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ABSTRACT

© 2021 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work
in other works. In this paper, we introduce ’Unmixing Deep
Image Prior’ (UnDIP), a deep learning-based technique for
the linear hyperspectral unmixing problem. The proposed
method contains two steps. First, the endmembers are ex-
tracted using a geometric endmember extraction method, i.e.
a simplex volume maximization in a subspace of the dataset.
Then, the abundances are estimated using a deep image prior.
The proposed deep image prior uses a convolutional neu-
ral network to estimate the fractional abundances, relying
on the extracted endmembers and the observed hyperspec-
tral dataset. The results show considerable improvements
compared to state-of-the-art methods.

Index Terms— Hyperspectral Image; unmixing; denois-
ing; linear mixing model; low-rank model; noise reduction;
abundance estimation.

1. INTRODUCTION

Hyperspectral cameras generate rich contiguous spectra that
allow to distinguish materials in a scene, relying on the fact
that each material has a unique spectral signature. When the
field of view contains more than one material, the observed
spectrum is a mixture of the spectra of the constituent ma-
terials and spectral unmixing needs to be applied. From a
modeling point of view, unmixing can be divided into two
main groups; linear and nonlinear unmixing. In this paper,
we aim at remote sensing applications and focus on the linear
hyperspectral unmixing problem.

Deep learning-based networks are state-of-the-art in ma-
chine learning and computer vision applications. Inevitably,
most of the remote sensing applications involving machine
learning and image processing have been inspired by deep
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networks [1]. Recently, a variety of deep neural networks has
been proposed for hyperspectral unmixing, mainly based on
the variations of deep encoder-decoder networks. The inputs
to the encoder networks are the spectra and the outputs are the
abundances. The abundances are then decoded to the spectra
again using linear layers with the endmembers as the weights.
SNSA [2] and uDAS [3] are examples of such unmixing tech-
niques. In these methods, the spatial information is ignored.
More recently, spatial information has been exploited in deep
learning unmixing algorithms, by adding convolutional layers
to the encoder-decoder architecture [4]. First, the image was
spatially divided into patches and then the convolution is ap-
plied on small patches of spectra. This was found useful for
endmember estimation, since it supports the idea of endmem-
ber bundles that account for spectral variability. However,
it degrades (and blurs) the estimated abundances [4], since
small patches do not contain enough structure for the convo-
lutions (filters) to perform better than a mere mean filter.

In this paper, we propose a deep convolutional neural
network unmixing method: ’Unmixing Deep Image Prior’
(UnDIP). UnDIP utilizes a geometrical approach for end-
member extraction, and a new unmixing deep image prior
with a deep convolutional neural network for the abundance
estimation. UnDIP is designed to solve the abundance estima-
tion as a regularized inverse problem, in which the regularizer
is implicitly incorporated in the cost function. This controls
overfitting of the fidelity term and makes the method robust
to noise. Unlike the patchwise approaches from the literature,
UnDIP is designed in a way that the convolutional network
is applied globally on the entire spatial domain of an image,
which leads to abundances as sharp as the ground truth, and
enhances the robustness to noise.

1.1. Hyperspectral Modeling

We assume a linear model for HSI:

Y = X+N, (1)

where Y∈ Rp×n is the observed HSI with n pixels and p
bands, X ∈ Rp×n is the unknown image to be estimated, and
N ∈ Rp×n is the model error, including noise. In spectral
unmixing, we assume that:

Y = EA+N, (2)



where E ∈ Rp×rand A ∈ Rr×n, r � p, contain r endmem-
bers and their fractional abundances, respectively.

1.2. Endmember Extraction

In this paper, we use an algorithm, called simplex volume
maximization (SiVM) [5], to extract the endmembers from
the dataset. SiVM selects the endmembers by iteratively max-
imizing the simplex volume of the data:

argmax
E

√
(−1)r · cmd (E)

2r−1(r − 1)!
, (3)

where cmd is the Cayley–Menger determinant:

cmd (E) = det
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,
d2i,j is the Euclidean distance between endmembers ei and
ej . Since (3) does not take into account nuisances such as
noise, we first project the data on the subspace obtained by
the spectral eigenvectors of a singular value decomposition.

1.3. Abundance Estimation

In this subsection, we propose a deep image prior [6] to solve
the unmixing problem. The widely used classical method to
estimate the abundances is to solve the optimization problem:

Â = argmin
A

1

2
||Y−EA||2F s.t. A ≥ 0,1Tr A = 1Tn , (4)

i.e., the fully constrained least squares unmixing (FCLSU)
[7], including both the abundance sum-to-one constraint
(ASC) and abundance non-negativity constraint (ANC). Gen-
erally, regularized (or penalized) least squares techniques
provide a better estimation of the abundances by taking into
account prior knowledge of the data:

Â = argmin
A

1

2
||Y−EA||2F+λR(A)s.t.A ≥ 0,1Tr A = 1Tn ,

(5)
where R(A) is the regularizer or penalty term and λ is the
regularization parameter. The choice of R is dependent on
the available prior knowledge which can vary considerably in
remote sensing images. To avoid having to make this choice,
the regularizer can be implicitly substituted by a deep network
and the problem is transformed into the optimization of the
network’s parameters:

θ̂ = argmin
θ

1

2
||Y −Efθ(Z)||2F s.t. Â = fθ̂(Z). (6)

Problem (6) can be solved using a deep network. The only
issue left to solve is to enforce the ASC and ANC constraints.

This can be done by using a softmax function in the final layer
of the network. As a result, the unmixing problem (4) can be
solved. The convolutional encoder-decoder network (i.e., fθ)
used for UnDIP is shown in Fig. 1. The hyperparameters of
the network are listed in Table 1.

Table 1: Hyperparameters used for UnDIP in the experiments
.

Hyperparameters

Input Ch. Ouput Ch. Filter Size Stride
Conv1 r 256 3x3 2
Conv2 256 256 3x3 1
Conv3 260 256 3x3 1
Conv4 256 256 1x1 1
Conv5 256 r 1x1 1

ConvSkip r 4 1x1 1
Negative Slope

Leaky ReLU 0.1
Scale Factor Mode

Upsample 2 Bilinear
Type Learning Rate Iterations

Optimizer Adam 0.001 3000

2. EXPERIMENTAL SETUP

2.1. The Data

The Samson hyperspectral dataset contains 95×95 pixels.
The spectral signatures contain 156 bands in the wavelength
range [401-889] nm. There are three main materials: soil,
tree, and water. The endmembers were extracted using SiVM
and the ground truth fractional abundances were generated
using FCLSU.

2.2. Experimental Setup

Seven unmixing techniques from different categories were
used as competing methods in the experiments: FCLSU [7],
applying the ground truth endmembers; NMF-QMV, a blind
unmixing method [8] that estimates the endmembers along
with the abundances; Collab, a sparse unmixing method [9]
that uses an overcomplete set of endmembers, obtained by
Vertex Component Analysis to estimate the abundances and
uDAS [3] and SNSA [2], 2 deep unmixing methods. All the
parameters for the competing methods were selected accord-
ing to the reported default values.

HSIs generally contain different levels and types of noise
[10]. It has been shown that hyperspectral unmixing tech-
niques are often remarkably robust to noise and can be used as
denoisers [11]. To compare the robustness of the techniques
w.r.t. the image SNR, we added white zero-mean Gaussian
noise to the data to generate the observed data Y. Images are
generated with SNR= 20, 30, 40, and 50 dB. All the experi-
ments are repeated five times with random noise realizations.
Mean results and standard deviations are shown.

For the dataset, ground truth abundance maps are avail-
able. In the experiments, the results are compared based on



Fig. 1: The proposed convolutional network architecture with one skip connection. This network is used as fθ for UnDIP in the
experiments. Different layers in the network are shown with specific colors.

the abundance mean absolute error (MAE), the reconstruction
error (RE), the spectral RMSE, and the spectral angle distance
(SAD). All results, except for SAD, are reported as percent-
ages. The abundance MAE is given by the mean of the abso-
lute errors (in percent) between the estimated abundances and
the ground truth abundances:

Abundance MAE =
1

rn

r∑
k=1

n∑
i=1

∣∣∣Âki −Aki

∣∣∣× 100, (7)

the reconstruction error is the RMSE (in percent) between the
obtained reconstructed image X̂ and the observed (noisy) im-
age Y:

RE =

√√√√ 1

pn

p∑
j=1

n∑
i=1

(
X̂ji −Yji

)2
× 100, (8)

The Spectral RMSE is the RMSE (in percent) between the
obtained reconstructed image X̂ and the original noise-free
image X:

Spectral RMSE =

√√√√ 1

pn

p∑
j=1

n∑
i=1

(
X̂ji −Xji

)2
× 100, (9)

SAD (in degree) is the spectral angle distance between an es-
timated and the ground truth endmember as:

SAD(e(i), ê(i)) = arccos

( 〈
e(i), ê(i)

〉∥∥e(i)∥∥∥∥ê(i)∥∥
)
180

π
,

3. EXPERIMENTS

Fig. 2 shows the results of the unmixing experiments ap-
plied on the Samson dataset, and Fig. 3 shows the estimated
abundance maps. It can be observed that FCLSU, UnDIP,
and NMF-QMV obtain the best abundance estimation per-
formances (Fig. 2 (a)) and produce similar abundance maps
close to the ground truth (Fig. 3). Both UnDIP and NMF-
QMV obtain a lower RE and Spectral RMSE than FCLSU.

The Abundance MAE of uDAS increases with increasing
noise power although the RE and Spectral RMSE remain low.
One can conclude that uDAS performs better as a denoiser
than as an unmixer. This is due to the denoising constraint
applied in the encoder of the uDAS network. The abun-
dance estimation performance of SNSA is moderate, and the
poorest of all methods for 20 dB, which shows that it is not
robust w.r.t. noise. The abundance estimation performance
of collaborative unmixing is poor for all SNRs, which makes
it very sensitive to noise (notice the large variance for 20
dB), as can also be observed from the abundance maps in
Fig. 3. Fig. 2 (d) shows that SiVM (applied in the proposed
method UnDIP) and uDAS perform better for the estimation
of endmembers than the other methods. A very low SAD
is obtained by collaborative unmixing for 20 dB, despite the
poor abundance estimation. This can be attributed to the
averaging effect of the overcomplete set of endmembers that
considerably helps to decrease the SAD.

4. CONCLUSIONS

In this paper, we proposed a deep prior unmixing technique
called UnDIP. UnDIP first extracts the endmembers using a
geometrical simplex volume maximization technique. Rely-
ing on the extracted endmembers, UnDIP estimates the frac-
tional abundances using a deep convolutional network. The
network is inspired by the theory behind the deep image prior
that implicitly induces a regularizer on the cost function via
the network parameters. Experiments were carried out on the
Samson dataset. Comparative assessments were performed
using blind, sparse and deep unmixing methods. Experimen-
tal results based on quality metrics and visual assessment con-
firm that UnDIP is competitive to the other unmixing tech-
niques.
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Fig. 2: Samson dataset - The results of unmixing in terms of (a) Abundance MAE, (b) Reconstruction Error, (c) Spectral RMSE,
and (d) SAD (in degree) w.r.t. different noise level of the observed image (in SNR).

Fig. 3: Samson dataset - Abundance maps obtained by applying different unmixing techniques (20 dB).
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