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Abstract

This work introduces methods for analyzing the three imaging modalities delivered by Talbot-Lau grating interferometry X-ray

computed tomography (TLGI-XCT). The first problem we address is providing a quick way to show a fusion of all three modal-

ities. For this purpose the tri-modal transfer function widget is introduced. The widget controls a mixing function that uses the

output of the transfer functions of all three modalities, allowing the user to create one customized fused image. A second problem

prevalent in processing TLGI-XCT data is a lack of tools for analyzing the segmentation process of such multimodal data. We

address this by providing methods for computing three types of uncertainty: From probabilistic segmentation algorithms, from

the voxel neighborhoods as well as from a collection of results. We furthermore introduce a linked views interface to explore

this data. The techniques are evaluated on a TLGI-XCT scan of a carbon-fiber reinforced dataset with impact damage. We show

that the transfer function widget accelerates and facilitates the exploration of this dataset, while the uncertainty analysis methods

give insights into how to tweak and improve segmentation algorithms for more suitable results.

Keywords: multimodal data, image fusion, transfer function design, image segmentation uncertainty

1 Introduction

Recent advances in X-ray computed tomography (XCT) hardware enable the application of the principles of Talbot-Lau grating

interferometry (TLGI) in laboratory XCT scanning devices for industrial applications [1, 2]. TLGI-XCT devices provide three

modalities in one scan: the attenuation contrast (AC) resulting from attenuation of X-rays through a specimen, the differential

phase contrast (DPC) containing information about refraction of X-rays, as well as the dark-field contrast (DFC) providing

information about X-ray scattering. DPC is highly sensitive regarding changes in the material, for example, delamination or

fractures. DFC shows high responses for X-ray scattering, such as from micro-pores or fiber bundles. The combination of all

three modalities opens new possibilities for the characterization of material features that cannot be resolved by conventional

absorption-based XCT alone. Analyzing these three modalities only side by side is typically insufficient for understanding

where the single modalities complement each other. Domain experts, therefore, often want to investigate one fused image of all

modalities. For this purpose, we evaluated widget designs that allow the user to specify a combined transfer function (TF) for

slices of all modalities of a TLGI-XCT, leading to one simultaneous fused visualization. In addition, when processing multiple

modalities in an image segmentation algorithm, it becomes even more crucial in comparison to a single modality to be able to

inspect the segmentation process. For this purpose, we propose methods to compute uncertainty values for single probabilistic

segmentation algorithm results as well as collections of segmentation results. We also provide methods to investigate these

uncertainty types uncovered in the segmentation step of the image processing pipeline. Our contributions in this work are

• a design study on supporting the initial inspection and exploration of TLGI-XCT data through a custom fusion widget,

• a system for computing and analyzing the uncertainty in the segmentation step of TLGI-XCT data,

• as well as case studies on TLGI-XCT data from a fiber-reinforced polymer dataset with which we show the usefulness of

our methods.

2 Background

This section introduces existing work for both aspects of analyzing TLGI-XCT data addressed in this paper. We look at previous

interfaces for designing multimodal transfer function widgets, as well as previous work on analyzing segmentation uncertainty.
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2.1 Transfer functions for multiple modalities

An essential aspect to consider when designing a multimodal transfer function (TF) is the dimensionality of the data available, as

having more than one dimension drastically increases the complexity, posing a challenge concerning the user interface. Ljung et

al. [3] identify this issue and list a number of techniques (e.g., brushing or volume/slice view interactions) used in multidimen-

sional (nD) TFs to overcome the limitations of a 2D display device.

The classic 1D color-opacity TF widget, containing a histogram of attribute data in the background, already requires two dimen-

sions to be displayed. The horizontal axis represents intensity values, the vertical axis represents opacity, and each control point

contains a color attribute. Kniss et al. [4] use the gradient magnitude in addition to the intensity of a voxel to enable a more

precise classification, but lose precision when manipulating color and opacity, which must be defined through regions such as

boxes and pyramids. Patel et al. [5] extend this concept to using the first and second statistical moment.

Combining different TF interfaces to achieve even higher dimensionalities is also possible. Zhou et al. [6] integrate a 2D TF

such as the one presented by Kniss et al. [4] with a set of 1D TFs to define a separable 3D TF, capable of using three variables

to classify the data. This is achieved by defining regions withing the 2D TF, selecting voxels by their primary and secondary

attributes. For each region, a 1D TF is provided for further selection by the tertiary attribute.

To enable the interaction with TFs of even higher dimensions, Zhao and Kaufman [7] and Guo et al. [8] resort to the parallel

coordinates plot, an attractive method due to the unlimited number of dimensions supported. However, relationships between

attributes are lost, as each axis of this plot can only connect to at most two other axes.

The interfaces mentioned, while presenting higher dimension solutions for the display and interaction of TFs, focus on mul-

tivariate datasets. These widgets do not, however, necessarily deliver satisfactory results for multimodal datasets, such as those

produced by TLGI-XCT. Bramon et al. [9] take a step in this direction and present a fully automatic scheme to visualize bi-modal

volumetric data. The colors and opacities of the TF are set given a predefined 1D TF for each modality. The authors suggest the

possibility to generalize this technique for more than two modalities, but even so, the automatic nature of this method is inad-

equate for this work’s goal of facilitating exploration. We focus on creating a single fused image. If in contrast a comparative

analysis of the modalities is required, we refer the reader e.g. to the work of Malik et al. [10].

2.2 Segmentation uncertainty analysis

Segmenting an image is a challenge, even for a single modality. There is a multitude of algorithms available for this purpose, but

so far, none has been found to be optimal, typically not even for a specific application scenario. In the analysis of multimodal

TLGI-XCT data, it is even harder to find the most suitable segmentation. The information from the different modalities needs

to be combined for the segmentation, and this combination step requires additional parameters. When optimizing segmentation

algorithms for multimodal data and their parameters, a task which would fall into the Visual Debugger Challenge as identified

by Heinzl and Stappen [11].

Multiple algorithms are typically executed, each one multiple times with varying parameters. To systematically explore the

parameter space, methodical sampling of one or more algorithms is required [12], resulting in a set of slightly different segment-

ations, which we refer to as segmentation ensemble. For the case where segmentation quality can be judged by visual inspection

and optimal parameters shall be found for a single algorithm, Pretorius et al. [13] suggest to analyze segmentation ensembles

using tree-based visualization. Torsney-Weir et al. [14] target finding suitable parameters for the case when an objective quality

measure is available. Fröhler et al. [15] propose methods for exploring the variation in a segmentation ensemble via hierarchical

clustering and aggregated visualizations. For specific domains, there are specialized methods available, such as the work of

Weissenböck et al. [16] for quantifying the pore volume in computed tomography data. These tools allow the user to explore the

variation in the ensemble, however, they do not utilize uncertainty information.

Saad et al. [17] show that uncertainty can provide valuable insights in the analysis of segmentation results. They propose a metric

based on the relation of highest and second-highest label probability, and provide methods for editing the segmentation in regions

of high uncertainty. Their tool is limited to analyzing a single result of a probabilistic segmentation algorithm. More recently,

Summa et al. [18] have proposed a method to find alternative segmentations using uncertainty information, however only for

specific graph-based segmentation algorithms.

Potter et al. [19] introduced techniques for exploring a 2D field of probability distribution functions. Our probability probing

technique extends this to three dimensions and provides information about correlations between different uncertainty measures.

Measures for uncertainty based on information theory have recently gained attention in the visualization of probabilistic segment-

ation algorithms, such as the work by Potter et al. [20], who introduce entropy as a metric for uncertainty, and propose several

visualization techniques based on this metric. Al-Taie et al. [21] propose additional metrics based on the Kullback-Leibler di-

vergence and the total variation divergence. These allow the incorporation of prior knowledge and introduce visual encodings,

where uncertainty is color-coded on top of the gray-scale-encoded input image, attenuating or highlighting the uncertainty in-

formation over the maximum-probability labeled image. These methods deal with the outcomes of probabilistic segmentation

methods. They do not consider the uncertainty information contained in the variation of a segmentation ensemble. Al-Taie et

al. [22] introduce an ensemble segmentation method that utilizes the variation in the ensemble for a combined classification, but

they do not provide visualizations for this information. The methods presented in this work are based on our previous work [23].
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Figure 1: (a) Prototype of the tri-modal histogram and TF design widget, where the control point (crosshair) indicates the fusion

interaction and the × indicates the barycenter of the triangle. The control point’s barycentric coordinates in the triangle are used

as weight parameters for the AC, DFC and DPC TFs. (b) As a result, the fusion image (FUS) emphasizes the AC and DFC

modalities slightly more than the DPC modality.

3 Methods

The analysis of TLGI-XCT data typically starts with the exploration of fused images. Prototypes of our methods for this pur-

pose are described in Section 3.1. Segmentation is required for a more quantitative analysis. Our methods for analyzing the

uncertainties involved in this step are laid out in Section 3.2.

3.1 Tri-Modal Transfer Function Widget for TLGI-XCT Datasets

As new extraction methods and equipment emerge, such as TLGI-XCT, more profound analysis of volumetric data is made

possible. Yet, despite the available scanning equipment and techniques, modern visualization programs (e.g., VGSTUDIO MAX,

Amira-Avizo and MeVisLab) do not provide an efficient way to explore multimodal volumetric datasets. Our goal is to test the

feasibility of a tri-modal TF design for the exploration of TLGI-XCT datasets, with a focus on usability, taking into consideration

the needs of material analysis experts.

The developed concept consists of three individual TFs, each corresponding to one modality, and one mixing function that

receives the outputs of the TFs and combines them to create a fused visualization. This concept was implemented in a software

prototype, shown in Figure 1. The prototype takes three two-dimensional scalar images (modalities) as input and produces an

RGBA image based on the defined functions.

Standard 1D color-opacity TF widgets built on top of modality histograms are arranged on the edges of a triangle and allow the

user to manipulate the TFs of each individual modality. The 1D TF design was chosen due to its familiarity to domain experts.

However, any other design can be used instead, including those mentioned in Section 2. Next to each TF widget, and rotated

accordingly, are the results of the TFs and their respective modalities to provide extra guidance to the user.

The triangular area formed by the histograms is used to define the weights of the individual TFs. It contains one control point

that can be moved by the user (with a mouse click or drag) to any position inside the triangle. The on-screen position (i.e.,

Cartesian coordinates) of the control point is used to calculate its barycentric coordinates α , β and γ with α ≥ 0, β ≥ 0, γ ≥ 0,

α +β +γ = 1. These conditions allow the interpretation of the barycentric coordinates as interpolation parameters, which makes

it possible to control the mixing of the outputs of the TFs without having to adjust each TF individually. Furthermore, aiming

to improve intuitiveness, the vertices of the triangle are defined in such a way as to increase a modality’s weight (α , β or γ)

proportionally to the proximity of the control point to the individual rendering of a modality. In other words, the closer the

control point is to the individual rendering of a modality, the stronger is the influence of this modality on the final rendering.

3.2 Analyzing Uncertainty in the Segmentation of TLGI-XCT Datasets

Uncertainty has recently gained importance in understanding the image segmentation process [17, 18]. Our goal is to extend the

understanding of uncertainty information in the highly complex image processing pipelines for multimodal datasets such as those
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Figure 2: Workflow for the analysis of uncertainty information in the image segmentation workflow: Multiple segmentation res-

ults are computed (a), uncertainty information is retrieved from the probabilistic segmentation results (b), the label distribution in

the voxel neighborhood of each results (b), as well as from the distribution across the ensemble (d). This uncertainty information

is then visualized, explored and analyzed (e).

from TLGI-XCT. When multiple modalities are available, finding the most suitable segmentation according to all modalities

becomes even harder, as the modalities might hold contradicting information. This leads to a high variation in results when

utilizing different segmentation algorithms, and thus in high uncertainty regarding the most suitable segmentation. The tools

proposed in this work provide ways to quantify, explore and investigate this uncertainty.

To gather uncertainty information, we start by computing multiple segmentation results. We employ multiple probabilistic

segmentation algorithms, such as fuzzy C-means based segmentation methods (FCM) [24], probabilistic support vector machines

(SVM) [25], as well as the extended random walker algorithm (ERW) [26]. We sample the parameter space of these algorithms

with the help of our tool for sampling arbitrary image segmentation algorithms [27], as shown in Figure 2(a). The output is a

collection of different results, which we refer to as an ensemble.

We identified three types of uncertainty information we could leverage in such an ensemble, resulting from:

• probabilistic segmentation algorithms,

• neighborhood variability, and

• ensemble variability

For each voxel in each segmentation result, a probabilistic segmentation algorithm provides the probabilities that this algorithm

assigns to each label, which can be interpreted as a label probability distribution, as shown in Figure 2(b1). Also, high variability

in the neighborhood of a voxel can be understood as a measure for uncertainty. For this purpose, we create a distribution out

of the label assignments in the neighborhood of the voxel, as visualized in Figure 2(b2). The variability over the ensemble of

results, computed with different algorithms or parameterizations, provides clues to the uncertainty of the segmentation. We build

a probability distribution for each voxel across the ensemble, as displayed in Figure 2(b3).

To retrieve uncertainty values from these distributions, we employ the entropy as a measure for uncertainty, as proposed by Potter

et al. [20], this is depicted in Figure 2(c).

There is a distribution for each voxel in each segmentation result for the probabilistic segmentation algorithms, as well as for

the neighborhood variability. Therefore, we can compute an uncertainty value for each voxel and each segmentation result. We

call these values algorithm uncertainty and neighborhood uncertainty. In the case of the ensemble variability, we only have a

distribution for a voxel over all segmentation results in the ensemble. We thus only compute a single uncertainty value for the

whole ensemble for each voxel, referred to as ensemble uncertainty. After computing these uncertainty values, we employ the

visualizations as shown in Figure 2(d) to analyze them.

The full exploration interface, with TLGI-XCT data loaded, is shown in Figure 3. For each uncertainty type, we provide an

aggregated uncertainty image. For the algorithm uncertainty and neighborhood uncertainty image, where we have one uncertainty

value per voxel and segmentation result, we compute the value for each voxel as average value over all segmentation results for

each voxel. For the ensemble uncertainty image, we can simply utilize the ensemble uncertainty for each voxel, as we only have a

single value per voxel over the whole ensemble. The uncertainty images are color-coded such that black indicates low uncertainty

and white indicates high uncertainty. Slice images of these uncertainty images are shown alongside individual segmentation

results in the spatial view, as shown in Figure 3(a). An average uncertainty is also computed for each segmentation result

and displayed in a bar chart, sorted in descending order, as can be seen in Figure 3(b). The average label (c) and uncertainty

distribution (d) across all segmentation results can be analyzed via bar charts. A scatter plot (e) allows the user to analyze
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Figure 3: Uncertainty exploration interface: Spatial view with uncertainty images, reference, and selected segmentation results

(a), average uncertainty per segmentation result (b), uncertainty (c) and label distribution (d) across results, scatter plot for two

uncertainty types (e).

correlations between uncertainty types and links these uncertainties back to their spatial locations in the datasets.

4 Evaluation

We evaluate our methods on scans of a carbon fiber reinforced polymer (CFRP) object with impact damage. Slices of the

reconstructed volume of all modalities acquired by the TLGI-CT device are shown in Figure 4(a-c). First, we inspect the scan

with the tri-modal TF widget, as described in Section 4.1. Then, we segment the dataset to enable a quantitative characterization

of the damage, and we analyze this segmentation using the uncertainty exploration methods in Section 4.2.

4.1 Fusion Results

To evaluate the efficacy of the prototype, features of interest to domain experts are highlighted (e.g., cracks or pores). These

features are emphasized differently in each TLGI-XCT modality.

The prototype was loaded with the slices in Figure 4 and it enabled the exploration of all three modalities simultaneously in one

visualization, as shown in Figure 5. When the control point is positioned near the triangle’s barycenter, the features of all three

modalities are visible in the fused image. In comparison, placing the point between orange and cyan but farther from magenta

a b c

Figure 4: A carbon fiber reinforced polymer with impact damage. Displayed are the three modalities acquired by a TLGI-XCT

device: attenuation contrast (a), differential phase contrast (b) and dark field image (c).
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Figure 5: By moving only the triangle’s control point, the influence of the modalities in the final rendering can be manipulated.

When the point is near the barycenter, all modalities can be seen in the result (a). Placing it between the AC and DFC modalities

but far from DPC results in the latter becoming effectively invisible (b).
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Figure 6: Uncertainty analysis of the FRP dataset: Algorithm uncertainty image (a), Neighborhood uncertainty image (b) and

ensemble uncertainty image (c). Ring artifacts are marked in red in the attenuation image (d). Selecting voxels with high al-

gorithm uncertainty and low neighborhood uncertainty in the scatter plot (e) highlights the corresponding voxels in the algorithm

uncertainty image (f). One result from the ensemble where the ring artifacts were labeled as damage is selected in the average

uncertainty bar chart (h) and shown in the spatial view (g). Selecting regions of low ensemble uncertainty in the scatter plot (i)

highlights background regions in the spatial view (j.)

results in the former two having a stronger influence, whereas the latter is effectively invisible.

Additionally, domain experts were consulted on the intuitiveness of the tool. The 1D TFs used for each modality and the

weighting based on the distance to the modalities were considered intuitive. However, the rotation of individual renderings

was criticized, as it hinders its comparison with the input slices. Having the control point increase the weight of a modality

corresponding to the closest rendering was also considered suboptimal, and corresponding it to the closest histogram (1D TF)

was suggested as an alternative.

4.2 Segmentation Uncertainty Analysis

We first apply the probabilistic segmentation algorithms described in Section 3.2 to create an ensemble of segmentation results

from the multimodal input. We then load these results into our uncertainty analysis interface, as shown in Figure 3. The algorithm

uncertainty image in Figure 6(a) shows a generally high level of uncertainty due to the medium gray colors over the whole image,

but it is highest along the edges of the specimen as well as at the location of damage inside the specimen. The neighborhood

uncertainty image in Figure 6(b) only shows high uncertainty along the edges and along cracks. This is to be expected, as

this uncertainty type only considers the uncertainty within each single segmentation result. The ensemble uncertainty image in

Figure 6(b) shows high uncertainty in the whole specimen. This is due to the fact that the algorithms could not agree on a common

label for the specimen. Some would label it with label 1 while others would assign label 2, even though most algorithms (SVM

as well as ERW) are given prior information on what labels to assign to certain gray levels. This supports our initial problem

statement that it is hard to find a suitable segmentation for such a multimodal dataset. There are also ring artifacts, highlighted

in red in the attenuation image in (d). We select voxels with high algorithm uncertainty and low neighborhood uncertainty in
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the scatter plot, the selected voxels are marked yellow in Figure 6(e). The spatial visualization of this selection in Figure 6(f)

shows that this affects mostly those regions of the image where ring artifacts are located. When inspecting multiple segmentation

results, we would see that indeed many algorithms labeled the ring artifacts as damage. In our tool we can do so, by selecting the

results in the average uncertainty bar chart (h), where one segmentation result showing these ring artifacts segmented as damage

is selected, it is shown in Figure 6(g). We can conclude that we need to apply additional ring artifact correction in order to achieve

more consistent segmentation results.

When plotting the ensemble uncertainty versus the algorithm uncertainty, as shown in Figure 6(i), we can see two clusters. The

cluster of voxels with low uncertainty is selected in the scatter plot. In the spatial view in Figure 6(j), we see that this highlights

nearly all background voxels. The algorithm uncertainty, as we can see in the scatter plot, does not separate these voxels, their

values cover the full range from low to high. We can conclude: While the single algorithms are about as uncertain about the

background as about the rest, the whole ensemble still agrees much more on the segmentation of the background than it does on

the segmentation of the object.

5 Conclusion

In this paper, a system for analyzing and processing multimodal images from a TLGI-XCT device is presented. The methods

enable users to explore and experiment with a slice image fusing all modalities. Furthermore, we provide methods for analyzing

the uncertainty when segmenting these modalities. The presented case study shows that the developed methods can facilitate the

tasks of domain experts working with TLGI-XCT data and provide additional insight. We demonstrated the feasibility of a tri-

modal TF design for TLGI-XCT images, and that the introduction of a weighting widget (the triangle) is sufficient to accelerate

and facilitate the highlighting of features across modalities. We showed that considering uncertainty can provide interesting

insights into the inner workings of segmentation algorithms, and can provide hints as to additional image processing steps (e.g.,

artifact correction) or adaptations to the segmentation algorithm that are required.

In the future we plan to test a tri-modal TF design working with volumetric visualizations instead of slice views. We also plan to

redesign the widget for further usability improvement. We are also thinking about utilizing the uncertainty information directly

in improving the segmentation, for example by merging segmentation results based on their uncertainty.
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