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Abstract—In this paper, we propose a sparse unmixing tech-
nique using a convolutional neural network (SUnCNN) for hyper-
spectral images. SUnCNN is the first deep learning-based tech-
nique proposed for sparse unmixing. It uses a deep convolutional
encoder-decoder to generate the abundances relying on a spectral
library. We reformulate the sparse unmixing into an optimization
over the deep network’s parameters. Therefore, the deep network
learns in an unsupervised manner to map a fixed input into
the sparse optimum abundances. Additionally, SUnCNN holds
the sum-to-one constraint using a softmax activation layer. The
proposed method is compared with the state-of-the-art using
two synthetic datasets and one real hyperspectral dataset. The
overall results confirm that the proposed method outperforms
the other ones in terms of signal to reconstruction error (SRE).
Additionally, SUnCNN shows visual superiority for both real and
synthetic datasets compared with the competing techniques. The
proposed method was implemented in Python (3.8) using PyTorch
as the platform for the deep network and is available online:
https://github.com/BehnoodRasti/SUnCNN.

Index Terms—Hyperspectral image, unmixing, convolutional
neural network, deep learning, deep prior, endmember extraction

I. INTRODUCTION

PECTRAL unmixing estimates the fractional abundances
S of different pure materials, so-called endmembers, within
a hyperspectral pixel. This is done by minimizing the er-
ror between the true reflectance spectrum and the spectrum
generated by a particular mixing model. In remote sensing
applications, the linear mixing model (LMM) [1] is the most
popular one. The main assumption of the LMM is that the
incoming rays of light interact only once with a specific
pure material in the pixel before reaching the sensor. The
fractional abundance is the areal percentage, and therefore, no
endmember can have a negative area yielding the abundance
nonnegativity constraint (ANC). Additionally, the observed
spectrum is entirely decomposed by endmembers which leads
to the abundance sum-to-one constraint (ASC). Taking into
account both ANC and ASC, the reconstruction error between
the true spectrum and the linearly mixed spectrum can be
minimized using the fully constrained least squares unmixing
(FCLSU) [2].

In general, spectral unmixing has three steps. First, the
number of endmembers available in the hyperspectral image
(HSI) is estimated. Then, endmembers are extracted from the
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HSI. Finally, fractional abundances are estimated using the
extracted endmembers [3]], [4]. On the other hand, blind un-
mixing techniques simultaneously estimate endmembers and
abundances. However, due to the non-convexity of the prob-
lem, they rely on a good initialization of endmembers using
endmember extraction techniques. Therefore, both groups of
approaches perform very well if the HSI contains pure pixels.
They might also cope with the scenario in which there exist
sufficient spectra on the facets of the data simplex allowing
to geometrically locate the vertices of the data simplex. When
neither the pure pixels nor the sufficient spectra on the facets
of the data simplex are available in the HSI, the endmembers
can not be successfully extracted/estimated that results in poor
abundance estimations. An alternative approach to solve this
problem is to use spectral libraries. As the number of pure
materials available in the scene is fewer than the number of
endmembers in the spectral libraries, only a few endmembers
can reconstruct the mixed hyperspectral pixel. That leads
to the sparse abundance matrix. Therefore, sparse regression
techniques are exploited to estimate the abundances without
extracting/estimating the endmembers. This group of methods
is called sparse unmixing [J3].

Sparse unmixing by variable splitting and augmented La-
grangian (SUnSAL), constrained SUnSAL (C-SUnSAL) [5]]
and collaborative sparse unmixing [6] are examples of sparse
unmixing methods. Both SUnSAL and C-SUnSAL apply an
{1 penalty on the fractional abundances. SUnSAL utilizes ¢
for the fidelity term while C-SUnSAL assumes a constraint
to enforce the data fidelity. Collaborative sparse unmixing is
similar to SUnSAL but applies ¢5; (i.e., the sum of ¢, on the
abundances) to promote the sparsity on the abundances. In [7],
a spectral prior was added to the sparse regression problem that
assumes some materials are known in the scene.

SUnSAL was improved in [8] by incorporating spatial infor-
mation through applying a total variation penalty on the abun-
dances (SUnSAL-TV). Some drawbacks of SUnSAL-TV are
that it oversmoothed boundaries, blurred abundance maps, and
is computationally expensive. This was somewhat addressed
by developing the technique called local collaborative sparse
unmixing (LCSU) [9] and a new spectral-spatial weighted
sparse unmixing (S?WSU) framework [10]. In [11], an ef-
ficient two-phase multiobjective sparse unmixing approach
was presented to exploit the spatial-contextual information for
improving the abundance estimation.

The problem of SUnSAL-TV was further tackled by intro-
ducing a fast Multiscale Sparse Unmixing Algorithm (MUA)
[12] that promotes piecewise homogeneous abundances with-
out compromising sharp discontinuities among neighboring
pixels. This method consists of two steps. In the first step,



coarse fractional abundances are estimated by grouping pixels
into perceptually meaningful regions and performing sparse
regression. For the pixels grouping, a binary partition tree
(BPT), the simple linear iterative clustering (SLIC), and the
K-means algorithm can be utilized. In the second step, the
fractional abundances were estimated using a sparse regression
problem in which the coarse fractional abundance matrix
(estimated in the first step) is the regularizer. Similarly, in
[13], SLIC was utilized for the pixels grouping, and pixel-
based sparse unmixing was performed using superpixel-based
graph Laplacian regularization.

Although numerous sparse unmixing techniques were de-
veloped, a limited number of algorithms consider ASC [14].
When fractional abundances are estimated without considering
ASC, the estimated fractional abundances do not necessarily
describe the aerial fraction of each pure material on the
ground. To tackle this challenge, in this paper, we propose
a sparse unmixing technique using a convolutional neural
network (SUnCNN) for hyperspectral images. SUnCNN uses
a deep convolutional encoder-decoder to generate the abun-
dances relying on a spectral library. We show that sparse
unmixing can be reformulated into an optimization over the
deep network’s parameters. Additionally, SUnCNN holds the
sum-to-one constraint using a softmax activation layer. The
major contributions of this paper are as follows: 1) This paper
reformulates the sparse unmixing problem into an optimization
over a deep network’s parameters and therefore the proposed
method (i.e., SUnCNN) is the first deep learning-based sparse
unmixing technique; 2) SUnCNN implicitly induces an image
prior while holding ASC; and 3) SUnCNN incorporates spatial
information using the convolutional filters.

II. METHODOLOGY

In semi-supervised spectral unmixing, the observed spectra
can be represented using a linear mixing model given by

Y =DX +N, (D

where Y and N € RP*™ denote the observed HSI and the
model error including noise, respectively. D € RP*™and X
€ R™*" p <« m. D is the spectral library containing m
endmembers and X is the unknown fractional abundances.
In sparse unmixing, the goal is to estimate the fractional
abundances X by applying sparsity-enforcing penalties or
constraints.

. 1 i
X = argmin o|[Y — DX|[% +2AD lIxwllg
=1

st.X>0,1LX =17 (2
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where 0 < g < 1. Therefore the problem to solve is non-
convex. To have a convex problem i.e., ¢ = 1 the sum to one
constraint should be omitted due to the conflict with the ¢;
sparsity (see [14] for more detail) and therefore the problem
to solve is

. 1 "
X:argm)én§|\Y—DX||2F+)\;||x(i)||1 st.X >0. (3)

Defining the problem as (3)) without enforcing the ASC might
provide meaningless abundance values. Additionally, the ques-
tion that which penalty and what value for ¢ is more suitable
for sparse unmixing is still an open question and the selection
of the penalty might be dependent on the the observed data.
Therefore, we address this issue using an unsupervised deep
network. In [15], [16], it has been shown that a general
regularizer such as R(X) can be implicitly applied using a
deep network called deep image prior (DIP). In other words,
the problem

IS 1
X = argn%én§||Y—DX||%+/\R(X) (4)
can be reformulated as
. 1 .
0 =argmin o ||Y = Dfo(Z)|[7 st X=f3(Z), ©)

where Z is the network input and it is constant during
the training, fy is the deep network with parameters 6 (0
is randomly initialized) and updated through the learning
process. The deep network fy is learned to map the input
Z to X such that X = f(Z). To perform this mapping the
network parameters i.e., 8 should be estimated. Hence, they
are optimized iteratively by computing the gradient of the loss
function (5). Both ASC and ANC are enforced using a softmax
function in the final layer of the network given by

eXii

Doy €%
As a result, the proposed network finds a solution to the
following optimization problem

softmaz(X) = Vi, j (6)

. 1
X = argmin ||Y - DX||% + AR(X)
st.X>0,12xX =17 (7

In experiments, we show that if a suitable spectral library
(i.e., D) is available (which is necessary for sparse unmixing
techniques why it is called semi-supervised unmixing), then a
well-designed deep network can implicitly induce a regularizer
(R(X)) to enforce a satisfactory sparsity on X while it holds
the ASC.

A. Convolutional Neural Network in SUnCNN

We use a convolutional encoder-decoder for f having a skip
connection as shown in Fig. [I} SUnCNN uses 5 convolutional
layers (Conv) in the main forward path and one in the skip
connection, a downsampling block, and an upsampling block.
We use batch norm (BN) to speed up the learning process
and obtain robustness for selecting the hyperparameters. Leaky
ReLU was selected as the activation function for the first
synthetic datacube (DC1) and the real dataset (Cuprite) and
ReLU was selected for the second synthetic datacube (DC2).
The final layer is the softmax layer. All the hyperparameters
selected for the network are given in Table [l SUnCNN is an
unsupervised deep network inspired by DIP and the network
is trained over the observed data iteratively and, therefore, the
number of iterations is a hyperparameter. In experiments, the
number of iterations is set to 4000, 8000, 16000, for 20 dB, 30
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Fig. 1. The architecture of the deep network, fg, used in SUnCNN. The network uses a skip connection and different layers are shown using specific colors.

dB, and 40 dB, respectively, in the case of simulated datasets.
In the case of the real dataset, the number of iterations is set
to 20000. We should note that the input of SUnCNN is set
to the observed data, i.e., Z =Y, for DC1 and to noise, i.e.,
Z = N for DC2 and the real dataset.

TABLE I
HYPERPARAMETERS USED IN THE EXPERIMENTS FOR UNDIP.

Hyperparameters
Input Ch.  Ouput Ch.  Filter Size  Stride
Convl 256 3x3 2
Conv2 256 256 3x3 1
Conv3 260 256 3x3 1
Conv4 256 256 1x1 1
Conv5 256 p 1x1 1
ConvSkip p 4 1x1 1
Negative Slope
Leaky ReLU 0.1
Scale Factor Mode
Upsample 2 Bilinear

Type Learning Rate

Optimizer Adam 0.001

III. EXPERIMENTAL RESULTS

Here, the results of SUnCNN are compared with five differ-
ent sparse unmixing techniques (i.e., SUnSAL [17], SUnSAL-
TV [ISI], SQWS ﬂmﬂ, MUABPT and MUASLIC ﬂEﬂ) applied
to two simulated datasets (i.e., DC1 and DC2) and one real
dataset (i.e., Cuprite). All the tuning parameters are set as
default for the competing methods. We should note that the
results are mean values over 10 experiments.

A. Simulated Experiments

Two popular datasets in sparse unmixing (i.e., DC1 and
DC2) were used in simulated experiments. The synthetic
library used for the simulated experiments is composed of 240
spectral signatures from the USGS library with the minimum
pair-spectra angle of 4.44°. DC1 with 75x75 pixels was
simulated using a linear mixing model with 5 endmembers.
The endmembers were selected from the library and the
abundance maps are composed of five rows of square regions
uniformly distributed over the spatial dimension. DC2 with
100x100 pixels was simulated using a linear mixing model
with 9 endmembers. The endmembers were selected from the
library and the abundance maps were sampled from a Dirichlet

distribution centered at a Gaussian random field to have piece-
wise smooth maps with steep transitions. The results are in
terms of signal to reconstruction error (SRE) in dB given by
. X
SRE(X,X) =10logyg ———, )
for the three levels of additive noise i.e., 20, 30, and 40 dB.
Table [I] shows the results obtained by applying different
sparse unmixing techniques to DC1. The results confirm that
SUnCNN outperforms the other techniques for 30 dB and 40
dB. In the case of 20 dB, SUnCNN provides the second-
best results in terms of SRE. SUnSAL performs the poorest
in terms of SRE. S?WSU performs better for higher SNR
and MUA performs better for the low SNRs. This could
be attributed to the segmentation-based framework used in
MUA which copes with the low SNRs by oversmoothing
the abundances. The visual comparison in Fig. 2] confirms
the argument of oversmoothed abundance maps estimated by
using both segmentation-based techniques. SUnSAL-TV also
gives oversmoothed abundances. Additionally, Fig. [2| shows
that SUnCNN successively preserves the structures existing in
the abundance maps even for low SNR i.e., 20 dB. On the
other hand, all the competing methods with varying degrees
fail to preserve the structures, particularly for lower SNRs.
This advantage of SUnCNN can be attributed to the incorpo-
ration of spatial information via convolutional operators. We
should note that SUnSAL-TV and S?WSU also utilize the
spatial information, however, the results confirm that SUnCNN
considerably outperforms them. Moreover, S2WSU, MUAgpr,
and MUAG; jc induce artifacts into the abundance maps which
is considered a drawback associated to those techniques.

TABLE I
THE RESULTS OF DIFFERENT SPARSE UNMIXING TECHNIQUE APPLIED TO
DC1 IN TERMS OF SRE. THE BEST PERFORMANCES ARE SHOWN IN BOLD.

SNR  SUnSAL SUnSAL-TV S?*WSU MUAgpr MUAgic SUnCNN
20 dB 227 4.71 3.85 6.70 5.67 5.71
30 dB 4.46 7.22 7.74 9.13 7.87 10.25
40 dB 6.89 11.05 14.12 10.72 11.17 15.20

The results of the sparse unmixing techniques applied to
DC2 are compared in Table [[Tl] in terms of SRE and in Fig.
[] visually for the three different levels of noise. The results
follow similar trends to DC1. SUnCNN outperforms the other
techniques overall. It provides considerable improvements for
40 dB. In the case of 30 dB, S2WSU gives the best results and
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Fig. 2. DC1: The fractional abundance of endmember 2. From top to bottom SNR of 20, 30, and 40 dB.

SUnCNN is the second best with 0.14 dB difference. MUAgy ;¢
and MUAgpr provide the highest SRE (unlike DC1 for 20 dB,
in the case of DC2 MUAgy jc outperforms the other techniques)
and SUnCNN outperforms the rest of the techniques. This ex-
periment further confirms our argument that the segmentation-
based techniques provide higher SRE in the case of low
SNR due to the segmenting module used in those techniques,
however, the visual comparisons (in Fig. [3) reveals that they
induce artifacts and oversmooth the abundances. The results
confirm that SUnSAL is not robust to noise and SUnSAL-
TV oversmooth the abundances, particularly for low SNRs.
S2WSU also performs poorly in the case of SNR=20 dB. The
experiments in Table II and III confirm the consistency of
SUnCNN to the noise power compared to the other techniques.
Segmentation based techniques (i.e., MUAgpr and MUAg; ic
[12]) perform well only for low SNRs. S2WS [[10] outperforms
the other techniques only for DC2 in the case of SNR=30dB
with a small advantage compared to the SUnCNN.

TABLE III
THE RESULTS OF DIFFERENT SPARSE UNMIXING TECHNIQUE APPLIED TO
DC2 IN TERMS OF SRE. THE BEST PERFORMANCES ARE SHOWN IN BOLD.

SNR  SUnSAL SUnSAL-TV S?WSU MUAgpr MUAg;c SUnCNN
20 dB 2.14 5.78 4.67 6.96 7.38 6.50
30 dB 522 8.99 10.83 8.48 9.16 10.69
40 dB 8.94 10.55 12.07 9.09 10.46 14.35

B. Real Experiment

In the real experiment, we use a spatial subset of the
Cuprite dataset (250x 191 pixels). The minerals in that region
are well-studied and therefore are suitable to compare the
abundance maps visually. The geological ground reference for
the dominant minerals existing in the scene is shown in Fig.
E (a). The library D € R88*498 j5 composed of 498 spectral
pixels from the USGS library. The water absorption and noisy
bands were removed and the final pixels are of dimension
p = 188.

Fig. @] (b) visually compares the abundance maps ob-
tained by different techniques applied on the Cuprite for four

dominant minerals (i.e., Alunite, Buddingtonite, Chalcedony,
and Kaolinite) in the scene. Visual comparison reveals that
SUnSAL-TV, MUAgpr and MUAgc performed similarly.
It can be observed that they all oversmooth the mineral
abundances which could be attributed to the total variation
penalty in SUnSAL-TV and the segmentation-based frame-
work in both MUAgpr and MUAgc which cannot preserve
the textures. On the other hand, SUnCNN, SUnSAL, and
S2WSU provide sharper maps. Comparing to the ground truth
of USGS (Fig. EI (a)) both SUNCNN and S?WSU perform
slightly better for estimating Buddingtonite. However, the
abundance maps estimated using both SUnSAL and S?WSU
are noisy compared to the ones estimated using SUnCNN.
That could be attributed to the convolutional operator that
exploits the spatial information while preserving the spatial
textures.

IV. CONCLUSION

In this paper, we proposed a sparse unmixing technique
using a deep convolutional neural network called SUnCNN.
SUnCNN uses an unsupervised convolutional encoder-decoder
which iteratively generates the abundance maps by implicitly
enforcing a prior on the loss function. The experiments were
carried out on two synthetic datasets and the Cuprite dataset.
The results confirmed the advantage of the SUnCNN compared
to the state-of-the-art both in terms of SRE and visually for
the synthetic datasets. Additionally, the visual comparison
confirmed that, unlike the competing techniques, SUnCNN
provides sharp maps without artifacts while decreases the noise
effect on the abundance maps even for low SNR.
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