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1. Introduction

In industry, there is a great demand for fast x-ray inspection 
and quality control. To make x-ray inspection time efficient, an 
inline x-ray system is often preferred. Ideally, it should allow 
individual inspection of every single sample, while preserving 
a sufficiently high throughput. Inline inspection techniques 
are already used in different industries, such as agriculture 
[1, 2], powder metallurgy [3], log scanning [4], dynamic pro-
cesses [5], metrology [6], and baggage inspection [7].

The fastest and easiest way of inspecting objects inline 
with x-rays is radiography. To acquire a radiograph, a side-
view arrangement is employed with a source and detector on 

opposite sides of the conveyor belt. Based on the radiograph, 
interior features of a sample, like dense materials or foreign 
objects, can be detected [8, 9] or components can be inspected 
[3]. A high efficiency and a relatively inexpensive infrastruc-
ture are the main advantages of x-ray radiography. However, 
plain radiography comes with a substantial disadvantage: due 
to the accumulation of the attenuation coefficients along the 
direction of the projection, depth information is lost and pos-
sible defects cannot be spatially resolved in 3D. Moreover, 
defects may render invisible, hidden behind or in front of 
materials with a higher attenuation coefficient.

The need for 3D information can be met by using a more 
advanced x-ray inspection technique: computed tomography 
(CT). Conventional CT exploits information from a large 
number of projections to obtain an image of the interior of 
the sample and is widely used in the field of offline inspection 
and dimensional metrology [10–13]. CT systems consist of 
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X-ray imaging is an important tool for quality control since it allows to inspect the interior 
of products in a non-destructive way. Conventional x-ray imaging, however, is slow and 
expensive. Inline x-ray inspection, on the other hand, can pave the way towards fast and 
individual quality control, provided that a sufficiently high throughput can be achieved at a 
minimal cost. To meet these criteria, an inline inspection acquisition geometry is proposed 
where the object moves and rotates on a conveyor belt while it passes a fixed source and 
detector. Moreover, for this acquisition geometry, a new neural-network-based reconstruction 
algorithm is introduced: the neural network Hilbert transform based filtered backprojection. 
The proposed algorithm is evaluated both on simulated and real inline x-ray data and has 
shown to generate high quality reconstructions of 400  ×  400 reconstruction pixels within 
200 ms, thereby meeting the high throughput criteria.
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either a source and detector rotating around the object or an 
object rotating between a source and detector. However, full 
rotation of the object between a fixed source and detector is 
not possible in an inline setup and full rotation of the source 
and detector around the object is difficult or even impossible 
to realise in an inline setup when reconstruction speed and 
geometrical constraints are an issue. Furthermore, these con-
ventional CT systems come with a high infrastructure cost 
(>500 000 euro [14]).

A more cost-friendly x-ray setup that still allows fast and 
spatially resolved imaging is a side-view arrangement con-
sisting of a fixed cone beam source and a detector moving 
along with the object, while the object traverses through to 
the x-ray beam (figure 2). From the (limited) angular range 
from which projections are acquired, image reconstruction 
is possible. However, these images will typically suffer from 
smearing artefacts due to the missing wedge. Several attempts 
have been made to reduce these artefacts with iterative recon-
struction. Sidky et al, for example, derived a volume image 
reconstruction technique for a finite straight-line source tra-
jectory [15]. Zhang et al [16] performed a feasibility study for 
x-ray tomography in a straight-line trajectory scan based on a 
total variation iterative procedure. The same group introduced 
an image reconstruction technique based on total variation 
minimization and alternating directions to reconstruct images 
in a linear scan [17]. Despite the improved image quality that 
can be obtained with these techniques, their usefulness is lim-
ited for fast inspection due to the long computation time of 
iterative reconstruction methods.

Recently, we introduced an alternative solution to the 
angular range problem by adding a rotation of the sample 
around an axis perpendicular to the conveyor belt [18–20], 
which largely solves missing wedge artefacts. Nevertheless, 
even in this scanning geometry the number of projections 
must be kept small to keep the reconstruction time limited, 
which may lead to undersampling artefacts. Therefore, in this 
work, we propose a new type of fast fan beam reconstruc-
tion algorithm, analogous to the parallel beam neural network 
approach of [21, 22]. Our algorithm is based on the Hilbert 
transform FBP (hFBP) [23] for which the filter is trained by 
a neural network (NN-hFBP). An advantage of the method is 
that the NN-hFBP reconstructions can be computed directly 
from fan-beam data, without the need for rebinning. The 
algorithm is validated using both simulated and experimental 
inline scans of agricultural products. It will be shown that the 
NN-hFBP allows for fast and high quality reconstructions of 
images in an inline environment from a limited number of 
projections.

2. Methods

In this section, the proposed NN-hFBP algorithm is intro-
duced. The algorithm is based on two existing algorithms: the 
NN-FBP and the hFBP. The NN-FBP introduced by Pelt et al 
[21, 22] creates an image by combining multiple FBP recon-
structions, each obtained with a different filter. These filters are 
trained beforehand in a neural network based on an existing 
training dataset. High quality images can be reconstructed in a 

very short time with the NN-FBP. However, the method is only 
applicable to parallel beam data, which restricts its application 
for x-ray imaging mainly to synchrotron beamlines. For most 
x-ray sources, the x-rays are emitted in a cone beam. When 
only considering the central slice of a cone beam dataset, a fan 
beam dataset can be obtained. Although rebinning from fan 
to parallel beam would allow direct application of NN-FBP, 
it slows down the reconstruction and often introduces inter-
polation artifacts. Therefore, we chose to adapt the NN-FBP 
algorithm for direct application to fan beam data. To do this, 
the hFBP [23] was used instead of the conventional FBP. In 
the hFBP algorithm, the differential of the Hilbert transform 
of the projection data is backprojected onto the reconstruc-
tion plane to create the reconstructed image. In this paper, 
the hFBP is first adapted for an inline acquisition geometry 
[18–20] in section 2.1. Next, position- and angle-independent 
filters are derived in section 2.2, to form the NN-hFBP recon-
struction. A schematic of the structure is shown in figure 1.

2.1. Inline Hilbert transform based FBP

The inline acquisition geometry that we will work with con-
sists of an object that rotates and translates on a conveyor belt 
while passing a fixed source and detector system. The detector 
can either be steady at a fixed position opposite to the source 
or it can move along with the object over a certain distance. 
The disadvantage of a fixed detector is its limited field of view, 

Figure 1. Schematic of the structure describing how the NN-hFBP 
is formed in this paper.

Figure 2. Inline inspection with a flat panel detector that moves 
along with the object while it transverses and rotates.

Meas. Sci. Technol. 29 (2018) 034012
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forcing objects to rotate faster to obtain projections from a 
large angular range. Without loss of generality, we chose the 
acquisition geometry with a moving detector as shown in 
figure 2 for the remainder of the paper.

To adapt the hFBP algorithm so that it can be used for an 
inline inspection geometry, we start from the Hilbert trans-
form based reconstruction algorithm for parallel beam data. 
Here, the Hilbert transform is applied on the detector coor-
dinate. The parallel beam reconstruction formula is given by 
[23]

f (r,φ) =
1

8π

∫ 2π

0

∂pH(l, θ)
∂l

dθ (1)

where pH is the Hilbert transformed projection data, f is the 
reconstructed image, (r,φ) are polar coordinates, and (l, θ) 
represent the parameters of a parallel beam geometry: the 
detector pixel and the projection angle, respectively. Our 
inline acquisition geometry is characterized by the detector 
pixel u, the translation distance h between the source and 
the center of the object and the rotation angle γ of the object 
(see figure  3). Figure  3(a) shows a projection in the geom-
etry from the point of view of a fixed source and rotating and 
translating object, while figure 3(b) shows the same projection 
from the point of view of a fixed object where the source and 
detector are rotating around the object. In figure 3, D is the 
distance between the source and the plane of the detector, OD 
is the distance from the detector to the origin, SO the distance 
between the origin and a plane through the source parallel to 
the detector and P a pixel that we want to reconstruct. It is 
important to notice that the translation distance h is positive 
when the object is in front of the central position and negative 
behind the central position.

If the rotation speed ω of the object, expressed in rad/m, is 
constant, the object’s rotation angle γ can be written in terms 
of this rotation speed and the translation distance h so that 
only two independent parameters remain:

γ = −h · ω. (2)

Note that the rotation angle γ is zero when the object is at the 
central position.

Our new reconstruction formula for inline data will be 
derived from (1). Therefore, we must express (1) in terms of 

parameters h and u instead of l and θ. To do this, l and θ are 
first written in terms of u and h:

l =
uSO + hOD√
D2 + (u − h)2 (3)

θ = −hω + arctan
u − h

D
. (4)

To simplify the notation of the upcoming equations, we now 
introduce a variable t  =  u  −  h. The Hilbert transform for 
inline data can now be defined similarly to the Hilbert trans-
form of fan-beam data with a flat panel detector described 
in [24]. Only in the inline setup, the object is not positioned 
in the center of the beam. Therefore, we replace the detector 
pixel u with t, which results in the following Hilbert transform 
for inline data:

pinl
H (ui, hj) =

√
t2
i,j + D2

π

∫
pinl(ui − τ , hj)dτ
τ
√

(ti,j − τ)2 + D2
 (5)

where pinl is the inline projection data, pinl
H  is the Hilbert trans-

formed inline projection data, and ti,j = ui − hj, then (6) holds:

pinl
H (u, h) = pH

(
uSO + hOD√

D2 + t2
,−hω + arctan

t
D

)
. (6)

A proof, similar to appendix A in [24] for (6), can easily be 
derived.

To create the reconstruction formula for inline data, (6) is 
used to adapt equation  (1). To express the derivative of the 
parallel Hilbert transform in terms of the derivatives of the 
inline Hilbert transform, first the partial derivatives of pinl

H  
with respect to u and h are calculated based on (6)

∂pinl
H

∂u
(u, h) =

D2SO − Dht√
(D2 + t2)3

∂pH(l, θ)
∂l

+
D

D2 + t2

∂pH(l, θ)
∂θ

 

(7)

∂pinl
H

∂h
(u, h) =

D2OD + Dut√
(D2 + t2)3

∂pH(l, θ)
∂l

−
(
ω +

D
D2 + t2

)
∂pH(l, θ)

∂θ
.

 

(8)

This system of equations can now be solved for ∂pH(l, θ)/∂l:

∂pH(l, θ)
∂l

=

√
D2 + t2

D + ω(D SO − ht)

[
∂pinl

H

∂h
(u, h)

+
ω(D2 + t2) + D

D
∂pinl

H

∂u
(u, h)

] 

(9)

= pinl
F0
(u, h). (10)

The reconstruction formula for inline data can now be derived 
from (1) by inserting (9) in (1). This results in the hFBP recon-
struction algorithm for fan-beam data in an inline environment 
where the object rotates with a constant speed ω:

Figure 3. Acquisition geometry for inline inspection. (a) Point  
of view of the fixed source and a rotating and translating object.  
(b) Point of view of a fixed object and a rotating source and detector.
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f (r,φ) =
1

8π

∫ 2π

0

∂pH

∂l
dθ

=
1

8π

∫ 2π

0

√
D2 + t2

D + ω(D SO − ht)

[
∂pinl

H

∂h
(u, h)

+
ω(D2 + t2) + D

D
∂pinl

H

∂u
(u, h)

]
dθ.

 

(11)

Here, f is the reconstructed image and u corresponds to the 
detector pixel where the ray through (r,φ) hits the detector 
at displacement h and t  =  u  −  h. To compute the integral, the 
projection data is interpolated in u and h to obtain data corre-
sponding to the desired parallel beam θ values. Therefore, (3) 
and (4) should be converted to expressions for u and h. To do 
this, the arctan(u−h

D ) was approximated by u−h
D  since u−h

D  was 
small. After discretization of (11), the discrete reconstruction 
algorithm for inline inspection with a constant rotation speed 
consists of 4 steps and is described in appendix A.

In the case of equiangular data acquisition, the rotation 
speed of the object is dependent on its position on the con-
veyor belt. The rotation angle γ can then be written as

γ = Γ
arctan

(−h
SO

)
− arctan

(−hst
SO

)

arctan
(−he

SO

)
− arctan

(−hst
SO

) − γmin (12)

= ω′
(
arctan

(
−h
SO

)
− a

)
− γmin. (13)

Here, Γ is the total angular range over which the object will 
rotate, γmin is the angle over which the object rotates from 
the first projection until the central position and ω′ and a 

are constants defined as ω′ = Γ

arctan(−he
SO )−arctan(−hst

SO )
 and 

a = arctan
(−hst

SO

)
 with he the last h-value and hst the first 

h-value. The positions hi on the conveyor belt at which pro-
jections are taken are distributed in such a way that, without 
rotation of the object, the projections would be acquired 
equiangularly:

hi = SO · tan (αmin + (i − 1) ·∆α) . (14)

In (14), αmin = arctan(−hst
SO ) and ∆α is the angle between two 

successive projections. The partial derivative with respect to 
l of the Hilbert transformed parallel projection data, similar 
to (9) or step 2 of the reconstruction algorithm then becomes

pinl
F0
(ui, hj) =

[
(SO2 + h2

j )
∂pinl

H (ui, hj)

∂h

+
(D(SO2 + h2

j ) + ωSO(D2 + t2
i,j))

D
∂pinl

H (ui, hj)

∂u

]

·

√
D2 + t2

i,j

D(SO2 + h2
j ) + ωSO(D SO − hjti,j)

.

 

(15)

2.2. NN-hFBP

The inline hFBP reconstruction of the previous section  can 
now be combined with the NN-FBP of Pelt et al [21, 22] to 

provide fast, high-quality reconstructions for fan-beam data in 
an inline environment. This is, however, only possible when 
the hFBP is written as the product of a certain input with a 
position and angle independent filter. In appendix B, it is 
shown that the inline hFBP can be written as the sum of two 
terms with each term the convolution of a datavector (I1 and 
I2) of size n (the number of detector pixels) and a filter (f1 and 
f2):

f (r,φ) =
∑
τ

f1(τ)I1(u − τ) + f2(τ)I2(u − τ) (16)

where u represents the detector pixel where the ray through 
(r,φ) hits the detector. Since the neural network performs 
a convolution of an input with a filter, this means that the 
hFBP can be implemented in a neural network to create the 
NN-hFBP. To do this, first the correct datavectors I1 and I2 
should be generated based on the acquired projection data to 
train the filters (see appendix B). For every detector pixel, two 
datavectors are generated which are stored in one input vector 
of size 2n so that the total length of the input of the neural 
network is twice the size of the detector. Once these datavec-
tors are obtained, instead of using the normal filters of the 
hFBP (described in (B.3) and (B.4)), the network is trained so 
that the weight matrices W1 ∈ Rn×N  and W2 ∈ Rn×N  between 
the 2n input nodes and the N hidden nodes of the multilayer 
perceptron define new filters w1i ∈ Rn and w2i ∈ Rn for the 
hFBP reconstructions, which are the columns of the weight 
matrices W1 and W2 (replacing the filters f1 and f2). This means 
that after training the network, several hFBP reconstructions 
can be computed with these new filters instead of the filters 
of (B.3) and (B.4). Finally, the reconstructions are combined 
using the activation functions σ and σ0  (in our case sigmoid 
functions), the trained weights q ∈ RN , and the biases b ∈ RN  
and b0 of the neural network, as shown in figure 4. The final 
reconstruction formula then becomes

f (r,φ) = σ0

(
N−1∑
k=0

qkσ(
∑
τ

 

(w1k(τ)I1(u − τ) + w2k(τ)I2(u − τ))− bk)− b0) (17)

Figure 4. Scheme of the NN-hFBP reconstruction. For training, 
inputs I1 and I2 are created from the projection data with which the 
filters w1i and w2i are trained in the top row. For reconstruction, 
the filters w1i and w2i are combined and used as the new filters to 
perform several hFBP reconstructions in the second row.

Meas. Sci. Technol. 29 (2018) 034012
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where w1k and w2k are the filters trained by the neural network.

3. Experiments and results

In this section, the performance of the NN-hFBP algorithm 
is evaluated with both simulated and real inline data. First, 
using simulation experiments, the acquisition settings and 
NN-hFBP network parameters are optimized for maximal 
image quality. In particular, the influence of equiangular 
versus non-equiangular sampling, the rotation speed of the 
sample and the number of hidden nodes of the network was 
studied in terms of image quality. Secondly, the reconstruc-
tion quality of the (optimized) NN-hFBP was compared to 
that of the conventional reconstruction algorithms FBP and 
SIRT with 500 iterations. Finally, the performance and image 
quality of NN-hFBP versus conventional reconstruction algo-
rithms were evaluated using real data experiments. The evalu-
ation of the image quality was done by 4 different evaluation 
methods: the root mean squared error (RMSE) on the whole 
image (global RMSE) and only on the apple, bell pepper or 
walnut region (local RMSE), the feature similarity index 
(FSIM) [25] and the most apparent distortion (MAD) [26]. 
The RMSE is defined as

RMSE =

√∑
i=1..M(rec(i)− GT(i))2

M
 (18)

where rec is the reconstructed image, GT is the ground truth 
image and M is the number of pixels in the image. For all 
experiments, reconstructions were made using the ASTRA 
Toolbox [27–29] where all forward and backprojections were 
calculated on an NVIDIA GeForce GTX 580 GPU.

3.1. Simulation experiment

To evaluate the performance of the NN-hFBP algorithm 
on simulation data, inline experiments were simulated that 
mimic the behavior of a real inline scan. X-ray CT scans of 
apples and bell peppers were used as test samples, for which 
the detection of small structural changes such as holes or 
browning are of interest. Inline CT data were created starting 
from conventional circular CT scans of apples and bell pep-
pers from respectively 470 and 632 equiangular projections of 
1024 × 1024 pixels. From these scans, inline scans were sim-
ulated by reorganizing corresponding rays. Such simulated 

inline projection data naturally accounts for a realistic poly-
chromatic source as well as realistic noise behaviour.

Specifications of the geometry are given in table  1. The 
translation distance is expressed as the distance in mm com-
pared to the central position on the conveyor belt opposite to 
the source. For the experiments, four types of apples and one 
type of bell pepper were used. The number and types of apples 
and bell peppers used for training, validation and testing in the 
different experiments is shown in table 2.

For each experiment, 10 instances of every network were 
trained by randomly selecting different sets of pixels of the 
same image data. Each ANN was trained based on 100 000 
random pixels for training and validated with 10 000 random 
pixels. For each of the four apple types, 100 slices of the 
training datasets were used for training and 10 slices of the 
validation datasets for validation. In case of the bell peppers, 
only the central slice of each bell pepper was used for training 
and validation since the scan quality was not good enough 
to make fan-beam reconstructions of non-central slices. For 
the bell peppers, the ANN was trained based on 15 training 
images and 5 validation images. The reconstruction quality 
was tested on 50 images for the apple datasets and on 10 
images for the bell peppers.

Before describing the first experiment, we note that the 
hFBP and the NN-hFBP both require an interpolation step. 
This step causes higher reconstruction times and introduces 
blurring in the reconstruction in few-view acquisitions. 
Therefore, in this paper, we propose a heuristic approach 
where we omit the interpolation step and directly backproject 
the data along the inline fan-beam projection geometry. This 
means that for every pixel in the reconstruction grid, data from 
slightly different parallel projection angles θ is summed up. 
Although this is an approximation, avoiding the interpolation 
step makes the reconstruction much faster with only a slight 
loss of reconstruction quality. The effects of interpolation on 
the hFBP and the NN-hFBP reconstruction quality can be seen 
in figures 5(b) and 6(b), respectively on two inline scanned 
apples with ground truth images in figures  5(a) and 6(a). 
To avoid the blurring and to further reduce the computation 
time, we propose to omit the interpolation step and directly 
backproject the data along the inline fan-beam projection 
geometry. In figure 5, NN-hFBP is compared to hFBP with 
interpolation and the heuristic hFBP reconstruction for 32 and 
128 projection angles. The hFBP with interpolation provides 
good image quality when a sufficiently high (in this case 128) 
number of projections are available, but blurring artifacts 
appear when only a small number of projections are present. 
With the heuristic approach, the holes are less blurred than 
with the interpolation approach for 32 projections. For 128 

Table 1. Specifications scanning geometry.

Simulations Real data

Detector pixels 1148 1146
Detector pixel size 127 μm 127 μm
Translation distance (mm) [−250, 250] [−250, 250]
Object detector distance 84.500 mm 84.527 mm
Source object distance 900 mm 563 mm
Downsampling 4 2
Image pixels 256 × 256 400 × 400
Image pixel size 400 μm 200 μm

Table 2. Datasets.

Training set Validation set Test set

Braeburn 1 8 4 4
Braeburn 2 20 7 10
Jonagored 10 6 7
Jonagold 15 6 10
Bell pepper 15 5 10

Meas. Sci. Technol. 29 (2018) 034012
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projections, streaking artefacts appear in the heuristic recon-
structions, but the reconstruction is less blurred and the holes 
and brown spots are still clearly visible. In figure 6, a similar 
comparison is made between an inline NN-hFBP reconstruc-
tion with interpolation and a heuristic inline NN-hFBP recon-
struction for 32 and 128 projection angles. With the heuristic 
approach, streak artefacts appear again at the outside of the 
apple, but the small holes are detected with 32 projections, 
which is not the case for the conventional NN-hFBP method. 
Figures 5 and 6 clearly indicate that a choice should be made 
between blurring or streaks in the reconstructions made with 
only few projections. Based on the capacity of the heuristic 
NN-hFBP to better detect the holes with less blurriness for 
a small number of projections and the faster reconstruction 
time, we decided to use the heuristic approach in the rest of 
this paper.

In the first experiment, we optimize the acquisition and 
network parameters to evaluate the reconstruction quality 
of the NN-hFBP. Important parameters for data acquisi-
tion are the rotation speed and rotation direction of the 
objects. Therefore, in this experiment, we first evaluate the 
reconstruction quality (in terms of the global RMSE) of  
the NN-hFBP of the Braeburn 1 apples as a function of the 
rotation speed when 128 projections are acquired equiangu-
larly (see: figure 7). The rotation speed is expressed in terms 
of the angular range Γ over which the apple has rotated from 
the first projection to the last projection and ranges between 
−π and π. The corresponding reconstructed images are shown 
in figure 8. From the graph and the images, it is immediately 
clear that rotation substantially improves the reconstruction 
quality. Without rotating the object, substantial limited wedge 
artefacts appear. Furthermore, there is an obvious difference 

Figure 5. Comparison of the interpolation and the heuristic method. (a) Ground truth image, (b) hFBP reconstruction with interpolation 
from 32 projections over 2π, (c) heuristic hFBP reconstruction from 32 projections, (d) hFBP reconstruction with interpolation from 128 
projections, (e) heuristic hFBP reconstruction from 128 projections.

Figure 6. Comparison of the interpolation and the heuristic method in a neural network. (a) Ground truth image, (b) NN-hFBP 
reconstruction with interpolation from 32 projections over 2π, (c) heuristic NN-hFBP reconstruction from 32 projections, (d) NN-hFBP 
reconstruction with interpolation from 128 projections, (e) heuristic NN-hFBP reconstruction from 128 projections.
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between a counterclockwise and clockwise rotation. When the 
object rotates counterclockwise at a slow rotation speed, the 
different intrinsic projection angles at which the projections 
are required without rotation are counteracted by the rotation 
so that the reconstruction is similar to no rotation. A clockwise 
rotation however allows to substantially increase the angular 
range, resulting in a higher reconstruction quality.

Secondly, we inspect the influence of two different types of 
sampling of the projections on the final reconstruction quality. 
Unless prior knowledge is available about the object to be 
inspected, equiangular sampling is expected to be optimal. 
On the other hand, a constant rotation speed and equidistantly 
acquired projections may have a practical advantage. Hence, 
we investigate the difference between the reconstruction 

quality of the NN-hFBP for Braeburn 2 apples that rotate 
with a constant rotation speed (non-equiangular projections) 
versus apples that rotate with a varying rotation speed so that 
the acquired projections are equiangular. The results in terms 
of the global RMSE as a function of the number of projec-
tions, both with equiangular (EA) and non-equiangular (NEA) 
projections, are compared in figure 9. It can be seen that the 
reconstruction quality is very similar. Hence, in this acquisi-
tion setup, there is not a large gain by acquiring the projec-
tions equiangularly. This is a desired characteristic since it 
facilitates the data acquisition. Projections can then be taken 
at equidistant positions and the rotational speed of the apple 
can be kept constant.

Finally, we optimize the number of hidden nodes and 
thus the number of hFBP reconstructions that are combined 
in the neural network as it represents a trade-off between 
reconstruction quality and speed. We therefore examine the 
influence of the number of hidden nodes N of the ANN on 
the reconstruction quality of the NN-hFBP evaluated on 
Jonagored apples with a constant rotation speed and N  =  1, 2, 
4 and 8. Figure 10(a) shows the RMSE over the whole image 
and figure  10(b) the reconstruction time in function of the 
number of projections. The four graphs represent the cases of  
1, 2, 4 and 8 hidden nodes. From the graphs, one can see that 
increasing the number of hidden nodes improves the recon-
struction quality. However, it also increases the reconstruction 
time. For 32 and 128 projections, the reconstructed images are 
shown in figure 11. To balance the reconstruction quality and 

Figure 7. The global RMSE of the NN-hFBP reconstruction for 
different angular ranges. The x-axis gives the total angular range Γ 
over which the apple has rotated.

Figure 8. Reconstruction images of the apples made with the NN-
hFBP for angular ranges Γ equal to (a) −π, (b) −3π/4, (c) −π/2, 
(d) −π/4, (e) 0, (f) π/4, (g) π/2, (h) 3π/4, (i) π.

Figure 9. Global RMSE for non-equiangular and equiangular NN-
hFBP reconstructions in function of the number of projections.

Figure 10. Evaluation of the reconstruction quality in terms of 
the global RMSE (a) and reconstruction time (b) of the NN-hFBP 
evaluated on Jonagored apples based on 1, 2, 4 and 8 hidden nodes 
for different number of projections.
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reconstruction time, we have chosen to use four hidden nodes, 
aiming to optimize the reconstruction quality while preserving 
a reconstruction time of less than 100ms for 128 projections.

From the three experiments, optimal conditions can be 
derived for the NN-hFBP reconstructions. Now, the recon-
struction quality of the NN-hFBP is compared to the quality of 
the conventional algorithms SIRT and FBP. Results of a com-
parison with hFBP were omitted, as NN-hFBP clearly out-
performs hFBP in terms of reconstruction quality. Figure 12 
shows the reconstruction quality of FBP, SIRT and the 
NN-hFBP as a function of the number of projections in terms 
of the global RMSE (a), the local RMSE (b), MAD (c) and 
FSIM (d). As is clear from the plots, the reconstruction quality 
of NN-hFBP is significantly better than that of FBP and SIRT 
for all number of projections, both for the Jonagold apples 
and the bell peppers. In particular, the quality of the NN-hFBP 

reconstructions in terms of the FSIM is much better than that 
of FBP and SIRT. This might be because the NN-hFBP is 
capable of clearly detecting the shape of the object and impor-
tant features like holes and the core of the apple even with 
a very small number of projections, in contrast to FBP and 
SIRT.

A comparison of the reconstructed Jonagold and bell 
pepper slices from 32 projections with the different methods 
is shown in figure 13. One can clearly see that the NN-hFBP 
outperforms the other reconstruction algorithms since much 
more noise is present in the FBP reconstruction (signal-to-
noise ratio of 13.44 versus 4.91 for bell peppers and 9.72 
versus 4.80 for apples) and the SIRT reconstruction is slightly 
blurred. Example images for comparing the reconstruction 
quality of the NN-hFBP with different numbers of projections 

Figure 11. (a) Ground truth image of a Jonagored slice, (b-e) NN-
hFBP reconstructions of 32 projections with 1 (b), 2 (c), 4 (d) and 8 
(e) hidden nodes, (f-i) NN-hFBP reconstructions of 128 projections 
with 1 (f), 2 (g), 4 (h) and 8 (i) hidden nodes.

Figure 12. Evaluation of the reconstruction quality for FBP, SIRT 
and NN-hFBP in terms of the global RMSE (a), local RMSE (b), 
MAD (c) and FSIM (d), both for Jonagold apples and bell peppers.

Figure 14. NN-hFBP reconstructions of the apple and bell pepper 
slices of figure 13 for 16 ((a) and (e)), 32 ((b) and (f)), 64 ((c) and 
(g)) and 128 ((d) and (h)) projections.

Figure 13. Ground truth images of an apple slice (a) and a bell 
pepper slice (b) and their reconstructions for 32 projections made 
with FBP ((c) and (f)), SIRT ((d) and (g)) and NN-hFBP ((e)  
and (h)).
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are shown in figure 14 for 16, 32, 64 and 128 projections. On 
the images made with 16 projections, many artifacts appear 
which make the detection of undesired regions impossible. 
The black regions at the outside of the apple might suggest 
that there are holes as well. Also for the bell pepper, not much 
information can be obtained with 16 projections. However, 
from the images obtained with 64 projections, the holes are 
clearly visible in the reconstruction. Despite the radial lines 
at the outside of the apple, this image can certainly be used 
for the detection of holes. Further increasing the number of 
projections naturally leads to a better reconstruction quality. 
Figure  15 shows the reconstruction times of FBP with and 
without the rebinning time, SIRT and NN-hFBP. NN-hFBP 
is 16 to 28 times faster than SIRT and 3 to 9 times faster than 
FBP with rebinning time but slower than FBP without the 
rebinning. Therefore it can be concluded that the long recon-
struction time of FBP is caused by rebinning from a fan-beam 
to a parallel-beam geometry. The overhead time due to the 
rebinning step scales linearly with the number of projections. 
Furthermore, the training time of the NN-hFBP has not been 

taken into account since the NN-hFBP will mainly be used 
for inspection of a large number of samples, for which the 
training phase can be done in advance. Once the network is 
trained, similar samples can be scanned very fast.

3.2. Real data experiment

To test the performance on real x-ray data, a mock-up was 
built for an inline scanning environment where the sample 
rotates and translates at the same time, closely mimicking an 
inline environment with a conveyor belt [20]. Specifications 
of the scanning geometry are given in table 1. The positions 

Figure 15. Reconstruction times of FBP (with and without 
rebinning time included), SIRT and NN-hFBP for apples with 
256  ×  256 reconstruction pixels.

Figure 16. Evaluation of the FBP, SIRT and NN-hFBP 
reconstruction algorithms for walnuts with the (a) global RMSE,  
(b) local RMSE, (c) MAD and (d) FSIM.

Figure 18. Ground truth image (a) of a walnut and reconstructions 
made with FBP (b), SIRT (c) and NN-hFBP (d) from 32 projections 
and FBP (e), SIRT (f) and NN-hFBP (g) from 128 projections.

Figure 17. Reconstruction times of FBP (with and without 
rebinning time included), SIRT and NN-hFBP for walnuts with 
400  ×  400 reconstruction pixels.
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at which projections were taken on the conveyor belt ranged 
from −250 mm to 250 mm relative to the central ray and 
intermittent projections were acquired at positions so that the 
angles were equiangularly distributed.

With this mock-up, five walnuts were scanned. For each 
walnut, 512 projections were taken. Based on the 512 projec-
tions, 400 × 400 pixel reconstructions of 30 slices around the 
central slices were made with the SIRT algorithm. The recon-
structed images were used to train the NN-hFBP. The net-
work was trained with 300.000 pixels chosen from 90 images 
obtained from three training walnuts. Validation was done on 
10.000 pixels of 30 images. The results were obtained from 10 
images of the last remaining walnut dataset. A subset of the 
available projections was used and the reconstruction quality 
of FBP, SIRT and NN-hFBP as a function of the number of 
projections was compared.

Figure 16 shows the quality of the FBP, SIRT and 
NN-hFBP reconstructions based on the real data acquired 
from the walnuts, in terms of the RMSE ((a), (b)), MAD 
(c) and FSIM (d). As can be observed from these plots, the 
NN-hFBP outperforms the FBP method, independent of the 
number of projections. For less than 48 projections, the SIRT 
algorithms creates however better reconstructions than the 
NN-hFBP. This might be due to the limited training data 
available. The reconstruction quality of the NN-hFBP is 
highly dependent on the amount and quality of the training 
data. Figure 17 shows the reconstruction time of FBP with 
and without rebinning time, SIRT and NN-hFBP. Here, we 
see again that the NN-hFBP algorithm is faster than FBP 
with rebinning but slower than FBP without rebinning. 
Despite its lower reconstruction quality than SIRT for a low 
number of projections, it is still much faster than SIRT. It 
is therefore better suited for implementation in an inline 
environ ment where speed is critical. Figure  18 shows the 
reconstructed walnut slices from 32 and 128 projections 
with the different reconstruction algorithms. The NN-hFBP 
manages to remove the background artifacts and increase 
the signal-to-noise ratio of the reconstructions (2.65, 4.25 
and 4.87 for reconstructions made with 32 projections with 
FBP, SIRT and NN-hFBP, respectively) while preserving the 
important features of the walnuts.

4. Conclusion

The NN-hFBP introduced in this work is a fast reconstruc-
tion method suitable to inline inspection where only a lim-
ited number of projections are available. Our method works 
directly on the fan-beam data, without the need for rebin-
ning to parallel beam data. Simulation and real data studies 
showed that NN-hFBP outperforms the conventional FBP 
with respect to image quality. NN-hFBP is an order of mag-
nitude faster than SIRT and for at least 48 projections, it also 
outperforms the SIRT algorithm in terms of reconstruction 

quality. The reconstruction time is approximately 200 ms for a 
reconstruction of 400 × 400 pixels from 128 projections when 
the forward and backprojection are calculated on an NVIDIA 
GeForce GTX 580 GPU with the ASTRA Toolbox.
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Appendix A. hFBP algorithm for inline inspection 
with a constant rotation speed

 (i) Discrete Hilbert transform:

pinl
H (ui, hj) =

∆u

√
t2
i,j + D2

π
·

∑
τ

pinl(ui − τ , hj)

τ
√
(ti,j − τ)2 + D2

 

(A.1)

 (ii) Differential by central difference:

pinl
F0
(ui, hj) =

√
D2 + t2

i,j

D + ω(D SO − hjti,j)
·

(
pinl

H (ui, hj+1)− pinl
H (ui, hj−1)

2∆h

)

+

√
D2 + t2

i,j(D + ω(D2 + t2
i,j))

D2 + ωD(D SO − hjti,j)
·

(
pinl

H (ui+1, hj)− pinl
H (ui−1, hj)

2∆u

)

 

(A.2)

where ∆h is the sampling grid interval with respect to h and 
∆u the sampling grid interval with respect to u.
 (iii) Interpolation of u and h
 (iv) Backprojection

  The values at pixels (x, y) with polar coordinates (r,φ) are 
then reconstructed by

f (x, y) =
∆h

8π

∑
m

pinl
F0
(um, hm) (A.3)
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where um is the detector coordinate at projection hm where the 
ray through pixel (x, y) hits the detector.

Appendix B. Reformulation of the hFBP

In this appendix, we will reformulate the reconstruction 
form ula for an inline hFBP reconstruction (11) so that it fits 
the form of (16):

f (r,φ) =
∑
τ

f1(τ)I1(u − τ) + f2(τ)I2(u − τ). (B.1)

Then it will be possible to use the hFBP in a neural network 
to create the NN-hFBP. To start with, after discretization, the 
reconstruction formula of the hFBP for inline inspection with 
a constant rotation speed (11) can be written in full as

f (r,φ) =
∆h

16π

∑
hj∈H

√
D2 + t2

j

[(
(D + ω(D2 + t2

j ))

D + ω(D SO − hjtj)

)
1

D∆u

∑
τ



√

(t+∆u
j )2 + D2pinl(u +∆u − τ , hj)

τ
√

(t+∆u
j − τ)2 + D2

−

√
(t−∆u

j )2 + D2pinl(u −∆u − τ , hj)

τ
√

(t−∆u
j − τ)2 + D2




+
1

D + ω(D SO − hjtj)
1
∆h

∑
τ



√

t2
j+1 + D2pinl(u − τ , hj+1)

τ
√

(tj+1 − τ)2 + D2

−

√
t2
j−1 + D2pinl(u − τ , hj−1)

τ
√

(tj−1 − τ)2 + D2






 

(B.2)

where H is the set of all displacement values h, tj = u − hj, 

t−∆u
j = u −∆u − hj  and t+∆u

j = u +∆u − hj. To implement 
this reconstruction method into the NN-FBP, (B.2) is reform-
ulated into (B.1) so that the first matrix multiplication of the 
ANN, the input nodes I1 and I2 times the weights w1i and w2i 
of figure  4, can be replaced by an hFBP reconstruction. In 
the NN-FBP, the same filters are used to reconstruct every 
pixel, independent of the angular position of the projection. 
Therefore, from the two terms in (B.2), two position and angle 
independent filters are derived:

f1(τ) =
∆h

16πτD∆u
 (B.3)

f2(τ) =
∆h

16πτ∆h
. (B.4)

The remaining input of the neural network is then defined by 
two datavectors of size n:

I1(u − τ) =
∑
hj∈H


a( j) pinl(u +∆u − τ , hj)√

(t
′+∆u
j − τ)2 + D2

−
b( j) pinl(u −∆u − τ , hj)√

(t−∆u
j − τ)2 + D2




 

(B.5)

I2(u − τ) =
∑
hj∈H

(
c( j) pinl(u − τ , hj+1)√

(tj+1 − τ)2 + D2

−
d( j) pinl(u − τ , hj−1)√

(tj−1 − τ)2 + D2
)

) 

(B.6)

with

a( j) =
(D + ω(D2 + t2

j ))

D + ω(D SO − hjtj)

√√√√ D2 + t2
j

(t+∆u
j )2 + D2

 (B.7)

b( j) =
(D + ω(D2 + t2

j ))

D + ω(D SO − hjtj)

√√√√ D2 + t2
j

(t−∆u
j )2 + D2

 (B.8)

c( j) =

√
D2 + t2

j

√
D2 + t2

j+1

D + ω(D SO − hjtj)
 (B.9)

d( j) =

√
D2 + t2

j

√
D2 + t2

j−1

D + ω(D SO − hjtj)
. (B.10)

So that (B.2) can be rewritten as

f (r,φ) =
∑
τ

f1(τ)I1(u − τ) + f2(τ)I2(u − τ). (B.11)

To generate the data vectors for a certain pixel, first the corre-
sponding detector pixel is defined for every projection. We 
further on denote this pixel as the central detector pixel. Then, 
the two datavectors I1 and I2 are generated as described by 
(B.5) and (B.6). For both datavectors, the projection data is 
shifted so that the central pixel is at the center of the detector 
as explained in [22] and the data from all projection angles is 
summed.
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