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Abstract

This paper deals with the estimation of model-based parameters, such as the noise vari-
ance and signal components, from magnitude Magnetic Resonance (MR) images. Special
attention has been paid to the estimation of T1- and T2-relaxation parameters. It is shown
that most of the conventional estimation methods, when applied to magnitude MR images,
yield biased results. Also, it is shown how the knowledge of the proper probability density
function of magnitude MR data (i.e., the Rice distribution) can be exploited so as to avoid
(or at least reduce) such systematic errors. The proposed method is based on Maximum
Likelihood (ML) estimation.

1 Introduction

Complex valued raw Magnetic Resonance (MR) images are known to be corrupted with zero
mean Gauss distributed noise with equal variance [1, 2]. After an inverse Fourier transformation,
the real and imaginary data are still Gauss distributed due to the orthogonality and the linearity
of the Fourier transform [3]. Commonly, however, the MR data are non-linearly transformed into
magnitude (and/or phase) data, as these data are more directly related to physical quantities
such as the pseudo-proton density, perfusion, diffusion, or flow. Conventional magnitude data,
which are computed from two independent Gauss distributed variables (the real and imaginary
variables), can be shown to be Rice distributed [4]. When the magnitude data are computed
from an arbitrary number of Gauss distributed variables (e.g., several real and imaginary vari-
ables), these data can be shown to be governed by a generalized Rice distribution [5]. This is the
case for phase contrast magnitude MR data, which are encountered in angiographic MR imaging.

First, the estimation of the noise variance is considered. In the image processing literature,
most of the applied methods to estimate the image noise variance assume Gauss distributed
noise [6, 7, 8, 9]. However, as stated above, magnitude MR data are no longer Gauss but Rice
distributed. In this work, it is demonstrated how the properties of the (generalized) Rice distribu-
tion can be exploited to estimate the image noise variance from magnitude MR data. Although
several methods were proposed for noise estimation from two realizations of the same image
([10, 11, 12]), in this work, we will concentrate on the problem of the estimation of noise from a
single image as multiple images are often not available in practice.
In MR imaging, various methods were reported on the estimation of the noise variance or the
noise standard deviation from non-signal background regions [13, 14, 15], where the data are
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known to be Rayleigh distributed. In this work, the properties of these estimators are discussed
in detail. It is shown that methods that are based on Maximum Likelihood estimation perform
best. Also, an extension to generalized Rayleigh distributed data is proposed.

Furthermore, model-based estimation of signal parameters from (generalized) Rice distributed
data is described, and an application to T1 and T2 parameter estimation is discussed in detail.
Estimation of relaxation parameters has been a subject of considerable interest from the early
years of Magnetic Resonance (MR) imaging. Both the spin-lattice relaxation parameter and the
spin-spin-relaxation parameter T2 give useful information about the interaction with the local
environment, and play a major role in the establishment of image contrast.
Conventional relaxation parameter estimation techniques, applied to magnitude MR images,
consist of (weighted) least squares fitting procedures, which are only optimal for Gauss distributed
data [16]. However, magnitude MR data are Rice distributed. Recently, a paper was published
on the use of the Rice distribution in the problem of estimating T2 maps from magnitude MR
data [17]. In that paper, the problem on the data distribution was recognized, but parameter
estimation was still performed assuming Gauss distributed noise. The authors justified the use of
least squares estimation by stating that at high signal-to-noise ratio (SNR), the Rice probability
density function (PDF) approaches a Gauss PDF. Although this is true, a bias is introduced in
the estimation procedure, which becomes more pronounced with decreasing SNR [18].
In the present work, a Maximum Likelihood (ML) estimation technique is proposed for optimal
estimation of both the spin-lattice and the spin-spin relaxation time from a set of magnitude MR
images. This choice is motivated by the fact that an ML estimator is known to be consistent and
asymptotically most precise [19]. In the construction of the ML estimator, full use is made of the
Rice distribution. The validity of the proposed method is checked by simulation experiments.

2 Noise estimation

In the following, various methods for the estimation of the noise variance and the noise standard
deviation from magnitude MR data are discussed. Thereby, it will be assumed that the available
data are obtained from computing the overall magnitude of K Gauss distributed, independent
and hence uncorrelated 1 variables {xk}:

M =

√√√√ K∑
k=1

x2
k (1)

(Remark that K = 2 for conventional Rice distributed magnitude MR data.) It can be shown
that the magnitude variable M is governed by a generalized Rice distribution [5].

2.1 Estimation of the noise variance

The value of σ2 can be estimated in many ways. Usually, σ2 is estimated from the data points
in a region of interest (ROI) in the background area, where the deterministic signal components
of the variables {xk} are assumed to be zero. In such regions, the magnitude data are governed
by a generalized Rayleigh distribution [5]:

pM (M |σ2) =
2MK−1

(2σ2)K/2Γ
(

K
2

) exp
(
−M2

2σ2

)
ε(M) . (2)

Now, from the second moment of this distribution,

E
[
M2
]

= Kσ2 , (3)

1Note that uncorrelatedness is only a fair assumption if no zero filling was performed prior to the Fourier
transformation of the raw MR data.
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an estimator of the noise variance can easily be derived from a spatial average of N magnitude
variables {Mi} in the ROI:

σ̂2 =
1

KN

N∑
i=1

M2
i , (4)

It can easily be shown that (4) is an unbiased estimator of σ2 with a variance equal to σ4/N . In
addition, the estimator is identical to the Maximum Likelihood estimator. This can be seen as
follows.
First, we write the joint probability density function fw of the set of N magnitude variables {Mi}
as:

fw =
N∏

i=1

pM (Mi|σ2) (5)

When numbers are substituted for the set of magnitude variables {Mi}, and σ2 is regarded as a
parameter, the joint probability density function is called the Likelihood function, given by:

L =
N∏

i=1

pM (Mi|σ2) (6)

=
(
σ2
)−NK/2

(
N∏

i=1

2MK−1
i

2K/2Γ
(

K
2

)) N∏
i=1

exp
(
−M2

i

2σ2

)
, (7)

where factors depending on σ2 were grouped. Taking the logarithm, and leaving only the terms
that depend on σ2, we have:

log L ∼ −NK

2
log
(
σ2
)
− 1

2σ2

N∑
i=1

M2
i . (8)

Maximization of (8) requires the first order derivative of L with respect to σ2 to be zero:

∂ log L

∂σ2
= 0 , (9)

yielding the unbiased estimator given in Eq. (4). The estimator (4) indeed maximizes L, as
the second derivative of L with respect to σ2 is always negative. For all N , its variance equals
the Cramér-Rao lower bound (CRLB), which is a lower bound on the variance of any unbiased
estimator of σ2. The CRLB of any function g(σ2) of σ2 can be explicitly computed [19]. In case
g(σ2) equals σ2, we have:

CRLB
(
g
(
σ̂2
))

= −∂g(σ2)
∂σ2

(
E

[
∂2 log fw

∂(σ2)2

])−1
∂g(σ2)
∂σ2

] (10)

= −

(
E

[
NK

2σ4
− 1

σ6

N∑
i=1

M2
i

])−1

(11)

=
2σ4

NK
. (12)

2.2 Estimation of the noise standard deviation

One might be interested in the value of the standard deviation σ as well. Taking the square root
of the ML estimate of σ2 yields an estimator of σ:

σ̂ML =

√√√√ 1
KN

N∑
i=1

M2
i . (13)
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This estimator is identical to the ML estimator of σ, as the square root operation has a single
valued inverse (cfr. Invariance property of ML estimators [20]). Its variance is approximately
equal to:

Var (σ̂ML) ' σ2

2NK
. (14)

The right hand side of Eq. (14) equals the CRLB. This can be seen from Eq. (10) with g(σ2) =√
σ2 :

CRLB (σ̂ML) =
∂
√

σ2

∂σ2
CRLB

(
σ̂2
) ∂

√
σ2

∂σ2
(15)

=
σ2

2NK
. (16)

However, the estimator (13) is biased because of the square root operation. Its expectation value
is approximately equal to:

E [σ̂ML] ' σ

(
1− 1

4NK

)
. (17)

Notice that this means that it is possible to apply a bias correction. This, however, would increase
the variance of the estimator.
Another commonly used estimator of σ can be found by exploiting the knowledge that the Rice
PDF turns into a Rayleigh PDF in image regions with no signal. Since the mean value of the
generalized Rayleigh PDF is given by

E[M ] =
√

2σ
Γ ((K + 1)/2)

Γ (K/2)
, (18)

an unbiased estimator of σ is given by:

σ̂c =
Γ (K/2)

Γ ((K + 1)/2)
1√
2N

N∑
i=1

Mi . (19)

The variance of this estimator is given by

Var (σ̂c) =
σ2

N

(
K

2

(
Γ (K/2)

Γ ((K + 1) /2)

)2

− 1

)
, (20)

which is always larger than the CRLB. Next, we can compare both estimators of σ, described
above, in terms of the Mean Squared Error (MSE), which is defined as [21]:

E
[
(σ − σ̂)2

]
= {E [σ̂]− σ}2 + Var(σ̂) , (21)

or explicitly for the conventional and the ML estimators:

MSEσ̂ML
' σ2

N

(
1

2K
+

1
16NK2

)
(22)

MSEσ̂c
=

σ2

N

(
K

2

(
Γ (K/2)

Γ ((K + 1) /2)

)2

− 1

)
(23)

To compare the conventional estimator with the ML estimator, an MSE ratio is defined as:

MSEratio =
MSEσ̂c −MSEσ̂ML

MSEσ̂ML

. (24)

Note that the MSE ratio is independent of the noise variance. The MSE ratio, as a function
of the number of data points, is shown in Fig. 1 for K = 2, 4, and 6. For large N , the MSE
of the common estimator (19) is significantly larger than that of the ML estimator (13). The
performance of the conventional estimator compared to the ML estimator is worst for conventional
magnitude MR images, where K = 2.
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3 Estimation of signal parameters

We now concentrate on the estimation of signal parameters from conventional magnitude MR
data. It will be assumed that the model of the signal is known. As an illustrative example we
will discuss the estimation of T1 and T2 relaxation parameters.

3.1 General considerations

As was discussed above, magnitude data are known to be Rice distributed:

pM (M |f(θ)) =
M

σ2
exp

(
−M2 + f2(θ)

2σ2

)
I0

(
f(θ)M

σ2

)
. (25)

M denotes the pixel value of the magnitude image. Here, θ represents the parameter vector to
be estimated of which the components are generally given by the pseudo proton density ρ, the
spin-lattice or longitudinal relaxation constant T1 and the spin-spin or transversal relaxation
constant T2: θ ≡ {ρ, T1} or θ ≡ {ρ, T2}. f(θ) is a function of the parameter vector θ, which
is completely determined by the MR imaging sequence applied. For example, for measurement
of T1 relaxation times, commonly a snapshot FLASH imaging sequence is applied, where the
magnetization relaxation can be described by:

fi(θ) = ρ

∣∣∣∣1− 2 exp
(
− ti

T1

)∣∣∣∣ . (26)

where fi(θ) denotes the deterministic signal component f(θ) at time ti. If the transversal magneti-
zation decay is mono-exponential, and conventional spin-echo imaging is performed, the following
model is known to be accurate:

fi(θ) = ρ exp
(
−TEi

T2

)
. (27)

The shape of the Rice distribution is strongly dependent on the signal-to-noise ratio (SNR),
where the SNR is defined as the ratio f(θ)/σ. It is therefore expected that, whenever parameter
estimation techniques that were originally developed for Gauss distributed data are applied to
magnitude data, systematic errors will be introduced due to the asymmetry of the Rice PDF,
especially at low SNR.

3.2 Errors introduced in T1 and T2 estimation

For SNR ratios of ∞, the relaxation behavior is the same as that obtained with Gaussian noise.
For typical SNR of 20, 30, the expectation of the relaxation behavior is given by Eq. (26) or
Eq. (27), as at such SNR values, the value of f(θ) differs by only 0.12%, 0.05%, respectively. In
general however, the expectation value of the magnitude data is given by:

E [M ] = σ

√
π

2
e−

f(θ)2

4σ2

[(
1 +

f(θ)2

2σ2

)
I0

(
f(θ)2

4σ2

)
+

f(θ)2

2σ2
I1

(
f(θ)2

4σ2

)]
. (28)

The deviation from f(θ) becomes more pronounced with decreasing SNR. In Fig. 2, the expecta-
tion value E[M ] for T1 and T2 relaxation is shown for various levels of the SNR. The true time
constants were 2000 ms and 100 ms for T1 and T2, respectively, and 100 for the pseudo proton
density ρ.

3.3 Maximum Likelihood estimation

Now, we clarify the ML approach for the estimation of the unknown parameter vector θ from a set
of N independent magnitude data points {Mi}. The proposed technique consists of maximizing
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for each pixel position the joint probability density function (PDF), also referred to as the
likelihood function, of N Rice distributed data points with respect to θ. The likelihood function
of N independent magnitude data points is given by:

L({Mi}|θ) =
N∏

i=1

pM (Mi|θ) (29)

Eq.(25)
=

1
σ2N

exp

(
−

N∑
i=1

M2
i + fi (θ)2

2σ2

)
N∏

i=1

MiI0

(
fi(θ)Mi

σ2

)
. (30)

Maximization of L is equivalent to maximizing log L, as log is a monotonic increasing function:

log(L) = −N log σ2 −
N∑

i=1

M2
i + fi(θ)2

2σ2
+

N∑
i=1

log I0

(
fi(θ)Mi

σ2

)
+

N∑
i=1

log Mi . (31)

For maximization of log L, only the terms that are a function of the unknown parameter vector
θ are relevant:

log(L) ∼
N∑

i=1

[
log I0

(
fi(θ)Mi

σ2

)
− fi(θ)2

2σ2

]
. (32)

Then the ML estimate for the parameter vector θ is the global maximum of log(L) with respect
to θ:

θ̂ML = arg
{

max
θ

(log L)
}

. (33)

At high SNR, i.e., when the Rice distribution can be well approximated by a Gauss distribution,
the likelihood function becomes:

L({Mi}|θ) =
(

1
2πσ2

)N
2 N∏

i=1

exp

(
− (Mi − fi(θ))

2

2σ2

)
. (34)

In that case, it is well known that maximization of log L with respect to the parameter θ is
equivalent to minimizing the quadratic distance E given by:

E =
N∑

i=1

[Mi − fi (θ)]2 . (35)

This is also generally known as least squares (LS) fitting.

3.4 Experiments and Discussion

To show that a bias is introduced in the estimation of signal parameters, whenever Gauss instead
of Rice distributed data are assumed, a simulation experiment was set up. Thereby, real valued
data were corrupted with Gauss distributed noise. Zero mean imaginary data were also polluted
with Gauss distributed noise with the same standard deviation, after which magnitude data were
computed. From 16 Rice distributed data points, obtained in this way, θ was estimated, once
using the conventional least squares (LS) fitting procedure, and once using the proposed ML
estimation technique. Here, θ was equal to (T1, ρ) or (T2, ρ), whether data decayed according to
Eq. (26) or (27), respectively. The estimation was repeated 105 times for each value of the SNR,
which is defined as:

SNR =
〈f(θ)〉

σ
, (36)

with 〈f(θ)〉 the average signal value:

〈f(θ)〉 =
1
N

N∑
i=1

fi(θ) , (37)
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where fi(θ) is given by Eq. (26) or (27) in case of T1- or T2-estimation, respectively.

Fig. 3 shows the results for the estimation of θ ≡ {ρ, T1}. The true value for the pseudo
proton density was ρ = 100 and 2000 ms for the T1 relaxation constant. Each time, the average
value was plotted as a function of the SNR. For clarity, the 95% confidence intervals are omitted:
the relative error was of the order of 0.1% for both estimators. Fig. 3a and 3b show the results
for the estimation of ρ and T1, respectively. Both figures clearly demonstrate that the proposed
ML technique is more accurate compared to conventional LS estimation. In case of high SNR,
opposed to the outcomes of the LS estimator, no bias can be observed for the ML estimator.
However, at low SNR (SNR < 5) the ML estimator can be seen to become biased, though the
bias is still significantly smaller than that obtained by LS estimation.
Similar reasoning yields for simultaneous estimation of T2 and ρ. Fig. 4a and 4b show the results
for the estimation of ρ and T2, respectively. The true value for the pseudo proton density was
ρ = 100, and 100 ms for the T2 relaxation constant. Also in this case ML estimation outperforms
LS estimation in terms of accuracy.

The shape of the likelihood function is shown in Fig. 5 for T1 (a) and T2 (b) estimation. It
was observed that the two-dimensional log(L) function has only one maximum, corresponding to
the ML estimate of ρ and T2. The general shape of the likelihood function did not change for
different values of the true ρ and T2 parameters, nor for various SNR. As a result, because of the
occurrence of only one maximum of the likelihood function, optimization becomes a very simple
task: it can be performed using standard optimization techniques without the risk of getting
stuck into a local maximum. Each ML estimate was obtained by maximization of the likelihood
function using the downhill simplex method of Nelder and Mead in two dimensions [22].
Finally, we remark that in this experiment a mono-exponentially decaying model was fitted to
MR magnitude data points so as to illustrate the consequences of not exploiting the proper data
PDF. Obviously, the model can be extended by taking into account additional parameters. In
that case, a higher dimensional likelihood function needs to be maximized.

4 Conclusions

In the literature, various methods were described for the estimation of the noise standard de-
viation or the noise variance from magnitude MR data. In this paper, it has been shown that
methods based on Maximum Likelihood estimation are superior in terms of the mean squared
error.
In addition, a new technique has been proposed for the estimation of model based signal parame-
ters from magnitude MR data, again based on Maximum Likelihood estimation. As an illustrative
example, the estimation of T1 and T2 relaxation parameters has been discussed. Compared to
existing methods, the proposed technique has clearly been demonstrated to yield more accu-
rate results, especially when the data signal-to-noise ratio decreases. Finally, as the likelihood
function has been observed to yield only one maximum, the computational requirements for the
maximization were low.
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Figure 1: Performance comparison between the conventional and the Maximum Likelihood esti-
mator of the noise standard deviation: Mean Squared Error ratio as a function of the number of
data points N , for K = 2, 4, and 6.
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Figure 2: Expectation values of magnitude MR signal for T1 and T2 relaxation as a function of
the time t for various values of the SNR.
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Figure 3: Simulation experiment: simultaneous ρ and T1 estimation as a function of the SNR.
The true values are ρ = 100 and T1 = 2000 ms.

11



80

85

90

95

100

105

0 2 4 6 8 10 12

P
D

 e
st

im
at

e

SNR

LS estimation
ML estimation

(a) ρ estimation

100

110

120

130

140

150

160

170

180

0 2 4 6 8 10 12

T
2 

es
tim

at
e 

(m
s)

SNR

LS estimation
ML estimation

(b) T2 estimation

Figure 4: Simulation experiment: simultaneous ρ and T2 estimation from magnitude MR data
as a function of the SNR. The true values are ρ = 100 and T2 = 100 ms.
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