 
further away from the centre, can be distinguished. The same observations can be seen in Fig.4.  For fast, low exposure count, 
scans continuous acquisition combined with DART clearly provides the best results in the centre of the image. The advantage 
of DART over SIRT is the largest in the middle circle (Fig.4b), indicating that more circles are indeed reconstructed 
accurately. As more projection exposures are available, the difference between step-and-shoot and continuous projections 
decreases and the advantage of continuous projections diminishes.  Overall, the results suggest that continuous projections 
combined with discrete tomography reconstruction can be very beneficial for fast scanning protocols (with a limited number of 
exposures).  

4  Discussion and conclusion 
Continuous projection data reveals more accurate reconstructions near the centre of rotation compared to conventional step-
and-shoot data because it inherently contains more information (i.e., projections from all directions).  This information, 
however, is collapsed onto each other and to obtain it the acquisition mode has to be taken into account when modelling the 
forward- and backprojection operators.  The implementation presented in this work provides an efficient method to do so, but 
makes the additional assumption that small changes in the projection direction result in only small changes in the projection  
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                                                                (a) reconstruction                                           (b) sinogram 

Figure 5: (a) The outer pixels can not be reconstructed accurately with the proposed approach, as they break an assumption required to be 
able to use conventional linear solvers to compute the reconstructions. (b)  These outer pixels correspond to the most left- and rightward 
region on the detector array. 

 
data.  Whether this assumption is valid depends on the scanned object.  Consider a perfect sphere, centred at the centre of 
rotation.  In this case, the assumption fully holds, and the circle can be perfectly reconstructed from only a few continuous 
projection exposures.  On the contrary, consider a single straight line.  Here, the projection parallel to the line will have an 
entirely different shape than the projection just a few degrees away, and accurate reconstruction is not possible [1].  For other 
objects, the assumption in general holds more for objects that are near the centre of rotation than for those that are further away 
from it.  This explains why the reconstructions from the continuous exposure projections have a location dependent accuracy.   
Observing that these reconstructions are only accurate in the centre anyway, one can wonder why projection information on 
these outer regions should be measured in the first place.  Indeed, as can be recognized in Fig. 5, the outer parts of the 
reconstruction correspond only to the most leftward and most rightward region of the detector array.  To reduce the radiation 
dose to the sample, it can thus beneficial to physically reduce the width of the X-ray beam, i.e., to artificially truncate the 
projection data.  To demonstrate, consider Fig.6, in which truncated projection data of the phantom image shown in Fig.3a is 
reconstructed and compared to a non-truncated projection.  Clearly, the reconstruction is very similar inside the region-of-
interest (ROI).  Outside this ROI, however, the amount of information is now so low that even the exploitation of prior 
knowledge can not improve the reconstruction quality anymore. 

 

 

 

 

 
           (a) SIRT, no truncation                  (b) DART, no truncation                  (c) SIRT, truncated                         (d) DART, truncated 

Figure 6: Reconstructions of Fig.3a from 20 continuous projection exposures.  The dashed circle in (a) and (c) denotes the region of interest. 

Acknowledgements 

The authors wish to acknowledge financial support from the iMinds ICON MetroCT project, and the IWT SBO TomFood 
project.  Networking support was provided by the EXTREMA COST Action MP1207. 

References 

[1] J. Cant, W. J. Palenstijn, G. Behiels, and J. Sijbers, "Modeling blurring effects due to continuous gantry rotation: 
application to region of interest tomography", Medical Physics, vol. 42, pp. 2709-2717, 2015. 

[2] J. Hsieh, O. E. Gurmen, and F. King, “Investigation of a Solid-State Detector for Advanced Computed Tomography”, 
IEEE Transactions on Medical Imaging, vol.19, pp. 930-940, 2000. 

[3] K. J. Batenburg, and J. Sijbers, "DART: A Practical Reconstruction Algorithm for Discrete Tomography", IEEE 
Transactions on Image Processing, vol.20, pp. 2542-2553, 2011. 



6th Conference on Industrial Computed Tomography, Wels, Austria (iCT 2016) 

www.3dct.at  6 

[4] J. Gregor, and T. Benson, “Computational analysis and improvement of SIRT”, IEE Transactions on Medical Imaging, 
vol.27, pp.918-924, 2008. 

[5] P. Gilbert, “Iterative methods for the three-dimensional reconstruction of an object from proejctions.”, Journal of 
theoretical Biology, vol.36, pp.105-117, 1972. 

[6] W. van Aarle, K. J. Batenburg, and J. Sijbers, “Automatic parameter estimation for the Discrete Algebraic 
Reconstruction Technique”, IEEE Transactions on Image Processing, vol.21, pp. 4608-4621, 2012. 

[7] W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg, and J. Sijbers,  "The ASTRA 
Toolbox: a platform for advanced algorithm development in electron tomography",  Ultramicroscopy, vol. 157, pp. 35-
47, 2015. 

 
 


