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Abstract—In 4D-CT, a 4D image (3D+time) needs to be
reconstructed from projection data of a moving object. A simple
approach is to acquire a number of consecutive 3D-CT scans
(called subscans) and to then reconstruct them separately. When
the object is moving rapidly, or a high time resolution is desired, a
short acquisition time is needed for the subscans, leading to a low
number of projections and a strongly underdetermined system
to solve. Recently, a number of methods have been proposed to
alleviate this issue using image warping operators. By warping
an image from a certain time frame to a neighboring time
frame, the image can be compared to the projection data of
that neighboring time frame, reducing underdetermination. The
motion that is used for the warp can be either estimated in
advance, or it can be reconstructed jointly with the images. To
invert a model that incorporates warping operators, the adjoints
of these warping operators are needed. The current methods
approximate these adjoint operators by warping operators for an
approximate inverse flow. We propose to use the exact adjoints
instead, which leads to faster convergence, less computation and
less memory requirements.

Index Terms—4D-CT, warping, motion.

I. INTRODUCTION

A4D-CT scan is a series of n consecutive, regular CT
scans called subscans. It is generally assumed that the

scanned object is motionless during each subscan, such that
the scan can be modeled by the equation Wixi = pi, where
Wi is the projection matrix, xi is the scanned object and
pi is the projection data of the i-th subscan. The extent to
which this assumption is true depends on the time that passed
during the subscan, and the speed of the motion of the object.
For this reason, subscans are usually fast scans with few
projections. Reconstructing a 4D image from a 4D-CT scan
with n subscans then corresponds to solving n linear systems

Wixi = pi, i = 1, · · · , n , (1)

which, in this case, are highly underdetermined. Equivalently,
the problem can be represented as one big underdetermined
system of the form




W1 0 0 0
0 W2 0 0

0 0
. . . 0

0 0 0 Wn





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x1

x2

...
xn


 =




p1

p2

...
pn


 . (2)

One way to alleviate this underdetermination is to link the
time frames together using image registration or optical flow
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techniques [1]–[4] and image warping [5]. In [6], [7] problem
(2) is regularized with terms that constrain the change between
frames, i.e. with constraints on the optical flow. In [7], warping
operators are involved in these regularization terms. In the
MoVIT algorithm [8] and in [9], the images are warped along
the flow between frames before they are projected using a
standard projection geometry. In [10], [11] the optical flow
between frames is accounted for in the projection operators,
by using a curved ray projection geometry instead of explicitly
involving image warping.

For methods that involve image warping operators in the
forward model, or in the regularization terms, the adjoints
of these warping operators are needed for reconstruction
with gradient based methods. The current methods implement
the adjoint image warping operators by warping along an
approximated inverse of the flow. Computing the inverse of
the flow requires computation time and memory. On top of
that, since the flow is generally not exactly invertible and the
adjoint of a warp is not exactly the warp along the inverse
flow, it introduces inaccuracies.

In [12] a pair of adjoint warping operators with a custom
interpolation method is used for respiratory and cardiac motion
correction in 4D PET. It is shown that using inverse warps as
an approximation for the adjoint warp leads to image degra-
dation compared to using the exact adjoint warps. However,
these adjoint warp operators can not be directly substituted for
the approximated adjoint warping operators in the previously
mentioned methods, because the custom interpolation method
of [12] requires more information than general optical flow
methods provide. In this paper, we investigate the implemen-
tation and the effect of adjoint warping operators using the
more generally applicable and commonly used multivariate
spline interpolation.

II. METHODS

Although, our proposed method to calculate the adjoint
warping operators is applicable to any method that uses image
warping with multivariate spline interpolation, including [7]–
[9], we will demonstrate their use on a basic method similar to
[8]. In a first step, each time frame is reconstructed separately
by solving (2). On these initial reconstructions, we use an
optical flow algorithm to estimate the flow between the time
frames. Finally, we use a least squares solver to solve the same
dynamic tomographic model that MoVIT solves.

A. Warping operators
While the scanned object can change during a 4D-CT scan,

we assume that the materials that make up the object do not
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change, but only get repositioned1. Under this assumption, we
can deform an image xi ∈ RN into the image xj ∈ RN of
a different time frame, by moving its voxel values without
changing them. For each voxel, a vector in R3 describes its
displacement. Together, these displacement vectors form a
displacement vector field or deformation vector field (DVF)
representing the optical flow between the images.

Moving the voxel values according to the DVF results in
non-grid data, because the voxels are allowed to move to non-
integer coordinates. To turn the result back into an image in
RN , resampling is required. General image warping is the
combined action of moving the voxels and resampling. A
standard choice of resampling method is multivariate spline
interpolation (usually linear or cubic splines), used in for
example [5], [8], [9]. With this choice each voxel in the warped
image is a linear combination of voxels in the original image,
so such warping operators are linear maps. We will write Mij

to denote a warping operator that transforms xi into xj .

B. Dynamic tomographic model
Suppose that we want to reconstruct a certain time frame

of interest, xi. In an ideal situation, any time frame xj can be
produced from xi by using a suitable warping operator Mij ,
such that xj = Mijxi holds for all j. This can be written as:




Mi1

Mi2

...
Min


xi =




x1

x2

...
xn


 . (3)

Substituting (3) into (2) yields the dynamic tomographic
model:



W1 0 0 0
0 W2 0 0

0 0
. . . 0

0 0 0 Wn



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
xi =




p1

p2

...
pn


 . (4)

or more concisely:

WMx = p . (5)

In practice, (3) can not be achieved exactly, but by estimating
the flow between initial reconstructions, a good approximation
can be obtained. System (5) is the one that is solved by
MoVIT, and it can be interpreted as a factorization of the
model presented in [10] and [11], where the DVFs are used
to directly modify the projection matrix W instead of adding
the extra factor M . The new system has the same number of
equations as (2), but the unknowns are reduced to only the
voxels of the chosen time frame.

C. Estimating the DVFs
There are many image registration and optical flow al-

gorithms available to estimate the DVFs for the warping
operators in (4) such as [1]–[4]. We use the TV-L1 optical
flow algorithm provided by scikit-image, which is detailed in
[13].

1This assumption is only approximately valid, which puts a limit on the
number of time frames we will be able to combine.

D. Least squares solvers

There are many choices of least squares solvers for the
system (4). These different choices can enforce different types
of constraints on the solution. In [7], [9] the Primal Dual
Hybrid Gradient method of [14] is used to enforce sparsity of
the gradient of the solution. MoVIT uses a modified version
of SIRT with an intuitive interpretation. We choose to use a
basic (projected) gradient descent to demonstrate the effect of
using the exact adjoints. This is very close to what was done
in MoVIT as SIRT is a slightly altered version of gradient
descent [15]. We use the Barzilai–Borwein step size rule [16]
and we enforce minimum and maximum constraints on the
voxel values.

E. Adjoint pairs of warping operators using multivariate
spline interpolation

There are two different approaches to implement image
warping operators, referred to as forward and backward warp-
ing [5]. Assume we have two images, a and b and a DVF
describing the flow from a to b. With forward image warping,
the voxels of a are first moved along the DVF to obtain non-
grid data representing the warped version of a, and this non-
grid data is then resampled at grid points to get an image
similar to b. Backward image warping is an other approach,
where the DVF is followed in the opposite direction. For each
voxel, we look at the position it is sent to by the DVF and
interpolate the regular grid data of b at that point. The result
is an image similar to a.

Both forward and backward warping are viable methods
to implement the warping operators of (4). If we want to be
able to transform xi into xj , we can either get a DVF from
xi to xj and use forward warping, or we can get a DVF
from xj to xi and use backward warping. We implement our
warping operators using backward warping with rectangular
multivariate spline interpolation. For convenience, we will
work with 2D images and bilinear splines, but the methods
are easily extendable to 3D images and higher order splines.
In [8] and [9], cubic splines are used.

Our image x can be thought of as a function

x : [n]× [m]→ R , (6)

where n,m ∈ N and ∀k ∈ N : [k] = {1, · · · , k}. For each
pair of integer coordinates, it yields a voxel value. Its bilinear
interpolation at a non-integer position (a, b) is given by

x′(a, b) = c1x(q1) + c2x(q2) + c3x(q3) + c4x(q4) , (7)

where q1, · · · , q4 are the integer valued points surrounding
(a, b), and c1, · · · , c4 are the bilinear spline coefficients.

Our DVF v can be thought of as a function

v : [n]× [m]→ R2 (8)

which yields a 2D displacement vector for each voxel. Our
backward warping operator M transforms x into a new image
y = Mx of which the (i, j)-th voxel value is obtained by
sampling x at position (i, j) + v(i, j). That is:

(Mx)(i, j) = x′((i, j) + v(i, j)) . (9)
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Fig. 1: Ground truths for our experiments. The top row is a
2D+time phantom consisting of 3 time frames with shrinking
circles. The bottom row shows 3 time frames of a slice of
a 4D simulated forming foam. The actual foam phantom has
one time frame per projection: 128× 3.

Since, by (7), (9) is simply a linear combination of voxel
values of x, we can interpret the action of M as a matrix
vector product. To do this, we need to represent the image as
a vector again: x ∈ RN , where each voxel gets a single integer
index. M can then be represented by a matrix, with 4 non-zero
coefficients on each row, namely the bilinear spline coefficients
of (7) at the corresponding voxel indices. The adjoint operator
MT is then simply given by the matrix with the rows of M
as its columns. The rows of M or equivalently, the columns
of MT can by computed on the fly, so there is no need to
store these matrices. If we denote the i-th row of M , i.e. the
i-th column of MT by ri, then the action of MT on a vector
y ∈ RN can be implemented as follows:

MTy =

N∑

i=1

yiri . (10)

For comparison, we also implemented the approximation of
the adjoint by using the inverse DVF. Like [8] and [10], we
calculate the inverse DVF with the iterative method presented
in [17] with 15 iterations. The action of MT is then approxi-
mated by using the same warping method as M , but with this
inverse DVF.

III. EXPERIMENTS

To compare the effects of the exact adjoints to the approx-
imated adjoints, we performed two simulation experiments.

The first experiment used a simple 512 × 512 2D+time
phantom of 5 circles of different sizes which shrink in 3 time
frames. We performed 3 subscans, one for each time frame,
during which the phantom is static. Each subscan consisted
of 128 parallel beam projections over a range of π rad. The
DVF’s were calculated on the ground truth time frames.

The second experiment used a 256 × 256 slice of a 4D
(3D+time) phantom of growing spheres in a cylinder, mim-
icking the formation of a foam [18]. This phantom was
generated at as many time frames as projections, such that
each projection sees a slightly different object. We performed

(a) Approx. adjoint (b) Exact adjoint

(c) Approx. adjoint (d) Exact adjoint

Fig. 2: The resulting reconstructions after 30 iterations. Figures
(a) and (b) have been zoomed in on the smaller circles to
highlight the details.

a simulated scan with 3 subscans. Each subscan consisted
of 128 parallel beam projections over a range of π rad.
In this experiment, we first made initial reconstructions by
solving (2). We then calculated the DVFs on these initial
reconstructions.

In both experiments, we reconstructed the middle time
frame using both of its neighbors by solving (4) with 3 time
frames. The algorithm was ran for 30 iterations. Both phan-
toms are {0, 1}-valued, so we enforced a minimum constraint
of 0 and a maximum constraint of 1 on the reconstruction.

All projection operators, both for the simulations and for the
reconstruction, were implemented using the ASTRA toolbox
[19]–[21]

IV. RESULTS AND DISCUSSION

The implementation using the approximate adjoints required
the storage of two DVFs per neighboring time frame, and one
image. A DVF consists of one displacement vector per voxel,
so it takes as much storage as two images for a 2D problem,
or three images for a 3D problem. In our experiments, a
total storage of 9 images was required. The implementation
using the exact adjoint required only the storage of one DVF
per neighboring time frame, cutting the memory requirements
almost in half, to a total of 5 images.

The effect of the choice of adjoints can be visually observed
in Fig. 2. After 30 iterations, the reconstruction with the exact
adjoints is visibly sharper than the reconstruction with the
approximate adjoints. Some bubbles which can barely be
discerned in Fig. 2(c) are clearly visible in Fig. 2(d), while
Fig. 2(d), used the same amount of iterations and less compu-
tation time. In Fig. 2(b) the sharper edges are clearly visible.
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Fig. 3: The difference in convergence when using the exact
adjoints versus the approximated adjoints on the circle phan-
tom
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Fig. 4: The difference in convergence when using the exact
adjoints versus the approximated adjoints on the foam phan-
tom

The faster convergence can also be verified in the residual
plots in Fig. 3 and Fig. 4. For each iteration, we plotted the 2-
norm of the residual, i.e. ‖Axi−p‖2, where A = WM . We
see that the method with the exact adjoints gets the residual
down much earlier, and keeps it lower at all iterations.

V. CONCLUSION

Although the adjoint of an image warping operator can be
approximated by the same kind of warping operator with an
approximate inverse of its DVF, we have shown that it is
beneficial to use the exact adjoint instead. Not only does it
provide a faster rate of convergence, it also avoids several
problems that the approximate adjoints impose. Calculating
an inverse of a DVF is computationally intensive and takes
as much space as three images. When scaling to large 3D
problems, this becomes an issue. The inverting of a DVF also
requires the choice of an extra parameter, namely the number
of iterations for the inversion algorithm. These problems are
not present with the proposed approach of computing the
adjoints.
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