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Abstract

X-ray 3D computed tomography (CT) is a non-destructive method that allows inspection of internal components of an object.

In the conventional approach, the comparison between the measured projections and the 3D model is performed by processing

a CT reconstruction from projection data. The accuracy of the inspection analysis strictly depends on the reconstruction, which

can suffer from numerous artifacts. To overcome this problem, we propose a new method that performs inspection directly in the

projection space, simulating realistic projections from the computer aided design (CAD) model.

Our method bases its strength on the prior knowledge from the CAD data and knowledge about the inspected object itself. When

inspecting for defective or missing components, it is not restrictive to assume that the position of a potential deviation from the

nominal geometry is approximately known. Therefore, we define regions of interest (ROIs) for feature extraction by simply

projecting a component or a volume around it. Furthermore, based on the nominal geometry, we can identify the projection

angles for which a certain component is most visible, to restrict the inspection analysis to projections obtained at these angles.

Our procedure for quality control is composed of two main steps: the first one must be performed prior to in-line inspection and

consists of i) an accurate alignment to calibrate the system geometry and ii) building of libraries of simulated projection data.

These libraries are used in the second, in-line step to perform a fast 3D alignment with respect to the position and orientation of

the sample. The knowledge of the sample’s orientation allows one to select only a few projection angles for which a potential

defect is most visible and perform classification by extracting features and measures from merely the projections at this limited

set of angles, for a predefined ROI. In this paper, we motivate and describe our procedure for limited view in-line inspection of

defects and validate our method with experiments on real data.
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1 Introduction

In the last few years, the make industry is getting increasingly interested in 3D CT. This non-destructive method permits to recon-

struct a detailed profile of the volumetric internal structure of a complex object starting from a collection of 2D X-ray projection

images. Its main, but not unique, application in the manufacturing process is inspection, to detect possible material defects or

dimensional deviations. For this purpose, the acquired projection images can be compared to the nominal geometry using CAD

models. Conventional CAD-based X-ray inspection requires 3D reconstruction and voxelization of an object, starting from its

radiographs, before comparing it to the nominal geometry [1, 2]. With this methodology, the quality of the final reconstruction is

crucial to guarantee an accurate analysis (e.g metrology). For high quality reconstructions, typically hundreds of X-ray projection

images from a large number of viewing angles are required. Even so, the 3D reconstructed images may suffer from numerous

artefacts due to misalignment in the measurement setup, beam hardening, undersampling, etc. Part of these problems can be

overcome by doing the analysis in the native projection space instead of the reconstruction domain. With this aim, we recently

developed a CAD projector [3] capable of simulating projection images from the CAD model. The CAD projector is efficiently

implemented on the GPU and integrated with our flexible, open-source reconstruction software, the ASTRA Toolbox [4]. With

respect to other similar state-of-the-art tools, as [5, 6], our CAD projector is meant as a forward projector, rather than a toolbox

to create simulated data.

In this paper, we propose a CAD based inspection directly performed in the projection space, comparing the 2D simulated

projections directly to the measured ones. Our method avoids the need of reconstructing the volume and correcting the artifacts,

and performs well using a very limited amount of projections over a limited angle range. This meets the needs of in-line

inspection where usually the time for checking a sample is narrow and the structure of the object itself can impede 360◦ rotation.

Also, thanks to a GPU implementation and parallelization, the complete procedure requires an execution time in the order of a

second, making it applicable directly in-line.

The novelty of our method lies in the smart usage of the CAD model for extracting precious information: since the position and

the extent of the possible defects that may occur during assembly are assumed to be known a-priori, we can easily define the

ROI where to perform inspection based on the CAD model. Also, after a fast 2D-3D registration, we define a method to select

only the angles where the component to be checked is most visible (we refer to these angles as visibility angles), based on image

contrast. To do this, we pre-compute projection data for the expected object and we associate to each discrete orientation view of

the CAD model around its rotation axis a contrast value, so that the knowledge of the orientation for each projection angle guides
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the choice of the visibility angles. At the end of our workflow, we classify the samples by extracting some useful task specific

features from only the projections at the visibility angles. Results on real data are shown to demonstrate the effectiveness of such

an approach.

The paper is structured as follows: section 2 provides a general view of the methodology, presenting first our procedure to

simulate realistic radiographs from the CAD model and to align them to the ground truth ones. We then explain the details of our

proposed procedure for in-line inspection, which includes some prior non in-line calculation. In section 3 we show the results

of the angle selection procedure and of the classification on real data, both for missing and for distorted components. Section

4 is dedicated to the time evaluation of the entire procedure and the improvements on implementation necessary for in-line

application. Finally, in section 5, we draw our conclusions, focusing on future improvements.

2 Methodology

As previously mentioned, the CAD projector is a tool to simulate radiographs of the reference CAD object. For this purpose,

polychromatic X-rays are virtually cast from a source, penetrate the CAD model and hit a virtual detector. After detecting the

points of intersection of the X-ray beam with the triangle mesh of the CAD model, the line length that a ray travels inside the

model is calculated, and, knowing the material of each component of the model, polychromatic projections are calculated using

the polychromatic form of the Beer-Lambert law.

In order to compare the simulated projection images to the measured data, it is necessary that the acquisition parameters, such as

the position of the source, the detector and the rotation axis with respect to the reference system centered in the center of mass of

the sample are known. Also, to adequately simulate the behavior of the beam when intersecting the sample, the materials of all

the components must be known in advance. Two optimization processes are needed: (1) estimation of the spectrum of the source

and (2) geometric calibration. The X-ray source spectrum estimation was developed by Marinovski et al. [3] and is performed

by minimizing the discrepancy between the intensity values of the measured and simulated data. In [3], the authors showed the

consistency of the method through experimental results on simulated and real data. In the present work, we extend this approach

to allow geometric calibration using CAD data of a calibration phantom in terms of position and orientation of the rotation axis,

the detector, the phantom and the position of the source (see Figure 1). These parameters are optimized using the Hill climbing

algorithm [7].

Although this alignment procedure returns an accurate result, it is not applicable to in-line quality control due to its long execution

time. Therefore, our methodology for in-line inspection has been split in two main steps. The first step consists of a set of

procedures that have to be performed prior to in-line inspection. The second step is the actual in-line inspection, which is

performed in real time. A flowchart of the proposed approach, that will be explained in depth in section 2.1 and 2.2, is shown in

Figure 2.

Figure 1: Starting from a default configuration with the object

rotating around the z axis, we can estimate translation and rota-

tion of both the object and the rotation axis.

Figure 2: Flowchart of the methodology.

2.1 Prior to in-line inspection

Our proposed method starts by estimating the spectrum of the source and geometry parameters of the system once, prior to the

in-line analysis. Based on these estimates of the spectrum and geometry parameters, we built two libraries, with simulated images

from different projection angles. The span angle range in the library can be the total projection angle used to acquire the real

images, or only a fraction of it if the component to inspect has an internal symmetry. The step angle between two consecutive

images in the library depends on the accuracy required by the application. The last step in the prior stage is to compute a contrast

measure associated to each projection image in the library. In-line, features will only be extracted on a selection of high contrast

projections.

Spectrum estimation Estimating the source spectrum is necessary to realistically simulate real polychromatic X-ray projections.

It guarantees that the range of the intensity values of the simulated images corresponds to that of the measured ones. It is
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performed iteratively together with the geometry estimation. We estimate the percentage of the number of photons in each

energy bin by minimizing the discrepancy between simulated and real data.

System geometry calibration In this step, we only estimate the geometrical parameters related to the relative position of the

detector, the source and the rotation axis, that is the source-object-distance (SOD) and the source-detector distance (SDD).

There parameters can be pre-calibrated and can be assumed to be the same for all in-line scanned objects.

Building the following libraries:

(a) ROI for alignment The first library contains a ROI of the simulated projections, that will be used during inspection

for a fast alignment on the detector plane. It can be manually defined and should contain a portion of the object that

is big enough to guarantee a good performance of the alignment algorithm.

(b) ROI for inspection This library contains a ROI where to perform the quality control. If the goal is to inspect for a

missing component, the ROI can easily be defined from CAD data by projecting only this component along with

components whose contribution needs to be avoided. Otherwise, supposing that the position of the defective part is

known, simple CAD volumes can be defined around the identified position and projected. In the latter case the ROI

can be optimized in order to discriminate optimally between defective and non-defective samples.

Contrast evaluation For each projection angle, the contrast is calculated in the first library (a) on the smallest rectangle contain-

ing the component, masking out the contribution of other components that are too close or can overlap with it, to exclude

their contribution. In literature, many measures of contrast are defined. In this work, we use the root-mean-squared contrast

(RMSC), defined as:

RMSC(I) =
1

I

√

∑
N
i=1 ∑

M
j=1 (Ii j − I)2

NM
, (1)

where I is the projection image to be evaluate, with N ×M pixels and I is its mean intensity. The values of the contrast

can be precalculated and stored in a vector: in the inspection phase, the visibility angles will be chosen as those with the

highest contrast values.

2.2 During in-line inspection

In-line inspection requires a fast alignment procedure between the simulated projections from the CAD model and the real

projections. We consider a ROI of the real radiographs corresponding to the one in the first library (a). First, one of the simulated

radiographs is rigidly registered to each measured projection. At this step, to avoid to process all the images of the library, the

estimated rigid transformation is applied directly to the real projections. Once the images are transformed, we need to find the

orientation of the samples: to do so, we perform a bruteforce search on the library, using the mean square error (i.e. the sum of

squared differences between the real and simulated projections) as a criterion. Each projection angle corresponds to a contrast

value, calculated using Eq. 1. Among these, only the 15% most contrasted views are considered on which to perform the final

feature extraction and classification, using the library (b) containing the ROI for inspection.

3 Experiments

We validated our methodology on in-line scans of syringes, composed of metallic and plastic parts. The goal of the study was to

distinguish between intact and defective products. For each scan, X-ray images were acquired from 21 equiangular projections

within an angular range of 200 degrees. Eight defects were induced under a controlled situation. Four of these eight defects

originated from the metal components (e.g., spring, needle) of the syringe. These four defects could easily be inspected by image

processing, without the need to apply the proposed approach. Indeed, by exploiting the fact that intensity values of metallic

parts are clearly different from those of polymers, the edges of the metallic components could easily be identified, after which

simple calculations were performed for classification. For example, by determining the coordinates of the pixels that belong to

the needle, it could easily be determined if the needle was not correctly positioned inside the device. Two of the four defects that

were inspected with the proposed approach were located on a completely symmetric object: it is obvious then that in this case

there are no angles more significant than others. For these cases, we reduced the features’ dimension using the visibility angles

related to the other component that required inspection, that instead had preferable view orientations.

The entire object was symmetric with respect to a 90◦ rotation and we focused on only one component to determine its orientation

and the visibility angles. Because of the symmetry, the library contained images oriented from 0 to 89.9 degrees, with an angular

step of 0.1◦. In Figure 3, the variation of the RMSC, calculated on the simulated images of the library, is shown in function of

the projection angle. It is evident that the component under inspection is mostly visible from the angles in the neighborhood of

0◦ and 90◦. Three of the defects required to detect if a component was missing or shifted: in this case the library with the ROI

for inspection was defined by projecting the component. For the other one, a possibly distorted component, we projected a small

box manually instead, defined around a strategic part of the component were the defect should be visible.
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The result of the rigid alignment between real and simulated data is shown in Figure 4, and the component that determines the

angle view selection is highlighted. This is one of the components that can be missed or distorted. Each of the 21 measured

projections was aligned and then the best orientation angle was found performing a bruteforce search in the library. Among these

projection images, the three projections with the highest contrast were selected.

Regarding the (b) library, for three of the defects the ROI contains the projection of the component to inspect, for one it consists

of the projection of a a small box around a strategic part of the component were the defect should be visible.

For our experiment we had 52 labeled samples to use as training data, 20 of them were defective. A final blind test was performed

on a test set composed of 600 samples, 120 of them were defective. Based on training data, we calculated correlation and signal-

to-noise ratio between the simulated and the real projection in case of a missing component. In case of a distorted component, a

binary gradient image from the original radiographs was also extracted, and a quantitative measure was calculated summing all

nonzero pixels. For this case also the root mean squared error was useful for the final classification. For each defect, thresholds

on the measures were manually established and the samples were labeled as defective if the statistics simultaneously satisfied a

set of logical clauses. When applying the same classification procedure to the test set, the result was a 100% success rate. This

means that we obtained no false positives (objects that are defective but labeled as not defective) nor false negatives (samples

wrongly classified as defective), demonstrating the effectiveness of our strategy.

Figure 3: RMS contrast in function of the projec-

tion angle.

Figure 4: The figure shows the comparison

between the real projection (left) and the se-

lected simulated projection after alignment

(middle). The difference image is on the

right.

4 Analysis of time execution

Industries are getting increasingly interested in automated 3D X-ray inspection, although in most cases the conventional recon-

struction approach is too slow to be applied in an in-line inspection process.

Our methodology was designed under the constraint that the total inspection time per sample should be approximately 1 second.

To achieve this goal, the alignment process and statistics calculation were implemented on the GPU, using the OpenCV library

for image registration. Image acquisition was performed placing four samples on a rotatory stage: in a total acquisition time

of 4 seconds, so still corresponding to 1 second of scan time per sample. Moreover, those four object and each of the 21

projections were inspected simultaneously using multiple GPUs. Registering images and calculating statistics on the GPU

required respectively 1.335 and 0.255 seconds, that, with the previous considerations, makes it feasible to inspect four samples

in 1.59 seconds. Our tests ran on a GTX 680 GPU.

5 Conclusions

Opposed to conventional inspection based on 3D CT images, our methodology performs the 2D/3D alignment and inspection

directly in the projection space, without the need of reconstructing the volume from the set of measured projections. As demon-

strated, it is applicable to cases of both a limited number of projections and a limited angular view. Our methodology meets the

need for fast in-line industrial inspection of each individual product, ensuring that those introduced in the market meet certain

quality standards. The strength of our method lies in the smart usage of the reference model to create libraries for ROI-based

inspection at carefully selected viewing angles. Choosing a targetted ROI for inspection is a fundamental step to guarantee the

success of classification. If the location of a possible defect is approximately known, we define the libraries containing the
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inspection ROIs by projecting the component to inspect or small volumes around it. Often in literature defining a good region

of interest requires a lot of effort, applying for example many filters for edge extraction and segmentation. Our approach allows

to simply identify the ROI based on the CAD model’s structure. Moreover, the ROI position is determined after each projection

image is aligned with those in the libraries, resulting on a different region depending on the view angle. With the prior knowledge

based on the CAD model, we defined the visibility angles, i.e. those angles with highest contrast. In our workflow, features are

extracted only on those projections, where the defect is supposed to be most visible, resulting in a final better recognition of

defective samples. Moreover, restricting the number of projections where to extract features evidently gives an improvement on

the final computational time.

We believe that the view angle selection can make a big step forward in industrial inspection, which is why as future work we

intend to make this optimization process more generic and widely applicable.

Acknowledgements

This research is funded by the imec ICON project iXCon (Agentschap Innoveren en Ondernemen project nr. HBC.2016.0164)

and the FWO SBO project MetroFlex (S004217N). The authors would like to thank XRE NV for acquiring the projection data.

References

[1] K. Kiekens, F. Welkenhuyzen, Y. Tan, Ph. Bleys, A. Voet, J-P. Kruth, W. Dewulf, A test object with parallel grooves for

calibration and accuracy assessment of industrial computed tomography (CT) metrology, Measurement Science and

Technology, 22 (2011) 115502.

[2] O. Brunke, Fully-Automated 3D metrology and defect analysis with high-resolution 300 kv microfocus computed

tomography, 18th World Conference on Non Destructive Testing, Durban, South Africa, (2012) 16-20.

[3] A. Marinovszki, J. De Beenhouwer, J. Sijbers, An efficient CAD projector for X-ray projection based 3D inspection with

the ASTRA Toolbox, 8th Conference on Industrial Computed Tomography, Wels, Austria, (2018).

[4] W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. De Beenhouwer, K. J. Batenburg, J.

Sijbers, Fast and Flexible X-ray Tomography Using the ASTRA Toolbox, Optics Express, 24 (2016), 25129-25147.

[5] C. Bellon, G.-R. Jaenisch, aRTist – Analytical RT Inspection Simulation Tool, International Symposium on Digital

industrial Radiology and Computed Tomography, Lyon, France, (2007), 25-27.

[6] P.Calmon, S.Mahaut, S.Chatillon, R.Raillon, CIVA: An expertise platform for simulation and processing NDT data,

Ultrasonics, 44, 2006, e975-e979.

[7] S. Miao et al., Real-time 6DoF pose recovery from X-ray images using library-based DRR and hybrid optimization,

International Journal of Computer Assisted Radiology and Surgery, 11 (2016), 1211-1220.

5


	Introduction
	Methodology
	Prior to in-line inspection
	During in-line inspection

	Experiments
	Analysis of time execution
	Conclusions

