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Abstract 
Industrial 3D X-ray computed tomography (XCT) has been adopted in the industries as a high-resolution non-destructive 
testing method. XCT enables resolving individual fibers, which is the basis for calculating the fiber orientation of each 
individual fiber and fiber orientation tensors, respectively. In this work, we present an interactive visualization tool for 
comparing the orientation tensor information between simulation and real-world XCT data or between two real-world XCT 
data. Based on the orientation tensor data we calculate three different similarity measures (degree of orientation, cosine 
similarity and tensor similarity) to characterize the data. The calculated measures are presented with heat maps to show the 
fiber orientation correlations between simulation and real-world XCT data. In addition, we use superquadric tensor glyphs to 
visualize and compare the fiber orientations of the simulation data and the XCT data. This type of glyphs, introduced by 
Kindlmann et. al., convey tensor variables by mapping the tensor eigenvectors and eigenvalues to the orientation and shape of 
a geometric primitive. The superquadric tensor glyphs and the heat maps of the similarity measures are shown layer by layer 
and can be overlaid onto each other. We demonstrate our tool by using an injection molded short glass fiber-reinforced 
polymer specimen. 
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1  Introduction and Motivation 
Short-fiber-reinforced polymer (SFRP) materials are frequently used in the automotive, aeronautic, and leisure industry. The 
fibers improve the physical properties of the matrix material and allow enhancing the mechanical properties, high throughput, 
as well as cost reductions [1]. SFRP components are often manufactured by means of injection molding [2–3]. During the 
injection molding process, the base materials (e.g., polymeric matrix and glass fibers) are heated, mixed, and subsequently 
forced into the mold with pressure. Afterwards, the SFRP component is cured in a cooling phase. During the injection molding 
process, unwanted local flow-induced fiber misalignments are created which have a bad influence on the final material 
properties (e.g. stiffness and strength). These properties mainly depend on the orientation of the individual fibers [1] which 
makes the analysis of fiber orientations an important task for prototyping and quality assurance. To check the result of the 
molding process, it is important for the domain experts to compare and validate the FRP materials with each other or with a 
reference specimen. 
The simulation of the injection molding process is part of the optimization of the manufacturing process. The main goal of the 
simulation is to predict the flow-induced orientation of fibers. The simulation implements a model, which mimics the molding 
machinery, e.g., the mold and the process conditions to control the desired fiber orientations [1]. The simulation requires 
parameters such as pressure, temperature, and cooling. Improper setting of the parameters may result in differences between 
the simulation and the final product. The simulation runs are cheap and fast, but suffer from the varying accuracy of the models 
(especially for complex structures). Therefore, the simulation model needs to be carefully validated. 
A commonly used approach to determine the individual fiber orientations is the optical microscopy [4]. This method has the 
drawback that it is expensive, destructive, and only provides 2D or 2.5D information on the fiber orientations. 
The industrial 3D X-ray computed tomography (XCT) on the other hand, has excelled as a high-resolution non-destructive 
testing method in recent years. Because of the high resolution of the currently available XCT systems, the individual fibers in 
the SFRP specimen can be resolved and the corresponding fiber orientations can be calculated [5–7]. 
 
Due to the close collaboration with the material experts, we were able to abstract the domain-specific requirements and 
identified the following tasks for the comparative visualization of simulation data and XCT data (or XCT data versus XCT 
data) in SFRP materials: 
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 Task 1: Visualization of orientation strength. 
The strength of the orientation provides information on how many fibers are oriented in the same direction.   Task 2: Visualization of direction strength. 
The strength of the direction indicates the main orientation of the fibers.  Task 3: Visualization of similar regions. 
For the experts, it is important to identify regions where the simulation and the XCT tensors are similar. 

To address the tasks identified by the domain experts, we introduce a novel tool to visually explore, analyze and compare the 
fiber orientations of injection molding SFRP materials. The tool allows comparing a simulation and an XCT scan or two XCT 
scans against each other. In the following work we demonstrate our tool based on a simulation and an XCT scan of a real-
world SFRP injection molding specimen. 
 
The work flow (see Figure 1) starts with a high-resolution XCT scan of the specimen and the import of the simulation data into 
our tool. In a preprocessing step the individual fibers are segmented and characteristics, e.g. fiber starting and ending point and 
fiber orientation, are calculated. Based on the fiber characteristics, the XCT dataset is subdivided into cells. For each cell an 
orientation tensor is calculated. The software solution used by our collaborators for the simulation generates the orientation 
tensors which describe the fiber orientations. To compare the simulation data with the XCT dataset, the simulation data need to 
be correctly registered to the Cartesian grid of the XCT dataset and the orientation tensors of the simulation data need to be 
rotated in to the coordinate system of the XCT dataset. Superquadric tensor glyphs and heat maps are used to compare the fiber 
orientation information of the simulation data and the XCT dataset (or two XCT datasets) to find similar regions. 

Figure 1: The comparative visualization pipeline for the interactive exploration and visual analysis of fiber orientations in SFRPs between 
simulation and real-world XCT scans consists of four stages: data acquisition, preprocessing, calculation of orientation tensors and 
comparative visualization. 

2  Related Work 
Visualizations of fiber orientations are typically accomplished by rendering lines or arrows corresponding to each individual 
fiber and its orientation [8]. Using spherical color maps as presented by Yamrom et al. [9] the orientations of the individual 
fibers may be color-coded in the 3D domain. However, due to the large number of fibers even in a small cutout of an SFRP 
component, which may exceed thousands of fibers, domain users are confronted with information overload and visual clutter. 
In a more recent work by Weissenböck et al. [10, 43], interactive tools for exploring and analyzing fiber-reinforced polymers 
were presented. Amirkhanov et. al. presented a framework to visually analyze defects in glass fiber-reinforced polymers for 
4DCT interrupted in situ tests [44]. Sedlmair et. al. introduced an abstract conceptual framework to describe, discuss, and 
evaluate visual parameter space analysis solutions across different application domains [45]. Heinzl et. al. presented a 
systematic survey on the close interrelations between visual computing and materials science [46]. 
In the following sections we review the state of the art in second-order tensor visualization as well as comparative 
visualization. 
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2.1 Visualization of Second-Order Tensors 
In the field of diffusion tensor imaging (DTI), there is much research focusing on the visualization of second order tensors [11–
13] or fiber tracking [14–17]. The goal of DTI is to visualize microstructures of the brain by measuring the local diffusion of 
water molecules in the tissue. Streamlines and hyper-streamlines continuously show directional information in the volume [11, 
18–20]. The disadvantages of hyper-streamlines however are clutter and occlusion. We opted for using glyphs as a 
comparative visualization to describe similarities and differences in local regions. Pierpaoli et al. [13] use ellipsoidal glyphs for 
the visualization of DTI data. Laidlaw et al. [12] use normalized ellipsoids at each pixel to provide a simple interpretation of a 
DTI image. Chen et al. [21] are combining ideas from integral curves and ellipsoids to visualize connectivity information while 
characterizing the local tensors in detail. Neeman et al. [22] and Hotz et al. [23] present visualization methods for stress and 
strain tensors from geomechanics. Auer et al. [24] reviewed the visualization methods of texture mapping and glyph placement 
designed for tensor fields arising in applications such as physics and mechanical engineering. Kindlmann [25] introduced 
superquadric tensor glyphs to address the problems of asymmetry and ambiguity of cuboids and ellipsoids in visualization. 
Westin [26] visualizes second-order tensors using a spear, a plate, and a sphere for better interpretation. Bergmann et al. [27] 
introduced a multi-tensor model to estimate several diffusion tensors per voxel for a DTI dataset. While the above-mentioned 
approaches can handle visualizations of tensors and tensor fields, they do not address the visual comparison of tensor fields. 

2.2 Comparative Visualization 
The work of Gleicher et al. [28] describes the three basic concepts of comparative visualization: juxtaposition, superposition, 
and explicit encoding of relationships. Hlawatsch et al. [29] introduced a method to separate the domain of a tensor field into 
qualitatively different regions and to further structure regions perceived as coherent. Malik et al. [30] present a novel multi-
image view and an edge explorer for simultaneously comparing and visualizing gray values and edges of several datasets with 
varying scan parameters. Schmidt et al. [31] proposed a new comparative visualization approach for detailed analysis of large 
image datasets. Hummel et al. [32] introduced an approach for comparison of sets of simulation runs based on parameter and 
model variation to classify and identify common and contradictory trends in Lagrangian flows. Peeters et al. [33] explain 
several distance and similarity measures for diffusion tensors. 

3  Domain Background 

3.1 Fiber Orientation 
The visualization of individual fibers could be accomplished by rendering simple lines or arrows. But due to the high number 
of fibers, which typically exceeds hundreds of thousands of fibers, one is confronted with information overload. The 
orientation of a single fiber is presented in Figure 2 [1, 34]: 

 

Figure 2: The vector ⃗ represents a single fiber with (p1, p2, p3) in the Cartesian coordinate system. A second representation is defined by 
ݎ) = ͳ, θ, ϕ) in a spherical coordinate system. ଵ = sin � cos� (1) ଶ = sin � sin ଷ (2) � = cos � (3) 

The equations (1), (2), and (3) are used for the conversion between the Cartesian coordinate system and the spherical 
coordinate system. 

3.2 Orientation Tensor 
Orientation tensors are symmetric second-order tensors calculated as the dyadic product of the unit vectors ⃗⃗⃗. Orientation 
tensors represent an average orientation calculated from the individual fibers [34]. The orientation tensor T is given as: ܶ = (ܽଵଵ ܽଵଶ ܽଵଷ. ܽଶଶ ܽଶଷ. . ܽଷଷ) = ቌ ଵଶ ଶଵ ଶଵଷଵ ଶଶ ଷଵଷଶ ଷଶ ଷଶ ቍ 

(4) 

For a group of n individual fibers the average orientation tensor is calculated using the following formula, where i and j refer to 
the indices of the tensor and k to the kth fiber within a region [35]: 
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ܽ���ೕ = ͳ݊ ∑ ܽ�
=ଵ  

(5) 

3.3 Degree of Orientation 
The degree of orientation OD is a scalar value to describe the strength of the main orientation of a tensor. It is calculated by 
normalizing the largest eigenvalue. The sum of the diagonal entries equals 1. The diagonal tensor elements lie between 0 and 1. ܽଵଵ + ܽଶଶ + ܽଷଷ = ͳ   and    Ͳ < ܽ < ͳ   with    Ͳ < � ≤ ͵ (6) 

The lowest value for the largest eigenvalue is 
ଵଷ, since the sum of all three eigenvalues is 1. We normalize the degree of 

orientation to get values between 0 and 1. The degree of orientation is OD. The largest eigenvalue is represented by λ1: ܱ = ͵ʹ (λଵ − ͳ͵) 
(7) 

3.4 Cosine Similarity 
The cosine similarity allows comparing the main direction of the fiber orientations. We calculate the angle α between these two 
vectors (VecDataset 1 and VecDataset 2) using the dot product. The two vectors are similar if the value for the cosine similarity 
SimilarityC is 1. Two vectors are different if the value for the cosine similarity is -1. Because of the symmetry of the fiber 
orientations the value for the difference should be between 0 (90°) and 1 (0°). To limit the range between 0 and 1 we calculate 
the absolute value for the cosine similarity. ܵ�݉�݈ܽݕݐ�ݎ = |cos�| = |�݁ܿ�௧�௦�௧ ଵ × �݁ܿ�௧�௦�௧ ଶ| (8) 

3.5 Tensor Similarity 
In the sections above, we compare partial information of the tensor. The degree of orientation relates only to the largest 
eigenvalue. The cosine similarity relates to the eigenvector of the largest eigenvalue. To compare the whole information of the 
tensor we can use the following formula to calculate the tensor similarity SimilarityT [36–37]: 

�ݕݐ�ݎ݈ܽ�݉�ܵ = √∑∑(ܽ − ܾ)ଶଷ
=ଵ

ଷ
=ଵ

2
 

(9) 

4.  Data Acquisition and Preprocessing 

4.1 Dataset Description 
The specimen is a polypropylene based composite reinforced with short glass fibers. The dimensions are 210x4x170 mm. The 
simulation software Moldflow InsightTM was used to model the specimen. The XCT scanned dataset, shown in Figure 4(b), is 
1770x520x1909 voxels in size with a resolution of 5 μm. The specimen is scanned with a GE phoenix|X-Ray Nanotom 180. 

4.2 Individual Fiber Segmentation 
A considerable amount of literature has been published on Hessian-based segmentation of tubular structures from medical 
images [38]. However, there are some drawbacks when applying Hessian-based segmentation or enhancement filters on XCT 
data of polymer composites with fibers. Because of the high fiber content, many fibers are intersecting or touching each other 
which makes the segmentation of the individual fibers difficult and leads to problems like virtual fiber breakage, false fiber 
connection, and multi fiber merging (into one fiber) [39]. To overcome these problems and to improve the individual fiber 
segmentation, we propose a template matching approach [40]. We exploit the uniformity of fiber diameters and use a sphere as 
a template. The diameter of the template sphere corresponds to the mean diameter of the fibers. The fiber extraction is 
described in Figure 3. 

 

Figure 3: The following steps are applied to the raw input data to segment the individual fibers: extraction of the medial fiber axis using the 
template matching approach, thresholding to separate the fibers from the polymer matrix, connected component filtering, and binary thinning 
to calculate the characteristics of individual fibers from their centerlines. 
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In a first step the medial axes of the fibers are determined using the template matching approach. For this approach we 
calculate a normalized correlation coefficient at each voxel of the input image. A threshold is applied to separate the fibers 
from the polymer matrix. In the next step we use a connected component filter and count the number of voxels for every 
region. If the number of the voxels for a region is below a user-defined threshold we remove that region. This is done to avoid 
the segmentation of noise and short fiber particles, which are not considered as fibers. After this, we use a binary thinning filter 
to get fibers with one-voxel wide centerlines and assign a unique label to every fiber. In a post-processing step, we use the 
centerlines with unique labels to calculate fiber lengths and fiber orientations. 

4.3 Orientation Tensors Computation 
The orientation tensor for a cell (of the XCT dataset) is computed by first computing the orientation tensors for the individual 
fibers which belong to the particular cell, and averaging them. The first step involves getting the starting and ending point of 
the fiber. After that, we subtract one point from each another. The result is a vector defined by {dX, dY, dZ}. Then we translate 
this vector to the origin. The result is a line defined by the origin (0, 0, 0) and the position (p1, p2, p3). For the calculation of 
the orientation tensor (see Equation (4)), we then transform the position from the Cartesian coordinate system to the spherical 
coordinate system: �݂݁�݊݁ ݐ�ݓ ݏ�ݔ�ݖℎ {Ͳ, Ͳ, ͳ} (10) �݂݁�݊݁ ݐ�ݓ ݎݐܿ݁ݒℎ {ͳ, ,ʹ � (11) {͵ = ݏܿݎܽ ⃗⃗ݏ�ݔ�ݖ‖͵ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ݎݐܿ݁ݒ‖‖⃗  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ 

,ℎ {ͳݐ�ݓ ݈݁݊ܽ ݕݔ ݊ ݏ�ݔ�ݔ ݁݊�݂݁� (12) Ͳ ,Ͳ} (13) �݂݁�݊݁ ݐ�ݓ ʹݎݐܿ݁ݒℎ ͳ, � (14) ʹ = ݏܿݎܽ ⃗⃗ݏ�ݔ�ݔ‖ͳ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ʹݎݐܿ݁ݒ‖‖⃗  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ 
(15) 

4.4 Registration of Simulation Data 
The simulation software (Moldflow InsightTM) generates a dataset which consists of an unstructured grid with the geometry of 
the real specimen. The simulated dataset is separated into several layers. Each layer contains several hexahedral cells. The 
output contains a single orientation tensor per cell. The hexahedral cells are defined by eight grid points. The points of the 
simulation grid are specified in the Cartesian coordinate system. In a registration step the simulation and the XCT data are 
overlaid onto each other. This allows us to define the regions for the computation of the orientation tensors from the XCT data. 
We set up a transformation matrix from the simulation’s coordinate system to the XCT dataset’s coordinate system. For the 
rotation, we defined the matrix Q [41]: 

ܳ = ቌ ଶሺͳݑ − cos �ሻ + cos � ሺͳݒݑ − cos�ሻ − ݓ sin � ሺͳݓݑ − cos �ሻ − ݒ sin ሺͳݒݑ� − cos�ሻ + ݓ sin � ଶሺͳݒ − cos �ሻ + cos� ሺͳݓݒ − cos �ሻ + ݑ sin ሺͳݓݑ� − cos �ሻ − ݒ sin � ሺͳݓݒ − cos �ሻ + ݑ sin � ଶሺͳݓ − cos �ሻ + cos � ቍ 

(16) 

We apply Q according to Equation (17) on all grid points. The vector defined by {u, v, w} could be any arbitrary unit vector, 
for example, {1, 0, 0} for a rotation around the x-axis. And α is the rotation angle [42]. �ܲ⃗⃗⃗⃗⃗ = ܳܲ⃗⃗ (17) ܲ⃗⃗ represents a grid point with coordinates (x, y, z). And �ܲ⃗⃗⃗⃗⃗ is the result of the rotation. The rotation of a tensor from one 
coordinate system to another follows Equation (18), where TR is the rotated tensor (in the coordinate system of the XCT 
volume) and the T is the original tensor (in the coordinate system of the simulation): �ܶ = ܳ ܶ ܳ� (18) 

5.  Comparative Visualization Results 

5.1 Superquadric Tensor Glyphs 
The information of the orientation tensors (e.g., from XCT data and simulation data) are used to generate the superquadric 
tensor glyphs. As described in Section 4.3, one glyph is calculated for one cell. Figure 4(a) shows the simulated SFRP injection 
molding dataset with the color-coded degree of orientation for layer 2. White means a varying orientation of the fibers, dark-
green means a uniform orientation. A region at the end of the injection molding part has been scanned via XCT. The XCT 
dataset is registered to the simulation data (red rectangle). A detailed view of the XCT dataset is presented in Figure 4(b), 
which shows the individual fibers. Figure 4(c) depicts the superquadric tensor glyphs. The blue colored glyphs represent the 
orientation tensors of the simulation data; the cyan colored glyphs represent the orientation tensors of the XCT scan. Especially 
the yellow marked areas show correlation of the fiber orientations between the simulation data and the real-world XCT data. 
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Figure 4: (a) shows the simulation data of the SFRP injection molding part (layer 2) with the color-coded degree of orientation. (b) presents a 
detailed view of the registered XCT scan. (c) the overlaid superquadric tensor glyphs (simulation: blue, XCT: cyan). The yellow areas mark 
regions with uniform correlations of the fiber orientations between simulation and XCT. 

5.2 Degree of Orientation 
As described in Section 3.3, the degree of orientation represents the strength of the main orientation of a tensor. The degree of 
orientation is color-coded with a sequential color map ranging from white (varying alignment of the fibers) to dark-green 
(uniform alignment of the fibers). Figure 5(a) shows the simulation data with the registered SFRP XCT dataset (red rectangle) 
for layer 2. Figure 5(b) shows the encoded degree of orientation information of the XCT scan. The yellow areas mark regions 
with a high degree of orientation (fibers with uniform alignment). 

 

Figure 5: (a) shows the simulation data of the SFRP injection molding part (layer 2) with the color-coded degree of orientation and (b) the 
detailed view of the registered SFRP XCT dataset with yellow marked areas which represent high degree of orientation (fibers with uniform 
alignment). 

5.3 Cosine Similarity 
The cosine similarity allows comparing the main direction of the fiber orientations between the simulation data the XCT data 
(see Section 3.4). Figure 6(a) shows the simulation data with the registered SFRP XCT dataset (red rectangle) for layer 2. 
Figure 6(b) depicts a detailed view of the registered SFRP XCT dataset by showing the cosine similarity as a heat map. Black 
areas represent a low similarity and yellow areas represent a high similarity between the simulation data and the XCT data. 
Figure 6(c) presents the cosine similarity heat map with the overlaid superquadric tensor glyphs. Due to the heat map, regions 
with similar orientations can be easily perceived. 
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Figure 6: (a) shows the simulation data of the SFRP injection molding part (layer 2) with the color-coded degree of orientation and (b) the 
detailed view of the registered SFRP XCT dataset with the color-coded cosine similarity (black: low similarity, yellow: high similarity). (c) 
presents the color-coded cosine similarity and with the overlaid superquadric tensor glyphs. 

5.4 Tensor Similarity 
As discussed in Section 3.5, the tensor similarity enables comparing the whole tensor information (in contrast to the cosine 
similarity). Figure 6(a) shows the simulation data with the registered SFRP XCT dataset (red rectangle) for layer 2. Figure 7(b) 
depicts a detailed view of the registered SFRP XCT dataset by showing the tensor similarity as a heat map. Black areas 
represent a low similarity and yellow areas represent a high similarity between the simulation data and the XCT data. In 
comparison to the cosine similarity, the tensor similarity is less conservative and shows more similar regions, as it only 
generates values above 0.3 (in this cutout). Figure 7(c) presents the tensor similarity heat map with the overlaid superquadric 
tensor glyphs. Due to the heat map, the similar regions can be clearly identified. 

 

Figure 7: (a) shows the simulation data of the SFRP injection molding part (layer 2) with the color-coded degree of orientation and (b) the 
detailed view of the registered SFRP XCT dataset with the color-coded tensor similarity (black: low similarity, yellow: high similarity). (c) 
presents the color-coded tensor similarity and with the overlaid superquadric tensor glyphs. 

6.  Conclusion 
We presented a tool to visually explore, analyze and compare the fiber orientations between the simulation data and the XCT 
data of an injection molding SFRP specimen. The tool also allows comparing the fiber orientations of two XCT datasets. We 
showed several measures, e.g., degree of orientations, cosine similarity, and tensor similarity which serve as input for the 
superquadric tensor glyphs and the color-coded heat map. By using these comparative visualization concepts, regions with 
similar fiber orientations are highlighted to increase the perception of these interesting areas. Furthermore, we demonstrated 
that our tool helps to bridge the gap between simulation and the industrial process of injection molding. We have shown an 
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approach for the validation of simulation data and XCT data. It has the potential to improve the workflow of the domain 
experts in plastics industry. 
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