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Abstract
Additive Manufacturing (AM) has emerged as a manufacturing process that allows the direct production of samples from
digital models. To ensure that quality standards are met in all samples of a batch, X-ray computed tomography (X-CT) is
often used in combination with automated anomaly detection. For the latter, deep learning (DL) anomaly detection techniques
are increasingly used, as they can be trained to be robust to the material being analysed and resilient to poor image quality.
Unfortunately, most recent and popular DL models have been developed for 2D image processing, thereby disregarding
valuable volumetric information.Additionally, there is a notable absence of comparisons between supervised and unsupervised
models for voxel-wise pore segmentation tasks. This study revisits recent supervised (UNet, UNet++, UNet 3+, MSS-UNet,
ACC-UNet) and unsupervised (VAE, ceVAE, gmVAE, vqVAE, RV-VAE) DL models for porosity analysis of AM samples
fromX-CT images and extends them to accept 3D input data with a 3D-patch approach for lower computational requirements,
improved efficiency and generalisability. The supervised models were trained using the Focal Tversky loss to address class
imbalance that arises from the low porosity in the training datasets. The output of the unsupervised models was post-
processed to reduce misclassifications caused by their inability to adequately represent the object surface. The findings were
cross-validated in a 5-fold fashion and include: a performance benchmark of the DL models, an evaluation of the post-
processing algorithm, an evaluation of the effect of training supervised models with the output of unsupervised models. In
a final performance benchmark on a test set with poor image quality, the best performing supervised model was UNet++
with an average precision of 0.751 ± 0.030, while the best unsupervised model was the post-processed ceVAE with 0.830 ±
0.003. Notably, the ceVAEmodel, with its post-processing technique, exhibited superior capabilities, endorsing unsupervised
learning as the preferred approach for the voxel-wise pore segmentation task.

Keywords Additive manufacturing · Unsupervised models · Deeply supervised models · Voxel-wise segmentation ·
Anomaly detection · X-ray CT

1 Introduction

Additive manufacturing is gaining interest since it is a low-
waste production technique that can conveniently produce
complex objects from a given CAD file [1]. The latest devel-
opments in 3D printing technology allow to print metallic
alloys effectively, as in the case of Selective Laser Melt-
ing [2]. While this technique has many advantages, a key
challenge is printing metallic alloys without defects. The
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mechanical behaviour of 3D printed parts, including tensile
or fatigue stress behaviours, greatly depends on their overall
structural integrity [3]. Defects such as common keyhole or
lack-of-fusion pores [4] can seriously degrade the mechani-
cal properties of printed parts by becoming initiation centres
for crack development [5]. For non-destructive evaluation of
the printing process and quality assurance of the printed part,
X-CT is often employed [6, 7]. X-CT has been used to anal-
yse the structural integrity of samples [8], the internal and
external surface properties [9, 10], as well as identification
and quantification of the number of defects that arise from
the AM process [11, 12].
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Detecting anomalies from X-CT data is a challenging
task (due to, for example, inhomogeneous density of the
sample, a low contrast-to-noise ratio, or beamhardening arte-
facts) that may lead to incorrect segmentation. For such a
task, data-driven deep learning-based approaches have been
shown to outperform traditionalmachine learning techniques
because they can better handle complex and varied defini-
tions of anomalies [7, 13–15]. Anomalies can be detected in a
supervised or unsupervised fashion. While supervised meth-
ods require an annotated data set, unsupervised methods are
more desirable because the training data need not be anno-
tated. Apart from reducing the technical overhead for the user
due to the gathering of annotated data, unsupervised models
nullify the impact that noisy annotations have on the perfor-
mance of themodel. On the other hand, the general challenge
that researchers of unsupervised approaches face are the high
recall rate and/or low precision when these approaches are
compared to their supervised counterpart [16].

The majority of studies on voxel-wise segmentation tasks
with DL techniques are focused on the analysis of a stack of
2D images [17–22]. For voxel-wise segmentation of pores
in AM samples, a 2D approach is sub-optimal as small
pores usually span only a few voxels in the three direc-
tions in X-CT images and suffer from a low contrast-to-noise
ratio. Moreover, pores may be elongated as they usually
exhibit anisotropy [23], with a high risk of being ignored
by 2D pixel-wise segmentation methods. Recognising this
shortfall, Wong et al. introduced the concept of 3D pore
detection models in their pioneering study [13]. While their
initial implementation with a UNet architecture demon-
strated promise, their study did not delve into the exploration
of deep supervision, other neural models or training patterns.
Deep supervision can yield more reliable results since the
hidden layers of the models are enticed to comply with the
desired output [24]. However, training supervised models
directly on a dataset with reduced porosity may seriously
affect detection performance due to a strong class imbalance
between the number of voxels that belong to pores and those
that do not [25]. Moreover, supervised models are known to
be highly sensitive to training labels. Unsupervised models,
especially those based on VAE architectures, suffer a well-
known issueof blurry representationof input images, because
the models learn a low-dimensional representation that may
not capture fine details [26]. For these models, the difference
between the input and output images alone, which is usually
the voxel-wise anomaly score, may not be a good indica-
tion of anomaly presence. Therefore, the voxel-wise anomaly
score can be enhanced with a more complex anomaly score
or dedicated post-processing [27, 28].

In this work, 2D supervised and unsupervised DL models
are first revisited and subsequently extended to 3D for voxel-
wise segmentation of pores on X-CT samples of varying

alloys. Utilising a 3D patch-based approach and integrating
data augmentation, our segmentation method aims to be
independent of thematerial and shape of AM samples.More-
over, it ensures spatial consistency by operating within the
3D image domain. Several deeply supervised models are
trained (UNet++ [29], UNet 3+ [30], MSS-UNet [31] and
ACC-UNet [32]) while a more traditional UNet [33] serves
as a baseline to compare the remaining four architectures,
which are composed of similar building blocks to easier
the comparison. To address the class imbalance that arises
from the low amount of defects, the models are trained
with the Focal Tversky (FTL) function, which allows mod-
els to penalise anomalies more effectively [34]. Since the
FTL is a parametric function, the optimal parameters were
found with a parameter search. The roster of unsupervised
models (VAE [35], ceVAE [27], gmVAE [36], vqVAE [37]
and RV-VAE [38]) aims to compare older and novel com-
plex model architectures. To reduce misclassifications, the
anomaly score of these models is post-processed, due to
the inability of these models to represent the object surface
adequately. Finally, the supervised models are trained again
with the post-processed output of an unsupervised model
instead of (potentially) noisy annotations, effectively mak-
ing the training process unsupervised, to evaluate the impact
on the performance of the supervised models. On the best
performing model of all the experiments, an experiment was
run to assess the decrease in performance when lowering the
number of X-ray projections and exposure.

Summarising, the main contributions of this paper are as
follows:

• First cross-validated assessment of multiple 3D DL
models for voxel-wise pore segmentation in AM sam-
ples, comparing supervised and unsupervised approaches
using a (patch-based) method. The neural networks, ini-
tially designed as 2D models, were tailored for the 3D
context to harness volumetric information effectively.

• Apost-processing algorithm is proposed and evaluated to
address the issue of blurry image representation in VAE
models.

• The impact of using unsupervised model labels instead
of heuristic algorithm labels for training the DL models
is evaluated.

2 Materials

Various DL models for voxel-wise segmentation of pores
were trained using 3D X-ray CT images of AM samples. To
this end, AM samples were manufactured through the selec-
tive laser melting process, in a continuous (CLM, [39]) or
pulsed laser melting (PLM, [40]) strategy. Five cylindrical
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samples of different materials were 3D printed (as shown in
Fig. 1): onewithTiAl6V4, twowithCoCr-DG1 alloy and two
with stainless steel 316L. Printing the test objects in multiple
materials allowed to assess the effectiveness of voxel-wise
pore segmentation across different materials. In the CAD
model used for the 3D printing, the cylinders had an eight of
20 mm and a diameter of 5 mm. In addition to the cylindrical
samples, a stainless steel 316L cube with an edge length of
9 mm was also printed. The cube was specifically printed
to provide an object with different shape and poorer X-CT
image quality, which is useful for evaluating porosity in a
challenging visual environment and to ensure that DL mod-
els are not learning information regarding the shape of the
object. These samples were essential for this study as their
X-CTs provided the digital dataset with which the neural net-
works could be trained to segment the porosity. Porosity was
intentionally induced in all samples using controlled laser
parameters, as described in [41].

Next, 3D images of the AM samples were generated
by scanning them with a micro-CT X-ray system [42] and
reconstructed with the FDK algorithm [43] with a 10 μm
resolution. The imaging settings, such as filament power,
peak kV of the anode, exposure time, source filter, etc., were
selected for each cylindrical sample to ensure comparable
image quality. However, the geometrical distances and the
number of projections were kept constant for all cylindrical
samples, with a source-to-detector distance (SDD) of 650.0
mm, a source-to-object distance (SOD) of 43.33 mm, and
4283 projections. The cubic sample was scanned with differ-
ent SDD (950.0 mm) and SOD (63.33 mm) and had a lower
number of X-ray projections (2878) than the other scans. The
X-CT of the cubic sample was also affected by severe cone-
beam artefacts and poor beam-hardening compensation. The
cubic sample was particularly challenging due to its different
geometry and visual environment (as noticeable in Fig. 2),
making it useful for evaluating porosity.

Fig. 1 Some samples used in this study. From left to right, a stainless
steel 316L (CLM), a CoCr-DG1 (PLM), and a TiAl6V4 (CLM) sample

3 Methods

Several DL models were trained to segment porosity from
X-CT scans of AM samples at the voxel level. Voxel-wise
annotations, necessary for both training and performance
evaluation, were provided using the method described in
Section 3.1. These models employed either supervised or
unsupervised approaches, detailed in Section 3.2.

For the training of supervised models, the class imbal-
ance of labels was addressed using the FTL function, which
will be discussed in Section 3.3. The class imbalance arose
from the low amount of pores (positive instance of labels)
within the training dataset. After training, and only for the
unsupervised models, the anomaly score is post-processed,
as unsupervised models are known to produce blurry rep-
resentations of the input. The post-processing procedure is
explained in Section 3.4.

3.1 Dataset annotation

To assign a label to each voxel of the X-CTs comprising the
datasets, which indicates whether it is a pore or not, a 3D
processing algorithm was applied. The high-level pseudo-
code in Algorithm 1 outlines the pore identification process.

Algorithm 1 Pore extraction from X-CT images.
1: Input
2: CT Volumetric X-CT image
3: Output
4: poremaskVolumetric binary mask representing pores
5:
6: Get low-value voxels through Otsuthr of CT
7: Get the background mask by FloodFilling the low-values from a

corner of CT
8: Get the watertight object mask from binary inversion of the back-

ground mask
9: Get low-value voxels by Otsuthr of CT inside the object mask
10: porelist ← Collect connected low-value voxels inside the object
11:
12: for all pores in porelist do
13: if size of pore < minimal size then
14: remove pore from porelist
15: end if
16: end for
17: poremask ← Convert porelist to a volumetric mask

The algorithm for extracting pores from volumetric X-
CT images begins by creating a binary mask to distinguish
low-value voxels using Otsu thresholding (Otsuthr ). Subse-
quently, a background mask is obtained through FloodFill
starting from a corner of the X-CT image, isolating low-
attenuating values. The binary inversion of this background
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Fig. 2 A slice of the X-CT of a cylindrical sample (left) and of the cubic
sample (right), with equal colour-map and scale. While all the X-CT of
cylindrical samples share similar image quality, the cube has stronger
artefacts (which are particularly visible at the extremities of the cube)
and consequently less contrast. The histograms (a) and (b) refer to the

cylindrical sample and of the cubic volume, respectively. The two peaks
in each histogram are related to the background (lower) and foreground
(higher) colours. The quality of each sample is defined by its distance
between the peaks and the broadness of the bells, which are influenced
by artefacts and noise

mask yields the watertight object mask, effectively sep-
arating the image into air and the watertight object. To
identify low-value voxels corresponding to pores, a second
Otsu thresholding operation is applied within the object. To
address the potential misclassification of pores due to imag-
ing noise, pores-voxels are screened based on shape criteria.
Initially, pores in a 6-connected 3D neighbourhood are iden-
tified and listed. The boundary box of each pore is then
examined, and the pore is excluded from the list if its bound-
ary box is smaller than 2 in at least one dimension. This
shape-based filtering is implemented to improve the reliabil-
ity of the pore identification process [44, 45]. The filtered
porelist is then converted into a volumetric binary mask
(poremask), providing a voxel-wise representation of pore
locations. It’s important to note that any residual misclas-
sification arising from partial-volume effects and imaging
artefacts contributes to the overall noise of the labels.

Accurately and reliably labelling the X-CT scan of the
cubic sample was a challenging task due to its poor image
quality, as discussed in Section 2. Given the limitations of
automated voxel-wise annotation, manual labelling was the
only viable option to achieve the desired level of accuracy
and dependability in the labels.

3.2 Deep learningmodels

The study used two types of models: VAE-based models
(VAE [35], ceVAE [27], gmVAE [36], vqVAE [37] and

RV-VAE [38]) and UNet-based models (UNet [33], MSS-
UNet [31], UNet++ [29], UNet 3+ [30] andACC-UNet [32]).
TheVAE-basedmodelswere trained in anunsupervisedman-
ner using unlabelled data, while theUNet-basedmodelswere
trained in a supervised manner. Starting from their original
2D implementation, these networks were extended to accept
3D inputs of size 643 by substituting all 2D layers with their
3D counterparts.

3.2.1 Supervised models

UNet is a popular encoder-decoder architecture that has
shown promising results in many semantic voxel-wise seg-
mentation tasks. MSS-UNet, UNet++, and UNet 3+ are
extensions of the original UNet architecture. MSS-UNet
incorporates multi-scale guidance in the decoding process
during training, enabling it to capture more fine-grained
details and to have a more coherent processing of informa-
tion in the decoding stage. UNet++ includes a nested and
dense skip-connection structure to capture more multi-scale
features, while UNet 3+ uses a more powerful encoder with
multi-resolution inputs. To ensure consistency, UNet and
MSS-UNet were built using the same encoding/decoding
building blocks as for UNet++ and UNet 3+ [30]. This
approach made it easier to compare the results of different
architectures and understand how they impact the final out-
come in voxel-wise segmentation tasks. Vision Transformers
have recently addressed complexity challenges,making them
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a viable and competitive solution for visual tasks, where
a notable work is [46]. Building on these advancements,
the core concepts of Transformers have been integrated into
ResNet models, surpassing the performance of Swin Trans-
formers. Another notable development involves incorporat-
ing essential Transformer ideas into a convolution-based
neural model called ACC-UNet. This model has shown
promise in segmentation tasks, motivating its use in our cur-
rent study.MSS-UNet, UNet++,UNet 3+ andACC-UNet are
deeply supervised during this study, which means they are
trained with a loss function calculated on multiple inner lay-
ers to supervise the learning process effectively. In contrast,
the original UNet architecture is not deeply supervised.

3.2.2 Unsupervised models

TheVAE-basedmodelswere trained in anunsupervisedman-
ner to learn a compressed and disentangled representation of
the input data. During training, the VAE models learned to
reconstruct images from the compressed representations that
resemble the input images as closely as possible. The recon-
struction error, which quantifies the discrepancy between the
input and output of the unsupervised models, was adopted as
the anomaly score. Since the introduction of the VAE model
in 2014 by Kingma andWelling, it has been used in a variety
of studies for voxel-wise anomaly detection (e.g. [47–49]).
The ceVAEmodel has similar architecture asVAE but amore
complex definition of the loss. During training, ceVAE uses
"masked" input data where certain patches within the image
are fixed to a specific value. The model uses an ad-hoc loss
function to infer the missing or distorted voxels within the
masked zone, which helps the network to capture the context
of the image. This peculiarity of the model may have a pos-
itive impact on the score, since it can prevent the network to
learn to represent the pores within the training dataset. On the
contrary, the gmVAE and vqVAE models are more complex
than the VAE architecture, enabling them to catch features
of the input 3D images that could not be interpreted by the
coarser architecture of VAE. The gmVAE model assumes
that each input data point’s latent representation is generated
by one of several possible Gaussian distributions, each with
a different mean and variance, and identifies which distribu-
tion in the mixture is most likely to have generated the latent
representation of each input data point during training. The
vqVAE model is based on the idea of vector quantisation,
where the continuous latent space is discretised into a set
of discrete codes. The model comprises an encoder network
that maps the input images to a discrete code book, followed
by a decoder network that maps the discrete codes to the
reconstructed input images. The vqVAE model was adapted
to 3D inputs without additional alterations, except for an
extra encoding/decoding stage that processes larger input
patches of 643 instead of the default 323. The RV-VAEmodel

eliminates stochastic sampling, directly incorporating latent
space information into decoder layers as continuous random
variables. Applying the inherent mathematical prior during
decoding leads to a more precise representation, making it
appealing for segmentation tasks. As we use a final sigmoid
activation function for all the neural models, the related RV-
model for this function is provided in the Appendix C.

3.3 Focal Tversky loss function

In our pore segmentation task, the number of voxels belong-
ing to the foreground class (pores) is much smaller than the
number of voxels belonging to the background class, in the
training dataset. This class imbalance results in a bias towards
the background class during training, which leads to poor
voxel-wise segmentation performance. In order to address
the problem of class imbalance in semantic segmentation
tasks, the Focal Tversky Loss (FTL) was proposed as a mod-
ification to the Tversky Loss [34], and is defined as follows:

FTL =
(
1 − TP

TP + α FN + β FP

)γ

(1)

The FTL depends on the number of true negatives (TN),
false negatives (FN), and false positives (FP), where FN and
FP are weighted by α and β, respectively. By adjusting the
values of these parameters, the FTL can be fine-tuned to
emphasise either precision or recall. In addition, the FTL also
includes a parameter γ , which controls the degree to which
the FTL prioritises correcting misclassifications by adjusting
the weight given to the Tversky Loss function. If γ = 1, the
FTL reduces to the standard Tversky loss and, if is also true
that α = β = 0.5, to the Dice-Sørensen loss. If γ > 1, the
FTL function will assign a higher weight to the correction of
misclassifications. This means that the loss function will be
more sensitive to false negatives and false positives, and the
model will prioritise the correction of misclassifications over
the correct classification of themajority class. As a result, the
model will be better at identifying instances of the minority
class but may struggle to accurately classify instances of the
majority class. The degree to which the model’s sensitivity
to misclassifications increases will depend on the value of
γ . In case of deep supervision, the FTL is calculated at each
supervised stage and averaged with geometric progression
weights (1, 1/2, 1/4, etc.).

3.4 Post-processing

During the prediction or testing procedure, each of the mod-
els inferred patches belonging to the X-CT scan and then
aggregated them back together to obtain an output volume
with the same size as that of the input.
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Only for the unsupervised models, the output was post-
processed to amend the scarce quality that these models
have in representing the fine details of the samples, as the
surface. The surface of each of our samples has unique char-
acteristics, due to different printing processes and polishing
procedures, which can never be properly represented with
an Autoencoder (AE). While AEs are designed to learn a
concise representation of the input, their ability to faithfully
reproduce high-fidelity images depends on factors such as the
training dataset’s size and diversity, the complexity of input
data, and the model’s architecture and hyperparameters. As
this is a beneficial feature that makes the AEs potentially
unable to reproduce anomalies that may be present in the
training dataset, it comes with the cost of inaccuracies near
the surface of the samples. To counteract this, we introduce a
compensation mechanism that suppresses the anomaly score
near the sample surface. The computation of the new voxel-
wise anomaly score, denoted as Apores , involves subtracting
the spatially blurred derivative D of the inferred volume V̂
from the original anomaly score A. As previouslymentioned,
the neural models struggles to faithfully represent the surface
of samples, leading to pronounced derivatives of the inferred
volume along the border. The elements of D are determined
by the sum of the absolute voxel-wise derivatives in the x , y,
and z directions of the predicted volume V̂ . These derivatives
are represented as di jk = ‖∂x v̂i jk‖ + ‖∂y v̂i jk‖ + ‖∂z v̂i jk‖,
where v̂i jk corresponds to the (i, j, k) voxel in V̂ .

The formulation for Apores is expressed as:

Apores = max(0, A − λ∗Gσ ∗(D)) (2)

Values for the standard deviation σ ∗ of the Gaussian
smearing kernel G and the scaling factor λ∗ are deter-
mined through an on-the-fly optimisation process outlined
in Formula (3). This optimisation process aims to minimise
the disparity between the anomaly score and the Gaussian-
blurred absolute sum of derivatives, utilising the mean of
the L1-norm as a metric. Both λ and σ are considered to be
positive parameters in this context.

The optimisation problem is formally stated as:

λ∗, σ ∗ = argmin
λ,σ

‖A − λGσ (D)‖1 (3)

The results of the experiment Section 4.5 show the benefits
of applying the proposed technique.

4 Experiments

The X-CT images were organized into training, validation,
and testing sets, as explained in Section 4.1. All models
were trained using a common training framework, detailed

in Section 4.2. For the evaluations presented in this section,
the labelledX-CT volumeswere comparedwith the output of
the DLmodels, after the output 3D patches were aggregated.

More specifically, the patch-extraction pipeline extracted
overlapping patches from the input volume, each with half
of their length overlapping with neighboring patches. These
patches were segmented by the neural networks and then
combined by computing an average value among the over-
lapping patches. This approach ensured a comprehensive
evaluation of themodel’s performance on theX-CT volumes.

4.1 Dataset

The X-CT images of several AM samples composed the dig-
ital dataset for training, validation, and testing of the DL
models. In a 5-fold manner, the X-CT images of the cylindri-
cal samples were organised into 4 samples for the train-set
and 1 sample for the validation-set. Noise, image artefacts,
andmisclassified voxel-wise labels (commonly referred to as
’noisy labels’) can negatively affect training and lead to inac-
curate predictions. To mitigate the influence of noisy labels
during training and to expand the training sets, data augmen-
tation was employed [50]. The data augmentation created
novel spatial configurations by flipping of patches in random
directions and elastic distortion while teaching the networks
to be resilient against noise, specific attenuation of samples,
and artefacts such as cone-beam and beam-hardening. After
data augmentationwas applied at every training epoch to each
of the cylindrical samples,which have around800x800x2000
voxels, 3D patches of 64x64x64 voxels were extracted and
supplied to the neural networks.

4.2 Training

The deep learning framework was based on the Pytorch [51]
2.0.1, Pytorch-lightning [52] 2.0.2 and the CUDA [53] 11.6
libraries and it is publicly available (https://github.com/
snipdome/nn_3D-anomaly-detection). The 3D patch extrac-
tion, aggregation and data augmentation were based on
the TorchIO libraries [54] version 0.18.84. A unique main
seed propagated throughout the libraries ensures that all
the extraction from random distributions were reproducible.
Each of the models was trained with the Adam optimiser
(learning rate of 0.0001) and halted through early stopping
when the loss value did not decrease by more than 0.0001
for 40 consecutive epochs.

4.3 Parameter search for the FTL function

As different values of the α, β, γ parameters sensibly affect
the performance of models trained with the FTL func-
tion [55], the optimal values were identified with grid search
approach. A 5-fold cross-validation strategy evaluated the
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performance of the model with different parameter combina-
tions, while the γ parameter was kept at 0.5 (as in [55]). The
grid search space spanned the parameter-space uniformly
from 0.1 to 0.9 for each of the variables, for a total of 4 steps.
For each combination of α and β, the model was trained in
a 5-fold cross-validation, resulting in a total of 16 different
combinations of α and β and a total of 80 model trainings.
In addition to the α and β parameters, another grid search
identified the optimal γ parameter in the FTL. A higher value
of γ puts more emphasis on minimising false positives and
false negatives, which can be useful in tasks where the cost
of misclassification is high. So, even though the author of the
FTL had suggested a value of 4/3 for the γ parameter [34],
the optimal γ parameter turned out to vary for the current
application of this work. The γ grid search had a total of 8
steps ranging from 1/3 to 2, for a total of 40 trainings.

4.4 Cross-validation of performance of the DL
models

All the supervised and unsupervised models have been
trained in a 5-fold cross-validation, for a total of 50 trainings.
In the case of supervised models, they were trained with the
optimal parameters found during the experiment Section 4.3.
After training, the performance has been evaluated, for each
fold, on both the validation-set and the challenging test-set.

4.5 Cross-validation of performance
of post-processed unsupervisedmodels

For this experiment, the unsupervised models are compared
in cross-validation before and after the application of a post-
processing algorithmpresented inSection 3.4. Since the post-
processing happens after the aggregation of all the patches
composing a X-CT volume, it is possible to compare the
models before and after post-processing, without the need to
re-train the models. Also in this case, the performance has
been evaluated, for each fold, on both the validation-set and
the challenging test-set.

4.6 Cross-validation of performance of supervised
models re-trained with unsupervisedmodels

In this experiment, the anomaly score of the (best perform-
ing) unsupervised model of experiment Section 4.5 was used
as label for the training of supervised models, for each fold.
Training in such a way would make the overall pipeline
unsupervised, which, apart from being a favourable feature
for the user, it would theoretically allow the UNet-family
to reproduce the task of the unsupervised model (and its
post-processing algorithm). A total of 25 trainings has been
performed.

4.7 Model complexity

For this experiment, all the neural models have been com-
pared with regards to their memory footprint and computa-
tional cost. The networks were fed with a one-element batch
with size 1x64x64x64 and analysed during their complete
forward and backward operation.

4.8 Cross-validation of performance of the best
performingmodel in extreme visual scenarios

In this final experiment, the best performingmodel in the pre-
vious experiments has been tested when the image quality
of the challenging test-set has been worsened by lower-
ing X-ray exposure and number of projections. This test is
designed to show how the performance decreases in extreme
visual scenarios. The number of X-ray projections of the
challenging test-set was reduced to 50%and 33.3%. The sim-
ulation of lower exposure of X-ray projections is achieved by
adding Poisson distributed noise. The exposure was lowered
to 75%, 50% and 25% of the original values, which corre-
sponded in an increase in the imaging noise over the X-ray
projections.

5 Results and discussions

Section 5.1 presents the cross-validation results for selecting
the optimal parameters of the FTL function. These parame-
ters were used to train all the supervised models employed
in the voxel-wise segmentation task cross-validation, whose
results are shown in Sections 5.2 and 5.4. Section 5.4 com-
pares the supervised models trained with the FTL function
using heuristic labels and labels generated by the post-
processed output of the best performing unsupervisedmodel.
The best performing unsupervised model was established
based on the performance results presented in Section 5.3.

5.1 Parameter search for the FTL function

The initial parameter search for α and β has been conducted
on all the folds of the cross-validation, and the average results
are shown in Table1. As apparent from the results, the opti-
mal values for the α and β parameters are 0.633 and 0.1,
respectively. Subsequently, with these optimal parameters,
the optimal γ parameter has been searched for each fold,
and summary results are shown in Table 2. In this case, there
is good agreement among folds that γ = 1 ensures the best
performance. For the sake of completeness, the fold-wise
results have been included in the appendix for both parame-
ter searches (Appendix B).
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Table 1 Average Dice-Sørensen score and standard error of the models
evaluated across the related validation dataset, depending on the α/β
parameters of the FTL

Dice-Sørensen score

α

0.9 0.74 ± 0.06 0.74 ± 0.04 0.75 ± 0.07 0.75 ± 0.07

0.63 0.78 ± 0.04 0.76 ± 0.06 0.76 ± 0.06 0.73 ± 0.07

0.37 0.75 ± 0.05 0.76 ± 0.07 0.74 ± 0.07 0.70 ± 0.05

0.1 0.76 ± 0.06 0.73 ± 0.07 0.72 ± 0.07 0.71 ± 0.06

0.1 0.37 0.63 0.9

β

5.2 Cross-validation of performance of the DL
models

The segmentation results of the cross-validation technique
were evaluated using two metrics: the area under the ROC
curve (AUC) and the average precision (AP) of the precision-
recall (PR) curve.While theAUC is a commonly usedmetric,
it can be misleading in the presence of class imbalance [56,
57]. To address this issue, PR curves were used to evaluate
the performance of algorithms, as recommended by [57].
Therefore, both PR and ROC curves were used to evaluate
the models.

The voxel-wise segmentation task of the models was eval-
uated for each fold, whose summary ROC-AUC and AP val-
ues are shown in Fig. 3 and detailed numerically in Tables 3
and 4 for the validation dataset and the challenging test set.
The cross-validated results related to the validation dataset
(represented with blue colour in Fig. 3) indicate that super-
vised models have been generally better trained to be consis-
tent with labels than the unsupervised methods. The results
on the challenging dataset with high artefacts and manually
labelled (represented with orange colour) show a clear drop
of the score for all the models, as expected for the considera-
tions in Section 3.1. Moreover, it is noticeable that the score
of some of the unsupervised models is even higher than that
of the supervised ones for the challenging dataset. Although
these results may not seem consistent with the validation
dataset, it should be noted that in both cases the labels were
generated in different ways: either with a heuristic labelling
algorithm or via manual annotation. Among the supervised
models, there is no significant difference in performance,

which suggests that deep supervision and the different archi-
tecture of the models is not inducing a significant difference
in performance. On the other hand, a noticeable difference in
scores is present between ceVAE and gmVAE/vqVAE on the
challenging dataset, which is significant for vqVAE with a
confidence of 95% (Welch’s t-test, p-value 1.98∗10−4 (AUC)
and 1.05 ∗ 10−5 (AP)). The higher degree of complexity of
gmVAE and vqVAE is not favourable to the segmentation
task by the mean of the anomaly score. These models have
been capable of learning how to reproduce defects within
the input samples, so the reconstruction error is not as high
in the proximity of defects as it is with simpler VAEs. On
another note, VAE and ceVAE are most robust with respect
to the quality of the input image, since theAP/AUCscores are
almost unvaried between the validation and the challenging
test-set (AP/AUC differences lower than or approximately
equal to a decimal point), when opposed to the other models
(AP/AUC differences exceeding a decimal point). As further
consideration, pores may occasionally lie on the border of
a patch during inference, which may result in segmentation
errors. Potential loss of accuracy caused by such segmenta-
tion errors ismitigated by averaging results from overlapping
patches. Accuracy can be enhanced also by increasing the
size of the 3D patches. While increasing overlap among
patches will inevitably raise memory requirements, the com-
putational complexity associated with larger patches can be
managed by employing DL models with sparse operations,
as demonstrated by Sparse CNNs [58]. This approach holds
promise for future research (Tables 3 and 4).

5.3 Cross-validation of performance of
post-processed unsupervisedmodels

By applying post-processing to the output of the VAE
models (Fig. 4), the considerations of the previous section
about supervised models become more evident. When post-
processing is applied to the output of the VAE and ceVAE
models, which have not learned to visually represent pores,
their AP scores increase by almost 2 decimal points on both
datasets, while their AUC remains almost unchanged. On
the other hand, post-processing adversely affected the per-
formance of gmVAE and vqVAE, which is to be expected
since the derivative of the output of these models is non-
negligible near the edge of the sample as well as near the

Table 2 AverageDice-Sørensen score and standard error of themodels evaluated across the related validation dataset, depending on the γ parameters
of the FTL

Dice-Sørensen score

0.76 ±0.04 0.78 ±0.04 0.79 ±0.03 0.82 ±0.04 0.72 ±0.03 0.70 ±0.06 0.64 ±0.06 0.59 ±0.04

γ 0.33 0.5 0.67 1.0 1.33 1.5 1.67 2.0
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Fig. 3 Point-plots of the
average ROC-AUC and AP
scores (with confidence interval)
of the models evaluated on the
validation dataset and on the
challenging dataset. The
quantitative values are shown in
Tables 3 and 4

pores. This behaviour is noticeable in the ROC and PR classi-
fier curves for the challenging case as shown in Fig. 5 (other
ROC and PR graphs are shown in the Appendix A). The
greater complexity of gmVAE/vqVAE models enables them
to replicate defects within the samples, leading to a reduc-
tion in anomaly scores and compromising performance. This
effect intensifies with the application of post-processing, as
illustrated in Fig. 6, where a validation sample is inferred by

Table 3 Average ROC-AUC and AP scores (with confidence interval)
of the supervised (�) and unsupervised (♦) models evaluated on the
validation dataset

Model AP AUC

MSS-UNet� 0.784 ± 0.050 0.975 ± 0.013

UNet� 0.815 ± 0.025 0.982 ± 0.009

UNet++� 0.750 ± 0.026 0.974 ± 0.009

UNet-3+� 0.873 ± 0.036 0.992 ± 0.003

ACC-UNet� 0.658 ± 0.078 0.955 ± 0.014

VAE♦ 0.711 ± 0.101 0.999 ± 0.001

ceVAE♦ 0.746 ± 0.094 0.999 ± 0.001

gmVAE♦ 0.607 ± 0.156 0.974 ± 0.014

vqVAE♦ 0.602 ± 0.129 0.990 ± 0.004

RV-VAE♦ 0.728 ± 0.082 0.999 ± 0.001

The bold is highlighting the best score

both ceVAEand gmVAEwith andwithout post-processing of
the anomaly scores. These results highlight that a more com-
plex architecture is not always advantageous, particularly
when anomalies exist within the training dataset. Addition-
ally, it can be observed from Figs. 3 and 4 that the scores
of VAE and ceVAE are still resilient against the poor image
quality of the challenging test-set, compared to the drastic
drop in performance of the supervised networks.

Table 4 Average ROC-AUC and AP (with confidence interval) of the
supervised (�) and unsupervised (♦) models evaluated on the challeng-
ing test-set

Model AP AUC

MSS-UNet� 0.572 ± 0.019 0.856 ± 0.017

UNet� 0.581 ± 0.008 0.880 ± 0.014

UNet++� 0.583 ± 0.021 0.848 ± 0.014

UNet-3+� 0.541 ± 0.010 0.882 ± 0.008

ACC-UNet� 0.418 ± 0.018 0.786 ± 0.016

VAE♦ 0.615 ± 0.038 0.990 ± 0.002

ceVAE♦ 0.635 ± 0.021 0.990 ± 0.001

gmVAE♦ 0.374 ± 0.092 0.838 ± 0.044

vqVAE♦ 0.313 ± 0.025 0.871 ± 0.009

RV-VAE♦ 0.634 ± 0.014 0.985 ± 0.001

The bold is highlighting the best score
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Fig. 4 Point-plots of the average ROC-AUC and AP of the models
(with confidence interval) evaluated on the validation dataset and on the
challenging dataset, with and without post-processing. Solely the per-

formance of unsupervised models is shown, since the post-processing
of the output is defined for them only. The values in textual form are
shown in Tables 5 and 6

Fig. 5 Graph of the ROC and PR curves of cross-validated performance for all models. The graphs represent the median trend of the fold-wise
performance on the challenging dataset without (left) and with post-processing (right) of the aggregated output

Fig. 6 A slice took from a
validation dataset (a) and its
voxel-wise anomaly score
accordingly to ceVAE (b) and
gmVAE (d). Post-processing the
anomaly scores (c, e) reveals a
beneficial impact, particularly
for models that unequivocally
classify pores as anomalies. The
color-scale represents the
intensity levels in the anomaly
score images
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Fig. 7 Graph of the ROC and PR curves of cross-validated performance for all models. The graphs represent the median trend of the fold-wise
performance on the challenging dataset, with Otsu-based labels (left) and post-processed ceVAE-generated labels (right)

5.4 Cross-validation of supervisedmodels trained
with labels generated by an unsupervisedmodel

By using ceVAE (the best performing model) to gener-
ate labels for the samples, the supervised models could be
trained from scratch to detect pores. The necessary steps
for the production of these labels by ceVAE were the post-
processing (with the algorithm described in Section 3.1) and
the suppression of smaller pores. The results are shown in
Figs. 7 and 8, and detailed numerically in Tables 5 and 6.
Higher performance is achieved by using the unsupervised
labels, confirmed by both AUC and AP for all the models.
These results confirm the observations in Section 5.2 that
the different architectures of the models are not significantly
affecting the scores for this voxel-wise segmentation task
(Tables 5 and 6).

5.5 Model complexity

Tables 7 and 8 presents key metrics related to the model
complexity of each neural model, including the number of
parameters, peak memory usage, and Multiply-Accumulate
Operations (MACs). The number of parameters indicates

the quantity of floating-point numbers that need to be
stored in video memory, reflecting the minimal memory
occupancy required to store the model. Conversely, the for-
ward/backward peak memory highlights the memory needed
to process an input with a batch size of 1. Lower mem-
ory requirements lead to larger permissible batch sizes,
consequently reducing training times. The MACs value
encapsulates information about the speed of the neural mod-
els to process a single 3D patch. In the case of X-CT volumes
sized at 800x800x2000, comprised of numerous overlapped
patches by half of their patch-length, the forward operation
during the inference phase necessitatesmultiple repetitions to
process the entire volume. The cumulativeMACs operations,
represented as “TotalMACs” in the table, quantify the overall
computational workload.

It is noteworthy that the memory usage of the UNet-
family generally exceeds that of the VAE-family in for-
ward/backward passes, with the exceptions of ceVAE and
gmVAE. Specifically, the high memory requirements of
ceVAE are visible only during the training procedure, as it
is related solely to the backward pass. Nevertheless, ceVAE
has shown good performance during the previous experi-
ments (Sections 5.3 and 5.4). Conversely, the huge memory

Fig. 8 Point-plots of the average ROC-AUC and AP (with confidence
interval) of the supervised models evaluated on the challenging dataset.
The graphs highlight the different performancewhen thesemodels were

supervisedby theOtsu-basedmethod andwith the labels providedby the
unsupervised models. The values in textual form are shown in Table 7
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Table 5 Average ROC-AUC and AP (with confidence interval) of the
unsupervised models evaluated on the validation dataset, with post-
processing of the output

Model AP AUC

VAE 0.964 ± 0.020 0.998 ± 0.001

ceVAE 0.964 ± 0.021 0.999 ± 0.001

gmVAE 0.516 ± 0.144 0.913 ± 0.033

vqVAE 0.512 ± 0.122 0.948 ± 0.019

RV-VAE 0.951 ± 0.020 0.998 ± 0.001

Solely the performance of unsupervised models is shown, since the
post-processing of the output is defined for them only

requirement of gmVAE and MACs do not directly translate
in outstanding performance for the prior experiments.

5.6 Cross-validation of performance of the best
performingmodel in extreme visual scenarios

By reducing the number of X-ray projections of the chal-
lenging X-CT scan and reducing the exposure of each
X-ray projection, the quality of the reconstructed X-CT
scan decreased. The best performing model, which was
shown to be the post-processed ceVAE, was applied to
these X-CT scans. An exemplary visual representation of
the voxel-wise segmentation is shown in Fig. 10, related to
the post-processed output of the ceVAE model, trained on
the 1st fold. In this figure, a small portion of a slice of the
cube is shown, in which pores are visible that were induced
with off-nominal parameters of the melting laser during the
printing. The degradation of the segmentation performance is
noticeable due to the increasing number of voxels classified
as pores (as shown in Fig. 9). Interestingly, while reduc-
ing the number of X-ray projections from 4283 (the dataset
used for training/validation) to 2878 (the original challenging
test-set) did not significantly affect the performance (Fig. 4),
further reductions in the number of projections had a sig-

Table 6 Average ROC-AUC and AP (with confidence interval) of the
unsupervised models evaluated on the challenging test set, with post-
processing of the output

Model AP AUC

VAE 0.824 ± 0.007 0.989 ± 0.002

ceVAE 0.830 ± 0.003 0.989 ± 0.001

gmVAE 0.234 ± 0.089 0.555 ± 0.099

vqVAE 0.138 ± 0.020 0.587 ± 0.028

RV-VAE 0.777 ± 0.004 0.981 ± 0.001

Solely the performance of unsupervised models is shown, since the
post-processing of the output is defined for them only
The bold is highlighting the best score

Table 7 Average ROC-AUC and AP (with confidence interval) of the
supervised models re-trained with the labels generated by ceVAE and
evaluated on the challenging dataset

Model AP AUC

MSS-UNet 0.651 ± 0.008 0.889 ± 0.005

UNet 0.639 ± 0.008 0.882 ± 0.004

UNet++ 0.751 ± 0.030 0.902 ± 0.015

UNet-3+ 0.627 ± 0.006 0.894 ± 0.006

ACC-UNet 0.586 ± 0.008 0.874 ± 0.004

The bold is highlighting the best score

nificant impact on the performance scores (Fig. 9). Another
point to note is the trend exhibited by the AP scores at low
exposure levels ranging from 50-25%. Specifically, reducing
the number of projections from 50% to 33.3% led to a slight
increase in the AP scores. When data is highly noisy and the
number of projections is relatively low, adding somemoreX-
ray projectionsmay not always lead to better image quality of
the reconstructed X-CT scans (Fig. 10). This is because the
additional (noisy) projections can also introduce more noise
into the reconstructed images. This can be observed from the
fact that the trend gradually disappears as the exposure level
increases from 25% to 100% (Fig. 10).

6 Conclusions

This study explores recent Deep Learning techniques for
voxel-wise pore segmentation in X-CT images of AM sam-
ples. Employing Tversky focal loss, deep supervision, and
3D patch-based training, we adapt various 2D neural mod-
els (UNet, UNet++, UNet 3+, MSS-UNet, ACC-UNet, VAE,
ceVAE, gmVAE, vqVAE, RV-VAE) to 3D, with both super-
vised and unsupervised training strategies. Post-processing
of unsupervised models and training supervised models with
unsupervised inferred labels are also investigated.

The comprehensive comparison of all neural models
reveals that supervised models (UNet-3+, AP 0.873 ±
0.036) outperform unsupervised models (ceVAE, AP 0.746
± 0.094), a trend not upheld when tested on a challenging
X-CT test set. In this scenario, ceVAE (AP 0.635 ± 0.021)
outperforms supervised neural models (UNet++, AP 0.583
± 0.021). The application of additional post-processing,
beneficial for VAE and ceVAE (AP 0.830 ± 0.003 on the
challenging test set), proves counterproductive for gmVAE
and vqVAE due to the more complex architecture of these
models. This complexity lead the models to be able to repli-
cate defects within the training samples, thereby impairing
the voxel-wise anomaly score. Although using an ideal pore-
free training dataset might improve the scores of gmVAE
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Table 8 Model complexity
metrics for each neural model,
including forward/backward
peak memory usage and MACs,
are specified for batch-size 1

Model # Parameters Forward/Backward Peak Memory MACs Total MACs

MSS-UNet 1.328 M 383.740 / 424.840 MB 14.270 G 69.678 T

UNet 1.325 M 353.924 / 390.925 MB 14.124 G 68.967 T

UNet++ 1.503 M 933.490 / 1005.831 MB 34.821 G 170.024 T

UNet-3+ 1.672 M 1571.642 / 1720.766 MB 84.881 G 414.460 T

ACC-UNet 5.062 M 6897.734 / 7269.893 MB 39.724 G 193.966 T

VAE 29.024 M 44.703 MB / 189.918 MB 3.698 G 18.058 T

ceVAE 140.650 M 33.765 MB / 778.901 MB 8.344 G 40.742 T

gmVAE 383.650 M 774.129 MB / 1842.710 MB 207.48 G 1013.096 T

vqVAE 2.511 M 17.688 MB / 32.701 MB 8.471 G 41.361 T

RV-VAE 29.024 M 223.288 MB / 230.196 MB 0.456 G 2.176 T

Total MACs represent operations for processing an 800x800x2000 voxel volume, with a 3D patch overlap of
half the patch-length

Fig. 9 Point-plots of the
average ROC-AUC and AP
(with confidence interval) of the
anomaly score of ceVAE
evaluated on the challenging
test-set when the image quality
is lowered by reducing the
number of X-ray projections or
exposure

Fig. 10 A portion of a X-CT
slice is shown in each row and
column by modifying the
number of X-ray projections and
exposure of each X-ray
projection. Each input slice is
shown together with the label
mask predicted by ceVAE
(trained on the 1st fold). The
degradation of the segmentation
performance is noticeable from
the raising number of voxels that
are classified as pores (white
colour in the predicted mask)
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and vqVAE models, it would hinder supervised models’ per-
formance due to the absence of pores. Overall, the resulting
VAE/ceVAE models exhibit resilience to lower image qual-
ity, unlike supervised models.

Training supervised models with labels derived from the
best unsupervised model (ceVAE) enhances their perfor-
mance (UNet++, AP from 0.583 ± 0.021 to 0.751 ± 0.030
on the challenging testset) but does not surpass that of the
unsupervised model. The study confirms that unsupervised
ceVAE, robustly captures the statistical properties of 3D
patches compared to the supervised UNet family. This find-
ing aligns with analogous results in anomaly detection in
MRI images [59], endorsing unsupervised learning as a
viable training paradigm for addressing anomaly segmen-
tation in AM samples without the need for labelled data.

Looking ahead, future endeavours may involve develop-
ing efficient models capable of detecting pores from X-CT
scans at a faster rate, with fewer projections or shorter
scan times, in coherence with the future trends foreseen by
Khosravani and Reinicke [60], which will expand our exper-
iment Section 4.8. This would facilitate the use of X-CT
in streamlined evaluations of entire sample batches. Fur-
thermore, while our research primarily focuses on porosity
analysis in the AM process, it opens avenues for broader
anomaly detection applications, including identifying impu-
rities, microstructural inhomogeneities, or alloying element
loss due to vaporisation.

Appendix A: Classifier graphs for the voxel-
wise segmentation task

The ROC and PR graphs of the voxel-wise segmentation
results that were not shown in previous sections are reported
here. In Fig. 11, there are the performance graphs of super-
vised and unsupervised models evaluated on the related

validation dataset. The graphs are aligned with the findings
discussed in Sections 5.2 and 5.4. In Fig. 12 are shown the
performance of the unsupervised models only, since they
show the segmentation scores of the post-processed output.
The scores were obtained from the fold-wise performance
on the related validation dataset, where is noticeable an
increase of performance for VAE/ceVAE and a decrease for
gmVAE/vqVAE if compared with Fig. 11 (right), in accor-
dance with the findings in Section 5.4.

Appendix B: Cross-validation graphs for the
FTL parameter search per each fold

For each of the 5 folds of the cross-validation, there is a total
of 16 trainings for the α/β parameter, which are presented in
Table 9. For the γ parameter, there is a total of 8 trainings
per fold and the values of the Dice-Sørensen are shown in
Table 10.

Appendix C: Random variable module: sig-
moid activation function

In this section, we extend the discussion on random vari-
ables applied after the encoding layer of Autoencoder-based
neural models, as presented in a previous article [38]. We
maintain the assumptions established in that work, which
include the absence of correlations between random vari-
ables. Furthermore, we leverage the ability to represent
arbitrary probability distributions of real numbers through
an expected value and a variance, a condition supported by
the validity of the central limit theorem resulting from the
summation of unrelated random variables.

Our focus here is to provide a means of obtaining the first
twomoments (expected value and variance) of a randomvari-

Fig. 11 Graph of the ROC and PR curves of cross-validated performance for all models. The graphs represent the median trend of the fold-wise
performance on related validation dataset
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Fig. 12 Graph of the ROC and
PR curves of cross-validated
performance for the
unsupervised models. The
graphs represent the median
trend of the fold-wise
performance on the related
validation dataset, when the
output of the models is post
processed

able Y resulting from the application of the sigmoid function
S to its input random variable X .

Let us begin by defining the sigmoid function:

S(x) = 1

1 + exp(−x)
, (C.1)

alongside its first and second derivatives with respect to x

Ṡ(x)= S(x)(1−S(x)) S̈(x)= S(x)(1−S(x))(1 − 2S(x)) .

(C.2)

These derivatives will prove useful in deriving the expected
value and variance of Y = S(X), where X is considered to
be a random variable.

For the calculation ofE[S(X)], we employ aTaylor expan-
sion centred at X0 = E[X ]:

S(x) = S(E[X ]) +(X −E[X ])Ṡ(E[X ]) + 1

2
(X − E[X ])2 S̈(E[X ])2

+ 1

3! (X − E[X ])3...

S(E[X ])3 + . . . .

(C.3)

Table 9 Fold-wise Dice-Sørensen score for the networks evaluated on the related validation dataset, depending on the α/β parameters of the FTL

Dice-Sørensen score - Fold 1

α

0.9 0.82 0.81 0.97 0.97

0.63 0.86 0.97 0.97 0.96

0.37 0.96 0.97 0.96 0.83

0.1 0.97 0.95 0.94 0.84

0.1 0.37 0.63 0.9

β

Dice-Sørensen score - Fold 2

α

0.9 0.76 0.63 0.61 0.60

0.63 0.69 0.61 0.60 0.59

0.37 0.64 0.60 0.58 0.57

0.1 0.63 0.54 0.53 0.57

0.1 0.37 0.63 0.9

β

Dice-Sørensen score - Fold 3

α

0.9 0.94 0.88 0.87 0.88

0.63 0.92 0.88 0.87 0.85

0.37 0.70 0.87 0.85 0.83

0.1 0.87 0.82 0.80 0.79

0.1 0.37 0.63 0.9

β

Dice-Sørensen score - Fold 4

α

0.9 0.62 0.71 0.68 0.69

0.63 0.66 0.72 0.74 0.69

0.37 0.70 0.75 0.69 0.72

0.1 0.74 0.78 0.78 0.79

0.1 0.37 0.63 0.9

β

Dice-Sørensen score - Fold 5

α

0.9 0.58 0.67 0.61 0.61

0.63 0.78 0.62 0.63 0.58

0.37 0.77 0.61 0.59 0.57

0.1 0.61 0.56 0.55 0.55

0.1 0.37 0.63 0.9

β
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Table 10 Fold-wise Dice-Sørensen score for the networks evaluated
on the related validation dataset, depending on the γ parameter of the
FTL

Dice-Sørensen score

γ

2.0 0.50 0.60 0.71 0.52 0.64

1.67 0.45 0.75 0.82 0.58 0.62

1.5 0.49 0.75 0.86 0.61 0.80

1.33 0.67 0.74 0.84 0.64 0.74

1 0.68 0.81 0.91 0.80 0.87

0.67 0.72 0.81 0.90 0.70 0.84

0.5 0.86 0.69 0.92 0.66 0.78

0.33 0.75 0.66 0.90 0.70 0.80

1 2 3 4 5

Fold

From which we extract the expected value as

E[S(x)] = E[S(E[X ]) + (X − E[X ])Ṡ(E[X ]) + 1

2
(X − E[X ])2 S̈(E[X ])2

+ 1

3! (X − E[X ])3 ...

S(E[X ])3 + . . .] .

(C.4)

Given the assumption that the distribution of the random
variable X behaves as a normal distribution, all odd central
moments are expected to be null. This leads to a simplified
formula for the expected value of Y = S(X)

E[Y ] = S(E[X ]) + 1

2
S̈(E[X ])Var[X ] + M4 , (C.5)

where M4 collects all the moments after the third and can
be neglected under the assumption of smooth distribution.
To calculate the expected variance of Y , we can utilise (C.3)
and (C.5), so to obtain

Var[Y ] = E[Y 2] − E[Y ]2 = E[S2(E[X ])
+ 2(X − E[X ])S(E[X ])Ṡ(E[X ])
+ (X − E[X ])2(Ṡ2(E[X ]) + S(E[X ])S′′2

× (E[X ])) + (X − E[X ])3(Ṡ(E[X ])S̈(E[X ])
+ 2

3! S(E[X ])...S(E[X ])) + R4]

− S2(E[X ]) − 1

4
S̈2(E[X ])Var2[X ]

− S(E[X ])S̈(E[X ])Var[X ] − M̃4 ,

(C.6)

with M̃4 being analogous toM4 in (C.5) and R4 collecting all
the central differences above the third exponent. By discard-
ing all moments above the third, a compact approximation
for the variance of Y is given by

Var[Y ] ≈ Ṡ2(E[X ])Var[X ] − 1

4
S̈2(E[X ])Var2[X ] . (C.7)
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