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ABSTRACT
In micro-CT imaging, the effective spatial resolution of

the reconstructed images is generally limited by X-ray dose
restrictions, the detector configuration or the scanning geom-
etry. In this paper, we show that, using prior information on
the grey values of the scanned objects, the spatial resolution
of the reconstructed images can dramatically be improved.
The proposed method is based on an upsampling of the recon-
struction grid, combined with the DART algorithm (discrete
algebraic reconstruction technique [1]), in which the scanned
object is assumed to be composed of homogeneous materi-
als. Experiments were run on simulated data as well as real
X-ray CT data of the rat trabecular bone. Results show that
the proposed method generates reconstructions with signifi-
cantly more detail compared to conventional reconstruction
algorithms.

Index Terms— CT, computed tomography, superresolu-
tion, discrete tomography, bone

1. INTRODUCTION

In numerous µCT applications, the path to qualitative high
resolution images is obstructed by X-ray dose limitations,
or scanning times [2]. Indeed, the use of a high resolution
detector for reconstruction on a refined grid leads to a cor-
respondingly decreased signal to noise ratio since a similar
number of photons is subdivided over more detector pixels.
Alternatively, zooming in on a specific region of interest in
the object as to increase the resolution of that region, has the
drawback of projection truncation, which leads to cupping
artifacts in the resulting reconstructions.

In our approach, the aim is to reconstruct the image on an up-
sampled grid. Since this problem is highly underdetermined,
prior knowledge is included to resolve the non-uniqueness of
the solution. A variety of algorithms exists that exploit prior
knowledge to compute an accurate reconstruction even if the
underlying system of equations is underdetermined. One
example is the discrete algebraic reconstruction technique
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(a) 35µm pixel size (b) 9µm pixel size

Fig. 1. Reconstructions from real X-ray CT data of rat trabecular
bone that was scanned at two different resolutions

(DART) [1], which is an iterative algorithm that assumes the
object to be piecewise uniform with known densities. In this
work, DART is applied for the reconstruction of piecewise
constant objects on an upsampled grid. Note that the applica-
tion of DART results in a segmented image. Indeed, DART
finds the piecewise constant image that minimizes the projec-
tion distance (i.e. the difference between the measured data
and the Radon transform of the reconstructed image). This is
essentially different from finding the optimal segmentation of
a continuous reconstruction from the dataset.

An important application in µCT imaging is the reconstruc-
tion of trabecular bone. In certain preclinical studies, the
temporal effect of certain drugs on the bones of mice and rats
is investigated by scanning the animals every few weeks. To
prevent a change in bone structure due to X-ray exposure, the
dose should remain as low as possible, which strikes off the
option of scanning at higher resolutions with the same sig-
nal to noise ratio. Nevertheless, especially for small animal
bone studies, it is very important that an adequate resolution
is obtained for the visualization of the smallest trabecular
structures and to enable a sufficiently accurate segmenta-
tion in order to accurately determine the morphometric bone
parameters [3]. In Fig. 1 (a), an example of a realistic CT
reconstruction of a rat bone slice is shown. It can be ob-
served that segmentation from this image is a difficult task,



while the reconstruction of a similar slice in a high resolu-
tion scan of the bone (dose ×16) (see Fig. 1(b)), is clearly
easier to segment. In practice, one often empirically selects
a global threshold, which remains fixed throughout a series
of experiments for consistent analysis. In order to evaluate
which trabecular thicknesses will be undetected in the seg-
mented image, the user can perform a calibration scan with
aluminium foils.

In this paper, the proposed discrete tomography technique
for the reconstruction on an upsampled grid, is applied to
simulated and real X-ray CT datasets of rat trabecular bone
as to increase the effective spatial resolution of the recon-
structions and to provide a segmented image.

This paper is organized as follows. Section 2 explains the
theory behind our approach. Section 3 describes how the
simulated data is computed. Experiments were run on simu-
lated data as well as real X-ray CT data of the rat trabecular
bone. The description of these experiments and the results
are summarized in Section 4. Finally, conclusions are drawn
in Section 5.

2. SUPERRESOLUTION BY
DISCRETE TOMOGRAPHY

Consider a sinogram consisting of M projections with N ra-
dial samples at sampling distance ∆s = 1. Such a dataset
is typically reconstructed on an N × N grid, with sampling
distance ∆t = ∆s = 1 (see Fig. 2(a)).
Algebraic methods consider reconstruction as the problem of
solving a system of linear equations

Ax = p (1)

where x = (xj) are the unknown attenuation values on the
grid in image domain, p = (pi) are the measured projec-
tion values, and A = (ai,j) is the linear projection operator.
Consider an ideal experiment, without noise, where a suffi-

(a) (b)

Fig. 2. (a) reconstruction grid used for conventional CT. (b) recon-
struction grid in the proposed discrete tomography approach

cient number of projections is available to ensure that the sys-
tem in Eq. (1) has a unique solution. Now suppose that prior
knowledge about the object is available. In case of bone, this
prior knowledge could be the uniform density of the bone.
The combination of the complete dataset and the prior knowl-
edge represents an overdetermined reconstruction problem.
Hence, parts of the projection data contain redundant infor-
mation. To optimally exploit this redundant data, we trans-
form the reconstruction problem on the N ×N grid to a lim-
ited data reconstruction problem on an aN × aN grid with
sampling distance ∆t̃ = 1/a for some integer a > 1. Note
that the sampling distance of the detector pixels is now larger
than the sampling distance of the refined grid. Each detector
pixel can be seen as the sum of contributions of a subdetector
pixels with sampling distance ∆s̃ = 1/a∆s = 1/a which
corresponds to the sampling distance of the refined grid (see
Fig. 2(b)). Compared to the system in Eq. (1), the system

Ãy = p (2)

corresponding to the upsampled reconstruction grid has the
same number of equations, while the number of unknowns
has increased by a factor a2, resulting in an underdetermined
reconstruction problem.

We now apply the DART algorithm for discrete tomogra-
phy, which solves the system in Eq. (2) under the constraint
that each of the yi can only take values in a prescribed set
R = {ρ1, . . . , ρk}. In the case of bone, this set of admissible
grey levels will consist of three values, for the background,
the soft tissue and bone, respectively. DART is an iterative
heuristic algorithm that combines regular iterative reconstruc-
tion algorithms, such as ART or SIRT, with segmentation,
boundary detection and constrained reconstruction steps. It
has recently been applied successfully to limited data prob-
lems in electron tomography. We refer to [1] for more details.
In the next section, we will demonstrate that by exploiting the
discreteness in the grey level domain, DART can compute a
solution of the system in Eq. (2) that accurately represents the
scanned bone, even though the equation system is basically
underdetermined.

3. PHANTOM AND DATA SIMULATION

A dataset was simulated that incorporates following two basis
assumptions:

• Bone has a uniform density

• Trabecular bone structures can be tiny, and conse-
quently, partial volume problems take place, i.e. a pixel
in the reconstruction grid may partially consist of bone
and air.

Two bone slices (Fig. 3(a) and (b)) were simulated based on
FBP reconstructions from real X-ray CT data of a rat femur,
which was scanned at a 35µm resolution in a SkyScan 1076



(a) Phantom A (b) Phantom B

Fig. 3. Simulated phantoms of rat trabecular bone, with densities
R = {0, 1}

scanner. The first phantom represents a bone slice near the
growing plate, hence consists of very fine structures. The sec-
ond phantom represents a slice through trabecular bone which
is often investigated in bone studies. Both phantoms are bi-
nary (with gray values 0, 1) and contain details of up to 1
pixel. A complete sinogram (1024 × 360) with 1024 radial
samples and 360 angles between θ ∈ [0, π) is computed. The
partial volume problem is simulated by downsampling each
projection to 256 radial samples by summing the radial bins
4 by 4. The resulting sinogram is used for the reconstructions
in the various experiments.

4. EXPERIMENTS AND RESULTS

Let p = (p1, ..., pi, ..., pN×M ) represent a 2D sinogram
which consists of M projections with N radial samples.
From this dataset, following reconstruction experiments are
run:

(a) Standard FBP reconstruction on the N ×N grid.

(b) DART reconstruction on the N ×N grid.

(c) FBP reconstruction on a refined aN × aN grid (with
a = 8) from an upsampled sinogram. The upsampling
of the sinogram is performed in the radial direction by
1D linear interpolation such that each projection con-
sists of aN pixels with pixel width ∆t = 1/a and
a > 1 an integer.

(d) DART reconstruction on the refined aN × aN grid
(with a = 8) from the original N ×M sinogram ac-
cording to the approach explained in Section 2.

To quantify the reconstruction quality, we compute the
number of misclassified pixels (NMP) with respect to the
ground truth images in Fig. 3. Since the experiments are per-
formed at varying resolutions, the reconstructions first need
to be rescaled to the size of the ground truth images. Images
with a larger grid (2048× 2048) than the ground truth image,

are downsampled by averaging the pixel values in blocks of
2 × 2 pixels. If the reconstruction has a grid size smaller
than 1024 × 1024, the image is upsampled using bilinear
interpolation. After the resampling, all images are binarized
using the threshold t = 0.5.

(a) FBP a = 1 (b) DART a = 1
NMP=25340 NMP=29815

(c) FBP a = 8 (d) DART a = 8
NMP=19085 NMP=1420

Fig. 4. Thresholded FBP and DART reconstructions of Phan-
tom A, for different levels of grid upsampling, and from 360
projections with 256 radial samples.

Fig. 4 and 5 depict reconstructions of Phantom A from 360
projections and Phantom B from only 36 projections. The
subfigures (a) to (d) in each of these figures correspond to
the above mentioned reconstruction experiments (a) to (d). In
each subfigure, the reconstruction is displayed in red and the
ground truth image in green. Where both images overlap, the
corresponding pixel is colored in yellow. Note in Fig. 4(b)
that the DART reconstruction on an N × N grid does not
necessarily improve the reconstruction accuracy compared to
the FBP reconstruction for a = 1, which is due to the fact
that DART intrinsically suffers from a small loss of spatial
resolution. However, the small number of misclassified pixels
(NMP) in the upsampled DART reconstruction demonstrates
that even for very complex phantoms, a drastic improvement
of the image accuracy can be obtained. Fig. 5(d) shows that
it is even possible to obtain accurate reconstruction of the
smallest trabecular structures on an upsampled grid, from a
dataset with only 36 projections.



(a) FBP a = 1 (b) DART a = 1
NMP=8097 NMP=4140

(c) FBP a = 8 (d) DART a = 8
NMP=11149 NMP=627

Fig. 5. Thresholded FBP and DART reconstructions of Phan-
tom B, for different levels of grid upsampling, and from only
36 projections with 256 radial samples.

The proposed technique is also applied on real X-ray CT data
of trabecular bone of a rat, scanned at a 35µm resolution in
a SkyScan 1076 µCT scanner. The resulting reconstructions
are shown in Fig. 6. By visual inspection of two regions
(denoted by a red and blue ellipse) in each of the 4 recon-
structions, it can be seen that the upsampled DART image
(Fig. 6(d)) more realistically recovers the small trabecular
structures, whereas the trabeculae thicknesses in the red and
blue regions of the FBP reconstructions are systematically
under- and overestimated, respectively.

5. CONCLUSIONS

We proposed a method to enhance the effective spatial res-
olution of CT reconstructions without increasing the X-ray
dose or scanning time. The method assumes that the object is
composed of homogeneous materials. This prior knowledge
is exploited by reconstructing the object on an upsampled grid
using the discrete algebraic reconstruction technique DART.
Experiments were run on simulated data as well as real X-
ray CT data of the rat trabecular bone. Results show that
the proposed method generates reconstructions with signifi-
cantly more detail compared to conventional reconstruction
algorithms.To quantify the results on real X-ray data, future
work will consist of reconstructing 3D volumes of downsam-

FBP reconstruction

(a) FBP a = 1 (b) DART a = 1

(c) FBP a = 4 (d) DART a = 4

Fig. 6. FBP and DART reconstructions of a rat trabecular
bone slice close to the growing plate, from real X-ray CT data.

pled high resolution X-ray CT data and comparing the mor-
phometric parameters from the low dose reconstructions with
those of the high dose ground truth.
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