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A novel algorithm is introduced for fast and nondestructive reconstruction of

grain maps from X-ray diffraction data. The discrete algebraic reconstruction

technique (DART) takes advantage of the intrinsic discrete nature of grain

maps, while being based on iterative algebraic methods known from classical

tomography. To test the properties of the algorithm, three-dimensional X-ray

diffraction microscopy data are simulated and reconstructed with DART as well

as by a conventional iterative technique, namely SIRT (simultaneous iterative

reconstruction technique). For 100 � 100 pixel reconstructions and moderate

noise levels, DART is shown to generate essentially perfect two-dimensional

grain maps for as few as three projections per grain with running times on a PC

in the range of less than a second. This is seen as opening up the possibility for

fast reconstructions in connection with in situ studies.

1. Introduction

During the past five years, hard X-ray imaging methods have

appeared that enable nondestructive mapping in three-

dimensions of the grains within undeformed polycrystals.

Three-dimensional X-ray diffraction (3DXRD) microscopy

has a setup and a reconstruction approach rather similar to

those for classical parallel-beam tomography, but one probes

the diffracted beam instead of the attenuation of the incoming

beam (Poulsen, 2004). In a variant of 3DXRD microscopy

known as diffraction contrast tomography (DCT), in addition

one uses the fact that the diffracted beam from a given grain

will give rise to an enhanced attenuation of the direct beam

(Ludwig et al., 2009). (In the language of electron microscopy,

in DCT ‘bright field’ and ‘dark field’ imaging is combined.) In

both cases, the reconstruction task is mathematically distinctly

different from classical tomography, because projections of

the grains are not apparent in each image but only at certain

rotation angles, defined by Bragg’s law. As such, typical

transform methods such as ‘filtered backprojection’ give

inferior performance. Instead, large-scale iterative algebraic

methods have been used, such as the algebraic reconstruction

technique (ART; Poulsen & Fu, 2003), Monte Carlo methods

(Suter et al., 2006) and pure forward-projection methods

(http://sourceforge.net/apps/trac/fable/wiki).

Currently, both the 3DXRD and DCT approaches have

generated grain maps comprising hundreds or thousands of

grains, and the first in situ studies have been reported (Schmidt

et al., 2004, 2008; King et al., 2008). Nevertheless, there are still

some obstacles to overcome:

(a) To facilitate in situ studies, the tendency is to go towards

illuminating more grains at the same time (to achieve the

required grain statistics faster), to reduce the acquisition time

of the individual images and to reduce the number of

projections taken during each scan. For reasons such as spot

overlap and signal-to-noise considerations, this implies that

the number of useful projections per grain becomes very

small, in the limit only 2–5.

(b) Ultimately, the aim is to generate a time series of

hundreds of three-dimensional maps during, for example, an

annealing of the sample. With maps comprising up to 500 �
500 � 500 voxels, run time is a real concern. Furthermore, to

take full advantage of the synchrotron facilities, the ability to

compute accurate reconstructions within minutes would be a

major step forward. This imposes significant constraints on the

reconstruction algorithms that can be used, even with

generous use of clusters.

A possible approach to deal with a small number of

projections per grain is to construct new fast reconstruction

algorithms that explicitly make use of the a priori knowledge

we have of undeformed polycrystals, namely that

(1) the grains are approximately discrete objects in the

sense that a given voxel in the sample will either belong fully

to a given grain or not belong at all;

(2) the grains are simply connected three-dimensional

space-filling objects within the borders given by the sample

geometry, and hence it is sufficient to reconstruct the

morphology of the grain boundaries;

(3) the grain boundaries are smooth and the grains are

nearly convex.
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It has been noted that the problem of grain reconstruction

fits well within the emerging mathematical discipline of

discrete tomography (Herman & Kuba, 1999). In particular,

discrete tomography deals with the problem of reconstructing

binary images, which corresponds to feature (1) listed above.

By incorporating one or more of the listed features in the

reconstruction algorithm as prior knowledge, the accuracy of

the reconstruction can be vastly improved. The fact that the

range of pixel values is not a convex set differentiates this

problem from the approach of convex set theory to incorpo-

rate prior knowledge in tomography (Sezan & Stark, 1982). In

a series of papers, Alpers, Rodek and co-authors (Alpers et al.,

2006; Rodek et al., 2007) presented such an implementation

for 3DXRD work based on a Monte Carlo scheme and the use

of Gibbs priors. The superiority of the discrete methods was

demonstrated. However, the Monte Carlo scheme is inher-

ently slow.

In this paper, we present a grain-map reconstruction

scheme based on the discrete algebraic reconstruction tech-

nique (DART). DART is a new discrete tomography algo-

rithm (Batenburg & Sijbers, 2007) that is based on an

underlying conventional iterative algebraic reconstruction

method, such as ART (Gordon et al., 1970) or SIRT (simul-

taneous iterative reconstruction technique; Gilbert, 1972;

Gregor & Benson, 2008). The acronym ‘ART’ in DART

therefore refers to a general iterative algebraic reconstruction

technique. Iterations of the continuous algebraic technique

are alternated with segmentation and fixation steps, which

restrict the updates to the boundary of the reconstructed

object. We apply this algorithm to the most basic 3DXRD-

type analysis: that of reconstructing one internal two-dimen-

sional section in a monophase undeformed polycrystal. Similar

to the previous work by Poulsen and Fu based on ART, the

new approach involves three steps: identification of grains by

an existing polycrystalline indexing program, reconstruction

of the boundary of each grain separately and the stitching

together of the boundary maps for the grains.

Reconstructing a single grain at a time allows for the

application of more general reconstruction algorithms used in

other tomography applications, which do not have to take into

account the constraints with respect to the connectivity and

overlap between grains. The stitching phase that follows the

reconstruction ensures that these constraints are satisfied in

the final reconstructed grain map.

Following an outline of the suggested approach, in x2,

3DXRD is modelled as an algebraic reconstruction problem.

In x3, the quality of a set of 3DXRD grain-map simulations is

reported, comparing at all times the use of DART with that of

a conventional iterative algorithm, SIRT. The robustness of

the two algorithms towards the number of projections and

noise is surveyed. Next, in x4, the performance is discussed

with respect to the Monte Carlo-based algorithms, and the

prospect of generalizations is outlined.

2. Approach

A full description of 3DXRD microscopy is beyond the scope

of this article and can be found elsewhere (Poulsen, 2004), yet

a brief explanation of the relevant operational mode will be

given here.

3DXRD microscopy can be performed in various modes

(Poulsen, 2004). For simplicity we will in the following assume

the setup shown in Fig. 1. Firstly, the incoming beam is focused

in one direction: the direction parallel to the axis of rotation.

Secondly, focusing is moderate so that the beam may be

considered collimated, and thirdly, two area detectors are

used: a low-resolution large effective area detector positioned

far (�30 cm) from the sample and a high-resolution area

detector close to the sample (�5 mm).

Thus, a collimated monochromatic X-ray beam impinges on

a polycrystalline sample. Depending on the X-ray wavelength

and the orientation of the crystallites, or grains, in the sample,

a fraction of the beam is diffracted according to Bragg’s law.

Assuming the composition and space group of the crystallite is

known, the intensity of one diffracted beam relative to

another originating from the same crystallite is known.

Further, in the limit of kinematical scattering, the overall

intensity diffracted by each crystallite is directly proportional

(Warren, 1990) to the number of unit cells in the crystallite,

and therefore proportional to the size of the crystallite.

Modelling the polycrystalline sample by volume elements

(voxels) where each voxel is considered to have one crystal-

lographic orientation only, we may apply inverse methods,

making it possible to reconstruct three-dimensional orienta-

tion maps from the detected diffracted intensity.

When the sample is undeformed, it generally consists of

crystallites with negligible spread in orientation within each

crystallite and no voids in between. In such cases it is often

convenient to consider the crystallites as independent objects.
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Figure 1
Schematic drawing of the 3DXRD setup. An X-ray beam, focused in the
vertical direction, impinges on the sample. The sample is mounted on a
rotation stage, which is used to bring different lattice planes into the
diffracting condition. Diffracted intensity is detected on one or more
semi-transparent area detectors. In the present case, a large-area low-
resolution detector is positioned further away from the sample and a
high-resolution detector close to the sample. The low-resolution detector
data are used for indexing purposes, whereas the high-resolution data are
used for reconstruction.
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Each object may then be described by its orientation, centre-

of-mass position and boundary morphology and may be

handled separately. In the particular case presented here

where the beam is focused in one direction, the boundary

morphology can be reduced to a two-dimensional map.

Assuming that the boundaries of the individual crystallites

have been reconstructed correctly, these boundary maps can

be assembled (stitched) to form a two-dimensional orientation

map (grain map) of a slice through the complete sample. By

displacing the sample vertically and repeating the procedure, a

set of grain maps can be reconstructed to form a three-

dimensional grain map of the sample.

As mentioned, the proposed approach for constructing the

two-dimensional grain map for a given layer comprises three

steps: identifying (indexing) grains, reconstructing the shape

for each grain and stitching the grains together. The first task is

handled by a polycrystalline indexing algorithm such as

GRAINDEX (Lauridsen et al., 2001), ImageD11 (http://

sourceforge.net/apps/trac/fable/wiki) or GrainSpotter (http://

sourceforge.net/apps/trac/fable/wiki) operating on data from

the low-resolution area detector. Since the low-resolution

detector has a larger effective area, the indexing algorithm

may include more orders of diffraction, and therefore more

spots, than the reconstruction algorithm. The lower resolution

is acceptable in this step since only the positions of the

diffraction spots are used. For each grain, these routines will

output the orientation, approximate size and a list of asso-

ciated diffraction spots. For each spot, we may compute its

position and identify it with a spot found on the high-resolu-

tion detector. Furthermore, we can identify a region-of-

interest (ROI) around each identified spot, within which the

spot is confined. It is important to keep in mind that, although

a spot may be used for indexing and a finite ROI may be

defined on the high-resolution detector, the spot may not be

useful for reconstruction. There may, for instance, be imper-

fections in the detector in that region. Further, as diffraction is

governed by Bragg’s law, all spots on the far-field detector

appear on Debye–Scherrer rings, at fixed scattering angles

(Warren, 1990). Because of this, the full two-dimensional-

phase space of the detector may not be filled, even with an

infinite number of grains. Instead, an increased number of

grains simply increases the likelihood of overlapping spots.

Such overlapping spots can be allowed in the indexing algo-

rithms, provided that a full set of spots, matching the crystal-

lographic structure of the sample material, can be identified.

On the other hand such spots have to be excluded from an

analysis based on separate grains (such as the one presented

below), or preprocessed by specialized algorithms. Further,

the integrated diffracted intensity in each spot originating

from one grain should, when corrected for crystallographic

structure factors and Lorentz factors, match up. Spots asso-

ciated with more than one grain and spots with integrated

intensities that do not match are considered overlapping.

As it cannot be known a priori to what extent spots from

different grains will overlap, a practical reconstruction algo-

rithm should therefore be flexible with respect to both quality

and the number of spots used for reconstruction.

2.1. Algebraic formulation

We proceed by discretizing the layer of interest in the

sample into voxels by imposing a regular grid. Next, for each

grain and each reflection r, the basic assumption of kinema-

tical scattering implies that one can formulate a linear rela-

tionship between the density of the grain in the various voxels

in the layer and the integrated intensity in the detector pixels

within the ROI. We may write this as Arx ¼ br, where Ar is a

matrix comprising information on the geometry associated

with the projection from the grain into the reflection spot r, x

is a column vector where element j contains the density of the

grain in the jth voxel and br is a column vector consisting of

recorded pixel intensities on the area detector. More precisely,

the value of element arij of Ar indicates to what extent the

projection of the jth sample voxel contributes to the ith

detector pixel given the projection geometry associated with

diffraction spot r. In other words arij indicates the fraction of

the X-ray intensity diffracted from the jth voxel into reflection

r that is deposited in the ith detector pixel. Herein lies a subtle

difference from transmission tomography, where the

geometry, and therefore Ar, is completely determined by the

setup and does not depend on the sample data. In our case, as

implied earlier, Ar depends on the chosen reflection r and on

the crystallographic orientation of the grain, and therefore on

the previous indexing of diffraction spots.

Next, we form a compound matrix A = (aij), by stacking the

Ar matrices for all the reflections belonging to a given grain,

and similarly define the compound vector b:

A ¼
A1

A2

..

.

0
B@

1
CA; b ¼

b1

b2

..

.

0
@

1
A : ð1Þ

With these definitions, the basic equation for reconstruction of

the grain shape is

Pn
j¼1

aijxj ¼ bi; i ¼ 1 . . .m: ð2Þ

In general, m and n will be large, the rank of A = ( aij) will be a

priori unknown, and the set of equations may be under-

determined as well as overdetermined. For such situations, it is

not possible to solve the linear system directly. Instead,

iterative methods can be used that compute successive

approximations of its solution. Poulsen & Fu (2003) solved

equation (2) by applying the continuous ART routine with the

following ad-hoc implementation of the constraint on the

admissible intensity values (� is a normalized density of the

material):

0< xj <�; 8j: ð3Þ

2.2. Reconstruction of one grain

In this paper, we will present results for two alternative

ways to solve equation (2). The first one is SIRT – a classical

iterative algorithm for continuous tomography (see ch. 7 of

Kak & Slaney, 2001). In contrast to other methods such as
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ART or SART (simultaneous algebraic reconstruction tech-

nique), where only some of the projection data are used to

compute each update step, SIRT uses all available spot

projections simultaneously to compute the update of the

current grain image. This results in a longer computation time

but reduces the influence of noise in the projection data on the

final reconstruction.

The second algorithm, called DART, is a new approach,

which combines elements of discrete and continuous tomo-

graphy. It alternates between steps of a continuous recon-

struction algorithm, such as SIRT, and discretization steps that

involve tracking the grain boundary. In the following, we

describe the flow of the new algorithm in detail.

First, we briefly review the continuous SIRT algorithm.

Each iteration of the SIRT algorithm consists of three basic

steps. First, the vector b0 of projections of the current recon-

struction x is computed: b0 ¼ Ax. Next, the difference d

between the projections of x and the measured projections b is

computed: d ¼ b0 � b. The difference for each detector pixel

is then distributed among all image pixels that contribute to

this detector value. The update for each pixel is computed by

averaging the computed updates for all detector pixels onto

which this pixel projects. To be more exact, the value x
ðkþ1Þ
j of

voxel j in iteration k + 1 is computed from the current

reconstruction xðkÞ by the following update equation:

x
ðkþ1Þ
j ¼ x

ðkÞ
j þ

P
i

aij bi �
P
h

aihx
ðkÞ
h

� ��P
h

aih

� �
P
i

aij
: ð4Þ

This iterative scheme converges to a weighted least-squares

solution of the reconstruction problem [equation (2)] (Gregor

& Benson, 2008). The second term in the update equation (4)

above is often scaled by a relaxation parameter, 0<�< 2,

which may improve the rate of convergence, depending on the

conditioning of the matrix A. We used � ¼ 1 in all experi-

ments reported below.

Fig. 2(a) shows a grain phantom image for which three

projection spots have been simulated. Fig. 2(b) shows the

resulting SIRT reconstructions from the simulated noiseless

projections. Although the original grain image contains only

two grey levels, representing the interior and background

(exterior) of the grain, the SIRT reconstruction contains a

broad spectrum of grey levels. Of course, the SIRT recon-

struction can also be converted into a binary image by

thresholding it. Fig. 2(c) shows the result of this step, where

the threshold has been set halfway between the grey levels for

the interior and the background. These grey levels are � and 0

for the interior and exterior, respectively, where � is deter-

mined by the material density and experimental conditions

such as background and impinging X-ray intensity.

This thresholded SIRT reconstruction forms the starting

point for DART. The main idea of DART is the observation

that, for homogeneous objects (such as the grains in our case),

most of the errors in the reconstruction will be near the

boundary of the object. The boundary of the current

approximate reconstruction (i.e. the thresholded SIRT

reconstruction) can be computed automatically. The result is

shown in Fig. 2(d). The set of pixels that are at this boundary

are called boundary pixels, whereas the remaining pixels are

called nonboundary pixels. We now assign all nonboundary

pixels the discrete grey levels for the background (always 0)

and grain interior, respectively. Next, a new series of SIRT

iterations is performed, where only the boundary pixels are

allowed to change their values. The nonboundary pixels are all

kept fixed at their two discrete grey levels. The resulting

system of linear equations has far fewer variables (as most of

the pixels are kept fixed), yet it has the same number of

equations as the original system. If the nonboundary pixels

have been fixed at their correct values, the new solution for the

boundary pixels will be much more accurate than the previous

solution. Fig. 2(e) shows the result of applying two SIRT

iterations in this manner.

On the other hand, suppose that a nonboundary pixel has

been assigned the wrong discrete grey level (interior, instead

of background). In that case, the SIRT iterations typically

steer nearby boundary pixels into the opposite grey-value

direction (i.e. towards the background), in order to compen-

sate for this. This means that in the next step of DART, where

a new boundary is formed, the erroneous pixel will now be at

the boundary and will no longer be fixed. Although this is a

rather heuristic argument, this mechanism can be clearly

observed in experiments with DART.
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Figure 2
Illustration of steps in the proposed reconstruction algorithm for one
grain (x2.2).
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The SIRT iterations result in a new, partially continuous,

reconstruction. A smoothing filter is applied to the boundary

pixels, after which a new segmented reconstruction is

computed by thresholding. Fig. 2( f) shows the new boundary

computed from this thresholded reconstruction. It can be

clearly seen that, after a single DART iteration, the boundary

matches the original phantom much more accurately than the

original boundary computed from the SIRT reconstruction.

The same DART procedure is now repeated several times.

Fig. 2(g) shows the SIRT result after the second DART

iteration. Fig. 2(h) shows the final segmented reconstruction,

obtained by thresholding the SIRT result of the final DART

iteration.

Fig. 3 provides an algorithmic description of DART. Every

run of DART is characterized by three parameters: NS, ND and

NB. The parameter NS corresponds to the number of SIRT

iterations performed before entering DART. The parameter

ND corresponds to the total number of DART iterations, i.e.

the total number of segmentation steps performed. Finally, the

parameter NB corresponds to the number of SIRT iterations

performed on the boundary pixels within each DART itera-

tion. Values for these parameters must be chosen by the user.

After computing the initial reconstruction x0, the algorithm

enters a loop. The threshold operation r(x), which is applied to

each component of the current reconstruction xt�1, is defined

by

rðxÞ ¼ 0 if x � �=2 and rðxÞ ¼ � otherwise: ð5Þ
It yields an image st that only contains grey levels 0 and �.

Based on this image, the set It of nonboundary pixels is

computed, where a nonboundary pixel is defined as a pixel for

which all of its horizontal or vertical neighbours have the same

value as that pixel. Based on xt�1 and st, a new image yt is

computed that is equal to xt�1 for the boundary pixels and

equal to st for the nonboundary pixels. In other words, the

interior and exterior pixels of the grain have been segmented,

while the boundary pixels still retain their continuous spec-

trum of grey levels. Next, a series of SIRT iterations is applied

to the boundary pixels while keeping the interior and exterior

pixels fixed at their segmented values, yielding xt. To apply

SIRT while keeping a set of pixels fixed, the projections of

these pixels are first subtracted from the projection data b and

the corresponding columns are removed from the projection

matrix A. The SIRT algorithm is then carried out using the

modified system of equations. In the SIRT algorithm, all pixels

at the boundary are updated independently, without taking

spatial smoothness into account. This can result in significant

noise in the reconstructed boundary. A Gaussian smoothing

operator is applied to the pixels at the boundary to compen-

sate for this effect. This completes an iteration of the DART

algorithm, which is then repeated iteratively.

2.3. Stitching grains together

A full two-dimensional grain map may be obtained by

superposing the solutions (the shapes) of the individual grains.

However, such a map may not be space filling as boundaries

from neighbouring grains may overlap or leave ‘voids’ in the

map. To overcome this problem, we use the continuous DART

result, after the last series of SIRT iterations (see Fig. 2g).

Assume that a pixel has a nonzero value in several of the grain

reconstructions. Then, similar to the approach of Alpers et al.

(2006), such a pixel will be associated with the grain for which

the grey level is the highest. If, on the other hand, the pixel

value is below a certain threshold in all grain reconstructions

(or has a negative value), the pixel is not assigned to any grain.

In x3, experimental results are presented for both SIRT and

DART. For the SIRT reconstructions, the grain maps are

formed using the same procedure as for DART.

If the projection data are perturbed by a significant amount

of noise, the above procedure is too simplistic – it may lead to

a grain map with noisy grain boundaries and spurious holes. A

postprocessing step is then applied to the resulting grain map,

using the following heuristic but fast and efficient filtering

algorithm:

(a) Grain-boundary smoothing

In this step, grain-boundary pixels are iteratively processed

using a 3 � 3 pixel neighbourhood. In a first phase, isolated

pixels are removed by replacing the central voxel by its

4-connected neighbourhood value if all 4-connected neigh-

bourhood pixels are equal.

Next, if the central pixel value differs from one or more of

the pixel values in the 4-connected neighbourhood, it is

tentatively replaced by the most frequent pixel value in an

8-connected neighbourhood (where the weight of each pixel is

taken inversely proportional to the distance to the central

pixel). Then, subsequently, the new 3 � 3 neighbour config-

uration is compared with the three cases shown in Fig. 4. If it is

identical to one of them, the central pixel is replaced by the

value of the respective configuration.

(b) Filling of spurious holes

Spurious holes (i.e. small background areas within the grain

map) are removed by processing boundary background pixels

employing the following heuristic rules:

(1) If at least two neighbouring 4-connected foreground

pixels are identical, the central background pixel is replaced

by the respective pixel value.

(2) If (1) does not hold, the central background boundary

pixel value is replaced by the pixel value that occurs most
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Figure 3
Pseudo-code description of the DART algorithm.
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frequently in a 4-connected neighbourhood. If all 4-connected

pixel values have equal frequency of occurrence, one of the

pixel values is randomly selected.

This process is repeated until all background pixels have

been processed.

3. Simulations

Two series of simulation experiments have been performed to

compare the reconstruction quality of DART and SIRT, based

on two different phantom maps.

The first series of experiments is based on the phantom

128 � 128 pixel orientation map shown in Fig. 5(a). The aim of

these simulations was to quantify the reconstruction quality as

a function of experimental noise and the number of reflections

available per grain. In both cases, the more robust the algo-

rithm, the faster the data acquisition can be and the more

grains can be studied simultaneously. A comparison was made

between the DART and SIRT solutions throughout.

The phantom map comprises 44 grains and originates from

electron microscopy data acquired on an annealed Al sample.

This map is seen as a standard test map, also used by Alpers et

al. (2006) and Rodek et al. (2007). The simulated geometry of

the 3DXRD microscope and the measuring sequence was also

identical to the setting in these two previous papers. We refer

to these papers for details and mention here only that the

energy was set to 50 keV, and that 91 images were generated

corresponding to equally spaced rotation angles over a rota-

tion range of 90�. The {111}, {200}, {222} and {311} reflection

families were included in the analysis.

Although the 128 � 128 phantom map in Fig. 5(a) is well

suited for performing large numbers of computational

experiments, because of its limited size it comprises a smaller

number of grains than typically encountered in practical

experiments. As a more complex test case, we performed a

series of simulation experiments with the 400 � 400 pixel

orientation map shown in Fig. 6. This larger map is the direct

result of electron backscatter diffraction (EBSD) measure-

ments on a pure copper sample.

This grain map is significantly more challenging for any

reconstruction algorithm, as many grains have complex,

nonconvex shapes and some grains contains inclusions of

other grains. The experiments for this map aim to compare the

reconstruction quality of SIRT and DART for the practically

relevant case of moderate noise, combined with a small

number of available projections per grain.

Throughout both series of experiments, a run of SIRT is

characterized by the single parameter NS, corresponding to
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Figure 5
Example of simulated data. Each grey level represents one grain with one
crystallographic orientation; black is background. (a) The phantom image
obtained by electron microscopy on an annealed aluminium sample; (b)
DART reconstruction with NS = 3, ND = 3, NB = 3 and no noise; (c) SIRT
reconstruction with NS = 15 and no noise. The symbols NS, ND and NB all
refer to the number of iterations of various parts of the algorithm (x3).

Figure 4
Identification of certain neighbourhoods of relevance to the postproces-
sing step (x2.3). In each case all possible rotations are applied to find
possible matches. If the neighbourhood matches that of the map, the
central pixel will take the value of the ‘black’ pixels.
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the total number of SIRT iterations performed, whereas every

run of DART is characterized by three parameters: NS, ND and

NB. As an example, Fig. 5 shows the phantom grain map, its

DART reconstruction for NS = 3, ND = 3 and NB = 3, and a

SIRT reconstruction for NS = 15. The DART reconstruction

had a running time of around 0.5 s on a desktop PC, versus

0.7 s for the SIRT reconstruction.

In the first series of experiments (xx3.1–3.3), the algorithm

parameters for SIRT and DART are kept fixed at NS = 10 and

(NS, ND, NB) = (3, 3, 3), respectively. For these settings, both

reconstruction methods have approximately the same running

time and yield acceptable reconstruction quality for a wide

range of noise levels. Increasing the number of iterations

typically improves the reconstruction quality for both methods

if the noise level is low, while it makes the reconstruction

worse at high noise levels. The effect of increasing the number

of iterations at a moderate noise level is investigated for the

400 � 400 grain map in x3.4.

In all experiments, the total number K of pixel errors

between the phantom map and the reconstructed map was

determined to obtain a quantitative measure of the recon-

struction quality.

3.1. Variation with noise for many reflections per grain

The simulated reflection images for the phantom in Fig. 5(a)

were subject to varying amounts of noise. As an approxima-

tion of Poisson noise, the noise was implemented by adding to

each pixel intensity I0 (i.e. the photon count) a random

number following a Gaussian distribution with mean 0 and

standard deviation � = cI0, where the parameter c determines

the signal-to-noise ratio. Applying Gaussian noise in this

manner may result in some negative detector values, which

were set to 0. In the following, the noise levels will be indi-

cated in per cent, where a noise level of 100% corresponds to

the case c = 1. For noise levels varying from 0 to 100%, grain-

map reconstructions have been computed using both SIRT

with NS = 10 and DART with (NS, ND, NB) = (3, 3, 3). For each

test case, 100 independent experiments were run. The results

are shown in Fig. 7, both before and after applying the filter

postprocessing step.

The results demonstrate that both SIRT and DART are

capable of reconstructing the simulated two-dimensional grain

map fairly accurately. For c < 0.1 – which is typical of

experimental data with a long exposure time – DART clearly

outperforms SIRT (the number of wrongly assigned pixels at

c = 0 is 14 for DART and 65 for SIRT). This is also the case for

c > 0.5, but not by a large margin. At high noise levels, the filter

operation is observed to be highly effective in decreasing the

number of errors in both the SIRT and the DART recon-

structions. To further illustrate the effect of the filtering

procedure, maps reconstructed from noisy data, before and

after filtering, are shown in Fig. 8.

3.2. Variation with number of reflections

As noted in x1, only a limited subset of the reflection spots

used for indexing a grain may be suitable for reconstruction

purposes. The robustness of an algorithm with respect to the

number of reflections is therefore an important aspect. To

investigate this, reconstructions of the phantom in Fig. 5(a),

based on noiseless simulations, were computed using a varying

number of reflections per grain. The number of reflections per

grain was varied from 12 down to one. For every test case, 100

independent experiments were run, where the reflections for

each grain were chosen randomly from the set of all available

reflections. Fig. 9 shows the averaged reconstruction results for
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Figure 6
Phantom image representing a complex 400 � 400 map, obtained by
electron microscopy on an annealed, pure copper sample.

Figure 7
Number of pixel errors K as a function of the noise level for SIRT (NS =
10) and DART (NS = 3, ND = 3, NB = 3), before and after applying the
filter postprocessing step. The parameter c determines the noise level by
� = cI0. On average, 12 spots per grain were used for reconstruction.
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both SIRT and DART, after applying the filter postprocessing

step.

The results clearly demonstrate a principal advantage of

using DART. Accepting an error level of, say, K = 100, we see

that ten reflections are needed for SIRT, but only three for

DART.

3.3. Variation with noise for four reflections per grain

From the results in the previous subsection, it is clear that

DART yields more accurate reconstructions than SIRT if only

a few reflections are available for each grain. However, these

experiments were performed using simulated projection data

without noise. To determine the effect of noise on the

reconstruction from a small number of reflections, the

experiments from x3.1 were repeated using a fixed number of

four reflections per grain. For every test case, 100 independent

experiments were run, where four reflections for each grain

were chosen randomly from the set of all available reflections.

The results are shown in Fig. 10 and confirm the conclusions

reached above.

3.4. Reconstruction of a large complex two-dimensional

orientation map

In the second series of simulation experiments, we investi-

gated the reconstruction quality for both SIRT and DART for

the more complex 400 � 400 phantom in Fig. 6. In each

experiment, three reflections for each grain were selected

randomly from the set of all available reflections, and a noise

level of c = 0.1 (see x3.1) was applied to all reflections. This

constitutes a conservative estimate of the noise usually seen in

experimental data. The noise may be reduced by longer

exposure times, but the dynamical range of the detector and

stability impose an upper limit on the exposure times possible.

In the same manner, three projections per grain is a conser-

vative estimate, but one that enables reconstruction of large

maps where spot overlap is considerable.
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Figure 8
Result of the filtering process applied to a reconstruction using DART
(NS = 3, ND = 3, NB = 3) from noisy data (c = 0.8) (x3.1). Each grey level
represents one grain with one crystallographic orientation; black
represents background or an undetermined pixel. (a) Before filtering;
(b) after filtering.

Figure 9
Number of pixel errors K as a function of the number of projections per
grain for SIRT (NS = 10) and DART (NS = 3, ND = 3, NB = 3), after
applying the filter postprocessing step.

Figure 10
Number of pixel errors K as a function of the noise level for SIRT (NS =
10) and DART (NS = 3, ND = 3, NB = 3), using only four reflection spots
per grain. The parameter c determines the noise level by � = c I0.
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In the experiments of xx3.1–3.3, the number of iterations for

both SIRT and DART was kept fixed. Here, we investigate

how the reconstruction quality varies with the number of

iterations. The parameter settings for each DART experiment

correspond to a triple of the form (NS, ND, NB) = (M, 20, M),

i.e. M initial SIRT iterations followed by 20 DART iterations,

each performing M SIRT iterations on the boundary pixels.

For comparison in a single graph, we compare the result of

DART with SIRT, using NS = M + 20M = 21M iterations. Note

that the actual workload performed in DART is much smaller

than for the corresponding SIRT experiment, as only the

boundary pixels are updated within the DART iterations. For

each value of M, ten independent experiments have been

performed.

Fig. 11 shows the average reconstruction error, as a function

of the number NS of SIRT iterations, where a value of M = NS /

21 has been used for the DART experiments. The results

before and after filtering were highly similar; therefore we

report the results for the unfiltered reconstructions.

The results show that, for this rather complex test set, SIRT

yields superior reconstruction accuracy if only a few iterations

are applied, but for a large number of iterations, DART attains

a low number of pixel errors that is never reached by SIRT,

regardless of the number of SIRT iterations. For the case (M,

NS) = (10, 210), computing the SIRT reconstruction requires

approximately 20 s of computing time on a standard desktop

PC, whereas DART takes about 10 s.

4. Discussion and outlook

Several algorithms have been proposed for solving the

reconstruction task of this paper. Compared to the original

ART approach from Poulsen & Fu (2003), it is clear that the

reconstructions computed by both SIRT and DART result in

far less ambiguity in the reconstructed grain map. For

moderate noise levels, and using more than ten reflections per

grain, very few errors can be seen in the reconstruction, even

before the filtering operation is applied. In contrast, in the

ART reconstruction presented by Poulsen & Fu (2003), the

reconstructed grain map still contained large areas that could

not be matched with one of the grains.

The Monte Carlo-based approach proposed by Alpers et al.

(2006) resulted in a substantial improvement in reconstruction

quality compared to the ART algorithm. The Metropolis

algorithm, which uses prior knowledge of the frequency

distribution of certain local image features in the reconstruc-

tion, can be seen as an advanced version of the filtering step

applied in the present paper. The main problem with the

Metropolis algorithm is its running time. As reported by

Alpers et al. (2006), reconstruction of a grain map of size 128 �
128, as used in our simulation, can take up to 1 min of

computation time. As real 3DXRD maps may have a size of up

to 500 � 500, the running time is prohibitive for many in situ

studies. In comparison, both SIRT and DART are extremely

fast, requiring less than 1 s for reconstructing a 128 � 128

grain map and about 10–20 s for reconstructing the complex

400 � 400 map. Combined with the benefits of DART with

respect to the small number of required reflections, this allows

for a combination of fast image acquisition and fast recon-

struction. We emphasize that the applicability of the approach

presented here is confined to the reconstruction of unde-

formed grains, which allow for the representation of a grain by

a binary image. This restriction also holds for the approaches

of Poulsen & Fu (2003) and Alpers et al. (2006). For the more

complex case of moderately deformed grain maps, we refer to

Rodek et al. (2007).

Our simple model for the postprocessing filter does not

capture some aspects of the nature of real microstructures.

However, the simulations above demonstrate the validity of

the heuristic approach, as the simple filter results in a signifi-

cant improvement in accuracy over the unfiltered recon-

structed grain maps. In this context, we note that one

important piece of prior information, which is used in the

stochastic approach of Alpers et al. (2006) but not by DART, is

the knowledge that grains may not overlap, and that there

cannot be empty space between the grains. This knowledge

could be incorporated by simultaneously reconstructing

several grains, while applying the constraints on the connec-

tions between grains (see Poulsen & Fu, 2003). Although such

a procedure can potentially lead to improved reconstruction

quality, the simultaneous reconstruction will likely lead to

longer reconstruction times, as a result of the increased

complexity of the reconstruction problem that now must

incorporate constraints on the overlap and connectivity of

grains. For cases where fast reconstruction is important, we

feel that DART, when combined with the postprocessing filter,

provides a good trade-off between reconstruction quality and

reconstruction time.

Obviously, convergence is a relevant concern for any

reconstruction algorithm. Although the specific variant of

DART presented here is based on the SIRT algorithms, for

which convergence can be proved formally, the complete

DART algorithm does not have guaranteed convergence.
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Figure 11
Number of pixel errors K for the phantom in Fig. 6 as a function of the
number NS of SIRT iterations. The DART reconstructions have been
computed using (NS, ND, NB) = (M, 20, M), where M = NS / 21. In all
experiments, three reflections per grain were used and a noise level c = 0.1
was applied to the projection data.
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Even after a large number of iterations, the reconstruction

may still change between subsequent iterations. To obtain a

variant of DART with guaranteed convergence properties, it

can be mixed with a convergent algorithm such as SIRT, where

the new image computed in each iteration consists of a linear

combination of an update term computed by SIRT and an

update term computed by DART. If the contributions of the

DART terms can be bounded and decrease exponentially as a

function of iteration number, the resulting combined algo-

rithm will formally converge (Butnariu et al., 2007). However,

the resulting reconstruction is not guaranteed to be discrete in

the grey-level domain.

We remark that the convergence of DART, as well as the

accuracy of the reconstructed image with respect to the

ground truth, depends on many factors. Firstly, there is a

dependency with respect to the data: the number of required

projection images will depend on the complexity of the shapes

of the grains and the size of the boundary. The characteristics

of experimental noise will differ, at least to some extent, from

the simulated noise used in our experiments. Secondly, the

choice of algorithm parameters, such as the number of DART

iterations, will influence the result. Finding the optimal para-

meters for a given data set is a difficult task, just as with

classical continuous iterative methods.

The main application of the DART methodology for

3DXRD studies may be for a different mode, where the beam

illuminates the full sample instead of only a layer. In this

mode, the three-dimensional grain map is then reconstructed

without the need for stacking. The use of iterative methods –

ART – for this mode has been demonstrated by Markussen et

al. (2004). This development is of major interest for in situ

studies as the total data acquisition time is substantially

reduced. However, it was also shown that the number of

diffraction spots per grain needed for a good reconstruction in

three dimensions is twice the number needed for two dimen-

sions. This requirement is likely to be an issue. Fortunately, the

generalization of both SIRT and DART to three dimensions is

straightforward. This is also believed to be the case for

applying the method to DCT.

The case for using DART for multiphase mapping by means

of X-ray absorption or phase tomography is seen as equally

strong. The difference is that, in this case, individual compo-

nents cannot be reconstructed independently and then

stitched together. Nevertheless, we anticipate – based also on

first results from electron tomography (Bals et al., 2007, 2009)

– that DART can be successfully applied for such data as well.

5. Conclusion

Materials associated with a few fixed contrast levels are

common in X-ray imaging. The DART algorithm makes it

possible to use such a priori knowledge directly in the

reconstruction. As illustrated by the case of grain maps based

on 3DXRD microscopy, the algorithm enables quality recon-

structions based on very few projections and is associated with

very short run times. While DART is not substantially faster

than SIRT (or indeed similar tomography algorithms) it

combines speed with the high reconstruction quality of

discrete tomography. This combination of speed and quality is

seen as the enabling factor for on-line 3DXRD mapping of

undeformed samples using DART.
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Kak, A. C. & Slaney, M. (2001). Principles of Computerized
Tomographic Imaging. Philadelphia: Society for Industrial and
Applied Mathematics.

King, A., Johnson, G., Engelberg, D., Ludwig, W. & Marrow, J. (2008).
Science, 321, 382–385.

Lauridsen, E. M., Schmidt, S., Suter, R. M. & Poulsen, H. F. (2001). J.
Appl. Cryst. 34, 744–750.

Ludwig, W., King, A., Reischig, P., Herbig, M., Lauridsen, E. M.,
Schmidt, S., Proudhon, H., Forest, S., Cloetens, P., du Roscoat, S.,
Rolland, S., Buffiere, J. Y., Marrow, T. J. & Poulsen, H. F. (2009).
Mater. Sci. Eng. A, 524, 69–76.

Markussen, T., Fu, X., Margulies, L., Lauridsen, E. M., Nielsen, S. F.,
Schmidt, S. & Poulsen, H. F. (2004). J. Appl. Cryst. 37, 96–102.

Poulsen, H. F. (2004). Three-Dimensional X-ray Diffraction Micro-
scopy: Mapping Polycrystals and their Dynamics. Berlin: Springer.

Poulsen, H. F. & Fu, X. (2003). J. Appl. Cryst. 36, 1062–1068.
Rodek, L., Poulsen, H. F., Knudsen, E. & Herman, G. T. (2007). J.
Appl. Cryst. 40, 313–321.

Schmidt, S., Nielsen, S. F., Gundlach, C., Margulies, L., Huang, X. &
Juul Jensen, D. (2004). Science, 305, 229–232.

Schmidt, S., Olsen, U. L., Poulsen, H. F., Sørensen, H. O., Lauridsen,
E. M., Margulies, L., Maurice, C. & Juul Jensen, D. (2008). Scr.
Mater. 59, 491–494.

Sezan, M. I. & Stark, H. (1982). IEEE Trans. Med. Imaging, MI-1, 95–
101.

Suter, R. M., Hennesy, D., Xiao, C. & Lienert, U. (2006). Rev. Sci.
Instrum. 77, 123905.

Warren, B. E. (1990). X-ray Diffraction. Mineola: Dover Publications.

research papers

J. Appl. Cryst. (2010). 43, 1464–1473 K. J. Batenburg et al. � DART 1473
electronic reprint


