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ABSTRACT
Leaf chlorophyll ab content is an important indicator of veg-
etation physiological status and is generally obtained from
spectral reflectance. For non-destructive estimation of chloro-
phyll ab content, physical leaf reflectance models, such as
the PROSPECT model and supervised methods have been ap-
plied. While the former generally does not perform optimal,
the latter only performs well when trained on similar data. In
this work, we developed a robust supervised method that over-
comes this problem. The method derives a proxy for chloro-
phyll ab content as the relative position of a leaf reflectance
spectrum on the arc spanned by the two extremes, contain-
ing high and low chlorophyll ab content. This proxy is found
to be unaffected by spectral variability, caused by environ-
mental and acquisition conditions. The relation between this
proxy and the actual chlorophyll ab content is obtained by a
supervised regression model, that is trained on a single leaf
reflectance dataset, and that is transferable to other datasets.
The proposed method is validated on seven real hyperspectral
datasets.

1. INTRODUCTION

Retrieval of leaf biochemical parameters such as chlorophyll
ab content (Cab) is of great interest due to its direct connec-
tion with plant health and growth [1, 2, 3]. Although de-
structive techniques can accurately estimate Cab [4], they are
labor-intensive and expensive [1]. Non-destructive methods
employ leaf spectral reflectance. The Normalized Difference
Vegetation Index (NDVI) is the most popular method to esti-
mate Cab in a non-destructive manner [5]. This method uses
two wavebands, one correlated with Cab (red) and the other
uncorrelated (near-infrared). To utilize more than two wave-
bands, shape indices have been developed [6]. Even though
these methods are computationally not expensive, they cannot
physically interpret the estimated parameters.

To describe the optical properties of plant leaves, several
physical models have been developed [7]. In remote sens-
ing applications, the PROSPECT model describes the leaf
spectral reflectance as a function of a number of parameters,
i.e., the specific absorption spectra of the biochemical param-
eters (e.g., Cab) and a wavelength-dependent refractive in-
dex of the plant leaf [2]. The leaf biochemical parameters

are estimated from the spectral reflectance by inverting the
PROSPECT model.

On the other hand, several advanced machine learning re-
gression techniques (MLRTs) have been developed to directly
retrieve Cab from spectral reflectance [3, 8]. These meth-
ods are supervised methods and require a training set of re-
flectance spectra and ground-truth information of Cab. As the
relationship between reflectance spectra and Cab is nonlin-
ear, nonlinear regression algorithms, such as Gaussian Pro-
cess Regression (GP) have been utilized [9]. MLRTs were
found to outperform the PROSPECT model, when trained and
validated on the same dataset [10]. One particular problem
with the MLRTs is that estimated values of the leaf parame-
ters do not necessarily fall within the physical range of Cab,
and even can become negative [10]. To tackle this challenge,
in [10], we developed a method that combines the physical
interpretability of the PROSPECT model with the flexibility
of the regression methods.

The performance of the supervised methodologies is
found to be relatively poor when algorithms are trained and
validated on independent datasets [10]. This is because they
can not capture the intrinsic nonlinear relationship between
the reflectance spectra and the target variable. In this work,
we developed a robust supervised method to accurately es-
timate Cab from spectral reflectance. We derive a proxy for
Cab as the relative position of a leaf reflectance spectrum on
the arc spanned by the two extremes, containing high and low
Cab, and make it invariant to changes in environmental and
acquisition conditions. The relation between this proxy and
the actual Cab can then be learned by a supervised regression
method, that is trained on a single leaf reflectance dataset,
and is transferable to other datasets. The proposed method
will be validated experimentally on seven real hyperspectral
datasets.

2. METHODOLOGY

In this work, we develop a robust supervised method to es-
timate Cab accurately from spectral reflectance, by deriving
a representation (proxy) for Cab that is invariant to environ-
mental and acquisition conditions. We assume that the data
manifold, sampled by a number of spectra with varying Cab

is a curve in spectral space between two extremes (endmem-



bers), i.e., spectra with low Cab (RL) and high Cab (RH ).
The proxy for Cab can then be represented by the relative arc
length of the plant leaf spectrum on the curve between RH

and RL.
The most obvious approach to approximate the arc length

of a curve is by approximating the curve as a piece-wise linear
curve and by summing up the Euclidean distances between
neighboring samples (Fig. 1(a)). The more samples are avail-
able on the curve, the better the approximation [11].
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Fig. 1: (a) Red: A curve connecting two endmembers e1 and
e2; Black: the piece-wise linear approximation. Here a, y,
and b denote data points on the curve. (b) The arc formed by
connecting a and b on a hypersphere. Here R is the radius of
the sphere, and θ = arccos

(
aTb

||a||||b||
)

is the angle between a

and b.

In practical situations, only one spectrum of the plant leaf
may be available, so that the piece-wise approximation for
the arc length leads to large errors. On a hypersphere how-
ever, the arc length between two data points can be computed
by multiplying the radius of the sphere (R) with the angle (θ)
between them (Fig. 1(b)). To utilize this property of the hy-
persphere, we project all spectra onto the unit sphere (R = 1),
by dividing each spectrum by its length (b → b

||b|| ). In this
way, the relative arc length of any spectrum on the curve is
obtained by just calculating the angles between the spectrum
and RH and RL.

However, after projection on the unit hypersphere, it is

not guaranteed that all data points lie on the arc connecting
the two endmembers. To correct for this, the following opti-
mization is performed:

â = argmin
a

∥∥d−1
E dy − a

∥∥2 s.t. p∑
j=1

aj = 1,∀j : aj ≥ 0

(1)
where p = 2 is the number of endmembers and a is the
vector containing the 2 arc lengths, corrected to lie on the arc
between the endmembers, and made relative (between 0 and
1) by dividing with the arc length between the endmembers.

dy =

[
arccos(RT

Ly)
arccos(RT

Hy)

]
is the vector containing the arc lengths

between the spectrum of the plant leaf (y) and endmembers,

dE =

[
arccos(RT

LRL) arccos(RT
LRH)

arccos(RT
HRL) arccos(RT

HRH)

]
is the matrix

containing the arc lengths between the endmembers, the op-
eration T is the transpose operator. Besides the advantage
that the arc lengths can be calculated for each spectrum of
the plant leaf separately, any random scaling of the mea-
sured samples, due to external variability in e.g. illumination
conditions is automatically resolved.

The estimated relative arc length is nonlinearly related to
the true Cab. To learn this relation, a supervised regression
model is applied. In this work, we choose the Gaussian pro-
cess as a regression model [9]. The estimated map of the rel-
ative arc lengths of N test samples (Ât = {âi}Ni=1) to their
Cab (Θt = {θ̂i}Ni=1) is given by:

Θt = ΘD(K(ÂD, ÂD) + σ2
nI)

−1K(Ât, ÂD)
T (2)

Here, ΘD is a row vector containing training Cab, K(ÂD, Ât)
is the matrix of kernel functions between the training arc
lengths (ÂD) and the test arc lengths, and K(Ât, Ât) is the
matrix of kernel functions between the test arc lengths. σ2

n

is the noise variance of Cab in the training set. The kernel
function is computed by the following equation:

k(âi, âj) = σ2
f exp

(
−

p∑
b=1

(
âbi − âbj

)2
2l2b

)
(3)

where σ2
f is the variance of the input relative arc length,

p = 2 is the number of endmembers and lb is a charac-
teristic length-scale for each endmember. The hyperparam-
eters of this kernel function are optimized by minimizing
the negative log marginal likelihood of the training dataset
(-log(p(ΘT

D|ÂT
D))).

In the remaining of this work, we will refer to this method
as the supervised method for estimating Cab from spectral
reflectance (CabS).

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Experimental set-up and evaluation statistics

The proposed method CabS is validated and compared to:



• the PROSPECT model,

• NDVI: a method that uses the spectral index NDVI as a
proxy for Cab, and learns a mapping between both,

• GP: a direct mapping between the reflectance spectrum
and Cab [3],

• GP Linear: a methodology that combines PROSPECT
with GP [10].

As both GP and GP Linear utilize the Gaussian process as
a regression algorithm, for a fair comparison, we selected
the Gaussian process as a learning algorithm for both NDVI
and CabS. To compute arc lengths, CabS requires endmem-
bers. These two endmembers were manually selected from
the ANGERS leaf optical properties database [12], as the
spectra with the most extreme values of Cab. The experiment
was limited to the wavelength region 600-800 nm, because
other biochemical parameters (e.g., carotenoid) do not have
absorption features in that region, and thus will not influence
the results. We did not observe a significant difference in the
performance of the PROSPECT model when the reflectance
values between 400-800 nm were utilized.

Quantitative comparisons are provided by the normalized
root mean squared error (NRMSE) between the estimated Cab

(θ̂) and the ground truth Cab (θ):

NRMSE =

√√√√ 1

N

N∑
i=1

(
θ̂i − θi
max(θ)

)2

× 100 (4)

All the methods are validated on the following seven hy-
perspectral datasets (see Table 1): The ANGERS dataset [12],
and the Ecosis cedarcreek, Ecosis soybean aphid and
Yang Pheno [13] datasets were acquired by utilizing a ASD
field spectroradiometer while the Divittorio [14], LOPEX [15]
and Ngee arctic [16] datasets were acquired by using an
Ocean Optics USB 2000 spectrometer, a Perkin Elmer
Lambda 19 spectrophotometer, and a SVC HR-1024i field
spectroradiometer respectively.

To obtain ground truth Cab, chlorophyll pigment was ex-
tracted either using ethanol [12] or acetone [15],[14],[13],[16]
by grinding fresh leaf disks in a chilled mortar. Cab was then
obtained by analyzing the absorption spectra of the solution
(see [4] for more details) that were acquired by using a dual-
beam scanning UV-Vis spectrophotometer. All datasets can
be downloaded from the following link:
https://github.com/ashiklom/spectra_db.

3.2. Results and discussion

We selected the ANGERS dataset to train NDVI, GP, GP Linear,
and CabS. The obtained models were then validated on the
ANGERS, Divittorio, Ecosis cedarcreek, Ecosis soybean aphid,
LOPEX, Ngee arctic and Yang Pheno datasets. Results are

Table 1: Summary of the dataset. Here N and NGT indi-
cate the total number of reflectance spectra and the number of
reflectance spectra with ground truth Cab respectively.

Dataset N NGT Sensor
ANGERS [12] 276 276 asd-fs
Divittorio [14] 504 504 oo-2000

Ecosis cedarcreek 831 831 asd-fs3
Ecosis soybean aphid 1131 1131 asd-fs4

LOPEX [15] 330 320 Pe-l19
Ngee arctic [16] 615 104 SVC HR-1024i-fs
Yang Pheno [13] 688 656 asd-fs3

Table 2: The results of different Cab estimation techniques
in terms of NRMSE (%). The best-performing technique is
shown in bold.

Dataset NDVI PROSPECT GP GP Linear CabS

ANGERS 11.94 10.00 3.50 3.65 5.23
Divittorio 25.38 13.65 17.36 19.65 12.20

Ecosis cedarcreek 32.04 48.41 38.62 40.66 25.08
Ecosis soybean aphid 57.16 55.89 42.61 41.85 41.32

LOPEX 25.07 30.96 18.53 18.70 16.94
Ngee arctic 57.51 26.67 15.41 12.76 21.27
Yang Pheno 35.46 88.36 43.41 34.32 19.03

shown in Table 2. As expected, all methods performed very
well on the ANGERS dataset. The low error of GP on the
ANGERS dataset suggests that it was able to fit the training
dataset perfectly.

GP Linear was the best performer for estimating Cab on
the Ngee arctic dataset. It is interesting to observe that the
PROSPECT model outperformed NDVI for estimating Cab

in four among the seven datasets. Although the performance
of NDVI is low in most of the cases, the advantage of this
method is that it is invariant to the environmental conditions
(e.g., varying illumination conditions). This is especially ben-
eficial when spectra are acquired outdoors. The proposed
method performed the most consistent and the best on five
of the seven datasets. On the Ecosis soybean aphid dataset,
none of the techniques performed well. This should be inves-
tigated in more detail.

4. CONCLUSIONS

In this paper, we proposed a data-driven approach to accu-
rately estimate the chlorophyll ab content from spectral re-
flectance. The method derives the relative position of the
reflectance spectrum acquired from the plant leaf on the arc
connecting two endmembers as a proxy for the chlorophyll
ab content. Similar to NDVI, this method is invariant to en-
vironmental conditions. The chlorophyll ab content can then
be estimated by applying a supervised regression model. The
approach was validated and compared to a number of meth-
ods from the literature on a large number of leaf reflectance
datasets. The experimental results show that this method is

https://github.com/ashiklom/spectra_db


very promising.
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