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Summary

This dissertation deals with the use of constrained spherical deconvolution (CSD) of
diffusion weighted (DW) MRI data for the purpose of improved fiber tractography.
The manuscript is divided into two large parts. Part I, provides the necessary
background material on diffusion MRI, multi-fiber reconstruction algorithms
and fiber tractography. Part II provides an overview of the main contributions
of this thesis.

Background

Diffusion-weighted (DW) MRI is a magnetic resonance imaging (MRI) tech-
nique that indirectly measures the local mobility of water molecules. It is unique
in its ability to measure diffusion non-invasively, making it the method of choice
for in vivo diffusion measurements. A key feature of diffusion MRI is that it can
provide information about the geometry of the underlying tissue microstructure, at
scales much smaller than the imaging resolution. In fibrous tissue, such as in the
brain white matter (WM), water molecules tend to diffuse more along the fibers,
enabling researchers to obtain information about the orientation and ‘integrity’ of
the underlying tissue. Currently, diffusion tensor imaging (DTI) is the most
widely used method for assessing WM orientation and integrity, owing to its modest
acquisition requirements. The ability to assess WM orientation and integrity from
a single in vivo scan raises huge possibilities for neuroscientific research and there
has been a rapid increase in clinical studies using DTI in the last decade. For a
detailed review of the principles of diffusion, diffusion MRI and DTI the reader is
referred to Chapter 1.

Despite its popularity, DTI has an important limitation in that it can only
model a single fiber population per voxel. However, due to partial volume effects
between adjacent WM fiber bundles, many voxels contain contributions from
several differently oriented fiber populations. In such voxels, DTI orientation and
DTI integrity metrics are unreliable. Recently, a number of methods have been
proposed that are able to extract multiple fiber orientations from the DW
signal, overcoming the limitation of DTI. One particularly promising method
is constrained spherical deconvolution (CSD), which recovers the full fiber
orientation distribution function (fODF) within each voxel directly from the diffusion
data using the concept of spherical deconvolution. By applying a non-negativity
constraint on the fODF, CSD allows robust multiple fiber orientation estimation
using relatively modest acquisition settings. An in-depth review of the different
multi-fiber reconstruction algorithms, CSD in particular, is provided in Chapter 2.
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Summary

Fiber tractography pieces together the local WM orientations derived with
DTI or more advanced multiple fiber reconstruction algorithms in order to infer
long-range connectivity patterns between distant brain regions. Diffusion MRI
based fiber tractography is unique in its ability to delineate the WM fiber pathways
in a non-invasive way, raising possibilities for clinical applications and providing
new insights in how the brain is wired up. Fiber tractography algorithms can be
classified largely into deterministic and probabilistic algorithms. Deterministic
tractography algorithms reconstruct the most likely trajectory emanating from a
given point, whereas probabilistic algorithms produce a distribution of trajectories,
reflecting the degree of uncertainty of the trajectories. The concepts, limitations,
and applications of fiber tractography are introduced in Chapter 3.

Contributions

As DTI based fiber tractography becomes unreliable in regions of complex fiber
configurations, we developed a new deterministic tractography algorithm
based on CSD. As CSD is capable of resolving multiple fiber orientations within
each voxel, it is expected to improve tractography results in regions of complex
fiber architecture. By means of a simple crossing fiber phantom, we showed that
the algorithm is able to track through regions containing crossing fibers where DTI
tractography fails. In addition, our method was evaluated quantitatively on a more
complex fiber phantom, as part of the MICCAI 2009 fiber cup contest. Analysis of
the results revealed our solution was characterized by the lowest average error for
both the spatial and directional metric and our method was the only one tracing
the correct fiber bundles from start to end. In Chapter 4, our algorithm, as well
as the quantitative and qualitative evaluation using different MR phantoms is
explained in detail. In addition we briefly discuss some applications of the proposed
CSD tractography method.

While CSD offers an improved estimate of the fiber orientations in the presence
of partial volume effects, diffusion MRI is inherently a noisy technique, resulting
in uncertainty associated with each fiber orientation estimate. In Chapter 5, we
introduce the use of bootstrapping techniques to quantify the uncertainty
of CSD estimated fiber orientations. The performance of bootstrapping was
measured in terms of accuracy and precision using Monte Carlo simulations. We
looked at both the ‘classic repetition bootstrap’ approach which estimates the fiber
orientation uncertainty by randomly selecting individual measurements from a set
of repeated measurements, and the ‘residual bootstrap’ approach, which estimates
the fiber orientation by randomly selecting model residuals, requiring only a single
measurement and thus being more clinically feasible. Our simulations showed that
the ‘classic repetition bootstrap’ significantly underestimates the uncertainty when
only a few repeated acquisitions are available, which is typically the case. We showed
that this large downward bias can be removed by using the bootknife approach,
allowing accurate CSD fiber orientation uncertainty estimates with only a limited
set of repeated measurements and without making assumptions about the sources
of uncertainty in the data. However, in a clinical setting, even a few repeated
measurements can render acquisition time unacceptably long. For this reason
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we also investigated the residual bootstrap, which performs the bootstrapping
procedure on the residuals of a model fit, requiring only a single acquisition. Our
simulations showed that the combination of the residual bootstrap with the modified
spherical harmonics model allows accurate estimates of the CSD fiber orientation
uncertainty, bringing it into the clinical realm.

In Chapter 6, we build on the findings of Chapters 4 & 5 to formulate a new
probabilistic tractography algorithm based on CSD and the residual
bootstrap, overcoming the limitations of DTI tractography and at the same time
providing uncertainty measures of the fiber trajectories, using only a single acquisi-
tion. Using Monte Carlo simulations, we measured the accuracy and precision of
the residual bootstrap method when estimating CSD fiber pathway uncertainty.
We also applied our algorithm to clinical DW data and compared our method to
state-of-the-art DTI residual bootstrap tractography and to an established proba-
bilistic multi-fiber CSD tractography algorithm which draws samples directly from
the fODF. CSD residual bootstrap probabilistic tractography showed advantageous
over DTI residual bootstrap probabilistic tractography: in regions of multiple fiber
orientations, CSD was much less prone to fiber dispersion, false positives, and false
negatives. We also showed the advantages of our method over CSD fODF sampling
tractography: in regions of well ordered and sharp peak orientations, our method
does not suffer from unrealistically high dispersion and our method has a higher
specificity in general.

In Chapter 7, we set out to assess the prevalence of voxels containing
multiple fiber orientations, as these are the voxels where multi-fiber reconstruc-
tion algorithms would result in improved tractography results. For this purpose,
we acquired large, high quality DW data sets and extracted the fiber orientations
using both CSD and the bedpostx algorithm. Our results indicated that multiple
fiber orientations can be found in a much higher percentage of WM voxels than
previously reported, with CSD providing much higher estimates than bedpostx.
These findings have obvious and profound implications for both tractography and
integrity analyses, and strengthen the growing awareness that fiber tractography
and ‘WM integrity’ metrics derived from DTI need to be interpreted with extreme
caution, underlining the importance of the methods developed in the previous
chapters.
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Chapter 1. Diffusion MRI

1.1 Introduction
Diffusion MRI is a magnetic resonance imaging (MRI) method that measures the
local mobility profile of water molecules. It is unique in its ability to measure
diffusion non-invasively, making it the method of choice for in vivo diffusion
measurements. The success of diffusion MRI stems from the fact that it can
describe the geometry of the underlying tissue microstructure. This is achieved by
measuring the average diffusion of water molecules, which can act as a probe for the
structure of the biological tissue at scales much smaller than the imaging resolution.
In an environment without any hindrances, e.g. a glass of water, the diffusion of
water molecules is the same regardless of the direction in which it is measured.
However, in fibrous tissue, such as the brain white matter, water molecules tend to
diffuse more along the fibers, enabling researchers to obtain information about the
neural architecture.

In this chapter, we will first review the basic physical principles of diffusion.
Next, we will briefly introduce the properties of diffusion in the brain white matter.
Then, we will explain how diffusion can be measured in vivo using diffusion MRI.
Finally, we will briefly discuss the applications of diffusion MRI and its challenges
and limitations.

1.2 Diffusion
At the microscopic scale, individual water molecules are constantly in motion as a
result of their thermal energy (Fig. 1.1). This phenomenon, referred to as ‘Brownian
motion’, was first described in 1828 by the Scottish botanist Robert Brown, who
observed a perpetual random motion of pollen grains suspended in water while
studying them under a microscope [Brown, 1828].

...

time

Fig. 1.1: Brownian motion at the microscopic scale: a single water molecule exhibits a
‘random walk’ due to its thermal energy.

Diffusion, or the process in which particles move from a region of higher to one
of lower concentration, can be considered the macroscopically observable effect of
the microscopic Brownian motion of particles. The physical law describing this
process is called Fick’s first law [Fick, 1855]:

J = �D∇C (1.1)

where J is the net particle flux (units: mol/(m2 s)), C is the particle concentration
(units: mol/m3), and D is the diffusion coefficient (units: m2/s). The minus sign
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1.2. Diffusion

in Fick’s first law embodies the notion that particles move from regions of high
concentration to regions of low concentration. The rate of this flux is proportional
to the concentration gradient and to the diffusion coefficient. Unlike the flux vector
or the concentration gradient, the diffusion coefficient is an intrinsic property of
the medium, and its value is determined by the size of the diffusing molecules
and the temperature and microstructural features of the environment. Imagine
introducing a drop of red wine into a glass of water. Initially, the wine appears to
remain concentrated at the point of release, but over time it spreads radially into a
spherically symmetric profile (Fig. 1.2). Notice that this process takes place without

...

time

Fig. 1.2: Diffusion at the macroscopic scale: net flux of wine molecules from a region of
high concentration to a region of low concentration.

stirring or other bulk fluid motion. Note also that if one waits long enough, the
concentration of wine particles will become uniform throughout the glass. Although
the net flux of particles stops at this point in time, microscopic motions of the
molecules still persist; it is just that on average, there is no net molecular flux.

While the random nature of Brownian motion prevents us from predicting
the behavior of a single water molecule (Fig. 1.3a-d), it is possible to predict the
behavior for a large collection of water molecules (Fig. 1.3e-f). The study of such a
large ensemble of randomly moving particles is facilitated by the introduction of a
probabilistic framework. In 1905, Einstein introduced the ‘displacement distribution’
or ‘diffusion probability density function’, p(r), which quantifies the fraction of
particles that will have been displaced by r within a certain ‘diffusion time’ t, or
equivalently, the likelihood that a single particle will undergo that displacement.
Using this framework, Einstein showed that, provided that the number of particles
is sufficiently large and provided that they are free to diffuse p(r), takes the form
of a Gaussian distribution (Fig. 1.4) [Einstein, 1905]:

p(r) =
1√

(4πtD)
3
e−
‖r‖2
4tD (1.2)

where D is the classical diffusion coefficient appearing in Fick’s first law (units:
m2/s), t is the diffusion time (units: s) and r is the displacement vector (units: m).
The width of this Gaussian distribution is determined by the diffusion coefficient
D and the diffusion time t, with the peak being at zero displacement (r = 0). The
isoprobability surface of p will take the form of a sphere, centered at the origin, with
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Chapter 1. Diffusion MRI

(a) Random walk #1 (b) Random walk #2 (c) Random walk #3

(d) Random walk #4 (e) 2× 106 endpoints (f) Histogram

Fig. 1.3: Given the same initial position (green dot), different random walks end up in
different end positions (red dots). This prevents us from predicting the behavior of a
single water molecule (a-d). However, looking at a large collection of end points (e), and
calculating a 3D histogram reveals a 3D Gaussian distribution (f).

6



1.3. Apparent diffusion

a radius proportional to the square root of the diffusion coefficient and the diffusion
time (Fig. 1.4c). The fact that the isoprobability surface is spherical, embodies the
notion that the diffusion is isotropic, i.e. there is an equal probability of displacing
a given distance from the origin - no matter in which direction it is measured.
From Eq. (1.2), one can derive the well-known Einstein equation, which provides an

(a) environment (b) PDF (c) isoprobability surface

Fig. 1.4: Free (isotropic) diffusion

explicit relationship between the mean-squared 3D displacement of the ensemble,
characterizing its Brownian motion, and the diffusion coefficient [Einstein, 1905]:

〈‖r‖2〉 = 6Dt (1.3)

where 〈‖r‖2〉 is the mean-squared displacement of particles (units: m2). For
example, the diffusion coefficient for water at body temperature is 3× 10−3 mm2/s.
Thus, given a diffusion time of 30ms, the water molecules will have displaced on
average 23 µm in all directions.

1.3 Apparent diffusion

If the diffusing water molecules encounter any hindrances along their random walk,
the mean squared displacement per unit time will be lower than when observed in
‘free’ water. Thus, when Eq. (1.3) is used to compute the diffusion coefficient, it will
appear that the diffusion coefficient is lower. Therefore, the diffusion coefficient that
we measure in a biological sample, is usually referred to as the apparent diffusion
coefficient (ADC) [Le Bihan et al., 1986]. This property of diffusion is key to
diffusion MRI and will allow us to acquire information about the microstructural
features of biological tissue.

1.3.1 Isotropic diffusion

Unordered tissue microstructure (Fig. 1.5a) typically gives rise to isotropic diffusion,
in which the ADC is equal no matter in which direction it is measured (Fig. 1.5b).
This type of diffusion can be modeled using a single ADC as in Eq. (1.2). The
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Chapter 1. Diffusion MRI

isoprobability surface of p is again a sphere, however, due to the hindrances, the
radius is reduced compared to that of free diffusion (Fig. 1.5c).

(a) environment (b) PDF (c) isoprobability surface

Fig. 1.5: Hindered, isotropic diffusion (no coherent structure)

1.3.2 Anisotropic diffusion

The introduction of well ordered hindrances (Fig. 1.6a) may cause the diffusion to
become anisotropic, i.e. the ADC becomes dependent on the orientation in which it
was measured [Moseley et al., 1990, Doran et al., 1990, Chenevert et al., 1990]. One
can imagine that water molecules can diffuse more freely parallel to the hindrances,
than perpendicular to the hindrances (Fig. 1.6b). The diffusion can now no longer
be described with a single diffusion coefficient. For a single bundle consisting of
tightly packed cylinders, the isoprobability surface of p typically takes the form of
an ellipsoid (Fig. 1.6c).

(a) environment (b) PDF (c) isoprobability surface

Fig. 1.6: Hindered, anisotropic diffusion (single coherent fiber bundle)

The next most complex model to characterize Gaussian diffusion in which the
displacements per unit time are not the same in all directions is the diffusion tensor
model [Basser et al., 1994a,b, Basser and Pierpaoli, 1996, Basser, 2002, Basser and
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1.4. Diffusion in neural tissue

Jones, 2002]:

p(r) =
1√

(4πt)
3 |D|

e�
rTD�1r

4t (1.4)

where

D =
〈rrT〉

6t
=

 Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 (1.5)

is the diffusion tensor, which is the 3×3 covariance matrix of the molecular dis-
placements along three orthogonal orientations. D is a symmetric and positive
definite matrix. Note that, as D is symmetric, it contains only 6 unique elements.
In general, the isoprobability surface of p takes the form of an ellipsoid.

1.4 Diffusion in neural tissue

At the cellular level, the neural tissue of brain is built from neurons or nerve cells.
A neuron is an electrically excitable cell that processes and transmits information
by electrical and chemical signaling. A typical neuron can be divided into three
parts: the soma or cell body, the dendrites and the axon (Fig. 1.7). From the soma,
many dendrites extend. The soma and dendrites receive chemical signals from
other neurons and process the information. The axon, which is a thin and very long
extension from the nerve cell, transmits this information from the soma towards
other nerve cells by means of electrical conduction. The transmission speed along
the axons is increased by a myelin sheet, which acts as an insulator.

axon

cell body

dendrites

myelin

Fig. 1.7: Schematic representation of a typical neuron, consisting of a cell body, dendrites
and long myelinated axons. The image is taken from Wikipedia and is licensed under the
Creative Commons CC-BY-SA-3.0 License.

At the macroscopic level, the brain is made up of three major components:
white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) (Fig. 1.8).
While WM consists mostly of myelinated axons, GM contains the cell bodies. As
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Chapter 1. Diffusion MRI

such, WM is the tissue through which information passes between different areas
of the GM. Conversely, GM is the tissue where the information from the WM is
processed. The CSF occupies the ventricular system around and inside the brain. It
acts as a cushion for the brain, providing mechanical and immunological protection.

GM

WM

CSF

Fig. 1.8: Coronal post mortem brain slice with the three macroscopic components: white
matter (WM), grey matter (GM) and cerebrospinal fluid (CSF). Section was made and
photographed by Dr. Bruce Crawford and Kurt McBurney at the University of Victoria.
The image is licensed under the Creative Commons CC BY-NC-SA 2.5 License.

Apart from the myelin, WM axons contain an axonal membrane, neurofilaments
and microtubules, all oriented along the major axis of the axon (Fig. 1.9a). Addi-
tionally axons are often organized and tightly packed together into nerve bundles
(Fig. 1.9b). All these factors contribute to diffusion anisotropy inside the WM,
i.e., diffusion is less restricted parallel to the axon bundles than perpendicular to
it. This feature will allow us to extract geometrical information about the WM
fiber bundles based on diffusion. Experimental evidence suggests that the tissue
component predominantly responsible for the anisotropy of molecular diffusion
observed in white matter is not myelin, as was first hypothesized, but rather the cell
membrane [Beaulieu, 2002]. The degree of myelination of the individual axons and
the density of cellular packing seem merely to modulate anisotropy. Furthermore,
microtubules, and neurofilaments appear to play only a minor role.
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1.4. Diffusion in neural tissue

(a) single myelinated axon

less diffusion restriction

more diffusion restriction

(b) bundle of myelinated axons

Fig. 1.9: Schematic representation of (a) a single axon and (b) a bundle of highly organized,
tightly packed axons, typically found in the WM. The axon is surrounded by myelin
and the axonal membrane and contains several structures, such as neurofilaments and
microtubuli (a). Diffusion can take place more easily parallel to the WM bundles than
perpendicular to it (b).
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Chapter 1. Diffusion MRI

1.5 Measuring diffusion with MRI
Diffusion MRI is an imaging technique that allows one to measure the amount
of water diffusion at different positions in a sample. Although a thorough under-
standing of the principles of nuclear magnetic resonance (NMR) and magnetic
resonance imaging (MRI) is a prerequisite to understand diffusion MRI, a general
introduction into these principles is considered beyond the scope of this dissertation.
An excellent and complete description of the principles of MRI can be found in
Liang and Lauterbur [2000].

1.5.1 Spin-echo (SE) sequence
A Spin-echo (SE) sequence [Hahn, 1950] (Fig. 1.10) starts with the excitation of the
hydrogen nuclei with a 90° radiofrequency (RF) pulse that tilts the magnetization
vector into the plane whose normal is along the main magnetic field B0. The spins
precess around the magnetic field - a phenomenon called Larmor precession [Bloch
et al., 1946, Purcell et al., 1946]. The Larmor equation states that the precession
frequency ω (units: rad/s) of spins in a magnetic field is directly proportional to
the strength B0 of the main magnetic field (units: T):

ω = γB0 (1.6)

where γ is the gyromagnetic ratio - a constant specific to the nucleus under exami-
nation (units: rad/(sT)). E. g., the hydrogen nucleus in water has a gyromagnetic
ratio value of approximately 2.68× 108 rad/(sT). Following Faraday’s Law, the
precessing magnetic fields of the spins will induce a voltage (signal) in the receiver
coil. Initially, the spins are coherent, but they immediately start dephasing due to
magnetic field inhomogeneities and dipolar interactions, leading to a decay of the
induced signal (T2* decay). This dephasing can be reversed through a subsequent
application of a 180° RF pulse, and the signal is refocused. In this ‘spin-echo’
experiment, the time between the first RF pulse and the echo is called TE and it is
twice the time between the two RF pulses. The generated echo is detected by a
receiver coil. From this (spatially encoded) raw data MR images are reconstructed.

1.5.2 Magnetic field gradients
The magnetic field can be made to vary in a linear manner over the volume of
interest, by the addition of a linear magnetic field gradient G on top of the main
magnetic field B0 [Carr and Purcell, 1954]:

B(x) = B0 +Gx (1.7)

where x the position along the gradient direction (see Fig. 1.11). Given Eqs. (1.6)-
(1.7), this results in a position-dependent precessional frequency of the spins:

ω(x) = γB(x) = γ(B0 +Gx) (1.8)

This position-dependent precessional frequency is the basis of spatial encoding in
MRI, but it can also be applied to make MR sequences sensitive to diffusion or
diffusion-weighted (DW).
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1.5. Measuring diffusion with MRI

TE/2

RF

90° 180°

TE

S

T2 decay

T2* decay

Fig. 1.10: Spin-echo (SE) sequence. The 90° RF pulse tilts the magnetization vector
into the plane orthogonal to the main magnetic field. The spins subsequently start to
precess around the magnetic field, inducing a voltage (signal) in the receiver. Spins
that are initially coherent dephase due to magnetic field inhomogeneities and dipolar
interactions, leading to a decay of the signal (T2* decay). The dephasing due to magnetic
field inhomogeneities can be reversed through a subsequent 180° RF pulse at time TE/2,
causing a strong echo at time TE.

x (mm)

B
 (

m
T)

0

B0

1

G

⇒
x (mm)0

Fig. 1.11: A linear magnetic field gradient results in a position-dependent precession
frequency.
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Chapter 1. Diffusion MRI

1.5.3 Pulsed Gradient Spin-echo (PGSE) sequence

The Spin-echo sequence can be made sensitive to diffusion along a particular orien-
tation by the addition of two linear diffusion-encoding gradients, symmetrically po-
sitioned around the 180° refocusing RF pulse [Stejskal and Tanner, 1965]. Consider
two rectangular diffusion gradient pulses g(t) along the x-direction (‖g(t)‖ = gx(t))
with duration time δ and with time ∆ between the gradient pulse onsets (Fig. 1.12).
During the pulse gx(t) = gx is constant.

TE/2

RF

90° 180°

TE

S

δ
Δ

G

without diffusion
with diffusion

dephasing
gradient

rephasing
gradient

Fig. 1.12: Pulsed Gradient Spin-echo (PGSE) sequence. The first (dephasing) gradient
pulse induces a position-dependent phase shift. For static spins, this phase shift is canceled
by means of the second (rephasing) gradient pulse. Spins that do move during time ∆ will
experience a net phase shift proportional to the traveled distance, resulting in signal loss.

The first (dephasing) gradient pulse induces a position-dependent phase shift
φ1 of the spin transverse magnetization:

φ1 = γ

δ∫
0

gx(t)x(t) dt = γδgxx1 (1.9)

where γ is the gyromagnetic ratio for hydrogen nuclei and the spin position x(t) = x1

is assumed to be constant during the short pulse duration δ (the so-called ‘narrow
pulse’ regime). Note that the amount of dephasing is proportional to the duration
δ and the strength gx of the gradient. Similarly, the second (rephasing) gradient
pulse induces a phase shift φ2:

φ2 = γ

∆+δ∫
∆

gx(t)x(t) dt = −γδgxx2 (1.10)

The application of the 180° RF pulse in between both gradients, reverses the phase
change that occurred prior to it. For static spins, i.e. spins not undergoing any
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1.5. Measuring diffusion with MRI

diffusion along the gradient direction (x1 = x2), the net phase shift φ will be zero:

φ = φ2 − φ1 = γδgx(x2 − x1) = 0 (1.11)

Spins that do undergo diffusion along the gradient direction during the time period
∆ will experience a net phase shift, depending on the distance traveled (x2 − x1):

φ = γδgx(x2 − x1) 6= 0 (1.12)

These diffusing spins are not completely refocused. In general, the amplitude of
the PGSE signal S is given by:

S = S0〈eiφ〉 ≤ S0 (1.13)

where S0 is the signal intensity in the absence of a diffusion-encoding gradient
and 〈...〉 represents the ensemble average of the spin population. Given that the
displacement distribution of diffusing spins follows a random distribution (see
Section 1.2), the phase distribution of the spins also becomes randomly distributed,
resulting in a decreased amplitude in the ensemble averaged signal. Stejskal and

(a) DW ‖ x-axis (b) DW ‖ y-axis (c) DW ‖ z-axis (d) no DW

Fig. 1.13: Axial DW images with gradients orientations along (a) the x-axis, (b) the
y-axis, and (c) the z-axis. Note that in the region marked by the white circle, the signal
is low when the diffusion gradient is applied along the x-axis and high when the diffusion
gradient is applied along the y- and z-axis, implying that the diffusion and the underlying
microstructure are left-right oriented. Note also that, due to the dephasing caused by the
random motion of water molecules, the intensity in the DW images is much lower than in
an image without diffusion weighting (d).

Tanner [1965] demonstrated that the signal attenuation A(q) = S(q)/S(0) can
be expressed as the 3D Fourier transform F of the diffusion probability density
function p(r):

A(q) =

∫
R3

p(r)e−iq
Trdr = F [p(r)] (1.14)

with
q = γδg (1.15)

the so-called q-vector and g the applied diffusion gradient vector. The space of all
possible 3D q-vectors is called q-space. Intuitively, one can reconstruct the diffusion
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Chapter 1. Diffusion MRI

PDF p by sampling the diffusion signal along many q-vectors and performing
an inverse 3D Fourier transform. This is the principle behind q-space imaging
[Callaghan et al., 1988].

1.5.4 ADC Imaging
Combining Eqs. (1.2) and (1.14), we can relate the signal attenuation A(q) =
S(q)/S(0) to the ADC D of the underlying tissue:

A(q) = e−‖q‖
2∆D = e−γ

2δ2‖g‖2∆D (1.16)

Eq. (1.16) is a special case of the more general Stejskal-Tanner equation, which
takes the duration of the diffusion encoding gradients into consideration as well:

A(q) = e−‖q‖
2(∆−δ/3)D = e−γ

2δ2‖g‖2(∆−δ/3)D = e−bD (1.17)

where the diffusion weighting factor or b-value, introduced by Le Bihan et al. [1986],
is defined as:

b = γ2δ2‖g‖2
(

∆− δ

3

)
(1.18)

Eq. (1.17) allows one to estimate the apparent diffusion coefficient D, from a single
DW image S(q), along with a reference image S(0). Note that Eq. (1.17) assumes
that diffusion is free and can therefore be modeled by a Gaussian. Note also that
the resulting diffusion coefficient D is dependent on the gradient strength ‖g‖ and
the time sequence parameters δ and ∆ and that the diffusion of water molecules
is measured in a predefined direction, without detecting water diffusion in other
directions.

(a) ADC ‖ x-axis (b) ADC ‖ y-axis (c) ADC ‖ z-axis

Fig. 1.14: Axial ADC images along the x-, y- and z-axis. Note that in the region marked
by the white circle, ADC ‖ x-axis is much higher than ADC ‖ y-axis and ADC ‖ z-axis,
implying that the diffusion and the underlying microstructure are left-right oriented.

1.5.5 Diffusion tensor imaging (DTI)
Combining Eqs. (1.4) and (1.14), the Stejskal-Tanner equation can be modified to
estimate the full diffusion tensor [Basser et al., 1994a,b, Basser and Pierpaoli, 1996,
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1.5. Measuring diffusion with MRI

Basser, 2002, Basser and Jones, 2002], resulting in a system of equations:

A(q) = e−q
TDq(∆−δ/3) = e−γ

2δ2‖g‖2(∆−δ/3)ĝTDĝ = e−bĝ
TDĝ (1.19)

with

ĝ =
g

‖g‖
(1.20)

Eq. (1.19) allows one to estimate the apparent diffusion tensor D from a collection
of DW images S(q) along different non-collinear gradient directions, along with
a reference image S(0). Given that D contains only 6 unique elements, at least
6 DW images are required to solve the system of equations. On the other hand,
overdetermining the solution for D reduces the amount of noise propagating from
the DW measurements into the calculated diffusion tensor [Papadakis et al., 1999,
2000]. Moreover, based on Monte Carlo simulations, it has been shown that
at least 20 unique gradient directions are necessary for a robust estimation of
anisotropy, whereas at least 30 unique sampling orientations are required for a
robust estimation of the tensor-orientation [Jones, 2004]. Note that Eq. (1.19) still
assumes that diffusion is Gaussian.

D =

 Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz



(a) Dxx (b) Dxy

(c) Dxz (d) Dyy (e) Dyz (f) Dzz

Fig. 1.15: Individual DT components (axial slices). Note that in the region marked by
the white circle, Dxx is much higher than Dyy and Dzz, implying that the diffusion and
the underlying microstructure are left-right oriented.
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1.5.5.1 Geometrical interpretation

Since D is a symmetric and positive definite second-rank tensor, it can be decom-
posed into real eigenvalues and eigenvectors:

D = EΛE−1 (1.21)

with

E =
[
e1 e2 e3

]
and Λ =

 λ1 0 0
0 λ2 0
0 0 λ3

 (1.22)

defining the matrix of orthonormal eigenvectors ei and the diagonal matrix of
eigenvalues λi (with i = 1, 2, 3), respectively [Hasan et al., 2001]. The three
eigenvalues λi correspond to the diffusivities along the principle axes of the diffusion
tensor. The orientation of the principle axes is given by the three eigenvectors ei,
which are mutually orthogonal by definition. Consequently, the principal axes of
the ellipsoidal isoprobability surface of the diffusion tensor and their corresponding
radii, are given by the eigenvectors ei and the eigenvalues λi, respectively. By
convention, the eigenvalues and their corresponding eigenvectors are sorted as
follows: λ1 > λ2 > λ3. Consequently, the first eigenvector e1 describes the
dominant diffusion direction and is also called the principal diffusion vector (PDV).

1.5.5.2 Scalar measures

From the eigenvalues, different scalar measures can be calculated, that characterize
the diffusion profile [Bahn, 1999]:

• The mean diffusivity (MD) (Fig. 1.17f) is a measure of the average diffusion:

MD =
λ1 + λ2 + λ3

3
= 〈λ〉 (1.23)

MD is typically much higher in CSF than in the parenchyma (WM and GM).
Inside the CSF and inside the parenchyma MD is typically homogeneous.

• The fractional anisotropy (FA) (Fig. 1.17g) is a measure of the degree of
diffusion anisotropy [Pierpaoli and Basser, 1996]:

FA =

√
3

2

√
(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2√

λ2
1 + λ2

2 + λ2
3

(1.24)

The FA is appropriately normalized so that it takes values from zero (when
diffusion is isotropic) to one (when diffusion is constrained along one axis
only). FA is typically much higher in the WM structures than in the CSF and
GM, due to the WM’s highly organized and tightly packed myelinated axons.
Because of this, FA is often used as a surrogate marker for WM ‘integrity’
[Beaulieu, 2002].
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1.5. Measuring diffusion with MRI

Fig. 1.16: Isoprobability surfaces derived from the diffusion tensor field. Note that in each
voxel the isoprobability surface is an ellipsoid which is uniquely defined by the tensors’
eigenvectors and eigenvalues. Image courtesy of Alexander Leemans.
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• The axial diffusivity (AD) (Fig. 1.17d) is a measure of diffusion along the first
eigenvector:

AD = λ1 (1.25)

• The radial diffusivity (RD) (Fig. 1.17e) is a measure of the average diffusion
perpendicular to the first eigenvector:

RD =
λ2 + λ3

2
(1.26)

Decreased AD but unchanged RD is typically assumed to indicate a lower
axonal density or axonal damage, while increased RD but unchanged AD is
typically assumed to indicate demyelination [Beaulieu, 2002]. As such, AD
and RD allow a more specific interpretation of the general concept of WM
‘integrity’ associated with FA.

• The linear coefficient (CL) (Fig. 1.17j) is a measure of the linearity of the
diffusion tensor profile [Westin et al., 2002]:

CL =
λ1 − λ2

λ1
(1.27)

As with the FA, the CL is typically much higher in the highly organized WM
structures than in the CSF and GM.

• The planar coefficient (CP) (Fig. 1.17k) is a measure of the planarity of the
diffusion tensor profile [Westin et al., 2002]:

CP =
λ2 − λ3

λ1
(1.28)

The CP is typically high in regions where multiple underlying fiber orientations
are lying in the same plane.

• The spherical coefficient (CS) (Fig. 1.17l) is a measure of the sphericity of
the diffusion tensor profile [Westin et al., 2002]:

CS =
λ3

λ1
(1.29)

The CS is typically much higher in the CSF and GM than in the WM.
However, it is also high in regions where multiple underlying fiber orientations
are known to cross. CL, CP and CS lie in the range from zero to one, and
their sum is equal to one.

Note, that since all these parameters are calculated from the eigenvalues, they
will be rotationally invariant by definition. For visualization purposes, an FA map
(Fig. 1.17g) is often combined with a direction encoding RGB-map (Fig. 1.17h),
where the color represents the orientation of the first eigenvector (red: left-right
oriented; green: anterior-posterior; blue: superior-inferior) [Pajevic and Pierpaoli,
1999] and the intensity of the map reflects the anisotropy (Fig. 1.17i).
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1.5. Measuring diffusion with MRI

(a) λ1 (b) λ2 (c) λ3

(d) AD (e) RD (f) MD

(g) FA

×

(h) FE

=

(i) FEFA

(j) CL (k) CP (l) CS

Fig. 1.17: Overview of the common scalar measures derived from the DT eigenvalues.
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Chapter 1. Diffusion MRI

1.6 Applications
Diffusion MRI is a powerful noninvasive tool to study complex neural tissue
architecture. Scalar measures derived with diffusion MRI, such as AD, RD, MD,
and FA, have been used to study a broad range of neurological conditions including,
but not limited to, stroke [Beauchamp et al., 1998, Keir and Wardlaw, 2000, Sotak,
2002, Kane et al., 2007], tumors [Field and Alexander, 2004], various white matter
diseases such as dementia, multiple sclerosis, amyotrophic lateral sclerosis and
Alzheimer’s disease [Horsfield and Jones, 2002] and psychiatric disorders such as
schizophrenia [Kubicki et al., 2007]. In addition, diffusion MRI has been used
extensively to study brain development [Neil et al., 2002] and aging [Moseley, 2002,
Sullivan and Pfefferbaum, 2006]. Recent reviews describing several applications
in brain research are given by Dong et al. [2004] and Assaf and Pasternak [2008].
Although the central nervous system is the focus of most application studies,
diffusion MRI has also been applied successfully in other fibrous tissue types such
as cardiac muscle [Dou et al., 2002], skeletal muscle [Heemskerk et al., 2009] and
plant tissue [Li et al., 1997].

1.7 Challenges and limitations
While the number of applications of diffusion MRI has exploded in recent years,
obtaining reliable diffusion data remains a challenging task [Jones and Cercignani,
2010, Tournier et al., 2011]. The most important challenges will be briefly discussed
here.

1.7.1 Motion
Diffusion MRI is sensitized to translational motion of water molecules, which is of
the order of 5-15 µm assuming typical measurement times. Hence, a small amount
of subject motion can lead to a significant amount of signal phase shift or signal
loss, which can severely affect image quality [Skare and Andersson, 2001, Pierpaoli
et al., 2003, Jones and Pierpaoli, 2005, Nunes et al., 2005]. For the brain, there are
two major sources of subject motion: head motion and physiological motion.

Head motion causes global displacement of tissue, resulting in global misregis-
tration of the different DW images. To reduce motion sensitivity, fast acquisition
schemes such as single-shot echo-planar imaging (EPI) are commonly used. Ad-
ditionally, head motion is often corrected for after the acquisition using rigid
registration algorithms that realign the different DW images to a baseline scan,
typically a non DW image [Netsch and van Muiswinkel, 2004]. However, large
differences in contrast between the DW images, low SNR, and low spatial resolution,
make such registration a challenging task. Additionally, one has to realize that the
diffusion images contain orientational information, so any spatial transformation
that is performed on the data must also be applied to the orientational information
[Leemans and Jones, 2009].

Physiological motion, such as cardiac pulsation, causes local displacement of
tissue, resulting in local misregistrations of the different DW images. Additionally,
stretching and shearing of the tissue will cause incoherent motion of spins within
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1.7. Challenges and limitations

voxels, resulting in signal attenuation [Jones and Cercignani, 2010]. This additional
signal attenuation will be perceived as extra diffusion parallel to the direction
of the applied encoding gradient. Pulsation artifacts are usually alleviated using
cardiac gating [Skare and Andersson, 2001, Nunes et al., 2005, Jones and Cercignani,
2010]. Cardiac gating times the acquisition of MR data to the primary source of
physiological motion in order to minimize motion artifacts.

1.7.2 Eddy currents

Although EPI sequences offer improved acquisition times and therefore reduced
susceptibility motion artifacts, they are subject to eddy current distortions intro-
duced by the gradients, especially the large diffusion-encoding gradients [Jezzard
et al., 1998]. When a magnetic field is time-varying, such as when ramping up a
diffusion-encoding gradient, electric currents (eddy currents) will be generated in
nearby conductors, generating local magnetic field gradients that will either add
to or subtract from the subsequent gradients that are used for spatial encoding.
In most imaging acquisitions, eddy currents are not a major problem. Spatial
encoding gradients are normally applied for short periods such that the rising and
falling edges of the gradient are close together in time, and thus there is a form
of self-compensation. Diffusion gradients, however, are much stronger and due to
the limited gradient amplitude on clinical systems, need to be applied for much
longer than usual. The rising and falling parts of the gradient are now sufficiently
temporally separated and the eddy currents are no longer self-compensated. Eddy
currents will cause geometrical distortions in the DW images. Typically, eddy
currents are compensated for using a twice-refocused EPI sequence [Reese et al.,
2003]. In addition, eddy current distortions are often corrected for after the acqui-
sition using affine registration algorithms that realign the different DW images to
a non DW image [Netsch and van Muiswinkel, 2004]. However, large differences in
contrast between the DW images, low SNR, and low spatial resolution, make such
registration a challenging task.

1.7.3 Signal-to-noise ratio (SNR) and Spatial resolution

Given that diffusion MRI measures signal loss, it is inherently a noisy technique
[Stejskal and Tanner, 1965]. Signal-to-noise Ratio (SNR) could be increased by
increasing scan time, but since this puts additional strain on the patient and
increases the likelihood of head motion, this is typically not desired. Diffusion
MRI images typically employ large voxels to increase SNR (common voxel sizes
for human diffusion MRI are 2× 2× 2 mm3 to 3× 3× 3 mm3). As a consequence,
SNR and spatial resolution of diffusion MRI are much lower than that of standard
anatomical MRI.

1.7.4 Partial volume effects

Given the large voxel sizes used in diffusion MRI, many voxels consist of a mixture
of signals from different anatomical structures. It is known that ambiguous results
are obtained when DTI is used to study regions in which WM fibers cross or
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multiple fibers merge [Alexander et al., 2001, Tuch et al., 2002, Wheeler-Kingshott
and Cercignani, 2009]. In such regions, it can be shown that the second-rank
diffusion tensor model is incapable of describing multiple fiber orientations within
an individual voxel [Tuch et al., 2002]. The acquired signal of a single voxel can
be considered as the average signal of the differently oriented fiber structures.
Therefore, it is important to keep in mind that DTI is only valid for unidirectional
fiber bundles that are large with respect to the voxel size. Fig. 1.18 shows an
example of DTI in a voxel containing crossing fibers. More information on this
issue and possible solutions can be found in Chapter 2.

(a) environment (b) true PDF

(c) true isoprobability sur-
face

(d) DTI isoprobability sur-
face

Fig. 1.18: Diffusion in an environment with multiple fiber populations. Note that while
the true diffusion PDF (b) and its isoprobability surface (c) are able to characterize the
underlying fiber populations (a), the diffusion tensor model cannot (d).
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2.1. Introduction

2.1 Introduction

Currently, DTI is the established method for assessing white matter microstructure
and connectivity [Basser et al., 1994a,b, Mori and Van Zijl, 2002]. However, in
voxels containing multiple fiber orientations (a condition often called ‘crossing
fibers’), the model has been shown to be inadequate [Alexander et al., 2001, Frank,
2001, Alexander et al., 2002, Frank, 2002, Tuch et al., 2002, Jansons and Alexander,
2003, Tournier et al., 2004, Tuch, 2004, Anderson, 2005, Wedeen et al., 2005]. Note
that crossing fibers are inherent to DWI, due to its coarse resolution (in the order
of 2 to 3 mm) compared with the radius of a single axon (0.1 to 10 µm).

The problem of DTI in crossing fiber regions, stems from the fact that it can
only model Gaussian diffusion. Being a unimodal function, the Gaussian function
is simply not equipped to deal with multiple fiber configurations. Fig. 2.1 illustrates
this problem by showing various examples of complex fiber architecture and their
corresponding diffusion tensor. Note that all of the biophysical properties of the
underlying axons were kept constant in this experiment and that all changes are
solely the consequence of a change in large-scale spatial organization. From Fig. 2.1,
it is clear that there are two obvious consequences when using the tensor model
in regions of crossing fibers. Firstly, the large-scale spatial organization will have
a large impact on the scalar measures derived from the tensor [Alexander et al.,
2001]. It is well known that tensor-derived measures, such as FA, as well of other
indices such as axial and radial diffusivity, all of which are currently widely used,
become ambiguous in these regions [Alexander et al., 2001, Wheeler-Kingshott and
Cercignani, 2009, Jones and Cercignani, 2010]. In the example in Fig. 2.1, FA drops
from 0.9 (bundle of straight fibers), over 0.6 (bending, fanning, two crossing fibers
at acute angle) to 0.4 (two crossing fibers at a right angle), simply by changing
the large-scale spatial organization. Note that introducing a third orthogonal fiber
population would further reduce FA down to zero. This has important consequences
for the interpretation of such measures, as they are commonly regarded as surrogate
markers of WM ‘integrity’ [Beaulieu, 2002].

Secondly, it is clear from Fig. 2.1, that in the case of multiple fiber orientations,
the first eigenvector of the diffusion tensor reflects the average fiber orientation,
which does not necessarily correspond with any of the true underlying fiber orienta-
tions. In some cases, such as two orthogonally crossing fiber populations, the first
eigenvector can even become undefined. In such cases, the principal orientation of
the diffusion tensor will be completely determined by the noise in the data. This
mismatch between the estimated fiber orientation and the true fiber orientation
is extremely problematic for tensor-based tractography methods ([Frank, 2001,
Tuch et al., 2002, Alexander et al., 2002, 2001, Frank, 2002]). Even if one wrong
orientation estimate is encountered, the tracking algorithm may veer off-course,
away from the true end-point of the WM tract, causing false negatives [Behrens
et al., 2007, Jeurissen et al., 2011]; and/or into adjacent yet unrelated WM tracts,
resulting in false positives [Pierpaoli et al., 2001, Jeurissen et al., 2011].

For these reasons, there is increasing interest in using more complex models
than the DT that are able to resolve multiple fiber orientations in a single voxel. In
the remainder of this chapter, we provide an overview of the most widely used multi-
fiber reconstruction methods [Alexander, 2006, Seunarine and Alexander, 2009,
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fiber configuration diffusion PDF diffusion tensor principal direction

FA = 0.9

(a) parallel fibers

FA = 0.6

(b) bending and fanning fibers

FA = 0.6

(c) brushing and interdigitating fibers: acute angle

FA = 0.4

?

(d) brushing and interdigitating fibers: right angle

Fig. 2.1: The ‘crossing fiber’ problem. The first column shows a schematic representation
of various fiber configurations at the length scale of a single voxel. The second column
shows the corresponding diffusion PDF. The third and fourth column show the DTI model
and its principal orientation. Note that the diffusion tensor model cannot resolve complex
fiber configurations and the reported principal orientation can be considered the average
fiber orientation. In the case of two orthogonal fiber bundles, the tensor becomes perfectly
oblate, rendering the principal orientation undefined. Note further that, even from the
perfect diffusion PDF, one cannot distinguish fanning from bending fiber configurations,
and brushing from interdigitating fibers.
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Tournier et al., 2011, Jeurissen et al., 2012]. Because the spherical deconvolution
method will be used extensively in this thesis, extra space will be devoted to it.
Given that some of these methods make use of spherical harmonics modeling to
represent functions on the sphere, we begin with a short introduction to spherical
harmonics.

2.2 Spherical harmonics
The spherical harmonics (SH) Y ml (θ, φ) of order l = 0, 1, 2, ... and degree m =
−l, ..., 0, ..., l are defined as:

Y ml (θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ (2.1)

where (θ, φ) are spherical coordinates (θ ∈ [0, π], φ ∈ [0, 2π[), and Pml (·) are the
associated Legendre polynomials. It can be shown that Y ml is an orthonormal
basis for complex functions of the unit sphere [Courant and Hilbert, 1953]. As a
consequence, any function of the unit sphere S(θ, φ) can be expressed by an infinite
series of SH:

S(θ, φ) =
∞∑
l=0

l∑
m=−l

cml · Y ml (θ, φ) (2.2)

Note that even order Y ml are antipodally symmetric, while odd order Y ml are
antipodally anti-symmetric:

Y ml (π − θ, φ+ π) =

{
Y ml (θ, φ) if l is even
−Y ml (θ, φ) if l is odd

(2.3)

Typically, the functions we want to represent using SH are real and antipodally
symmetric. Therefore, a modified SH basis is defined that is also real and antipodally
symmetric. In order to impose the symmetry constraint, only SH of even order are
considered (see Eq. (2.3)). In order to impose the real-valued constraint, the real
and imaginary parts of Y ml are chosen depending on the degree m. The modified
spherical harmonics Y

′m
l (θ, φ) of order l = 0, 2, 4, ... and degree m = −l, ..., 0, ..., l

are then defined as:

Y
′m
l (θ, φ) =


√

2 · Re [Y ml (θ, φ)] if m > 0

Y ml (θ, φ) if m = 0√
2 · Im

[
Y −ml (θ, φ)

]
if m < 0

(2.4)

or more explicitly as:

Y
′m
l (θ, φ) =


√

2 ·
√

(2l+1)
4π

(l−m)!
(l+m)!P

m
l (cos θ) cos(mφ) if m > 0√

(2l+1)
4π P 0

l (cos θ) if m = 0
√

2 ·
√

(2l+1)
4π

(l+m)!
(l−m)!P

−m
l (cos θ) sin(−mφ) if m < 0

(2.5)

33



Chapter 2. Multi-fiber reconstruction

It can be shown that Y
′m
l forms an orthonormal basis for real and antipodally

symmetric functions of the unit sphere [Descoteaux et al., 2007]. As a consequence
any real and antipodally symmetric spherical function S(θ, φ) can be expressed by
an infinite series of modified SH:

S(θ, φ) =
∞∑
l=0

l∑
m=−l

cml · Y
′m
l (θ, φ) (2.6)

l = 0

l = 2

l = 4

m = −4 −3 −2 −1 0 1 2 3 4

Fig. 2.2: The modified SH basis Y
′m
l (θ, φ) up to order l = 4. The function value is

visualized as the distance from the origin to the surface. Green indicates positive function
values. Red indicates negative function values. Notice that the angular frequency of the
basis functions increases with order l.

Fig. 2.2 shows the modified SH basis functions Y
′m
l up to order l = 4. The

higher order basis functions correspond to the higher angular frequency modes of
the unit sphere, and thus relatively smooth functions can be represented concisely
using a truncated SH series:

S(θ, φ) ≈
lmax∑
l=0

l∑
m=−l

cml · Y
′m
l (θ, φ) (2.7)

where {cml } denote the SH coefficients and lmax is the SH order at which the series
is truncated. Since only even degree coefficients are used, Eq. (2.7) consists of
nc = (lmax + 1) × (lmax + 2)/2 terms. For a set of discrete samples of the unit
sphere, Eq. (2.7) can be expressed as a linear system of equations:

s = Y c (2.8)

where s is the ns × 1 sample vector, Y is the ns × nc matrix constructed with the
modified SH basis, c is the nc × 1 vector of SH coefficients. The coefficients c can
now be estimated using least-squares minimization:

ĉ = (Y TY )−1Y Ts (2.9)

Note that, the modified SH series truncated at lmax has nc degrees of freedom,
requiring at least nc spherical samples of the function S in order to solve Eq. (2.8).
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(a) original (b) lmax = 0 (c) lmax = 2

(d) lmax = 4 (e) lmax = 6 (f) lmax = 8

Fig. 2.3: A DW signal being modeled by a modified SH series with increasing lmax. Note
that, as lmax increases, the truncated SH series more accurately represents the original
signal. At lmax = 8, the significant features of the DW signal are captured by the truncated
SH series.

For example, to estimate the modified SH coefficients up till lmax = 8, at least
45 spherical samples are required. Fig. 2.3 shows a DW signal acquired at a fixed
q-space radius being modeled by a modified SH series with increasing lmax. A
recent study has shown that the highest order for which significant terms can be
found in in vivo DW signal profiles at b = 3000 s/mm2 is 8 [Tournier et al., 2009].

2.3 Model-free approaches

Remember from Eq. (1.14) that the signal attenuation S(q)/S(0) as a function
of the q-vector can be expressed as the 3D Fourier transform F of the diffusion
probability density function p(r). Methods based on q-space will provide an
estimate of p(r) by directly exploiting this Fourier relationship. As there is no
explicit need for a model of the diffusion, these methods are considered to be
model-free.

An important concern with the q-space approaches is that p(r) does not nec-
essarily reflect the true fiber orientation distribution [Tuch et al., 2003]. Fiber
orientations are typically extracted from p(r) by identifying the directions along
which the probability of displacement is highest [Wedeen et al., 2005, 2008, Camp-
bell et al., 2005, Perrin et al., 2005, Berman et al., 2008]. Although water molecules
are most likely to move along the fiber orientation, moves along other, even per-
pendicular orientations are still common. As a consequence, closely aligned fiber
orientations will be blurred together and thus be identified as a single fiber orienta-
tion [Zhan and Yang, 2006, Tournier et al., 2008]. Additionally, the overlapping of
diffusion coming from different fiber populations, can introduce a bias in the esti-
mated fiber orientations [Zhan and Yang, 2006, Tournier et al., 2008]. These issues
are illustrated in Fig. 2.10, where we compare the fiber orientations extracted using
both a model-free q-space approach and a model-based approach. The blurring
and the bias can be addressed by the introduction of a suitable model for diffusion
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in WM, however these methods can than no longer be deemed model-free [Tuch
et al., 2003, Descoteaux et al., 2009].

Another concern is that the Fourier relationship used by the q-space approaches
relies on infinitesimally short pulses (the narrow pulse regime). In practice, however,
this requirement cannot be met, due to the limited gradient power available in
clinical systems. As a consequence, p is subject to additional blurring [Bar-Shir
et al., 2008, Yeh et al., 2010].

2.3.1 Diffusion spectrum imaging (DSI)
Diffusion spectrum imaging (DSI) attempts to measure the diffusion PDF p(r)
directly by applying the inverse Fourier transform on the q-space samples A(q) =
S(q)/S(0) [Wedeen et al., 2005]:

p(r) = F−1 [A(q)] (r) (2.10)

As such, DSI makes no assumptions about the tissue microstructure or the shape of
p(r). In practice, DSI acquires measurements S(q) for each of a Cartesian grid of
q-vectors (Fig. 2.4a) and reconstructs a discrete version of p(x) by applying the 3D
inverse fast Fourier transform (IFFT). The discrete representation of p(r) we get
from the IFFT is not directly useful for estimating the fiber orientations, since it is
a function of 3D space. In practice, one usually calculates the diffusion orientation
density function (dODF) ψ(r̂). ψ is simply the projection of p onto the unit-sphere
[Tuch, 2004]:

ψ(r̂) =

∞∫
0

p(αr̂)dα (2.11)

where r̂ = r/‖r‖ is a unit-vector in the direction of r. In practice, ψ(r̂) is calculated
for each of a finite set of directions r̂ by taking steps along the line in direction
r̂, interpolating the discrete p to estimate its value at each step and summing the
values over all steps. The major limitation of DSI is the large amount of data
required to perform the inverse Fourier transform and the correspondingly long
acquisition time. To cover the Cartesian grid points in q-space, typically requires
500-1000 measurements, which is an order of magnitude more than the typical
spherical acquisition scheme used for DTI. In practice, image resolution is reduced
in order to make such an acquisition clinically feasible.

2.3.2 Q-ball imaging (QBI)
Q-ball imaging (QBI) directly estimates the dODF using the significantly shorter
and more efficient high-angular resolution diffusion imaging (HARDI) acquisition
[Tuch, 2004]. As opposed to a full q-space acquisition, a HARDI acquisition
samples the q-space only at a fixed q-space radius, resulting in a high angular
density spherical acquisition scheme (Fig. 2.4b). QBI approximates the dODF ψ(r̂)
by the Funk-Radon transform (FRT) of the HARDI signal S(q) [Tuch, 2004]:

ψ(r̂) ≈
∫

q⊥r̂
‖q‖=q′

S(q) dq (2.12)
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(a) Full Cartesian q-space sampling (b) HARDI q-space sampling

Fig. 2.4: Full Cartesian vs. HARDI q-space sampling. q-space sampling vectors are
indicated as blue spheres. q-space samples without diffusion weighting are situated at the
origin and are indicated by a red sphere. q-space samples further away from the origin
have stronger diffusion weighting. For HARDI q-space sampling, all sample points lie on
the same sphere in q-space, indicated by a transparent gray sphere.

Fig. 2.5 describes all the steps involved in the original q-ball algorithm. While
the original implementation uses radial basis functions to interpolate S(q) and
represent ψ(r̂), more recent work has introduced the use of the modified spherical
harmonics basis to represent S(q) and ψ(r̂). This approach has the advantage that
the FRT can be performed analytically [Hess et al., 2006, Descoteaux et al., 2007].
First S(q) is represented using a finite modified SH series:

Ŝ(q) =

lmax∑
l=0

l∑
m=−l

cml Y
′m
l (q) (2.13)

Substitution of Eq. (2.13) into Eq. (2.12) yields:

ψ(r̂) ≈
∫

q⊥r̂
‖q‖=q′

lmax∑
l=0

l∑
m=−l

cml Y
′m
l (q) dq (2.14)

which can be reordered to:

ψ(r̂) ≈
lmax∑
l=0

l∑
m=−l

cml

∫
q⊥r̂
‖q‖=q′

Y
′m
l (q) dq (2.15)
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(a) disc. DWI (b) cont. DWI (c) FRT (d) disc. ODF (e) cont. ODF

Fig. 2.5: Overview of the original q-ball algorithm. First, the set of discrete measurements
on a sphere in q-space (a) are interpolated to a continuous representation (b). On the
interpolated measurements the FRT (c) is performed for a set of discrete ODF sample
points (d) by taking equal steps along the great circle and summing all the q-space samples.
Finally, the discrete ODF (d) is interpolated again to yield a continuous representation of
the ODF (e).

It can be shown that the FRT can be performed analytically on the modified
spherical harmonics basis functions [Hess et al., 2006, Descoteaux et al., 2007]:∫

q⊥r̂
‖q‖=q′

Y
′m
l (q) dq = 2πPl(0)Y

′m
l (r̂) (2.16)

where Pl(·) are the unassociated Legendre polynomials of order l. Hence, the ODF
can be computed directly from the spherical harmonics representation of S(q):

ψ(r̂) ≈
lmax∑
l=0

l∑
m=−l

2πPl(0)cml Y
′m
l (r̂) (2.17)

In other words, if f and s are the nc × 1 SH coefficient vectors of ψ(r̂) and S(q),
respectively, and Q is the nc × nc diagonal matrix with Qjj = 2πPlj (0) where
lj = (0, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, ...), the FRT can be performed directly
on the SH coefficients as a single matrix multiplication:

f = Qs (2.18)

allowing very fast q-ball reconstructions.
QBI has been shown to be capable of producing results similar to DSI with

substantially reduced acquisition times. In the absence of noise, the approximation
of Eq. (2.12) becomes closer as the q-radius q′ increases. However, to ensure ade-
quate SNR in the DW images, QBI is typically performed using low to intermediate
q′-values. This will introduce significant blurring in the dODF, which will reduce
the angular resolution and may introduce a bias [Tournier et al., 2008]. These
issues are illustrated in Figs. 2.10 and 2.11, where we compare the fiber orientations
extracted with QBI to those obtained with a model-based approach. Although
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blurring and the bias can be reduced using large q′-values, this will reduce SNR
and/or increase scan time.

2.3.3 Persistent angular structure MRI (PAS-MRI)
Persistent angular structure MRI (PAS-MRI) provides an estimate of the persistent
angular structure (PAS) of the diffusion PDF [Jansons and Alexander, 2003]. Like
QBI, PAS-MRI uses the much faster HARDI acquisition scheme. The underlying
principle is that spins are assumed to diffuse by a fixed distance, with an angular
distribution given by the PAS. With this definition of the radial dependence of the
spin propagator, it becomes possible to perform the 3D Fourier transform required
for q-space analysis. PAS-MRI is combined with a maximum entropy constraint
to improve the stability of the results. The maxima of the PAS correspond well
to the underlying fiber orientations and the entropy constraint allows PAS-MRI
to operate on low b-value data [Jansons and Alexander, 2003]. Although the first
implementation of PAS-MRI was computationally intensive, limiting its practical
use, new implementations make the computation time more manageable [Sakaie,
2008, Sweet and Alexander, 2010].

2.4 Model-based approaches
Model-based approaches rely on an explicit model that provides an estimate of the
DW signal arising from a number of fiber populations. Typically, they operate on
HARDI acquisitions.

2.4.1 Multi-tensor models
The multi-tensor model is a straightforward generalization of the single-tensor
model, replacing the Gaussian model for p with a mixture of n Gaussian probability
densities:

p(r) =

n∑
i=1

ai
1√

(4πt)
3 |Di|

e−
rTD

−1
i

r

4t with
n∑
i=1

ai = 1 (2.19)

The system of equations that relates the signal attenuation A(q) = S(q)/S(0) to
the diffusion tensors of the underlying tissue becomes:

A(q) =
n∑
i=1

aie
−qTDiq(∆−δ/3) =

n∑
i=1

aie
−bĝTDiĝ with

n∑
i=1

ai = 1 (2.20)

Note that the model assumes that the voxels contain n distinct fiber populations
and that diffusing molecules stay within one population (no exchange). For n = 2,
Eq. (2.20) has 13 free parameters: 12 for the six components of each DT and one
for the volume fractions (as a2 = 1− a1). To reduce the number of unknowns and
improve the stability of the fitting procedure, several constraints can be imposed to
the composing tensors. Typically, the shape of the tensor is assumed to be axially
symmetric [Tuch et al., 2002, Behrens et al., 2007]. The anisotropy is also often
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fixed [Tuch et al., 2002, Behrens et al., 2007], although some implementations allow
the anisotropy to vary [Hosey et al., 2005]. An additional isotropic compartment
is sometimes included to account for CSF or gray matter contamination [Hosey
et al., 2005, Behrens et al., 2007]. One of the most widely used models is called the
ball-and-sticks model, in which the DW signal is fitted to a combination of sticks,
which represent different fiber populations with complete anisotropy; and a ball,
which represents the isotropic compartment [Behrens et al., 2007].

One of the most important limitations of the multi-compartment models, is that
they require an estimate of the number of fiber populations n to include into the
model. Typically, this is achieved by model-selection, comparing the goodness of
fit for different n [Alexander et al., 2002, Hosey et al., 2005, Parker and Alexander,
2003]. Other implementations use Bayesian automated relevance determination
(ARD) to drive the volume fractions of excess fiber populations to zero [Behrens
et al., 2007].

Closely related to the multi-tensor models is the more general family ofl multi-
compartment models [Panagiotaki et al., 2012]. In particular, the composite
hindered and restricted model of diffusion (CHARMED) models the DW signal
attenuation A(q) = S(q)/S(0) with one extra-axonal (hindered) compartment
Ah(q), characterized using a single diffusion tensor, and and a number of intra-
axonal (restricted) compartments Ar,i(q) (i = 1, ..., n), each characterized using a
model of restricted diffusion within a cylinder [Assaf et al., 2004, Assaf and Basser,
2005]:

A(q) = ahAh(q) +

n∑
i=1

ar,iAr,i(q) with ah +

n∑
i=1

ar,i = 1 (2.21)

where ah is the hindered volume fraction and ar,i are the n restricted volume
fractions. Note that this approach requires a more demanding and more lengthy
acquisition scheme with multiple and high b-values in order to discriminate between
the hindered and restricted components of the model.

2.4.2 Spherical deconvolution (SD)
A different approach to overcome the limitation of the multi-tensor models is to use
a continuous distribution of fiber orientations instead of a discrete number of fiber
populations. Spherical deconvolution (SD) methods model the DW signal S(q) as
the convolution of the fiber orientation distribution function (fODF) φ(r̂), which
gives the fraction of fibers that are aligned along r̂, and a response function R(q; r̂),
which is the signal measured from a single fiber population with orientation r̂
[Tournier et al., 2004, Anderson, 2005, Alexander, 2006]:

S(q) =

∫
φ(r̂)R(q; r̂) dr̂ (2.22)

Fig. 2.6 explains the concept of spherical convolution by means of a simple fODF
consisting of two distinct delta peaks. The response function is rotated to match each
peak and the resulting DW signal profiles are summed to form the corresponding
DW signal. Fundamentally, spherical convolution can be seen as an extension of the
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multi-tensor model, where the number of discrete fiber populations n is increased
to infinity. From Eq. (2.22) it is clear that the fODF φ(r̂) can be recovered by

(a) fODF

⊗

(b) single fiber signal

=

(c) DW signal 1

+

(d) DW signal 2

=

(e) DW signal

Fig. 2.6: Spherical convolution. The DW signal (e) is assumed to be the convolution of the
fODF (a) and the single fiber response function (b). For the example of a discrete fODF
consisting of two delta peaks (a), the convolution is obtained by rotating the response
function to match each peak (c-d) and summing the resulting DW signal profiles (e). In
general the fODF is not a discrete, but instead is a continuous orientation distribution
function. The summation then becomes a continuous integral.

performing the spherical deconvolution operation [Tournier et al., 2004, Anderson,
2005]. The various implementations differ in the basis functions they use to represent
the fODF, with many methods using the modified SH [Tournier et al., 2004, 2007,
Anderson, 2005, Alexander, 2005], others using Wishart basis functions [Jian and
Vemuri, 2007a,b]; and yet others working directly on the data [Dell’Acqua et al.,
2007, Patel et al., 2010]. They also differ in the constraints placed on the solution,
with many implementations introducing a non-negativity constraint [Tournier et al.,
2007, Jian and Vemuri, 2007a,b, Dell’Acqua et al., 2007, Patel et al., 2010] and
others including a maximum entropy term [Alexander, 2005]. Finally, they differ
in the assumed response function, with some methods assuming a diffusion tensor
model [Anderson, 2005, Dell’Acqua et al., 2007, Kaden et al., 2007, 2008], and
others measuring it directly from the data [Tournier et al., 2004, 2007]. In the
remainder of this section we will focus on the implementation using the modified
SH basis functions as proposed by Tournier et al. [2004].

The deconvolution operation can be performed elegantly using the set of spherical
and rotational harmonics [Healy et al., 1998, Tournier et al., 2004, Anderson, 2005].
In this framework, Eq. (2.22) becomes a simple matrix multiplication:

s = Rf (2.23)

where f and s are the nc × 1 SH coefficient vectors of φ(r̂) and S(q), respectively;
and R is the nc × nc rotational harmonic matrix of R(q; r̂). Under the assumption
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that the response function is axially symmetric, it can be shown thatR is a diagonal
matrix, whose elements can be calculated directly from the SH coefficients of the
response function [Tournier et al., 2004, 2007]. From Eq. (2.23) then follows the
formula for spherical deconvolution:

f = R−1s (2.24)

which is a simple linear operation directly on the SH coefficients. However, as can
be appreciated from Fig. 2.7, the spherical deconvolution problem is ill-posed and
thus susceptible to noise, resulting in spurious high angular frequency fODF lobes
and physically impossible high angular frequency negative lobes (Fig. 2.7c).

(a) DW signal (b) single fiber signal (c) fODF: unfiltered SD

(d) fODF: filtered SD (e) fODF: CSD (f) fODF: super-CSD

Fig. 2.7: Spherical deconvolution of a noisy DW signal (a) with a single fiber response
function (b) using unfiltered (c), filtered (d), constrained (e) and super-resolved constrained
deconvolution (f). Green indicates positive amplitude, while red indicates negative
amplitude. Note that, by adding noise to the DW data, the unfiltered estimation becomes
unstable, resulting in spurious high angular frequency fODF lobes and physically impossible
high angular frequency negative lobes (c). Using a low-pass filter, which attenuates the
high angular frequency components of the fODF, the negative lobes can be reduced to
some extent (d). This, however, comes at the expense of reduced angular resolution
(wider, overlapping lobes) (d). By imposing a non-negativity constraint onto the fODF,
the physically impossible amplitudes can be avoided without the sacrifice of angular
resolution, resulting in a sharp and accurate fODF without negative lobes (e). In addition,
the additional information provided by the non-negativity constraint, allows to estimate
the even sharper super-resolved fODF (f).

Note that, even for noiseless DW data (Fig. 2.8), the unfiltered fODF (Fig. 2.8c)
contains small negative lobes which are physically impossible, resulting from the
truncation of the SH series. This truncation artifact is equivalent to the Gibbs
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(a) DW signal (b) single fiber signal (c) fODF: unfiltered SD

(d) fODF: filtered SD (e) fODF: CSD (f) fODF: super-CSD

Fig. 2.8: Spherical deconvolution of a noiseless DW signal (a) with a single fiber response
function (b) using unfiltered (c), filtered (d), constrained (e) and super-resolved constrained
deconvolution (f). Green indicates positive amplitude, while red indicates negative
amplitude. Note that, even for noiseless DW data, the unfiltered fODF (c) contains
lots of negative lobes which are physically impossible, resulting from the truncation of
the SH series. This truncation artifact is equivalent to the Gibbs phenomenon seen in
the Fourier series. The negative lobes can be reduced by employing a low pass filter on
the SH coefficients (d). This, however, comes at the cost of reduced angular resolution
(wider, overlapping lobes). By imposing a non-negativity constraint onto the fODF, the
physically impossible amplitudes can be avoided without the sacrifice of angular resolution
(e), resulting in a sharp and accurate fODF without negative lobes (e). In addition, the
additional information provided by the non-negativity constraint, allows to estimate a
very sharp super-resolved fODF (f).
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phenomenon seen in the Fourier series. Using a low-pass filter, which attenuates
the high angular frequency components of the fODF, the negative lobes can be
reduced to some extent (Fig. 2.7d, 2.8d) [Tournier et al., 2004]. This, however,
comes at the cost of reduced angular resolution (wider, overlapping lobes).

2.4.2.1 Constrained spherical deconvolution (CSD)

Without low-pass filtering, the noise will introduce large spurious negative lobes
in the reconstructed fODF, which are physically impossible (Fig. 2.7c,2.8c). This
observation provides an alternative way of reducing the ill-conditioning of the
technique, by adding a constraint on the presence of these negative values in the
fODF, rather than filtering out the high angular frequencies. Most WM voxels are
expected to contain contributions from relatively few fiber bundles. Therefore, apart
from a few well-defined peaks (corresponding to the fiber orientations), the fODF is
expected to be zero over most of its support. As a result, eliminating any negative
values in these regions must also strongly reduce the high frequency noise that
generated them. This is the basic principle of constrained spherical deconvolution
(CSD) [Tournier et al., 2007]. With the non-negativity constraint it becomes
possible to perform the spherical deconvolution operation with drastically reduced
noise sensitivity while retaining angular resolution, resulting in accurate and precise
fiber orientation estimations at relatively low b-values (Figs. 2.7e,2.8e,2.10,2.11)
[Tournier et al., 2007, 2008].

CSD is typically carried out as an iterative process. First, an initial estimate of
the fODF is obtained using filtered SD. Then, a set of directions is identified, along
which the fODF amplitude is negative. This information is then incorporated as a
Tikhonov constraint, driving the amplitude of the fODF along those orientations to
zero. Finally, an improved estimate of the fODF is obtained by solving the Tikhonov
problem, providing a new set of negative amplitude directions. The procedure is
repeated until convergence is achieved. Formally, the Tikhonov problem solved at
every iteration is:

fi+1 = arg min{‖Rfi − s‖2 + λ2‖Lfi‖2} (2.25)

where fi and s are the nc × 1 SH coefficient vectors of the current fODF estimate
and the DW signal, respectively; and R is the nc × nc matrix that performs the
spherical convolution operation. The first term is the data-driven part and ensures
that the convolution of the current fODF estimate with the response function
agrees with the DW signal. The second term is the regularization term, with λ the
regularization parameter, which controls the relative weighting between the two
terms (typically, λ = 0.1); and L the nt×nc constraint matrix, penalizing negative
lobes. L is constructed as follows. At each iteration, the fODF is evaluated along
a large set of nt uniformly distributed orientations (typically, nt = 300, calculated
using electrostatic repulsion [Jones et al., 1999]):

a = Pfi (2.26)

where P is the nt × nc matrix, mapping fi onto the amplitudes a along the nt
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(a) filtered fODF (b) fODF after it. 1 (c) fODF after it. 2

...

(d) fODF after it. 7 (e) fODF after it. 8

Fig. 2.9: Constrained spherical deconvolution (CSD). Green indicates positive amplitude,
while red indicates negative amplitude. First, an initial estimate of the fODF is obtained
using filtered SD (a). From this initial fODF, a set of orientations is identified along
which the fODF amplitude is smaller than a user-specified threshold τ , controlling the
amplitude below which the corresponding fiber orientation density is assumed to be zero.
Using Tikhonov regularization the fODF amplitude along these orientations is constrained
to zero (b). This procedure is performed iteratively (b-d) until convergence is achieved
(e). Note that the negative lobes are reduced as the algorithm progresses and are almost
completely gone after 2 iterations.
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orientations. L is then defined as:

Lm,n =

{
Pm,n if am < τ

0 if am ≥ τ
(2.27)

where τ is a threshold controlling the amplitude below which the corresponding
fiber orientation density is assumed to be zero. Typically, τ this is set to 10% of
the mean initial fODF amplitude. It is clear that the regularization term will be
minimal, in case there are no fODF amplitudes that fall below the threshold. After
solving the Tikhonov problem, the improved fODF fi+1 is then used to form a
new matrix L and the process is repeated until there is no further change in the
matrix L; in other words, until the set of directions that can be assumed to have
zero fiber density is established. Convergence is typically reached within 5 to 10
iterations, with little or no dependence on SNR. Fig. 2.9 shows an example of an
fODF being iteratively improved through CSD.

Apart from improving the stability of the deconvolution process, the additional
information provided by the non-negativity constraint also allows the possibility of
estimating more parameters than there are actual measurements (a concept known
as super-resolution), provided that the amount of prior information is sufficient to
constrain the additional degrees of freedom. In practice, this means that using 60
DW directions, it is possible to estimate the 91 modified SH coefficients required for
harmonic order lmax = 12 provided that the number of directions along which the
fiber density can be assumed to be zero never falls below 31. This technique, called
super-resolved CSD or super-CSD, allows to robustly resolve narrow inter-fiber
angles and reduces the bias of closely aligned fiber orientations, using a limited
amount of DW data (Figs. 2.7f, 2.8f, 2.10, 2.11) [Tournier et al., 2007, 2008].

2.4.2.2 Real data example

Fig. 2.12 shows results produced from data obtained from a healthy volunteer,
consisting of 60 DW images acquired at b = 3000 s/mm2, analyzed using both DTI
(Fig. 2.12a) and CSD (Fig. 2.12b). Clearly, CSD is able to resolve fiber crossings in
regions where DTI is not.
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QBI
lmax = 10

CSD
lmax = 10

super-CSD
lmax = 16

90°

60°

45°

36°

Fig. 2.10: dODF (QBI) vs. fODF (CSD and super-resolved CSD) for inter-fiber angles
ranging from 90° to 36°, at a fixed b-value of b = 4000 s/mm2. Note that the fODF is much
sharper than the dODF. As a consequence, closely aligned fiber orientations (inter-fiber
angles 45° and 36°) will be blurred together in the dODF and thus be identified as a single
fiber orientation. Additionally, the blurring introduces a bias in the dODF orientations
for all inter-fiber angles other than 90°. On the other hand, the fODF derived with CSD,
is able to resolve much smaller inter-fiber angles. Additionally, the fiber orientations
extracted from the CSD fODF are much less biased than those extracted from the QBI
dODF. Using the super-resolved variant increases the angular resolution and reduces the
bias even more.
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QBI
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Fig. 2.11: dODF (QBI) vs. fODF (CSD and super-resolved CSD) for a fixed inter-fiber
angle of 45°, at b-values ranging from b = 1000 s/mm2 to b = 8000 s/mm2. Note that
the QBI dODF requires high b-values in order to resolve small inter-fiber angles. Note
also, that while QBI is able to resolve the fiber orientations at b = 8000 s/mm2, the fiber
orientations exhibit a significant bias. CSD, on the other hand, is able to resolve small
inter-fiber angles at much lower b-values and with much less bias, especially when using
the super-resolved variant.
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2.4. Model-based approaches

(a) DTI ellipsoids

(b) CSD fODFs

Fig. 2.12: DTI ellipsoids (a) and CSD fODFs (b) for a coronal section showing lateral
projections of the corpus callosum (left-right: red fODF lobes) crossing through the fibers
of the corona radiata (inferior-superior: blue fODF lobes) and the fibers of the superior
longitudinal fasciculus (anterior-posterior: green fODF lobes). DTI is unable to resolve
these crossings.
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Chapter 2. Multi-fiber reconstruction

2.5 Applications

2.5.1 Orientation information and tractography
Most of the methods described above aim to provide improved estimates of fiber
orientations. As such, their primary application is to guide WM fiber tractography
[Lazar, 2010, Tournier et al., 2011]. As an example, Fig. 2.13 shows the dominant
fiber orientations extracted from CSD fODFs which could be used for the purpose of
fiber tracking. WM fiber tractography will be discussed in more detail in Chapter 3.

(a) CSD fODFs (b) dominant fiber orientations

Fig. 2.13: CSD fODF being used to extract fiber orientations in a crossing fiber region.

2.5.2 Quantitative information
Measures of diffusion anisotropy based on DTI have been used as surrogate markers
of WM integrity in countless studies [Assaf and Pasternak, 2008], but these are
profoundly affected by crossing fibers [Alexander et al., 2001, Wheeler-Kingshott
and Cercignani, 2009, Jones and Cercignani, 2010]. As such, there is an increasing
need to extract quantitative information in the WM that is insensitive to crossing
fibers.

2.5.2.1 Generalized fractional anisotropy (GFA)

Analogously to FA in DTI, Tuch [2004] defines the generalized fractional anisotropy
(GFA), which is a measure of the variation in the dODF ψ(r̂). Mathematically:

GFA =

√∫
(ψ(r̂)− ψ̄)2dr̂∫

ψ(r̂)2dr̂
with ψ̄ =

∫
ψ(r̂)dr̂

4π
(2.28)

This definition can be applied to any other function of the unit sphere, such as
the fODF [Seunarine and Alexander, 2009]. While the sensitivity of this metric to
crossing fiber effects is reduced to some extent compared to FA, GFA measures are
still significantly lower in crossing fiber regions and are highly correlated with FA
measures, hampering the general uptake of this metric.
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2.5.2.2 Apparent fiber density (AFD)

A new approach is to use the volume fractions as identified by mixture model
approaches as a quantitative index [Jbabdi et al., 2010, Raffelt et al., 2012]. Jbabdi
et al. [2010] make tract-wise comparisons directly on the volume fractions as
obtained with the ball-and-sticks model, assuming that increased volume fractions
correspond to an increased axonal density along the corresponding fiber orientation.
Raffelt et al. [2012] use the fODF derived with spherical deconvolution and make
voxel wise comparisons directly on the full fODF. Their measure, dubbed ‘apparent
fiber density’ (AFD) assumes that any differences in the fODF amplitude along
a given orientation can be attributed to differences in the relative amount of
underlying axons thought to be aligned with this orientation. Recent advances allow
non-linear registration of fODF images [Raffelt et al., 2011], including appropriate
reorientation and modulation, thus enabling group comparisons or correlations of
AFD between patients and controls [Raffelt et al., 2012]. These approaches can
potentially provide more reliable and more readily interpretable results than the
commonly used DTI-derived anisotropy measures.
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Chapter 3. Fiber tractography

3.1 Introduction
Fiber tractography pieces together the local WM orientations derived in Chapter 2
to infer long-range connectivity patterns between distant brain regions. Diffusion
MRI based fiber tractography is unique in its ability to delineate the WM fiber
pathways in a non-invasive way. This raises possibilities for clinical applications and
can provide new insights in neuroscientific research. Fiber tractography algorithms
can be classified largely into deterministic, probabilistic, and global algorithms. In
this chapter, we will discuss these different approaches and their limitations. We
end the chapter with a brief overview of the current applications.

3.2 Deterministic tractography
Deterministic streamline tractography is currently the most common method for
fiber tractography [Mori and Van Zijl, 2002]. A streamline through a vector field
is any line whose tangent is parallel to the local vector during its entire course.
Mathematically, a line can be represented as a 3D space curve r(s), parameterized
by its arc length s. In order for a streamline to align with the vector field, the
tangent at arc length s, has to be equal to the vector at the corresponding position:

dr(s)

ds
= v [r(s)] (3.1)

where r(s) denotes the 3D position along the streamline and v is the 3D vector
field.

In the case of fiber tractography, the vector field v is chosen to reflect the local
fiber orientations that are calculated from the diffusion data. For DTI tractography,
v is typically the field of first eigenvectors derived from the diffusion tensor [Conturo
et al., 1999, Basser et al., 2000] (Fig. 3.1). For tractography methods based on multi-
fiber reconstruction algorithms, v typically consists of the dODF [Wedeen et al.,
2008, Descoteaux et al., 2009] or fODF orientations along which the probability is
highest [Jeurissen et al., 2009], as these orientations are most likely to coincide
with the underlying WM fibers. However, remember from the previous chapter that,
although diffusion is thought to be least hindered along fiber orientations, there is
still a significant component of diffusion along other orientations, even perpendicular
to the main fiber axis. As a result, the dODF is blurred and potentially provides
biased fiber orientation estimates. For this reason, the fODF probably suits the
purpose of tractography better.

Note that Eq. (3.1) is a differential equation that can be solved by means of
integration:

r(s) =

∫
s0

v [r(s)] ds (3.2)

where r(s0) = r0 represents the starting point of the streamline which is often
referred to as seed point. Formally, streamline tractography can be defined as the
process of integrating voxelwise fiber orientations into fiber pathways. In the next
subsections, we will discuss the common choices one has to make in developing a
streamline tractography algorithm.
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3.2. Deterministic tractography

(a) The diffusion tensor field imposed on the FA map

(b) The first eigenvector field imposed on the FA map

Fig. 3.1: Example of DTI streamlines on coronal slices of the human brain. The blue
streamline corresponds to the corticospinal tract (CST). The red streamline corresponds
to the corpus callosum. Note that each streamline’s tangent is parallel to the local vector
field during its entire course.

59



Chapter 3. Fiber tractography

3.2.1 Integration
The most intuitive way to perform the numerical integration of Eq. (3.2) is by start-
ing the procedure at seed point r0, calculating the corresponding fiber orientation
v(r0), and following that direction for a short distance ∆, which is called the ‘step
size’, to obtain the next point r1 = r0 + v(r0)∆ on the pathway. This method,
known as Euler integration, can reconstruct the entire streamline by iteratively
performing this procedure:

ri+1 = ri + v(ri)∆ (3.3)

Note that Eq. (3.3) assumes that the value v(ri) is constant during the step size
∆, which will make this method susceptible to overshoot in highly curved regions,
especially for larger step sizes (Fig. 3.2). In order to take into account the variations
of v between ri and ri+1, the use of higher order numerical integration schemes
has been proposed, such as the second-order Runge-Kutta (RK2) or midpoint
integration scheme:

ri+1 = ri + v

(
ri + v(ri)

∆

2

)
∆ (3.4)

which has an associated error of order O(∆3) or the fourth-order Runge-Kutta
(RK4) scheme:

ri+1 = ri +
k1

6
+
k2

3
+
k3

3
+
k4

6
(3.5)

with

k1 = v (ri) ∆

k2 = v

(
ri +

k1

2

)
∆

k3 = v

(
ri +

k2

2

)
∆

k4 = v (ri + k3) ∆

The RK4 scheme has an associated error of order O(∆5) and is known to be a good
candidate for the numerical solution of Eq. (3.2).

3.2.2 Interpolation
From the right hand sides of Eq. (3.2)-(3.5) it is clear that the integration process
requires that the fiber orientations are available at arbitrary positions in space.
Unfortunately, the diffusion data that the local fiber orientations are derived
from are acquired on a rectangular imaging grid. Therefore we need a method
for interpolating the discrete measurements into continuous space. The simplest
method to obtain an estimate of the local fiber orientation at any location is to use
nearest-neighbor interpolation [Mori et al., 1999, Xue et al., 1999]. This method
approximates the desired fiber orientation by that of the nearest voxel. However,
this approach leads to a much greater propagation of errors than approaches that
perform a smooth interpolation between grid points (Fig. 3.3) [Lazar and Alexander,
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3.2. Deterministic tractography

(a) Orientation field (b) Ground truth

(c) Euler, step size: 1 (d) Euler, step size: 0.1 (e) Euler, step size: 0.01

(f) RK2, step size: 1 (g) RK2, step size: 0.1 (h) RK2, step size: 0.01l

(i) RK4, step size: 1 (j) RK4, step size: 0.1 (k) RK4, step size: 0.01

Fig. 3.2: Euler vs. RK2 vs. RK4 integration for different step sizes. The seed point is
indicated as a white dot. Note that, as we move away from the seed point, the integration
errors accumulate. For Euler integration the accumulated error can become quite large,
especially for large step sizes. Using higher order RK integration schemes, drastically
reduces interpolation error made at each step, resulting in a much smaller accumulated
error (even for relatively large step sizes).
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2003]. Smooth interpolation methods assume that the fiber orientations between
grid points contain contributions from each neighboring point. Most algorithms use
trilinear interpolation, where the quantity of interest is calculated as a weighted
sum from the 8 voxels nearest to the point of interest with the weight of each
neighboring voxel determined by their distance to the point of interest. Some
implementations perform trilinear interpolation on the raw diffusion weighted data
and recompute the DT/dODF/fODF based on the interpolated data [Conturo
et al., 1999, Jeurissen et al., 2011]. Another approach is to directly interpolate the
DT/dODF/fODF profiles. While the latter approach can save a lot of computation
time, special care has to be taken when the relationship between the diffusion data
and the diffusion profiles is not linear, as is the case for the DT [Pajevic et al.,
2002, Batchelor et al., 2005, Arsigny et al., 2006, Mishra et al., 2006].

(a) Orientation field

 

 

nearest

linear

(b) Streamlines

Fig. 3.3: Nearest neighbor vs. linear interpolation. The seed point is indicated as a white
dot. Note that, as we move away from the seed point, the errors made by the nearest
neighbor interpolation accumulate.

3.2.3 Seed point selection

In general, the integration procedure is performed on a number of seed points r0

that define a specific ‘region of interest’ (ROI).Typically, these ROIs are defined by
the user. This task requires anatomical knowledge and is subject to inter-operator
variability. To reduce the operator dependence, ROIs can also be defined from
atlas labels, or they can be obtained from cortical activation maps measured with
functional MRI (fMRI). This last approach is particularly appealing since it allows
for correlation analyses between structural and functional connectivity.
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3.2. Deterministic tractography

An alternative to ROI-based tractography is the use of ‘whole-brain’ tractogra-
phy, where tracking is initiated from all voxels in the brain (Fig. 3.4a). The bundles
of interest are then extracted by means of tract-editing techniques.

3.2.4 Tract-editing and clustering

Tract-editing is used to introduce prior anatomical knowledge of the fiber bundles
in the brain, in order to refine the fiber-tracking results. In practice, tract-editing is
performed by defining ROIs through which the tract is known to pass (also referred
to as inclusive ROIs or AND gates). Tracts that enter these regions are considered
anatomically plausible, and all other tracts are discarded. It is also possible to
define regions through which the tracts are known not to pass and discard any tract
that enters these regions (also referred to as exclusive ROIs or NOT gates). As an
example, Fig. 3.4b shows a successful 3D reconstruction of the cingulum bundle,
by means of two AND gates. This technique has been successfully used to isolate
and visualize many different WM bundles and as such it is sometimes referred to
as ‘in vivo virtual dissection’. While this technique is very powerful, it requires
expert anatomical knowledge about the tracts of interest. As manual ROI-based
tract-editing can be time consuming, clustering algorithms have emerged, that
group fiber trajectories into bundles on the basis of their properties, such as length
and curvature profile [O’Donnell et al., 2006, Batchelor et al., 2006, Xu et al., 2009],
or by using WM atlases [O’Donnell and Westin, 2007].

3.2.5 Tract termination

A final important aspect of streamline tractography is choosing when a tract should
stop. Two criteria are commonly used: a threshold on the diffusion anisotropy
and a curvature threshold. For example, in DTI tractography it is common to
stop a streamline when the FA falls below a certain threshold value (typically
FA < 0.2). The rationale behind this criterion is that regions of low FA tend to be
associated with high uncertainty in the principal diffusion direction, and therefore
a large potential error for the next streamline step. For tractography methods
based on multi-fiber reconstruction algorithms, tracking is usually terminated when
the dODF or fODF amplitudes along the current tracking orientation fall below a
certain threshold [Descoteaux et al., 2009, Jeurissen et al., 2011].

The curvature threshold imposes a maximum local curvature of the tract: if
the angle between two successive steps is above a predefined threshold, the tract is
terminated. Since it is unusual to find bends in the white matter bundles that have
radii of curvature on the scale of an imaging voxel, any sudden change in trajectory
is likely to be caused by artifacts such as noise.

3.2.6 Limitations

Deterministic streamline tractography is susceptible to three main sources of errors
[Behrens and Jbabdi, 2009]. First, as seen in Chapter 1, DWI is susceptible to
imaging noise, which may cause a poor estimation of the dominant diffusion
directions used in streamline tractography. As an example, Fig. 3.5 shows the
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(a) Whole brain tractography

(b) Cingulum

Fig. 3.4: The cingulum bundle (b) is successfully extracted from whole brain tractography
(a), using tract-editing with two AND gates (green rectangles).
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variability of DTI fiber trajectories as a result of noise. Note that, for large SNR,
the variability in the fiber orientation is low, but the fiber orientations can become
unreliable at low SNR.

Second, the microscopic anatomy of WM is bound to be more complex than
what can be represented by the fiber reconstruction model. As such, streamline
tractography is subject to modeling errors. This is especially true for tractography
algorithms using the diffusion tensor model, which cannot resolve multiple fiber
orientations inside one voxel. As an example, Fig. 3.6 shows the variability of DTI
fiber trajectories as a result of modeling errors. Note that the uncertainty suddenly
increases as soon as the trajectories enter regions of crossing fibers.

Finally, as seen in Section 3.2.1, streamline tractography is subject to integration
errors. It is important to realize that all these errors will accumulate along the
streamline (Fig. 3.5,3.6).

3.3 Probabilistic tractography
Deterministic tractography algorithms assume a unique fiber orientation estimate
in each voxel and as such provide a single pathway emanating from each seed
point (Fig. 3.7a). However, as made clear in the previous section, the local fiber
orientation estimates are subject to errors and uncertainty, which will introduce
errors in the global fiber trajectory [Tournier et al., 2002, Lori et al., 2002, Jones,
2003, Lazar and Alexander, 2003]. Even a small error at one point in the trajectory
can cause the algorithm to enter and follow a different WM tract, leading to
erroneous statements about the WM connectivity. To characterize this uncertainty,
probabilistic tractography algorithms generate a large collection or distribution of
possible trajectories from each seed point (Fig. 3.7b). Brain regions that contain
higher densities of the resulting trajectories are then deemed to have a higher
probability of connection with the seed point [Behrens et al., 2003b, Parker et al.,
2003]. Probabilistic streamlines results are, therefore, often quantified by generating
visitation count maps of the number of trajectories that traverse each voxel, which
can then be analyzed and compared more readily (Fig. 3.7c) [Behrens et al., 2003b,
Parker et al., 2003].

By treating the problem in a probabilistic fashion, it also becomes possible to
track through regions of high uncertainty, where deterministic techniques would
usually stop, acknowledging, however, that the probability of connection beyond
this region is lower. Typically, probabilistic tractography algorithms derive heavily
from the deterministic streamline approach described in the previous section, and
as such they are subject to the same limitations. The fundamental difference is that
the orientations for tract propagation are drawn at random from a local uncertainty
orientation density function (uODF) [Seunarine and Alexander, 2009]. The main
difference between the various probabilistic algorithms lies in how this uODF is
constructed.

3.3.1 Heuristic approaches
The earliest methods, based on DTI, relate the probability of a tract to the number
of times it is reconstructed in a Monte Carlo random walk, where the characteristics
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(a) DTI ellipsoids (b) low SNR trajectories (c) high SNR trajectories

Fig. 3.5: DTI tractography errors due to noise. A numerical phantom data set was
constructed consisting of a single straight fiber bundle (a). Multiple trajectories where
calculated for 100 noisy instances at low (b) and high (c) SNR.

(a) DTI ellipsoids (b) low SNR trajectories (c) high SNR trajectories

Fig. 3.6: DTI tractography errors due to noise and modeling errors. The numerical
phantom data set of Fig. 3.5 was extended with two regions of crossing fibers (a). Multiple
trajectories where calculated for 100 noisy instances at low (b) and high (c) SNR. Note
that, as the trajectories enter the region of crossing fibers, large modeling errors occur.
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(a) Deterministic streamline (b) Probabilistic streamlines

(c) Visitation count

Fig. 3.7: Deterministic CSD streamline (a) vs. probabilistic streamlines (b) emanating
from the same seed point (red sphere). From the probabilistic streamlines a visitation
count map is often created (c), visualized here as a maximum intensity projection along
the Y-axis.
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of the random walk are determined by the shape of the underlying diffusion tensor
[Lazar and Alexander, 2002, Parker et al., 2003, Parker and Alexander, 2003,
Tournier et al., 2003]. In voxels where there is no anisotropy, the generated vector
is completely random. In anisotropic regions, the uODF is skewed to the axis of
longest diffusion.

Similar methods were later developed for HARDI-based reconstruction methods
where the characteristics of the random walk are determined by the shape of the
derived ODFs. Some of these methods sample directly from the dODF [Campbell
et al., 2005, Perrin et al., 2005, Descoteaux et al., 2009]. Remember from the
previous chapter that, although diffusion is thought to be least hindered along
fiber orientations, there is still a significant component of diffusion along other
orientations, even perpendicular to the main fiber axis. As a result, the dODF
is blurred and potentially provides biased fiber orientation estimates. For this
reason, it is probably better to sample from the fODF, as it directly describes the
proportion of fibers that are believed to lie along each orientation. Some methods
sample directly from the fODF [Tournier et al., 2005]. Other methods first map the
fODF parameters to the parameters of another distribution and take samples from
this distribution in an attempt to better model the underlying anatomy [Seunarine
et al., 2007].

An important drawback of these methods is that they assume an ad hoc relation-
ship between the measured biophysical properties of the underlying microstructure
and the uODF and don’t truly take into account the variability due to noise and
modeling errors. For example, smaller fODF lobes don’t necessarily indicate a
higher uncertainty that fibers are running along these orientations, it merely tells us
that only a small proportion of fibers is expected along these orientations. At high
SNR, a small fODF lobe can have high certainty associated with it. Conversely,
large fODF lobes don’t always indicate a high certainty in the fiber orientation. A
large fODF lobe could still have a large associated uncertainty as a consequence of
noise or artifacts.

3.3.2 Rigorous approaches
To address the limitations of the heuristic approaches, more rigorous approaches
were proposed that try to construct the true uODF.

3.3.2.1 Calibration approach

Instead of relying on a heuristic approach, some methods perform a calibration
experiment to determine an empirical relationship between the features of the data
and expected uODF [Parker and Alexander, 2003, 2005].

3.3.2.2 Bayesian approach

Bayesian techniques offer formal methods for calculating and representing the
uncertainty associated with inference on any parametric model. Uncertainty and
belief are represented in the form of posterior probability density functions. Bayes’
rule states that the posterior probability of the model parameters ω given the data
s and the model M , P (ω | s,M), is proportional to the likelihood of seeing this
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data set given these parameters, P (s | ω,M), multiplied by the prior belief about
the model parameters, P (ω |M):

P (ω | s,M) =
P (s | ω,M)P (ω |M)

P (s |M)
(3.6)

The likelihood must include the parametric assumptions about the relation between
the model parameters and the data. The earliest implementation assumed the
tensor or the ball-and-stick model [Behrens et al., 2003b, Friman et al., 2006],
modeling only a single fiber orientation. Later implementations accommodated
multiple fiber orientations by applying a multi-tensor model [Hosey et al., 2005,
Behrens et al., 2007] or the spherical convolution model [Kaden et al., 2007]. In
addition, the likelihood must include the parametric assumptions about the noise
statistics. Some implementations assume a Gaussian noise model [Behrens et al.,
2003b, 2007]. However, as MR data are Rice distributed [Gudbjartsson and Patz,
1995], the Gaussian assumption might only be valid for data with reasonable SNR.
As such, other implementations use the more accurate Rician noise model [Hosey
et al., 2005, Kaden et al., 2007].

The prior distribution describes the information known about the parameters
before any data are collected. As such, the prior distribution allows to impose
constraints on the parameters such as positivity of the diffusion coefficients [Behrens
et al., 2003b, 2007] or spatial smoothness of the fiber orientations [Hosey et al.,
2005].

Once the likelihood and prior distribution have been established, it is possible to
generate samples from the posterior distribution. This problem is usually addressed
using Markov chain Monte Carlo (MCMC) methdods, a random sampling technique
that produces samples in areas of high probability, allowing the posterior distribution
to be characterized in a relatively short period of time [Behrens et al., 2003b, Hosey
et al., 2005, Behrens et al., 2007, Kaden et al., 2007]. The individual samples of the
posterior distribution can now be used as samples from the uODF for probabilistic
tractography. Given that the Bayesian methods require explicit modeling of the
sources of uncertainty in the data, it is often called a parametric method. This is
also the main weakness of the approach: it cannot account for additional sources
of uncertainty that are not present in the model.

3.3.2.3 Bootstrap approach

Conceptually the easiest way to build the uODF would be to acquire repeated
DW data sets from the same subject, extract the fiber orientations and then treat
these repeated fiber orientations as samples from the uODF [Jones, 2003]. Such
an approach does not require us to do any modeling of the uncertainty in the
data, and as such it is completely non-parametric. However, in order to build a
good representation of the uODF, this procedure would require a large number of
independent data sets, making the method not feasible in practice.

Fortunately, it is possible to generate a large number of samples from just a
few independent data sets by means of bootstrapping. The bootstrap is a non-
parametric statistical procedure that enables one to estimate the uncertainty of a
given statistic, by randomly selecting individual measurements, with replacement,
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from a set of repeated measurements, thus generating many bootstrap realizations
of the data. Each realization provides a random estimate of a given statistic.
By generating a sufficient number of realizations, one obtains a measure of the
uncertainty of a given statistic from the data itself without requiring a priori
assumptions about the sources of uncertainty [Efron, 1979, Jones, 2003, Pajevic and
Basser, 2003]. Bootstrapping has previously been combined with DTI tractography
in order to produce probabilistic fiber trajectories [Jones and Pierpaoli, 2005, Lazar
and Alexander, 2005]. However, in a clinical setting, even the small amount of
repeated measurements to allow accurate and precise bootstrapping can render
acquisition time unacceptably long [O’Gorman and Jones, 2006, Jeurissen et al.,
2008].

The problem of long acquisition times can be addressed using the residual
bootstrap [Chung et al., 2006, Whitcher et al., 2007]. This approach obtains
probability distributions for model parameters by resampling residuals from a
model fit (e.g., diffusion tensor fit). The huge advantage of this method is that it
does not require repeated measurements, bringing acquisition time into the clinical
range. This method of uODF construction was first applied to probabilistic DTI
tractography [Jones, 2008] and later to probabilistic QBI tractography [Berman
et al., 2008, Haroon et al., 2009] and probabilistic CSD tractography [Jeurissen
et al., 2011].

As this thesis uses bootstrap methods to infer the uncertainty in CSD fiber
orientations, it will be discussed more thoroughly in Chapter 5.

3.4 Global approaches

The previously mentioned tractography algorithms propagate the local fiber ori-
entation estimates to obtain long-range fiber pathways. Recently, a number of
tractography algorithms have been proposed based on a more global approach
[Jbabdi et al., 2007, Kreher et al., 2008, Fillard et al., 2009, Reisert et al., 2011].
Essentially, these algorithms attempt to find the configuration of fibers that best
explains the observed data. As such, they do not rely on the preprocessing step to
extract the fiber orientations, but rather operate directly on the acquired DW data,
making tractography a one stage process. These methods rely on a model that
predicts the DW signal intensities for a given arrangement of fiber orientations.
These approaches have the potential to provide more robust results than current
local streamlines methods. Unfortunately, these approaches are currently extremely
computationally expensive limiting their immediate use in clinical environments.
In addition, the use of strong priors on the smoothness of fiber trajectories could
result in trajectories that, while spatially plausible, no longer correspond to the
data.

3.5 Applications

Diffusion MRI based fiber tractography is unique in its ability to delineate the
WM pathways of the brain in a non-invasive fashion. This raises possibilities for
clinical applications and there has been a rapid increase in publications using fiber
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tractography in neuroscience [Johansen-Berg and Behrens, 2006, Ciccarelli et al.,
2008]. In this section we provide a brief overview of the most important applications
[Lazar, 2010].

3.5.1 Delineation of specific WM pathways
The combination of whole-brain tractography with tract-editing techniques has
allowed the delineation of specific WM pathways in the brain that are in agreement
with known anatomy [Conturo et al., 1999, Stieltjes et al., 2001, Mori et al., 2002b,
Catani et al., 2002, Lazar et al., 2003, Jellison et al., 2004, Wakana et al., 2004,
2007], providing new insights in brain anatomy and development [Parker et al.,
2005, Catani et al., 2005, Oishi et al., 2008].

3.5.2 WM parcellation
As fiber tractography has the unique ability to delineate specific WM tracts in
vivo, it is often used to segment the different WM structures. These segmented
volumes can be used in morphometric analysis or serve as ROIs for the quantitative
analyses of scalar diffusion indices such as FA. Recently, this approach has been
applied to investigate the WM integrity in a variety of brain disorders, such as
schizophrenia [Jones et al., 2003], epilepsy [Concha et al., 2005], autism [Conturo
et al., 2008] and Tourette syndrome [Makki et al., 2009] .

3.5.3 GM parcellation
Given that the GM is connected by means of the WM bundles, fiber tractography
also offers the possibility to segment distinct functional regions of the cortex
depending on their WM connections [Johansen-Berg et al., 2004, Rushworth et al.,
2006, Anwander et al., 2007, Beckmann et al., 2009]. Conversely, the WM bundles
can be subdivided on the basis of their connectivity with functional regions of the
cortex as derived with fMRI [Behrens et al., 2003a]. This allows researchers to
study the relation between function and structure and can potentially provide new
insights into the inner workings of our brain.

3.5.4 Studying the structural network
Recently, fiber tractography has been used to study brain structure at the network
level, by generating connectivity matrices that define the properties of the connec-
tions between different nodes of the brain network. This approach allows to study
the global network organization and identify the interrelations between the nodes
[Hagmann et al., 2008]. Recent work has suggested that the global connectivity
network is affected in a specific way by different neurodegenerative diseases [Seeley
et al., 2009] and neuropsychiatric disorders [Calhoun et al., 2009].

3.5.5 Presurgical planning
The main clinical application of fiber tractography is presurgical planning. In
patients with brain tumors and space-occupying lesions, WM tracts are often
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displaced by the mass effect of the tumor or lesion. As tractography is able to
delineate the WM tracts and their associated cortical regions, it may be used to
identify fiber pathways that are related to vital neural functions and that should be
preserved by the surgical procedures [Mori et al., 2002a, Clark et al., 2003, Nimsky
et al., 2006, Lazar et al., 2006, Berman et al., 2007, Leclercq et al., 2010].
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4.1. Introduction

4.1 Introduction

Currently, diffusion tensor imaging (DTI) is most commonly used to extract fiber
orientations from the DW signal [Basser et al., 1994a,b]. However, in voxels
containing multiple fiber orientations, this model has been shown to be inadequate
[Alexander et al., 2002, Frank, 2001, 2002, Tuch et al., 2002]. Such voxels occur
frequently throughout the WM due to partial volume effects between adjacent
tracts. A recent study estimated that a third of the white matter voxels contain
complex fiber architecture [Behrens et al., 2007]. This has important implications
for fiber tractography, as most white matter tracts will traverse regions with
multiple fiber orientations at some point along their path. In such regions, the
orientation extracted from the diffusion tensor is unreliable and may cause false
negatives, in which tracking terminates [Behrens et al., 2007], or false positives, in
which tracking switches to an unrelated adjacent tract [Pierpaoli et al., 2001].

To address the limitations of the DTI model, a number of approaches have
recently been proposed based on high-angular resolution diffusion imaging (HARDI)
[Anderson, 2005, Behrens et al., 2007, Dell’Acqua et al., 2007, Descoteaux et al.,
2007, Hosey et al., 2005, Jansons and Alexander, 2003, Özarslan et al., 2006, Tuch
et al., 2002, Tuch, 2004]. One of these methods, constrained spherical deconvolution
(CSD), is especially promising as it can offer a reliable reconstruction of fiber
orientation distribution functions (fODFs) within clinically feasible acquisition
settings [Tournier et al., 2004, 2007]. CSD is capable of estimating the fODF
within each voxel directly from the HARDI data, using the concept of spherical
deconvolution. Recent studies, using both simulations and phantom data, have
shown that CSD is able to robustly resolve narrow interfiber angles [Tournier et al.,
2007, 2008].

In this chapter, a deterministic tractography algorithm is presented based on
CSD. Using CSD to extract local fiber orientations, our algorithm will overcome
partial volume effects associated with DTI and the poor angular resolution that is
achieved with other HARDI methods such as QBI [Tournier et al., 2008]. After a
detailed explanation of the algorithm, we proceed with both a quantitative and
qualitative evaluation using different MR phantoms. Finally, we briefly discuss
some applications of CSD based tractography.

4.2 Theory

4.2.1 Local fODF estimation using CSD

As described at length in Chapter 2, spherical deconvolution estimates the fODF
directly from the spherical diffusion-weighted (DW) signal by deconvolving with
a single fiber spherical response function [Tournier et al., 2004]. In this chapter
we will be making use of the constrained spherical deconvolution (CSD) variant,
which introduces a constraint to minimize the appearance of negative values in the
reconstructed fODFs, which are clearly physically impossible. With this constraint,
it is possible to perform the spherical deconvolution operation with drastically
reduced noise sensitivity [Tournier et al., 2007]. A detailed explanation of these
steps can be found in Chapter 2.
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4.2.2 Tractography using CSD fODFs

The proposed tractography algorithm is based on the well-known streamline trac-
tography algorithm used in DTI [Basser et al., 2000]. It can be summarized as
follows (Fig. 4.1). Fiber tracking is started at a given seed point r0. First, the
DW signal at the current position of the trajectory ri is obtained using trilinear
interpolation. Next, the fODF is estimated from the interpolated DW signal using
CSD. Then, the peak direction v(ri) that is most closely aligned with the previous
stepping direction v(ri−1) is extracted from the fODF. Finally, the trajectory is
advanced by a fixed step size ∆ along the obtained direction:

ri+1 = ri + v(ri)∆ (4.1)

Tracking is ended when the amplitude of the most closely aligned fODF peak
is beneath a fixed threshold, a maximum angle between two successive steps is
exceeded, or the tract leaves a specified brain mask. In the seed points, all fODF
peak directions with an amplitude above a fixed threshold are extracted and a
separate streamline is started for each direction, in order to accommodate for seed
points with multiple underlying fiber orientations.

v(ri-1) 

v(ri) 
CSD optimization 

DWI(ri) fODF(ri) v(ri) 

interpolate 

update current position: ri+1 = ri + v(ri) Δ 
  

DWI 
dataset 

Fig. 4.1: Streamline tractography with CSD: DWI interpolation.

Note that, in the above implementation, we choose to interpolate on the raw
DW signal rather than on the SH coefficients of the fODF. Since CSD is a nonlinear
operator, in theory, interpolating linearly is only justified in the signal domain (raw
DW signal) and not in the frequency domain (SH coefficients). In practice, however,
the SH coefficients of the fODF are almost linearly related to the signal. In an
alternative implementation, we first calculate the full fODF field and perform the
interpolation directly on this field, bypassing the need of CSD at every tractography
step (Fig. 4.2). This can greatly reduce the computation time.

4.2.3 fODF maxima extraction

Regardless of whether the interpolation is performed on the DW signal or the
fODF, a deterministic streamline algorithm requires a way to extract discrete fiber
orientations from the continuous fODF. In this section we will introduce a fast
numerical method that allows to extract fODF maxima. Remember from Chapter 2
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v(ri-1) 

v(ri) 
optimization 

fODF(ri) v(ri) 

interpolate 

update current position: ri+1 = ri + v(ri) Δ 
  

fODF 
dataset 

Fig. 4.2: Streamline tractography with CSD: fODF interpolation.

that the fODF is typically represented using a truncated modified SH series:

fODF(θ, φ) =

lmax∑
l=0

l∑
m=−l

cml · Y
′m
l (θ, φ) (4.2)

where {cml } denote the SH coefficients and lmax is the SH order at which the series
is truncated. Remember also that the modified SH basis functions Y

′m
l (θ, φ) are

given as:

Y
′m
l (θ, φ) =


Nm
l · Pml (cos (θ)) · cos (mφ) if m > 0

Nm
l · P 0

l (cos (θ)) if m = 0

Nm
l · P

−m
l (cos (θ)) · sin (−mφ) if m < 0

(4.3)

with Pml (·) the associated Legendre polynomials and Nm
l a normalization factor:

Nm
l =


√

(2l+1)
4π ·

√
2(l−m)!
(l+m)! if m 6= 0√

(2l+1)
4π if m = 0

(4.4)

From Eq. (4.2), it is clear that in order to calculate the partial derivatives of the
fODF with respect to θ and φ, we need to calculate the partial derivatives of the
basis functions:

∂Y
′m
l (θ, φ)

∂θ
=


−Nm

l ·
∂Pm

l (cos(θ))
∂ cos(θ) · sin (θ) · cos (mφ) if m > 0

−Nm
l ·

∂P 0
l (cos(θ))
∂ cos(θ) · sin (θ) if m = 0

−Nm
l ·

∂P−m
l (cos(θ))

∂ cos(θ) · sin (θ) · sin (−mφ) if m < 0

(4.5)

∂Y
′m
l (θ, φ)

∂φ
=


−Nm

l · Pml (cos (θ)) ·m · sin (mφ) if m > 0

0 if m = 0

−Nm
l · P

−m
l (cos (θ)) ·m · cos (−mφ) if m < 0

(4.6)
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With similar equations for the second partial derivatives:

∂2Y
′m
l (θ, φ)

∂θ2
=



Nm
l ·

(
∂2Pm

l (cos(θ))
∂ cos2(θ) · sin2(θ)− ∂Pm

l (cos(θ))
∂ cos(θ) · cos(θ)

)
if m > 0

· cos (mφ)

Nm
l ·

(
∂2Pm

l (cos(θ))
∂ cos2(θ) · sin2(θ)− ∂Pm

l (cos(θ))
∂ cos(θ) · cos(θ)

)
if m = 0

Nm
l ·

(
∂2P−m

l (cos(θ))

∂ cos2(θ) · sin2(θ)− ∂P−m
l (cos(θ))

∂ cos(θ) · cos(θ)
)

if m < 0

· sin (−mφ)

(4.7)

∂2Y
′m
l (θ, φ)

∂φ2
=


−Nm

l · Pml (cos (θ)) ·m ·m · cos (mφ) if m > 0

0 if m = 0

−Nm
l · P

−m
l (cos (θ)) ·m ·m · sin (−mφ) if m < 0

(4.8)

∂2Y
′m
l (θ, φ)

∂θ∂φ
=


Nm
l ·

∂Pm
l (cos(θ))
∂ cos(θ) · sin (θ) ·m · sin (mφ) if m > 0

0 if m = 0

Nm
l ·

∂P−m
l (cos(θ))

∂ cos(θ) · sin (θ) ·m · cos (−mφ) if m < 0

(4.9)

The first and second derivatives of the associated Legendre polynomials in Eqs. (4.5),
(4.7) and (4.9) can be calculated directly from different order associated Legendre
polynomials using the following recurrence relations:

∂Pml (x)

∂x
=

{
−P 1

l (x) if m = 0
(l+m)(l−m+1)Pm−1

l (x)−Pm+1
l (x)

2 if m > 0
(4.10)

∂2Pml (x)

∂x2
=

−
∂P 1

l (x)
∂x if m = 0

(l+m)(l−m+1)
∂P

m−1
l

(x)

∂x −
∂P

m+1
l

(x)

∂x

2 if m > 0
(4.11)

From Eqs. (4.2)-(4.11), it is clear that a fast evaluation of the fODF(θ, φ) and
its first and second partial derivatives, hinges entirely on a fast evaluation of
the associated Legendre polynomials Pml (cos(θ)). Fortunately, it is possible to
precalculate values of Pml (cos(θ)) at equally spaced points in the domain [0, 2π]1.
From these tables, Pml (cos(θ)) can then be evaluated for any θ by means of linear
interpolation between two neighboring precalculated points (Fig. 4.3).

Now that we have established a fast way of calculating f(θ, φ) and its first and
second partial derivatives, we can search for the maximum of fODF(θ, φ) most
closely aligned to an initial orientation (θ0, φ0), by means of Newton optimization:

(θn+1, φn+1) = (θn, φn)−∇(f)(θn, φn) · [H(f)(θn, φn)]−1 (4.12)

where
∇(f)(θ, φ) =

(
∂f(θ, φ)

∂θ
,
∂f(θ, φ)

∂φ

)
(4.13)

1idea taken from J. D. Tournier. MRtrix - tractography through crossing fibres
(http://www.nitrc.org/projects/mrtrix/)
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Fig. 4.3: Precalculated values (black dots) of Pm
l (cos(θ)) up till order 4 in 128 evenly

distributed points in the interval [0, 2π]. Intermediate function values can be obtained
fast by means of linear interpolation (grey lines).
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and

H(f)(θ, φ) =

[
∂2f(θ,φ)
∂θ2

∂2f(θ,φ)
∂θ∂φ

∂2f(θ,φ)
∂θ∂φ

∂2f(θ,φ)
∂φ2

]
(4.14)

are the gradient vector and hessian matrix of f , respectively.

4.3 Evaluation using MR phantoms

4.3.1 Proof-of-concept using a simple phantom

4.3.1.1 Materials and methods

Phantom construction A 90° crossing fiber phantom was constructed using
synthetic Dyneema® fibers (Fig. 4.4a), following the methodology of Fieremans
et al. [2008a,b]. The individual fibers with a diameter of 20 µm were grouped
in parallel bundles of 780 fibers and then crossed (Fig. 4.4b). The bundles were
surrounded by a polyolefin low-temperature shrinking tube (Fig. 4.4c) and placed
in a Plexiglas cylindrical container filled with water. Consequently, the water was
heated up and kept constant at 90 ◦C during at least 600 s to shrink the shrinking
tube in order to produce a homogeneously, densely packed fiber phantom. To avoid
susceptibility differences caused by air bubbles, the whole fabrication process was
performed under water. Remaining air bubbles were removed by squeezing and
placing the phantoms in a vacuum chamber and subsequently in an ultrasonic bath
to remove small bubbles attached to the fibers and the shrinking tube.

Fig. 4.4: Crossing fiber phantom (a) with details of the interwoven fiber bundles (b) and
the shrinking tube (c).
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Acquisition DW imaging was performed on a 3T MRI scanner with 256 gradient
directions and a b-value of 0 and 2500 s/mm2 with an EPI sequence with a receiver
band width of 1565Hz/pixel. A total of 44 slices was acquired in a repetition time
of 6.7 s and with an echo time of 109ms. The resolution was 2× 2× 2mm3.

Local fiber orientation estimation fODFs were obtained using CSD using the
following parameters: lmax = 8, λ = 0.1, τ = 10%. For reference, we also calculated
the corresponding DTI ellipsoids.

Tractography Deterministic streamline tractography was performed using both
CSD and DTI. Parameters for the streamline algorithm were: step size = 1mm;
maximum angle = 70°; minimal fODF amplitude = 0.1; minimal FA = 0.1.

4.3.1.2 Results

Fig. 4.5 shows the DTI ellipsoids and CSD fODFs in the crossing fiber region.
From Fig. 4.5a, it is clear that DTI is unable to resolve the fiber crossing and
reports oblate DTI ellipsoids. CSD fODFs on the other hand are very sharp, clearly
resolving the fiber orientations in the crossing fiber region (Fig. 4.5c).

(a) DTI ellipsoids (b) CSD fODFs

Fig. 4.5: Detail of the fiber crossing. At the crossing DTI reports oblate DT ellipsoids,
highlighting DTI’s inability to resolve crossing fibers (a). CSD on the other hand reports
very sharp fODFs at the fiber crossing, with the fODF maxima along the expected fiber
orientations (b).

Fig. 4.6 shows tractography results using both DTI and CSD. At the fiber
crossing, the first eigenvector of the DT becomes undefined and is mostly determined
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by the noise in the data. As a consequence, DTI fiber trajectories will either jump
to the crossing fiber bundle (false positive); or make it through the fiber crossing
(either by chance or due to one fiber population being slightly dominant over the
other). CSD trajectories, on the other hand, all pass through the crossing fiber
region, faithfully representing the true fiber configuration.

(a) DTI tractography (b) CSD tractography

Fig. 4.6: ROI-based tractography with DTI (a) and CSD (b) starting from ROI 1 (green
trajectories) and ROI 2 (red trajectories). In the fiber crossing region, DTI trajectories
jump to the other fiber bundle. These trajectories do not correspond to the actual fiber
configuration in the phantom. CSD trajectories, on the other hand, accurately pass
through the crossing fiber region.

4.3.2 Quantitative evaluation using a complex phantom

Our CSD tractography algorithm was evaluated quantitatively on a HW phantom
as part of the MICCAI 2009 Fiber Cup (FC). For this contest, the organizers made
DW data available from an MR phantom containing complex fiber configurations,
together with 16 seed points from which the participants were to launch tractography.
After submission, the reconstructed trajectories were compared to a set of ground
truth trajectories, based on the spatial distance, tangent difference, and curvature
difference [Fillard et al., 2011].

4.3.2.1 Materials and methods

Phantom construction The FC organizers constructed a physical phantom
containing realistic crossing, kissing, splitting and bending fiber configurations
(Fig. 4.7). Fiber bundles were created out of hydrophobic acrylic fibers with a
diameter of 20 µm. Polyurethane negative and positive prints of the target bundles
were manufactured. Bundles were carefully positioned such that they rigorously
follow the pathways sketched in Fig. 4.7a. Bundles of about 100 fibers were used
to progressively fill it. First, a layer of bundles was placed everywhere in the
phantom. Then, a second layer was placed everywhere except at the intersections,
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to ensure an even distribution of fibers. Finally, this process was reiterated until the
desired number of fibers was positioned. In the next step, the positive and negative
prints were squeezed, while keeping the fibers strongly tightened, until the fiber
bundles were 1 cm in diameter. The resulting fiber packing was approximately 1900
fibers/mm2. The phantom was placed in a Plexiglas cylindrical container filled with
pure distilled water. To avoid air bubbles, a dedicated platform was designed that
enabled preliminary degassing of the solution, and filling under vacuum conditions.
An ultrasound beam was finally used to destroy any remaining air bubbles.

(a) (b)

Fig. 4.7: Schematic representation of the complex fiber phantom with: (a) the trajectories
of the underlying fiber bundles; (b) the different regions of complex fiber architecture (1,
3, 4: crossing; 2: branching; 5, 6: kissing; 7: bending).

Acquisition The FC organizers acquired DW data of the phantom on a 3T
MRI scanner equipped with a whole body gradient coil and using a 12-channel
receive only head coil, in combination with the whole body transmit coil of the MRI
system. A single-shot DW twice refocused spin echo echoplanar pulse sequence was
used to perform the acquisitions. Data sets were acquired at two different spatial
resolutions: 3× 3× 3 mm3 and 6× 6× 6 mm3.

Parameters for the 3 × 3 × 3mm3 acquisition were as follows: field of view
FOV = 19.2 cm, matrix 64× 64, slice thickness TH = 3mm, read bandwidth RBW
= 1775 Hz/pixel, partial Fourier factor 6/8, parallel reduction factor GRAPPA =
2, repetition time TR = 5 s, NEX = 2. Three diffusion sensitizations at b-values
b = 650/1500/2000 s/mm2 corresponding to the echo times TE = 77/94/112ms
respectively were used. 3 slices were acquired. Parameters for the 6× 6× 6mm3

acquisition were as follows: field of view FOV = 38.4 cm, matrix 64 × 64, slice
thickness TH = 6mm, read bandwidth RBW = 1775 Hz/pixel, partial Fourier
factor 6/8, parallel reduction factor GRAPPA = 2, repetition time TR = 5 s,
NEX = 1. Three diffusion sensitizations at b-values b = 650/1500/2650 s/mm2
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corresponding to the echo times TE = 77/94/110ms respectively were used. 1 slice
was acquired. For both the 3×3×3mm3 and the 6×6×6mm3 data sets, diffusion
gradients were applied along a set of 64 orientations uniformly distributed over
the sphere [Jones et al., 1999]. Average SNRs and FA values for all data sets are
summarized in Table 4.1.

voxel size (mm3) b-value (s/mm2) average SNR average FA
650 9.1 0.11

3× 3× 3 1500 2.6 0.11
2000 1.1 0.08
650 18.9 0.11

6× 6× 6 1500 17.6 0.13
2650 4.5 0.19

Table 4.1: Summary of the available data sets and their voxel sizes, b-values, average
SNRs and average FA values.

For our submission, the data set with a voxel size of 6 × 6 × 6 mm3 and a
b-value of 2650 s/mm2 was selected, favoring angular contrast and SNR over spatial
resolution.

Preprocessing Exploratory diffusion tensor analysis [Leemans et al., 2009] re-
vealed unusually low fractional anisotropy (FA) values in single fiber voxels (in the
range [0.1, 0.2]), meaning there is very little directionality in the DW signal. This
low angular contrast, in combination with the low SNR of the DW images (intrinsic
to the high b-value DW measurements), makes the estimated fiber orientations
very susceptible to noise contamination.

To increase SNR, an adaptive anisotropic Gaussian filter was applied to the
DW data (where σ of the Gaussian kernel in a homogeneous region was 8.4 mm).
This filter was previously shown to be efficient in reducing noise while retaining
edge information [Sijbers et al., 1999].

Local fiber orientation estimation fODFs were obtained using CSD with the
following parameters: lmax = 6, λ = 0.1, τ = 10%. While the maximum modified
SH degree one can estimate directly based on 64 DW images is 8, lmax = 6 was
chosen to further improve robustness to noise.

Tractography Deterministic streamline tractography was performed using CSD
derived fODFs. Parameters for the streamline algorithm were: step size = 0.1mm;
maximum angle = 50°; and minimal fODF amplitude = 0.1.

Quantitative evaluation The candidate fiber trajectories were first parameter-
ized by interpolating cubic b-splines. Subsequently, they were compared with the
ground truth trajectories by calculating the Root Mean Square Error (RMSE) of
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point-based distance metrics:

RMSE(f1,f2) =

√∫ 1

0

dist2(f1(s),f2(c(s))) ds (4.15)

where f1 and f2 are the two fiber trajectories being compared, s is the arc length
in the range [0, 1] and c is a function providing for each arc length s of f1, the
corresponding arc length of f2. The function c is established such that the distance
between corresponding trajectory points is minimal:

c = min
c

∫ 1

0

‖f1(s)− f2(c(s))‖2 ds (4.16)

Since, in general, RMSE(f1,f2) 6= RMSE(f2,f1), a symmetrized version of RMSE
was used instead:

sRMSE(f1,f2) =
1

2
[RMSE(f1,f2) + RMSE(f2,f1)] (4.17)

The sRMSE was evaluated for three different distance metrics:

1. A spatial metric, which is the Euclidian distance between two corresponding
fiber positions:

distspatial[f1(s),f2(c(s))] = ‖f1(s)− f2(c(s))‖ (4.18)

2. A tangent metric, which measures the absolute angular difference of the
tangent at two corresponding fiber positions:

disttangent[f1(s),f2(c(s))] = acos

(∣∣∣∣ f ′1(s)

‖f ′1(s)‖
· f

′
2(c(s))

‖f ′2(c(s))‖

∣∣∣∣) 180

π
(4.19)

3. A curvature metric, which measures the absolute difference of the curvature
at two corresponding fiber positions:

distcurvature[f1(s),f2(c(s))] =

∣∣∣∣‖f ′1(s)× f ′′1 (s)‖
‖f ′1(s)‖

− ‖f
′
2(c(s))× f ′′2 (c(s))‖
‖f ′2(c(s))‖

∣∣∣∣
(4.20)

These metrics allow quantitative comparison of fiber trajectories not only in terms
of their spatial position, but also in terms of their direction and curvature.

The three best solutions that participated in the FC (including our submission)
will be compared using the above criteria. Our solution will be referred to as ‘CSD
streamline’, and has been described at length in the previous sections. The other
two solutions will be referred to as ‘global tractography’ and ‘filtered 2-tensor
streamline tractography’. Note that we did not run these algorithms ourselves, but
the results were taken from each algorithm’s originator for comparison.

The ‘global tractography’ approach uses the concept of global tractography as
introduced in Chapter 3. In brief, this method minimizes the energy of a collection
of line segments. The energy term is the sum of two energy terms. The first ‘internal
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energy’ term encourages line segments to connect with neighboring segments and
take on similar orientations. This term implicitly embeds the prior belief that fiber
trajectories exhibit low curvature. The second ‘external energy’ term encourages
that the DW signal predicted by the line segments is in agreement with the measured
DW signal. As such, all fiber trajectories are estimated concurrently without the
need for prior fiber orientation estimation. This solution used the data set with
a voxel size of 3× 3× 3 mm3 and a b-value of 2000 s/mm2, which exhibited the
lowest average SNR and FA.

The ‘filtered 2-tensor streamline’ approach uses a 2-tensor streamline algorithm.
However, the local fiber orientation estimation step is improved by means of a
Kalman filter, which takes into account the currently traversed trajectory during the
fiber orientation estimation. A detailed description of both methods is considered
beyond the scope of this dissertation and can be found in Reisert et al. [2009, 2011]
and Malcolm et al. [2009, 2010] respectively. This solution used the data set with
a voxel size of 3× 3× 3 mm3 and a b-value of 1500 s/mm2.

4.3.2.2 Results

Qualitative results Fig. 4.8 shows the CSD fODFs calculated from the FC data
set. In the fiber crossings, the fODF maxima correspond to the expected fiber
orientations. The corresponding CSD streamlines are shown in Fig. 4.9a along

Fig. 4.8: CSD fODFs imposed on the non-DW image. Note that the fODFs maxima agree
with the expected underlying fiber orientations.

with the ground truth trajectories (Fig. 4.9b). The colored voxels indicate the seed
points provided by the organizers of the FC. While the reconstructed trajectories
are slightly displaced compared to the ground truth, our solution was able to resolve
all fiber crossings correctly.
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(a) CSD fiber trajectories (b) Ground truth fiber trajectories

Fig. 4.9: CSD fiber trajectories, reconstructed from the given seed points, imposed on
the non-DW image.

Quantitative results Figs. 4.10-4.11 shows the results from the quantitative
evaluation. In Fig. 4.10, our set of fiber trajectories is compared with the top 3
results. Looking at the spatial metric (Fig. 4.10a), the set of CSD trajectories is the
only one successfully following all trajectories from start to end (no large peaks).
The global tractography solution performs similar to the CSD solution, but fails to
follow fiber bundle 12 from start to end (large peak at bundle 12). The filtered
2-tensor solution fails in fiber bundle 6, 7, 9, and 11. Consequently, our solution
has the lowest mean spatial error, followed by the global tractography solution
and the filtered 2-tensor solution. It should be noted that, although the global
tractography algorithm fails for one fiber bundle, when it works it provides the
closest match to the gold standard trajectory. This is not surprising given that it
explores many more candidate trajectories than the other algorithms, which are
much faster.

Similar conclusions can be drawn by looking at the tangent metric (Fig. 4.10b).
The CSD solution shows no large peaks in the tangent error indicating that our
solution is able to follow the correct trajectories from start to end. The global
tractography solution shows a large peak at bundle 12, indicating that it chose the
wrong pathway within a crossing. The filtered 2-tensor solution clearly followed the
wrong fiber orientation in bundle 6, 7, 9, 11, and 16. As a consequence, our CSD
solution has the lowest mean tangent error, followed by the global tractography
solution and the filtered 2-tensor solution.

The curvature metric in Fig. 4.10c penalizes fibers with high curvature, since
the ground truth only contains straight or low-curved fibers. For this metric, the
CSD streamline solution exhibits large peaks for fiber bundles 3 and 14, due to
a discontinuity at one point along those fiber bundles. The global tractography
solution shows no peaks in the curvature error, indicating that the curvature of the
fibers in this solution is low. The filtered 2-tensor solution exhibits no large peaks
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Fig. 4.10: Quantitative comparison of the 3 best solutions: CSD streamline tractogra-
phy, global tractography and filtered 2-tensor streamline tractography. Bundle indices
correspond to the numbers in Fig. 4.9.
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Fig. 4.11: Quantitative comparison between the CSD streamline solution and the best
DTI streamline solution. Bundle indices correspond to the numbers in Fig. 4.9.
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in the curvature metric, but the errors are on average larger than for the two other
methods. As a consequence, the global tractography solution has the lowest mean
curvature error, followed by the CSD solution and the filtered 2-tensor solution.

In Fig. 4.11, our set of fiber trajectories is compared with the best DTI based
tractography result [Gouttard et al., 2009]. As expected, the spatial and tangent
errors are much higher for the DTI solution, since DTI cannot resolve crossing
fibers and is bound to make wrong decisions in crossing fiber regions (Fig. 4.11a-b).
Also, the curvature error is typically higher for the DTI result due to high curvature
bends in crossing fiber regions (Fig. 4.11c). These results highlight once more
the limits of DTI based tractography: in regions of fiber crossings it is extremely
sensitive to false positives and false negatives.

4.4 Evaluation on a real data set

4.4.1 Materials and methods
4.4.1.1 Acquisition

Whole-brain HARDI data were acquired from a healthy adult volunteer on a
General Electric 3T HDx Signa system. An eight-channel head coil with parallel
imaging factor of 2 was used to acquire twice-refocused spin echo echoplanar images
with TE = 109ms and 2.4× 2.4× 2.4mm3 voxel size (FOV 23× 23 cm2, 96× 96
acquisition matrix, NEX = 1, partial Fourier encoding with 16 overscans before the
center of k, 60 slices with 2.4mm thickness with no gap). Diffusion gradients were
applied in 60 directions uniformly distributed on a sphere through electrostatic
repulsion [Jones et al., 1999] with b = 3000 s/mm2. Six images with b = 0 s/mm2

were also acquired. Cardiac gating was applied using a peripheral pulse oximeter
with an effective TR = 20 R-R intervals. Total scan time was approximately 20
minutes. Motion and eddy-current distortion correction was applied taking into
account the B-matrix rotation [Leemans and Jones, 2009] and the tensor model
was fitted to the data using a weighted (anisotropic covariance matrix) linear
regression method [Basser et al., 1994a]. These processing steps were performed
with the diffusion MR toolbox ExploreDTI [Leemans et al., 2009]. SNR within the
b = 0 s/mm2 images was approximately 30, calculated using the difference method
to compensate for spatial noise variations in parallel imaging [Dietrich et al., 2007].
The subject gave written informed consent to participate in this study under a
protocol approved by the Cardiff University Ethics Committee.

4.4.1.2 Local fiber orientation estimation

fODFs were obtained using CSD using the following parameters: lmax = 8, λ = 0.1,
τ = 10%. For reference, we also calculated the corresponding DTI ellipsoids, and
QBI dODFs (with lmax = 8).

4.4.1.3 Tractography

Deterministic streamline tractography was performed using both CSD and DTI.
Parameters for the streamline algorithm were: step size = 1mm; maximum angle
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= 70°; minimal fODF amplitude = 0.1; minimal FA = 0.1.

4.4.2 Results

Fig. 4.12 displays deterministic CSD and DTI trajectories at the crossing of commis-
sural (the corpus callosum, CC), association (the superior longitudinal fasciculus,
SLF) and projection fibers (the corticospinal tract, CST) along with the associated
CSD fODFs and DTI ellipsoids. Note that for the CST, which is the dominant fiber
bundle in this region, both CSD and DTI tractography produce similar results.
However, for the non-dominant fiber bundles, large differences can be observed
between CSD and DTI tractography. While both DTI and CSD tractography
are able to reconstruct the superior projections of the CC, only CSD is able to
reconstruct the lateral projections of the CC. DTI tractography is not able to
find these lateral projections (false negatives) and instead switches to the superior
projections and to the tail of caudate nucleus (false positives). CSD tractography
is able to reconstruct the SLF from front to back. DTI tractography on the other
hand suffers from partial volume effect between the true SLF and the CST, causing
the trajectories to bend downwards.

(a) CSD trajectories (b) DTI trajectories

(c) CSD fODFs (d) DTI ellipsoids

Fig. 4.12: Deterministic tractography in the corpus callosum (red), superior longitudi-
nal fasciculus (green) and corticospinal tract (blue) using both CSD (a) and DTI (b).
Corresponding CSD fODFs and DTI ellipoids are shown in (c) and (d), respectively.
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4.5 Discussion and conclusion

In this chapter, we have introduced a deterministic tractography algorithm based on
CSD-derived fODFs and streamlines. By means of a simple crossing fiber phantom
and a real data example, we showed that the algorithm is able to track through
regions containing crossing fibers where DTI tractography fails.

In addition, our method was evaluated quantitatively on a more complex fiber
phantom, as part of the MICCAI 2009 FC contest. FA values in the FC phantom
data sets were found to be extremely low compared to the values found in human
WM, ranging from 0.08 to 0.19 depending on the b-values and voxel dimensions.
The combination of such low angular contrast with the intrinsic low SNR of DW
images, made fiber orientation estimation a challenging task. This motivated us
to select the data set with a voxel size of 6 × 6 × 6mm3 and b = 2650 s/mm2,
favoring SNR and angular contrast over spatial resolution. In order to reconstruct
spatially consistent fiber orientations, SNR was further improved by filtering the
data with an adaptive anisotropic smoothing kernel. Using such a filter, it was
possible to reduce spatial blurring to a minimum, avoiding the artificial widening
of fiber bundles and the introduction of artificial multi-fiber voxels. After this
preprocessing step, our tractography algorithm was able to reconstruct convincing
fiber trajectories.

While the tractography results look plausible, the low spatial resolution, however,
could introduce artificial fiber trajectories, since, at the voxel level, we are unable to
differentiate crossing from kissing or bending fiber configurations. Also, streamline
tractography is basically an ‘all-or-nothing approach’, where a single error along
the fiber trajectory can steer the tracking of course with no hope for recovery and
no indication of confidence.

Notwithstanding these limitations, a quantitative analysis of the FC results
revealed our solution was among the top contenders for the FC. Indeed, our
trajectories were characterized by the lowest average error for both the spatial
and directional metric and our method was the only one tracing the correct fiber
bundles from start to end. Our solution was only bested in terms of curvature
error by the global tractography solution which produces smooth fiber trajectories
by design. This proves that performing good fiber tractography is not all about
choosing the most advanced tractography method, but that much is to be gained
by choosing the right data. We may argue that SNR and angular contrast play a
key role in diffusion model estimation and should not always be sacrificed for the
benefit of spatial resolution.

4.6 Applications

4.6.1 Tractography of the SLF in Alzheimer’s patients

The association fibers of the superior longitudinal fasciculus (SLF) exhibit partial
voluming with the projection fibers of the corticospinal tract (CST) and the
commissural tracts of the corpus callosum (CC), making accurate delineation
of the SLF a challenging task. CSD tractography has recently been shown to
markedly improve the delineation of the SLF as opposed to DTI tractography
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[Jeurissen et al., 2011]. These improved delineations can be used as ROIs for the
quantitative analysis of popular scalar diffusion indices such as FA. In a recent study
on Alzheimer’s disease, CSD tractography was used for improved SLF delineation
(Fig. 4.13). It was shown that this significantly increased the sensitivity to detect
WM abnormalities as opposed to results obtained with conventional DTI based
tractography [Reijmer et al., 2011a,b].

(a) DTI tractography (b) CSD tractography

Fig. 4.13: Reconstruction of the SLF with DTI (a) and CSD (b) based tractography
in a representative Alzheimer’s disease patient. The corresponding SLF volumes were
subsequently used as ROIs and the scalar diffusion indices such as FA, MD and axial and
radial diffusivity were correlated with memory performance.

4.6.2 Tractography of the female pelvic floor

Our approach was recently used to perform fiber tracking in the muscles of the
female pelvic floor [Froeling et al., 2011].

4.6.3 Tractography of the optic chiasm in the starling brain

The optic chiasm is composed of two optic nerve bundles that connect the visual
system of the brain with the retina of each eye (Fig. 4.14a). As opposed to the
human optic chiasm, the optic chiasm of birds, such as the starling, consists entirely
of crossing fibers [Cowan et al., 1961]. This makes it an interesting structure for
the validation of fiber tracking techniques. Fig. 4.14b shows that DTI based fiber
tracking is unable to resolve the crossing due to the oblate ellipsoids found at the
avian optic chiasm (Fig. 4.14c). CSD-derived fODFs on the other hand, can resolve
the crossing fibers (Fig. 4.14e), resulting in improved fiber tracking in the optic
chiasm in the starling (Fig. 4.14d) [De Groof and Van der Linden, 2010].
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(a) Schematic representation of the optic chiasm in humans (left) and birds (right)

(b) DTI tractography (c) DTI ellipsoids

(d) CSD tractography (e) CSD fODFs

Fig. 4.14: Tractography of the optic chiasm in the starling brain. As opposed to the
human optic chiasm, the avian chiasm consists of 100% crossing fibers (a). DTI fiber
tracking is unable to resolve the crossing fibers (b). The shape of the tensor ellipsoids is
oblate at the optic chiasm, resulting in low FA values and incorrect fiber tracking results
(c). The fODFs obtained with CSD describe the crossing fibers quite well (e), resulting in
improved fiber tracking in the optic chiasm (e).
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5.1. Introduction

5.1 Introduction

Diffusion MRI is currently the only non-invasive imaging technique that allows
to estimate the WM fiber orientations in the in vivo brain [Tournier et al., 2011],
opening up the possibility of investigating brain connectivity in vivo using so called
fiber tracking algorithms [Mori and Van Zijl, 2002]. However, as diffusion MRI is
based on the measurement of ‘signal loss’, it is inherently a noisy technique [Stejskal
and Tanner, 1965]. As a consequence, fiber orientations – and other parameters of
interest – estimated from diffusion MRI are subject to uncertainty [Jones, 2003,
Pajevic and Basser, 2003]. This uncertainty is especially important in the context
of fiber tractography as previous studies using DTI have shown that measurement
uncertainty can propagate errors in streamlines [Lazar and Alexander, 2003].

Recent methods based on high angular resolution diffusion imaging (HARDI)
acquisitions, acquire a large number of DW images with high b-values in order to
resolve complex intra-voxel fiber configurations [Tuch et al., 2002]. However, as
the signal falls off monotonically with the strength of diffusion weighting, SNR in
HARDI is typically much lower than in more conventional diffusion MRI. Recently,
a new HARDI technique was proposed, called constrained spherical deconvolution
(CSD), which estimates the fiber orientation distribution function (fODF) directly
from the DW signal by means of spherical deconvolution [Tournier et al., 2007].
While CSD offers a more accurate estimate of fiber orientations in the presence of
partial volume effects, it is nevertheless important to also consider the precision of
these estimates.

Bootstrapping is a statistical method that allows to estimate the precision of an
estimate by means of resampling the data [Efron, 1979]. As opposed to parametric
methods which require explicit assumptions about the sources of uncertainty, the
bootstrap is a non-parametric method. This property makes the bootstrap a very
powerful device when such assumptions are in doubt or the full modeling of all
sources of uncertainty would lead to overly complicated models. E.g. in diffusion
MRI, parametric models will typically model the noise characteristics of the MR
data. However, many other sources of uncertainty exist, such as pulsation, head
motion, etc. which are hard to model explicitly, making bootstrapping techniques a
valuable tool for uncertainty estimation in diffusion MRI. An important drawback
of the classic repetition bootstrap is that it requires repeated data samples, which
limits the applicability in a clinical setting, due to increased acquisition times.
However, this limitation can be overcome by the use of model-based bootstrapping.
Here only a single data set is acquired and the resampling is performed on the
residuals of a model fit [Davison and Hinkley, 1997].

It has already been shown that bootstrap methods are a powerful tool for
characterizing uncertainty in estimates of DTI fiber orientations [Pajevic and
Basser, 2003, Jones, 2003, Chung et al., 2006] and it has been successfully used
to perform probabilistic DTI tractography [Jones and Pierpaoli, 2005]. However,
these techniques have not yet been assessed for CSD. In this work, Monte Carlo
simulations will be used to investigate the performance of several bootstrap methods
in terms of accuracy and precision, when estimating confidence intervals for CSD
fiber orientations.
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5.2 Theory
Conceptually the easiest way to assess the uncertainty of CSD fiber orientations
would be to acquire repeated DW data sets from the same subject, extract the
fiber orientations and then treat these repeated fiber orientations as samples from
the uncertainty orientation distribution function (uODF) [Jones, 2003]. Such an
approach does not require us to do any modeling of the uncertainty in the data,
and as such it is completely non-parametric. This would allow us to calculate 95%
confidence intervals (CI) around the extracted fiber orientations, which give an
indication of the precision of the fiber orientation estimates (Fig. 5.1). However, in
order to build a good representation of the uODF, this procedure would require a
large number of independent data sets, making the method not feasible in practice.

(a) rep. 1 (b) rep. 2 (c) rep. 3 (d) rep. 4 (e) rep. 5

(f) rep. 6 (g) rep. 7

...

(h) rep. 1000

−→

(i) 95% CI

Fig. 5.1: Estimating fODF uncertainty using a large number of repeated DWI mea-
surements. For 1000 repeated measurements, the fODF is estimated (a)-(h). For each
fODF the main fiber orientations are extracted (blue lines). The precision of these fiber
orientations can be measured by calculating a 95% CI, which can be visualized as a cone
of uncertainty (i).

5.2.1 Repetition bootstrap
5.2.1.1 Classic repetition bootstrap

Fortunately, it is possible to generate a large number of samples from just a few
repeated acquisitions sets by means of bootstrapping. The repetition bootstrap is a
non-parametric statistical procedure that enables one to estimate the uncertainty of
a given statistic, by randomly selecting individual measurements, with replacement,
from a set of repeated measurements, thus generating many bootstrap realizations
of the data. Each realization provides a random estimate of a given statistic.
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By generating a sufficient number of realizations, one obtains a measure of the
uncertainty of a given statistic from the data itself without requiring a priori
assumptions about the sources of uncertainty [Efron, 1979].

In the case of diffusion MRI, this method requires the acquisition of N repeats
of a complete DW data set, so that N samples are available for each gradient
orientation [Jones, 2003, Pajevic and Basser, 2003, Chung et al., 2006]. A re-
sampled DW data set can then be produced by randomly selecting N samples
with replacement for each orientation. Consider N repeated data sets of U DW
measurements (Fig. 5.2). The total data available to us is a matrix S, of dimensions
U ×N , where each column in S is one complete acquisition. To generate a single
bootstrap realization, we create a new matrix Sb, of dimension U ×N , where each
row contains N values randomly sampled with replacement from the corresponding
row in S.
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Fig. 5.2: Classic repetition bootstrap sampling. Example with 4 repeated measurements
acquired along 60 gradient orientations. For each row (gradient orientation), we take 4
random samples with replacement to form a new bootstrap realization of the data.

In this way, a full U×N DW data set is produced from a random combination of
the images in the N repeats of the original data set. This bootstrap realization can
then be processed using the method under investigation. In our case the bootstrap
realization will be processed using CSD. By repeating this procedure Nb times,
we obtain Nb estimates of the fODF and the associated peak orientations, which
can be used to estimate the reproducibility of the reconstructed fiber orientations
(Fig. 5.3).

5.2.1.2 Bootknife

When the number of repeats N is small, bootstrap-estimated uncertainties are
noticeably downwardly biased, in the same way that the uncorrected variance is
not an unbiased estimator of the true population variance. To remedy this bias,
the bootknife method was proposed [Hesterberg, 2004]. Basically, the bootknife is
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ment(s) 

DWI 
bootstrap 

realization Nb 

DWI 
bootstrap 

realization 1 

CSD 

CSD 

 uncertainty measures 

DWI 
bootstrap 

realization 2 

CSD 

bootstrap 

Fig. 5.3: Estimating fODF uncertainty using the bootstrap. Nb bootstrap realizations are
generated from the same data. Each bootstrap realization can then be processed using
CSD, resulting in Nb bootstrap realizations of the fODF. From this large collection of
fODF estimates, one can estimate the precision of the fiber orientation estimates, e.g. as
a 95% confidence interval.

a combination of the jackknife and the bootstrap. Prior to selecting one of the N
available samples for each orientation, we eliminate one measurement at random
from each row in S, giving us a matrix Sj of dimension U × (N − 1) (jackknife).
We then create a bootstrap matrix Sb of dimension U ×N , but because we are
choosing N samples from a row of length N − 1, we guarantee that at least one of
the measurements will be repeated [Chung et al., 2006]. The way the bootknife
is advantageous over the classic repetition bootstrap is analogous to the way the
corrected sample variance:

s2 =
1

n− 1

n∑
i=1

(yi − ȳ)2 with E[s2] = σ2 (5.1)

is advantageous over the uncorrected sample variance:

s2
n =

1

n

n∑
i=1

(yi − ȳ)2 with E[s2
n] =

n− 1

n
σ2 (5.2)

with n the number of samples, ȳ the sample mean, σ2 the true population variance
and E[·] the expected value operator. For small sample sizes, the uncorrected
estimator produces highly biased variance estimates, whereas the corrected estimator
is unbiased even for small n.
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Fig. 5.4: Bootknife sampling. Example with 4 repeated measurements acquired along 60
gradient orientations. For each row (gradient orientation), we first randomly eliminate
1 sample to resulting in a jackknife realization consisting of 3 repeated measurements.
From the jackknife realization, we then take 4 random samples with replacement to form
a new bootknife realization of the data.

5.2.2 Residual bootstrap

An important drawback of the repetition bootstrap approach, is that it requires
multiple acquisitions for each diffusion gradient, imposing a large load on the data
acquisition. For just a small number of diffusion gradients, acquiring repeated
measurements might be feasible. However, for HARDI acquisitions, which acquire
DW images along a large collection of gradient orientations acquiring multiple
acquisitions would increase scanning time to such extent that it would be no longer
feasible in clinical practice. An alternative is to use model-based resampling. Such
methods first fit the data to a model, after which the residuals are resampled, rather
than the raw data values. Since model-based resampling doesn’t require repeated
acquisitions, it is a powerful alternative to the repetition bootstrap to estimate
the precision of parameters derived from HARDI data. In what follows, we will
describe the model-based resampling technique called the residual bootstrap [Wu,
1986].

The entire procedure is summarized in Fig. 5.5. First, the DW signal S, which
is acquired along a set of ng gradient orientations {(θ, φ)} needs to be fitted to
a model. Remember from Chapter 2, the DW signal can be expressed as a linear
combination of the modified spherical harmonics (SH) Y

′m
l (θ, φ) of degree l and

order m:

S(θ, φ) =
L∑
l=0

l∑
m=−l

cml Y
′m
l (θ, φ) (5.3)

where {cml } denote the harmonic series coefficients, and L is the maximum harmonic
degree [Frank, 2002]. Eq. (5.3) can be expressed as a linear system:

s = Bc+ ε (5.4)

where B is the ng × nc matrix constructed with the modified SH basis, c is the
nc×1 of modified SH coefficients, s is the ng×1 DW signal vector and ε is the noise
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Fig. 5.5: Residual bootstrap sampling. Example with data acquired along 60 gradient
orientations. First, the sample is fitted to a model and the corresponding residuals are
calculated. The residuals are corrected such that they have the same variance as the
true underlying errors. Then from the set of residuals we take 60 random samples with
replacement, resulting in a resampled residual. The resampled residual is then added back
to the model fit, resulting in a new residual bootstrap realization of the data.
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vector. The coefficients c can then be estimated using least-squares minimization:

ĉ = (BTB)−1BTs (5.5)

Given Eq. (5.4) and Eq. (5.5), the signal ŝ predicted by the least squares SH fit to
the measured signal s is given as:

ŝ = Bĉ = B(BTB)−1BTs = Hs (5.6)

with
H = B(BTB)−1BT (5.7)

the so-called hat-matrix.
Remember also that the higher order basis functions in the modified SH series

correspond to the higher angular frequency modes of the unit sphere, and thus
relatively smooth functions, such as the DW signal, can be represented concisely
using a SH series truncated at a relatively low order. In fact, a recent study has
shown that the highest order for which significant terms can be found in in vivo
HARDI signal profiles at b = 3000 s/mm2 is 8 [Tournier et al., 2009].

Once the signal ŝ has been estimated by the least squares SH fit to the measured
signal s, the raw residual vector can be calculated as:

ε̂ = s− ŝ (5.8)

From regression analysis it is known that:

Var[ε̂i] = σ2(1− hii) (5.9)

with σ2 the variance of true underlying error and hii the i-th diagonal entry in the
hat matrix H from Eq. (5.7) [Weisberg, 2005]. To ensure that the residuals have
the same variance as the underlying errors ε, the raw residual vector ε̂ is corrected
to yield the modified residual vector ε̂m [Davison and Hinkley, 1997]:

ε̂mi =
ε̂i√

1− hii
(5.10)

with
Var[ε̂mi ] = σ2 (5.11)

Values from ε̂m are then randomly chosen with replacement to form a new boot-
strapped residual ε̂∗. Finally, the bootstrapped residual is added back to the signal
fit, to create a synthetic bootstrap realization ŝ∗ of the DW signal:

ŝ∗ = ŝ+ ε̂∗ (5.12)

By repeating this procedure Nb times, we obtain Nb realizations of s. Each of
these realizations can then be processed individually (e.g. by CSD), to derive the
statistic of interest (e. g. the fiber orientation).

5.3 Experiments
Simulation experiments were performed to compare the bootstrap estimates of
CSD fiber orientation uncertainty to the gold standard uncertainty.
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5.3.1 Gold standard
Two diffusion tensor profiles at angles ranging from 60° to 90° were combined to
simulate the noiseless DW signal for two fiber populations:

S(q) =
S(0)e−bĝ

TD1ĝ + S(0)e−bĝ
TD2ĝ

2
(5.13)

where S(0), the non-DW signal, was set to 1 without loss of generality. The diffusion
weighting b was set to 3000 s/mm2. Sixty diffusion-encoding gradient directions ĝ
were used, distributed evenly on the half sphere [Jones et al., 1999]. This setup
corresponds to a realistic high angular resolution DW acquisition. Both diffusion
tensorsDi (i = 1, 2) had a FA of 0.8. The mean ADC was set to 600× 10−6 mm2/s.
Rician noise was added to give a SNR (for b = 0 s/mm2) of 15 to 40, which is
the clinical range. This experiment was repeated 10,000 times. The fODF was
calculated for every DW signal, using CSD with harmonic degree lmax = 8. From
these fODFs, the unique peak orientations were extracted using the optimization
method explained in the previous chapter. The average peak directions were
calculated as the first eigenvector of the mean dyadic tensor of all 10,000 peak
directions [Pajevic and Basser, 2003]. Finally, the 95% CI of the angular deviation
between the individual and average peak orientations was calculated, representing
the ‘cone of uncertainty’ [Jones, 2003] around the average peak orientation. Fig. 5.6
shows a visualization of such cones for different SNR values. Note that the cones
are wider at low SNR, indicating a higher uncertainty of the fiber orientations.

(a) SNR=15 (b) SNR=30

Fig. 5.6: Example of a 95% CI of two fiber orientations with inter-fiber angle of 60° at
different SNR levels. For clarity, the number of repeats was only 60. The cones represent
the 95% CI, the black lines the fiber orientation estimates from the individual repeats.
This means 95% of the black lines lie within the cone.

5.3.2 Repetition bootstrap
Nine bootstrap experiments were considered, with the number of repeated ac-
quisitions, N , ranging from 2 to 10. For each bootstrap design, we derived Nb
bootstrap/bootknife realizations of the fODF. Fiber orientations were extracted as
described above. To determine the effect of the number of bootstrap realizations
on the estimated fiber orientations, Nb was incremented from 100 to 1000 in steps
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of 100. The entire procedure was repeated 100 times to determine the precision of
a particular bootstrap experiment. Mean and standard deviation of the 95% CI
(across the 100 repeats) were computed.

5.3.3 Residual bootstrap

The 95% CI was calculated as before, but now over Nb = 1000 residual bootstrap
realizations. The CI calculation was repeated 100 times with different noise instances
to obtain mean and standard deviation of the CI.

5.4 Results

5.4.1 Repetition bootstrap

Fig. 5.7 shows the bias of the 95% CI relative to the gold standard 95% CI as a
function of the number of repeated measurements N . The number of bootstrap
realizations Nb was fixed to 1000 and SNR was set to 25. The dotted lines represent
the bias of the bootstrap estimates. The dashed lines show the bias of the bootknife
estimates. Only inter-fiber angles of 60° (Fig. 5.7a) and 90° (Fig. 5.7b) are shown.
Note that other inter-fiber angles and SNR levels yielded similar results, but were
left out for clarity. As expected, the CIs are significantly underestimated by the
bootstrap when the number of repeated acquisitions N is small. Accuracy can be
improved by increasing N , but there still remains a negative bias even at N = 10
repeated measurements. The bootknife estimates on the other hand tend to be very
close to the gold standard over the entire range of N and at different inter-fiber
angles.
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Fig. 5.7: Bias of mean repetition bootstrap 95% CI as a function of N with SNR = 25 in
a single repetition.

Fig. 5.8 shows the relative standard deviation over 100 bootstrap experiments of
the 95% CIs as a function of the number of bootstrap realizations Nb. The number
of repeated experiments N was fixed to 6 and SNR was set to 25. The dotted lines
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represent the bootstrap estimates. The dashed lines show the bootknife estimates.
Smaller standard deviations are better. Only inter-fiber angles of 60° (indicated by
×) and 90° are shown. Note that other inter-fiber angles and SNR levels yielded
similar results, but were left out for clarity. The plot shows improvement in precision
of the CIs by increasing the number of bootstrap realizations Nb, but increasing
the number of bootstrap iterations only seems sensible up to approximately 800.
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Fig. 5.8: Relative standard deviation (RSD) of repetition bootstrap 95% CI as a function
of Nb with SNR = 25 in a single repetition.

5.4.2 Residual bootstrap

Fig. 5.9 shows the 95% CI as a function of SNR for different inter-fiber angles. The
plots show that the residual bootstrap CIs agree with the gold standard CIs over
the entire range of SNRs and at all inter-fiber angles.

5.5 Discussion and conclusion

In this chapter, we investigated the performance of the bootstrap method in
terms of accuracy and precision when estimating confidence intervals of CSD
fiber orientations and compared it to an alternative bootstrap method, called
bootknife. The precision of the bootstrap and bootknife method depends on
the number of bootstrap realizations and our results show that the number of
bootstrap iterations should be 800, which is not a problem since it doesn’t impact
acquisition time. On the other hand, the accuracy of the bootstrap and bootknife
method depends on the number of repeated acquisitions. Our results show that
the ‘classic’ repetition bootstrap significantly underestimates the uncertainty when
few repeated acquisitions are available. This is in accordance with earlier studies
that were performed using DTI [O’Gorman and Jones, 2006, Chung et al., 2006].
However, high angular resolution diffusion imaging data, like CSD data, typically
have very few repeated acquisitions available. While it may be tempting to use
this bootstrap procedure with just a few repeats, our results show that this yields
poor accuracy. Using the bootstrap for probabilistic tractography can thus have
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Fig. 5.9: Average 95% CI derived with residual bootstrap for different inter-fiber angles.
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considerable consequences, since the error introduced by this bias will produce
tracts that do not represent the true variability inherent in the data. We also
showed that the downward bias of the ‘classic’ repetition bootstrap for CSD can
be removed using the bootknife approach. This allows good CI estimates and
probabilistic tractography, using only a few repeated acquisitions, without making
assumptions about the sources of uncertainty in the data. However, in a clinical
setting, even a few repeated measurements can already render acquisition time
unacceptably long.

For this reason we also investigated the performance of the residual bootstrap
method. The huge advantage over the classic repetition bootstrap is that the
residual bootstrap does not require the collection of extra data, bringing acquisition
time into the clinical realm. Our simulation results indicate that the combination
of the residual bootstrap with the modified SH model allows accurate estimates
of the uncertainty in the fiber orientations reconstructed with CSD. This enables
probabilistic tractography of CSD fiber orientations from data measured in a
clinically feasible time frame. Note that, while we focused on estimating the
uncertainty of the main fiber orientations of the fODF, the same technique can be
applied to estimate the uncertainty of full fODF. In addition, since our procedure
uses the very general SH model, directly fitted to the DW signal itself, the same
procedure can be applied to estimate the uncertainty in other HARDI methods
than CSD [Tournier et al., 2009].

A potential problem of the residual bootstrap is that if the model overfits
the data, so the residuals tend to zero, it will dramatically underestimate the
uncertainty of the fODF. In the current study we have used the SH model with
lmax = 8, as this was shown to be the highest SH order for which significant terms
can be found in in vivo HARDI signal profiles at b = 3000 s/mm2 [Tournier et al.,
2009]. Our simulation results also indicated that using lmax = 8, produced accurate
95% CIs for the clinical SNR range. In theory, the accuracy of the procedure could
be improved by performing model order selection to determine the appropriate
SH order in each voxel separately [Alexander et al., 2002], prior to the residual
bootstrap procedure.
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6.1. Introduction

6.1 Introduction

While HARDI techniques offer an improved estimate of fiber orientations in the
presence of partial volume effects, DW-MRI is inherently a noisy technique, resulting
in uncertainty associated with each fiber orientation estimate. This uncertainty is
especially important in the context of fiber tractography. Previous DTI studies have
shown that measurement uncertainty can propagate errors in streamlines [Lazar and
Alexander, 2003]. To take this uncertainty into account, probabilistic tractography
algorithms were proposed, which assign a probability to the reconstructed pathways
by considering multiple pathways emanating from the same seed point. Random
vector generation, for example [Lazar and Alexander, 2002, Parker et al., 2003],
relates the probability of a tract to the number of times it is reconstructed in a Monte
Carlo random walk, where the characteristics of the random walk are determined
by the properties of the underlying diffusion tensor. In voxels where there is no
anisotropy, the generated vector is completely random. In anisotropic regions, the
orientation probability is skewed to the axis of longest diffusion. Similar methods
were developed for HARDI-based reconstruction methods where the characteristics
of the random walk are determined by the shape of the underlying orientation
distribution functions (ODFs). Some of these methods sample directly from the
ODF [Campbell et al., 2005, Descoteaux et al., 2009, Perrin et al., 2005, Tournier
et al., 2005]. Other methods first map the ODF parameters to the parameters of
another distribution and take samples from this distribution during probabilistic
tractography in an attempt to better model the underlying anatomy [Seunarine
et al., 2007]. These approaches, however, have an important drawback: they
assume an ad-hoc relationship between the shape of the diffusion profile and the
uncertainty in local fiber orientation. A more rigorous approach computes the local
fiber orientation uncertainty given the MR data using a Bayesian model [Behrens
et al., 2003, 2007]. While this method is theoretically sound, it still requires the
uncertainty to be modeled and it does not account for artifacts such as physiological
noise and system instabilities.

An alternative to the ad-hoc methods is to use the bootstrap method. This is a
nonparametric statistical procedure that enables one to estimate the uncertainty of
a given statistic, by randomly selecting individual measurements, with replacement,
from a set of repeated measurements, thus generating many bootstrap realizations
of the data. Each realization provides a random estimate of a given statistic.
By generating a sufficient number of realizations, one obtains a measure of the
uncertainty of a given statistic from the data itself without requiring a priori
assumptions about the sources of uncertainty [Efron, 1979, Pajevic and Basser, 2003].
Bootstrapping has previously been combined with DTI tractography to produce
probabilistic fiber trajectories [Jones and Pierpaoli, 2005, Lazar and Alexander,
2005]. However, in a clinical setting, the amount of repeated measurements to allow
accurate and precise bootstrapping can render acquisition time unacceptably long
[Jeurissen et al., 2008b, O’Gorman and Jones, 2006].

The problem of long acquisition times can be addressed using model-based
bootstrapping methods [Chung et al., 2006, Jones, 2008, Whitcher et al., 2007].
This approach obtains probability distributions for model parameters by resampling
residuals from a model fit (e.g., diffusion tensor fit). The huge advantage of this
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method is that it does not require repeated measurements, bringing acquisition
time into the clinical range. Recent work has shown that the residual bootstrap
can accurately estimate the uncertainty in DTI [Chung et al., 2006] and Q-ball
Imaging (QBI) [Berman et al., 2008, Haroon et al., 2009].

In this chapter, a probabilistic tractography algorithm is presented based on
CSD and the residual bootstrap. Using CSD to extract local fiber orientations,
our algorithm will overcome partial volume effects associated with DTI and the
poor angular resolution that is achieved with other HARDI methods such as QBI
[Tournier et al., 2008]. Using the residual bootstrap, we allow fiber tract probability
estimation within the clinical time frame, without prior assumptions about the
form of the uncertainty in the data. Using Monte Carlo simulations, the accuracy
and precision of the residual bootstrap method when estimating DTI and CSD fiber
pathway uncertainty, is measured. We also apply our algorithm to clinical DW data
and compare our method to state-of-the-art DTI residual bootstrap tractography
[Chung et al., 2006, Jones, 2008] and to an established probabilistic multi-fiber
CSD tractography algorithm [Tournier et al., 2005].

6.2 Materials and methods

6.2.1 Fiber tractography

In Chapter 4, we introduced a deterministic tractography algorithm based on CSD.
This algorithm is an extension from the standard DTI streamline tractography
algorithm [Basser et al., 2000] and can be summarized as follows. Fiber tracking is
started at a given seed point. First, the DW signal at the current position of the
trajectory is obtained using trilinear interpolation. Next, the fODF is estimated
using CSD. Then, the fODF peak direction that is closest to the previous stepping
direction is extracted (Newton optimization on the sphere). Finally, the trajectory
is advanced by a fixed step size along the obtained direction. Tracking is ended
when the fODF peak intensities are beneath a fixed threshold, a maximum angle is
exceeded, or the tract leaves a specified brain mask.

Using the residual bootstrap approach outlined in Chapter 5, this deterministic
tractography algorithm can be extended into a probabilistic one. First, Nb bootstrap
realizations are generated from the measured DW data set. Then, the above
deterministic algorithm is run separately on each generated data set, producing
Nb tracts emanating from the same seed point. Finally, visitation maps can be
generated by assigning to each voxel the number of bootstrapped trajectories that
pass through it [Jones and Pierpaoli, 2005].

Note that by extracting the peaks with a bootstrap procedure, we are implicitly
estimating a new, sharper fODF, with the underlying assumption that the fiber
orientations are discrete (i.e., delta functions), as in [Behrens et al., 2007, Hosey
et al., 2005]. In fact, we are estimating a new fODF that accounts for uncertainty
in the data and has the underlying assumption of ‘sparsity’ of the fiber orientations.

Unless specified, the following tractography parameters were used in this work:
a step size of 1 mm, a minimum fODF peak intensity of 0.1 and a maximum angle
between two consecutive steps of 30°. The 0.1 fODF threshold was a trade-off
between sensitivity and specificity. Increasing the threshold reduced the likelihood
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of false positives, but at the cost of missing small fiber populations. Decreasing the
threshold facilitated tracking through regions with small fiber populations, but at
the cost of many spurious fibers. In the remainder of this chapter, this algorithm
will be referred to as ‘CSD residual bootstrap tractography’.

We compared the proposed method with two other tractography algorithms.
The first one, which will be referred to as ‘DTI residual bootstrap tractography’, is
very similar to our method, but uses the diffusion tensor model to estimate the local
fiber orientations and to perform the residual bootstrap [Chung et al., 2006, Jones,
2008]. The FA threshold used in this method was 0.1. The second one, which will
be referred to as ‘CSD fODF sampling tractography’, generates probabilistic fiber
orientations by taking samples directly from the fODFs using a rejection sampling
scheme [Tournier et al., 2005]. The same parameters as for the CSD residual
bootstrap tractography were used. Note that in contrast to the CSD residual
bootstrap algorithm, this method does not assume that the fiber orientations are
discrete, but instead tries to account for uncertainty due to the fODF shape itself,
which is assumed to represent the underlying anatomical dispersion.

6.2.2 Simulations

In Chapter 5 we have shown, using numerical simulations, that the residual boot-
strap realizations of local CSD fiber orientation (at the voxel level) accurately
represent the true uncertainty in fiber orientation [Jeurissen et al., 2008a]. In
this chapter, the uncertainty of global fiber trajectories (at the data set level) was
estimated by means of probabilistic tractography based on the residual bootstrap.
Using a numerical phantom [Leemans et al., 2005], the accuracy and precision
of the residual bootstrap for both DTI and CSD probabilistic tractography was
measured.

Two properties of the probabilistic tracts were studied: fiber dispersion and
success rate. Fiber dispersion of a set of probabilistic trajectories was defined as
described in [Lazar and Alexander, 2005]. This method takes regular steps along
the true noiseless trajectory and computes planes that are perpendicular to the
tangent vector. The spatial locations of the intersection of each trajectory with
the plane are determined and the distribution of these locations is characterized
using principal component analysis. This yields two dispersion measures, λ1 and
λ2, indicating the amount of fiber spread along the principal axes of dispersion in
this transverse plane. Success rate was defined as the number of trajectories that
successfully reached each plane. Using Monte Carlo simulations, dispersion and
success rate of gold standard CSD, gold standard DTI, CSD residual bootstrap
and DTI residual bootstrap trajectories were compared. For comparison, we also
studied the dispersion and success rate of the CSD fODF sampling method.

6.2.2.1 Gold standard

A noiseless DW data set was simulated as in Leemans et al. [2005]. In this
framework, diffusion tensor profiles with different orientations are combined to
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simulate the noiseless DW signal for a multi-fiber voxel:

S(u) =
N∑
i=1

fiS0e
−buDiu

T

with
N∑
i=1

fi = 1 . (6.1)

The fractions fi (i = 1, ..., N) represent the relative contribution of the i-th
fiber orientation along unit direction u. The non-DW signal, S0, was set to 1
without loss of generality. Individual diffusion tensors Di (i = 1, ..., N) had a
fractional anisotropy (FA) of 0.8 and a mean apparent diffusion coefficient (ADC)
of 4× 10−4 mm2/s (average value measured at the corpus callosum in the real
HARDI data set below). The diffusion weighting b was set to 3000 s/mm2. Sixty
diffusion encoding gradient directions were used, distributed evenly on the half
sphere [Jones et al., 1999]. Voxel size was 2.4×2.4×2.4mm3. This setup corresponds
to a realistic and clinically feasible HARDI acquisition. The simulated data set
contained three fiber bundles with a crossing arrangement as shown in Fig. 6.1a.
Fig. 6.1b-e shows the corresponding DTI ellipsoids and CSD fODFs that can be
found in the phantom. Rician noise was added to the noiseless data set to generate
10000 noisy data sets. The SNR in the individual data sets was 30 within the
b = 0 s/mm2 images, which is clinically feasible. Note that all subsequent SNR
values are defined on the images without diffusion weighting, since SNR in the
DW images depends on the amount of diffusion and its orientation. In the DW
images, the average SNR is approximately 5. To show how the tracts behave at
different noise levels, we repeated our simulation experiment for lower SNR values:
25, 20, and 15. For each data set, CSD tractography was started from a fixed seed
point (red dot), resulting in 10000 gold standard probabilistic tracts (Fig. 6.2b).
For reference, 10000 DTI tractography runs were also performed (Fig. 6.2a).

6.2.2.2 Residual bootstrap

Starting from a single noisy simulated data set, Nb = 1000 trajectories were
calculated using the probabilistic tractography method as detailed in Section 6.2.1
(Fig. 6.2d). For reference, Nb = 1000 DTI residual bootstrap tractography runs
were also generated (Fig. 6.2c). The above procedure was repeated 50 times to
calculate the mean and the standard deviation of the dispersion values.

6.2.2.3 fODF sampling

Starting from a single noisy simulated data set, Ns = 1000 trajectories were sampled
from the CSD fODFs as detailed in Section 6.2.1 (Fig. 6.2e). The above procedure
was repeated 50 times to calculate the mean and the standard deviation of the
dispersion values.

6.2.3 Real data
Whole-brain HARDI data were acquired from a healthy adult volunteer on a
General Electric 3T HDx Signa system. An eight-channel head coil with parallel
imaging factor of 2 was used to acquire twice-refocused spin echo echoplanar images
with TE = 109ms and 2.4× 2.4× 2.4mm3 voxel size (FOV 23× 23 cm2, 96× 96
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(a) (b) (c)

(d) (e)

Fig. 6.1: Simulation of DW data. (a) simulated fiber arrangement; (b) noiseless DTI
ellipsoids; (c) noiseless CSD fODFs; (d) noiseless DTI ellipsoids at crossing; (e) noiseless
CSD fODFs at crossing.
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acquisition matrix, NEX = 1, partial Fourier encoding with 16 overscans before the
center of k, 60 slices with 2.4mm thickness with no gap). Diffusion gradients were
applied in 60 directions uniformly distributed on a sphere through electrostatic
repulsion [Jones et al., 1999] with b = 3000 s/mm2. Six images with b = 0 s/mm2

were also acquired. Cardiac gating was applied using a peripheral pulse oximeter
with an effective TR = 20 R-R intervals. Total scan time was approximately 20
minutes. Motion and eddy-current distortion correction was applied taking into
account the B-matrix rotation [Leemans and Jones, 2009] and the tensor model
was fitted to the data using a weighted (anisotropic covariance matrix) linear
regression method [Basser et al., 1994]. These processing steps were performed
with the diffusion MR toolbox ExploreDTI [Leemans et al., 2009]. SNR within the
b = 0 s/mm2 images was approximately 30, calculated using the difference method
to compensate for spatial noise variations in parallel imaging [Dietrich et al., 2007].
The subject gave written informed consent to participate in this study under a
protocol approved by the Cardiff University Ethics Committee.

Using the guidelines in Catani and de Schotten [2008], seed points (shown as
red dots) were selected at the core of three well known fiber tracts for which DTI is
assumed to perform well (i.e., no fiber crossings): the corpus callosum, the cingulum
and the fornix (Fig. 6.5a-6.5i). Next, all three tractography methods were started
in the predefined seed points. Fiber dispersion was calculated as explained in
Section 6.2.2, using the deterministic DTI trajectory as reference trajectory. Fiber
dispersion was only calculated in the segment of the reference trajectory where
both DTI and CSD reported 75% success rate to avoid too much artificial drop in
fiber dispersion due to spurious fibers terminating early.

Next, seed points were placed close to the crossing of the CC, the SLF and the
CST1 and all three tractography methods were started from those seed points. In
these regions, dispersion values could no longer be measured objectively, since both
algorithms are now expected to follow different paths. Instead, visitation maps
were generated by assigning to each voxel the number of trajectories that pass
through it [Jones and Pierpaoli, 2005] and the maps were qualitatively compared
(Fig. 6.6-6.8).

6.3 Results

6.3.1 Simulated data
Fig. 6.2a shows 1000 gold standard DTI fiber tracts emanating from the same seed
point (red dot), superimposed on an FA map. When the tracts enter regions of
crossing fibers (low FA), there is considerable increase in tract dispersion due to
partial volume effects. At the second fiber crossing, these tracts even disperse
into the crossing tract. Fig. 6.2b shows the corresponding CSD tracts, having no
bifurcations and much smaller tract dispersion. Fig. 6.2c displays Nb = 1000 tracts
generated by DTI residual bootstrap tractography (starting from a single noisy
measurement), showing an additional tract dispersion in the event of partial volume

1Here, we refer to CST as the collection of fiber pathways that travel between the cerebral
cortex and the spinal cord. Note that only a part of the CST was reconstructed, as we used only
one seed voxel.
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effects. Fig. 6.2d shows the corresponding CSD residual bootstrap tracts, which are
in close agreement with the gold standard ones from Fig. 6.2b. Fig. 6.2e displays
Ns = 1000 tracts generated by CSD fODF sampling tractography (starting from a
single noisy measurement), showing a very large overall dispersion, even in regions
without partial volume effects. At the fiber crossings, some tracts disperse into the
crossing tracts.

(a) (b) (c) (d) (e)

Fig. 6.2: Simulations of probabilistic tractography at SNR 30: trajectories from a single
seed point (red dot). (a) Gold standard DTI; (b) Gold standard CSD; (c) DTI residual
bootstrap; (d) CSD residual bootstrap; (e) CSD fODF sampling.

To explore this in more detail, Fig. 6.3, plots fiber dispersion values λ1 and
λ2 and the success rate as a function of arc length along the trajectory, for gold
standard DTI (blue line), gold standard CSD (green line), the mean residual
bootstrap approximation (red line), and the CSD fODF sampling tractography
(magenta line). The shaded red area is a 95% confidence interval for the mean.

From Fig. 6.3a, it is clear that gold standard DTI trajectories undergo heavy
λ1 dispersion in case of partial voluming (around 30 and 60 mm from the seed
point). This is due to the disc shaped diffusion tensors which have no well defined
largest eigenvector. Gold standard CSD trajectories on the other hand are much
less sensitive to λ1 dispersion in the event of partial voluming. For λ2, both gold
standard DTI and CSD trajectories, show similar dispersion, though dispersion
for gold standard CSD is slightly lower (Fig. 6.3b). This can be explained by the
fact that while the disc shaped diffusion tensors have high uncertainty associated
with the largest eigenvector, the disc shape does not allow them to disperse out of
the plane. Finally, gold standard CSD achieves 100% success rate along the entire
phantom, whereas gold standard DTI success rate drops significantly at each fiber
crossing (Fig. 6.3c).

Fig. 6.3d-e shows that the DTI residual bootstrap tractography algorithm
accurately estimates gold standard DTI fiber dispersion, as long as the tensor
model holds (before 30 mm). In the event of partial volume effects, however, there
is a large positive bias in the fiber dispersion estimated by DTI residual bootstrap.
Fig. 6.3g-h, on the other hand, shows that the bootstrap estimates of CSD fiber
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Fig. 6.3: Simulations of probabilistic tractography at SNR 30: fiber dispersion and success
rate versus arc length from seed point. λ1 is the dispersion along the major axis of
dispersion; λ2 is the dispersion along the minor axis of dispersion. (a)-(c) Gold standard
DTI vs. CSD; (d)-(f) Gold standard DTI vs. residual bootstrap; (g)-(i) Gold standard
CSD vs. residual bootstrap; (j)-(l) CSD residual bootstrap vs. CSD fODF sampling. The
shaded area represents the 95% confidence interval of the mean.
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dispersion (both λ1 and λ2) are very close to the gold standard, even in the event of
partial voluming. Fig. 6.3i reports 100% success rate for the CSD residual bootstrap,
whereas DTI residual bootstrap tractography results in additional fiber termination,
due to dispersing tracts (Fig. 6.3f).

Fig. 6.3j-k shows that the CSD fODF sampling fiber dispersion measures (both
λ1 and λ2) are rapidly increasing even in perfectly aligned fiber structures. Because
of this large degree of dispersion, more trajectories are stopping as the tracts move
further away from the seed point (Fig. 6.3l).

Additional simulations at other SNR levels (Fig. 6.4), show that the uncertainty
estimates of the CSD residual bootstrap are very close to the gold standard
uncertainty for a wide range of SNR levels (Fig. 6.4g-i). The plots also show that
the residual bootstrap dispersion increases with decreasing SNR, indicating less
confidence in the trajectories (Fig. 6.4g-i). Dispersion of the CSD fODF sampling
tractography, however, remains almost constant for different SNR levels and is
much higher than for the residual bootstrap (Fig. 6.4j-l).

6.3.2 Real Data

Fig. 6.5 shows probabilistic fiber trajectories and their associated dispersion for DTI
residual bootstrap (blue), CSD residual bootstrap (green), and CSD fODF sampling
tractography (magenta), for three well-defined fiber bundles. While both DTI and
CSD residual bootstrap produced very similar reconstructions of all three tracts
(Fig. 6.5a-f), higher fiber dispersion values were observed for DTI residual bootstrap
tractography in all three tracts (Fig. 6.5j-o). Looking at the CSD fODF sampling
tractography results, there is generally a much higher degree of dispersion, resulting
in spurious fibers as we move further away from the seed point (Fig. 6.5g-i). Even
close to the seed point, where the fODFs are very sharp and aligned, relatively high
dispersion is measured (Fig. 6.5j-o). Also notice that a relatively high dispersion
rate was recorded at the base of the corpus callosum (Fig. 6.5j,m), which is the
region with the most sharp and well-aligned fODFs in the brain.

Fig. 6.6-6.8 show individual probabilistic fiber trajectories and maximum inten-
sity projections of the visitation maps in the region with complex fiber architecture.

Fig. 6.6a-h shows both DTI and CSD residual bootstrap tractography are able
to reconstruct the superior projections of the CC, when placing the seed point high
in the CC at the midsagittal plane. DTI trajectories, however, show much more
dispersion in the cortical region. Fig. 6.6m-t shows that CSD residual bootstrap
tractography is able to reconstruct the lateral projections of the CC, when placing
the seed point low in the CC at the midsagittal plane. DTI residual bootstrap
tractography on the other hand is not able to find these lateral projections (false
negatives) and instead switches to the superior projections and to the tail of
caudate nucleus (false positives). Looking at the fODF sampling tractography
results (Fig. 6.6i-l,u-x), there is generally a much higher degree of dispersion,
especially as the tracts move further away from the seed point. Placing the seed
point high in the CC, most of the trajectories follow the superior projections, and
some trajectories also follow the lateral projections (Fig. 6.6i-l). Placing the seed
point low in the CC, the trajectories follow both the superior and lateral projections
(Fig. 6.6u-x) but some trajectories switch to the CST and the SLF (false positives).
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Fig. 6.4: Simulations of probabilistic tractography at SNR 25 (first column), 20 (second
column) and 15 (third column): fiber dispersion λ1 along major axis of dispersion versus
arc length from seed point (λ2 and success rate similar but not shown). (a)-(c) Gold
standard DTI vs. CSD; (d)-(f) Gold standard DTI vs. residual bootstrap; (g)-(i) Gold
standard CSD vs. residual bootstrap; (j)-(l) CSD residual bootstrap vs. CSD fODF
sampling.
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Fig. 6.5: Probabilistic tractography in corpus callosum (first column), cingulum (second
column) and fornix (third column). (a)-(c) DTI residual bootstrap trajectories; (d)-(f)
CSD residual bootstrap trajectories; (g)-(i) CSD fODF sampling trajectories; emanating
from a single seed point (red dot); (j)-(l) fiber dispersion along major axis of dispersion;
(m)-(o) fiber dispersion along minor axis of dispersion.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Fig. 6.6: Probabilistic tractography of the superior (first three rows) and lateral projections
(last three rows) of the corpus callosum: trajectories emanating from a single seed point
(red dot) (first column) and maximum intensity projections of their associated visitation
maps (last three columns). (a)-(d), (m)-(p) DTI residual bootstrap; (e)-(h), (m)-(p) CSD
residual bootstrap; (i)-(l), (m)-(p) CSD fODF sampling.
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Fig. 6.7 shows CSD residual bootstrap tractography is able to reconstruct a well
defined path through the SLF (Fig. 6.7e-h). DTI residual bootstrap tractography
on the other hand shows a mixture between the true SLF, the CST and the external
capsule (Fig. 6.7a-d). CSD fODF sampling tractography shows a mixture between
the true SLF, the CST, and the external capsule (false positives) and there is
generally a much higher degree of dispersion (Fig. 6.7i-l).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 6.7: Probabilistic tractography of the superior longitudinal fasciculus: trajectories
emanating from a single seed point (red dot) (first column) and maximum intensity
projections of their associated visitation maps (last three columns). (a)-(d) DTI residual
bootstrap; (e)-(h) CSD residual bootstrap; (i)-(l) CSD fODF sampling.

Fig. 6.8a-h shows that CSD residual bootstrap tractography is able to reconstruct
the CST running all the way from the cortex to the spine. DTI residual bootstrap
tractography results are very similar, even in the region of crossing fibers. However,
placing the seed point on a different location in the CST caused DTI residual
bootstrap to switch to the CC and track into the opposite hemisphere, whereas
CSD residual bootstrap was still able to reconstruct the CST without false positives
(Fig. 6.8m-t). Looking at the CSD fODF sampling tractography results (Fig. 6.8i-
l,6.8u-x), there is generally a much higher degree of dispersion, especially as the
tracts move further away from the seed point. In both cases, CSD fODF sampling
tractography is able to reconstruct the CST running all the way from the cortex
to the spine. However, the trajectories also switch to other structures: fibers
projecting from the region of the thalamus to the frontal cortex (Fig. 6.8k), CC
(Fig. 6.8v) and fibers projecting to the cerebellum (Fig. 6.8k,(w)) (false positives).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Fig. 6.8: Probabilistic tractography of the corticospinal tract: trajectories emanating from
a single seed point (red dot) (first column) and maximum intensity projections of their
associated visitation maps (last three columns). (a)-(d), (m)-(p) DTI residual bootstrap;
(e)-(h), (q)-(t) CSD residual bootstrap; (i)-(l), (u)-(x) CSD fODF sampling.
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Fig. 6.9 shows plots of the DTI ellipsoids (transparent) and the corresponding
principal orientations (white lines) along with the CSD fODFs in the regions
where probabilistic DTI tractography suffers from partial volume effects. The
transparent blue arrow represents the most likely DTI trajectory, while the green
arrow represents the most likely CSD trajectory.

Notice that when the seed point is placed high enough in the CC, CSD, and DTI
will produce similar trajectories, i.e., the superior projections of the CC (Fig. 6.9a).
If the seed point is placed lower in the CC, CSD will produce the lateral projections
of the CC, but DTI will produce false positives (Fig. 6.9b).

For the SLF, the dominant fiber orientations of the CST force the DTI trajec-
tories to curve downwards, while the CSD trajectories are allowed to follow a much
straighter pathway (Fig. 6.9c).

In regions where the CST is the dominant fiber orientation, the fiber trajectories
are the same for both DTI and CSD (Fig. 6.9d). However, in some regions, dominant
crossing fibers skew the principal diffusion orientations towards adjacent tracts
such as the CC (Fig. 6.9e).

6.4 Discussion

In this chapter, a new probabilistic tractography algorithm was proposed, based
on CSD and the residual bootstrap. By using CSD, multiple intravoxel fiber
populations could be resolved, allowing our method to confidently track through
regions of complex fiber architecture. The residual bootstrap allowed us to estimate
local fiber uncertainty to derive global probabilistic tracts.

The use of CSD over other popular HARDI methods such as Q-ball imaging
(QBI) was motivated by a recent study showing that CSD is able to estimate
multiple intravoxel fiber orientations more accurately than QBI [Tournier et al.,
2008]. The study showed a bias in the fiber orientations obtained with QBI, for
crossing angles smaller than 90°, which may have adverse effects on fiber-tracking
results derived using this method [Berman et al., 2008, Haroon et al., 2009]. Also
angular resolution was shown to be higher for CSD, which allows resolving smaller
interfiber angles.

The residual bootstrap allowed us to estimate fiber orientation uncertainty
without prior assumptions about the form of uncertainty in the data, overcoming
the limitations of ad-hoc methods, which assume an ad-hoc relationship between
the shape of fODF and the uncertainty in fiber orientation [Campbell et al., 2005,
Descoteaux et al., 2009, Perrin et al., 2005, Tournier et al., 2005]. The huge
advantage over methods employing the classic bootstrap is that it does not require
the collection of extra data, bringing acquisition time into the clinical realm.
Since our bootstrap approach uses a SH fit of the DW signal itself, the results
are completely general and applicable to other HARDI methods than spherical
deconvolution [Tournier et al., 2009].

Numerical simulations of complex fiber architecture showed that our probabilis-
tic algorithm accurately estimates CSD fiber trajectory uncertainty (Fig. 6.3g-i) and
that it is superior to DTI residual bootstrap tractography in terms of false positives
(fiber dispersion) and false negatives (fibers stopping) (Fig. 6.3d-f). The improve-
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(a) (b)

(c)

(d) (e)

Fig. 6.9: Partial volume effects of DTI in more detail: FA maps with DTI ellipsoids
(transparent), first eigenvectors (white lines) and CSD fODFs for the trajectories in
Fig. 6.6-6.8. The arrows are a schematic representation of the probabilistic DTI (blue)
and probabilistic CSD (green) trajectories.

142



6.4. Discussion

ment by moving from DTI to CSD is two-fold. First, CSD allows a more accurate
estimation of the local fiber orientations in regions of complex fiber architecture.
Second, our method allows more accurate estimation of the uncertainty associated
with these orientations. Indeed, in regions where the DTI model does not hold, DTI
does not only suffer from errors in the estimation of fiber orientations (Fig. 6.3a-c),
it also results in erroneous residual bootstrapping (Fig. 6.3d-f), since the residuals
from the diffusion tensor fit no longer match the true noise characteristics of the
data.

An important remark is that the residual bootstrap dispersion measures reported
in this study are not to be confused with anatomical dispersion values. Instead, the
residual bootstrap is measuring dispersion due to noise. Bootstrap dispersion should
be viewed as a measure of robustness for the tractography algorithm (e.g. CSD
streamline tractography) and a measure for data quality. While data with higher
SNR or a more robust tractography algorithm will reduce streamline dispersion,
it will certainly not change the actual anatomical dispersion present in the brain.
This is in contrast with the CSD fODF sampling dispersion. Here, the sampling
procedure tries to account for uncertainty in the fODF itself. While this approach
allows tracts to fan out more, possibly allowing a better result in structures with
extensive fanning (such as the CST), this approach has some limitations. To begin
with, it is very difficult to relate the shape of the fODF to the underlying anatomical
dispersion. For example: a noiseless delta peak fODF will already have an intrinsic
width related to its SH order (see Fig. 6.10). Sampling from this fODF will result
in dispersion that is not anatomically meaningful. So while this method will allow
tracts to fan out more, it does so in great part regardless of their actual anatomical
dispersion. This can be appreciated from our simulation experiments (Fig. 6.3j-k),
where perfectly aligned high amplitude fODF’s produce very dispersed trajectories.
A practical example of this deficiency is that even in the corpus callosum, which is
the region with the most sharp and well-aligned fODFs in the brain, dispersion rate
is relatively high (Fig. 6.5j,m). Second, because this method allows the trajectories
to disperse more, it is more susceptible to false positives and thus less specific.

Judging from the tractography results on the experimental data, the problem of
DTI in regions of fiber crossings is obvious. DTI residual bootstrap was unable to
identify the lateral projections of the corpus callosum (false negatives) and instead
reported the superior projections and portions of the nearby caudate nucleus (false
positives) (see Fig. 6.6). It was also unable to reconstruct the correct path for
the superior longitudinal fasciculus and switched to the corticospinal tract and
external capsule instead (see Fig. 6.7). These errors are all caused by partial
volume effects, as can be appreciated from the DTI ellipsoids and CSD fODFs in
Fig. 6.9. These results show that residual bootstrap tractography in itself does
not solve the crossing fibers issue and that a HARDI approach is required. DTI
residual bootstrap tractography of the corticospinal tract, however, produced an
anatomically plausible trajectory from the first seed point, even in the region
of crossing fibers (Fig. 6.8a-h). The reason DTI did not fail here, is that the
corticospinal tract is the dominant fiber population in this region, causing the
principal axes of the diffusion tensors to be skewed towards its orientation. Since
the orientation of the CST is nearly perpendicular to the orientation of the crossing
structures, the orientation of the first eigenvector is almost perfectly aligned with
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Fig. 6.10: Simulation of a delta function fODF without noise (first column), with low
noise level (second column) and with high noise level (third column): 2D polar histogram
of the fODF samples (top row) and the bootstrap samples (bottom row) for the different
noise levels. Note that the bootstrap histogram uses a different scaling of the axes than
the fODF sampling histogram.
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the true fiber orientation (Fig. 6.9d). Starting from another seed point, however,
does result in false negatives and false positives (Fig. 6.8m-t), again due to partial
volume effects (Fig. 6.9e).

The CSD residual bootstrap tractography results are promising: the method
was able to consistently reconstruct the lateral projections of the corpus callosum
(see Fig. 6.6), the superior longitudinal fasciculus (see Fig. 6.7), and the corticospinal
tracts (see Fig. 6.8a-h) and was less prone to dispersion in low FA regions than its
DTI counterpart.

In regions where DTI and CSD produced similar trajectories (i.e., regions
without too much partial volume effects), dispersion measures were consistently
lower for CSD residual bootstrap than for its DTI counterpart (see Fig. 6.5). This
may be counterintuitive, since CSD estimates far more parameters than DTI (45
instead of 6) and one might expect higher dispersion when using CSD. However,
CSD is using a nonnegativity constraint, effectively reducing the noise in the
fODFs, making it more reproducible than the unconstrained diffusion tensor fit.
Additionally, even in relatively homogenous fiber structures, small partial volume
effects will introduce small errors in the DTI fit, causing the residual bootstrap
to overestimate trajectory dispersion. Although these effects are small, they will
be important during tractography due to propagation of errors. Not only does
the diffusion tensor model result in false positives and false negatives in regions of
crossing fibers, it is also generally more prone to dispersion than CSD.

One limitation of our method is that it does not explicitly handle fanning
fiber configurations. The fanning problem is a deficiency of tracking algorithms
in general, since the fODF itself cannot differentiate between fanning, bending, or
acute fiber crossing angles, even in the ideal case without noise. Usually, this is
handled with additional explicit (somewhat ad-hoc) processing methods, typically
by using shape characteristics of the fODF [Seunarine et al., 2007] or by including
local neighborhood information [Savadjiev et al., 2008]. We do not address this
deficiency in our CSD residual bootstrap algorithm, although we acknowledge that
it is an outstanding problem.

6.5 Conclusion

We have presented a new probabilistic tracking algorithm based on CSD and
the residual bootstrap that accurately estimates fiber trajectory uncertainty in
regions of complex fiber architecture, without prior assumptions about the form of
uncertainty in the data and using only a single acquisition, making the technique
clinically feasible. By performing simulations and presenting real data examples,
we have clearly demonstrated the advantages of CSD residual bootstrap over
DTI residual bootstrap probabilistic tractography: in regions of multiple fiber
orientations, CSD is much less prone to fiber dispersion, false positives, and false
negatives. We have also shown the advantages of our method over CSD fODF
sampling tractography: in regions of well ordered and sharp peak orientations, our
method does not suffer from unrealistically high dispersion and our method has a
higher specificity in general. On the other hand, because CSD fODF sampling uses
the full fODF it can potentially deal better with anatomically disperse structures
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(e. g. fanning and bending fiber bundles) and is more sensitive in general.
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7.1. Introduction

7.1 Introduction

Diffusion-weighted (DW) MRI is a unique non-invasive method for probing tissue
microstructure in vivo, based on the random thermal motion of water molecules
[Stejskal and Tanner, 1965]. Currently, it is amongst the most popular imaging
techniques for assessing brain tissue microstructure, particularly in white matter
(WM) [Assaf and Pasternak, 2008]. Within the WM, fiber orientations can be
extracted from the DW signal, opening up new avenues for investigating brain
connectivity in vivo using so called fiber tracking algorithms [Jones, 2008]. The
ability to assess WM microstructure and pathways of the whole brain from in vivo
scans raises possibilities for clinical applications and there has been a rapid increase
in clinical studies using DW MRI derived indices [Mori and Zhang, 2006] and fiber
tractography [Ciccarelli et al., 2008, Johansen-Berg and Behrens, 2006].

Currently, diffusion tensor imaging (DTI) is the established method for assessing
WM microstructure and connectivity [Basser et al., 1994a,b, Mori and Van Zijl,
2002]. However, in voxels containing multiple fiber orientations, this model has
been shown to be inadequate [Alexander et al., 2001, 2002, Frank, 2001, 2002,
Tuch et al., 2002]. Such voxels occur frequently throughout the WM due to
partial volume effects between adjacent tracts. This has important implications
for DTI-based fiber tractography, as most WM tracts will traverse regions with
multiple fiber orientations at some point along their path. In such regions, the
orientation extracted from the diffusion tensor is unreliable and may cause false
negatives, in which tracking terminates [Behrens et al., 2007, Jeurissen et al.,
2011], or false positives, in which tracking switches to an unrelated adjacent tract
[Jeurissen et al., 2011, Pierpaoli et al., 2001]. It also complicates the interpretation
of DTI derived diffusion indices such as fractional anisotropy (FA), which are often
suggested for use as surrogate markers of WM ‘integrity’ [Jones, 2010, Vos et al.,
2011, 2012, Wheeler-Kingshott and Cercignani, 2009].

Remarkably, the question of what proportion of WM voxels is affected by
crossing fibers remains to be addressed in a robust and satisfactory manner. With
recent advances in high angular resolution diffusion imaging (HARDI) [Tuch et al.,
2002], it is now possible to reliably extract fiber orientations in regions of increased
complexity [Alexander, 2006, Tournier et al., 2011]. While a number of studies have
attempted to classify voxels according to the complexity of the fiber arrangement,
many do not report the proportion of affected voxels, and all of them are likely
to seriously underestimate the extent of the problem, for a number of reasons
outlined below. Early studies distinguished between voxels with isotropic, single-
fiber, and multi-fiber characteristics based on the shape of the ADC profile, and
have reported clustered and symmetric regions of increased complexity, supporting
genuine effects consistent with anatomical knowledge [Frank, 2002, Alexander et al.,
2002]. More recently, a Bayesian automatic relevance determination (ARD) method
was proposed to infer the number of fiber orientations in a multi-compartment
model [Behrens et al., 2007]; using 60 diffusion gradient orientations and a b-value
of b = 1000 s/mm2, the model evidence was sufficiently strong to support the
presence of more than one fiber orientation in one third of the voxels with FA > 0.1.
However, nowhere in the brain was the model evidence sufficiently strong to support
the presence of more than two fiber orientations. In another study, Q-Ball imaging
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(QBI) was used in conjunction with bootstrapping to estimate the probability of
different numbers of fiber populations existing in different brain tissues [Haroon
et al., 2009]. This study used 61 diffusion gradient orientations with a slightly
higher b-value of b = 1200 s/mm2. While the authors did not explicitly assess
the number of voxels containing multiple fiber orientations, their results seem
to indicate that only a small proportion of WM voxels are affected by partial
volume effects and that clustered regions with a high probability of more than two
fiber orientations cannot be found. These recent studies are likely to be grossly
underpowered for estimating the proportion of crossing fiber voxels (a task that
they were not specifically designed to do). On the other hand, there are suggestions
in other recent publications that voxels with multiple fiber orientations are actually
commonly encountered [Descoteaux et al., 2009, Jeurissen et al., 2011, Tournier
et al., 2012]. It is clear therefore that a reliable estimate of the proportion of
affected voxels remains to be provided.

Given the implications this might have for DTI-based tractography and the
interpretation of DTI-derived diffusion indices, in this study we set out specifically
to estimate the extent of the crossing fiber problem, as well as its likely impact on
tensor-based analyses. For this purpose, we acquired large, high quality DW data
sets (using a twice-refocused and cardiac-gated sequence) consisting of 720 DW
images, roughly 12 times the amount of data that was used in previous studies, with
a correspondingly much higher power to detect the effects of interest [Jones, 2004].
For each voxel, the fiber orientations and their respective volume fractions were
extracted using two different, readily available approaches: constrained spherical
deconvolution (CSD) [Tournier et al., 2007], and the bedpostx algorithm, which
implements the ARD method mentioned previously [Behrens et al., 2007] and is
distributed as part of the FSL [Woolrich et al., 2009]. In both cases, parameters of
the reconstruction were tuned specifically to ensure reliable estimates given our
particular acquisition parameters. Based on these data, we report the proportion
of multi-fiber voxels detected within the WM, and their orientations. To assess the
impact of these voxels on tensor-derived tractography analyses, we also report the
angular error between the fiber orientations estimated using CSD and DTI. Finally,
to assess the impact on the interpretation of tensor-derived scalar measures, we
report the volume fraction of each voxel taken up by secondary or tertiary fiber
orientations, whose presence would confound such measures.

7.2 Materials and methods

7.2.1 Overview

To estimate the impact of multi-fiber voxels on DTI, it is first necessary to obtain
robust estimates of the fiber orientations and their respective volume fractions
within each WM voxel. To achieve this requires both high quality DW data, and
robust fiber orientation estimation strategies. To this end, our approach involved:
the acquisition of very high quality in vivo data sets; extensive simulations to select
optimal reconstruction parameters tuned specifically for these data sets; and the
application of the resulting optimized reconstruction algorithms to the in vivo data
sets. These steps are described in detail in the following sections. We first provide a
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brief overview of both fiber estimation methods, to emphasize which reconstruction
parameters needed to be tuned for this study.

7.2.2 Fiber orientation estimation using CSD

The procedure used to estimate fiber orientations using CSD [Tournier et al., 2007]
involved first deconvolving the single-fiber ‘response function’ (described below)
from the DW signal to obtain the fiber orientation distribution function (fODF),
with maximum harmonic degree lmax = 8 [Tournier et al., 2007], followed by a
peak-finding procedure to identify distinct orientations. Finally, fiber orientations
were only considered if the amplitude of the corresponding peak in the fODF
exceeded a threshold specifically tuned for this study (see below for details). An
example of this procedure for a voxel with three fiber orientations is shown in
Fig. 7.1.

(a) 60 initial orientations (b) 60 corresponding maxima

(c) 7 unique maxima (d) 3 unique maxima > threshold

Fig. 7.1: Extraction of the CSD fODF fiber orientations: 3 orientation example. (a):
points uniformly distributed on the half-sphere (red dots) used as starting points for the
maximization of the fODF amplitude (green); (b): the corresponding fODF maxima (note
that many overlap); (c): the unique fODF maxima (note that 3 of the spurious maxima
have very low amplitude and are clustered near the origin); (d): fODF maxima with
amplitude higher than fODF threshold (gray sphere).

The single-fiber response function corresponds to the DW signal that would be
expected for an ideal fiber population aligned along the z-axis, and was estimated
from the data themselves using a previously published approach [Tournier et al.,
2004, 2007]. In brief, WM voxels with FA > 0.7 were identified, and in each of
these voxels, the DW signal was reoriented such that the orientation of the major
eigenvector of the diffusion tensor was aligned with the z-axis. The spherical
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harmonic (SH) decompositions of all the resulting profiles were then averaged to
provide a robust estimate of the true response function. To constrain the response
function to an axially symmetric function, only SH coefficients with order m = 0
were estimated [Tournier et al., 2004].

The peak-finding procedure consisted of a Newton optimization algorithm,
started from a dense set of equally distributed spherical sample points to find the
local maxima of the fODF (duplicate local maxima were excluded). The number
of unique peak fODF orientations with amplitude above threshold was counted
and assumed to be equal to the number of fiber orientations. In this study, voxels
containing more than 3 orientations will be reported as containing ≥3 orientations.

7.2.3 Fiber orientation estimation using bedpostx

The procedure used to estimate fiber orientations using ARD was performed using
the FSL tool bedpostx [Behrens et al., 2007], which we describe briefly here. Bedpostx
uses a Bayesian framework to estimate local probability density functions on the
parameters of a multi-compartment model. Using ARD, the method performs
online selection of the number of fiber orientations supported by the data at each
voxel by forcing the fiber volume fractions to take the value zero if, and only if, there
is no evidence in the data for their existence [Behrens et al., 2007]. The maximum
number of fiber orientations allowed in the multi-compartment model was set to
3. To extract the number of fiber orientations in each voxel, we thresholded the
volume fractions at 0.05, as in Behrens et al. [2007].

Bedpostx uses a Monte Carlo Markov Chain algorithm to infer on the param-
eters of the model. In this study, we used a modified burn-in period of 10000
iterations, as the default value of 1000 was found to be insufficient to ensure
convergence of the Markov chains in a significant proportion of runs [Miller et al.,
2011, O’Muircheartaigh et al., 2011].

7.2.4 Data acquisition and preprocessing

Both DW and T1-weighted images were acquired on a General Electric (Milwaukee,
Wisconsin, USA) 3T HDx Signa system with an eight-channel receive-only head
coil. The experiment was repeated on two different healthy adult volunteers. Both
subjects gave written informed consent to participate in this study under a protocol
approved by the Cardiff University School of Psychology Ethics Committee.

Each subject was scanned 12 times using a twice-refocused spin echo EPI
sequence with TE = 86ms and 2.4× 2.4× 2.4mm3 voxel size (FOV = 23× 23 cm2,
96× 96 acquisition matrix, NEX = 1, partial Fourier encoding with 16 overscans,
60 axially acquired slices with 2.4mm thickness with no gap, ASSET factor =
2). Diffusion gradients were applied in 60 directions uniformly distributed on a
sphere through electrostatic repulsion with b = 1200 s/mm2 [Jones et al., 1999].
For each scan, 6 images with b = 0 s/mm2 were also acquired. To avoid pulsation
artifacts, cardiac gating was applied using a peripheral pulse oximeter with an
effective TR = 20 R-R intervals. Signal-to-Noise Ratio (SNR) within all WM voxels
of the b = 0 s/mm2 images was on average 24.9 with a standard deviation of 6.1
[Dietrich et al., 2007]. In addition, each subject was scanned with a 3D fast spoiled
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gradient echo sequence with TR/TE = 7.9/3.0ms and 1 × 1 × 1mm3 voxel size
(FOV = 256 × 256 × 176mm3, 256 × 256 × 176 acquisition matrix, TI = 450ms,
flip angle = 20°, NEX = 1) to produce an anatomical T1-weighted image.

For each subject, all DW scans were concatenated (not averaged) into a single
data set and corrected for subject motion and residual eddy-current induced
geometric distortions with the required B-matrix adjustments [Leemans and Jones,
2009], resulting in a total of 720 diffusion weighted (DW) and 72 b = 0 s/mm2

images per subject. The tensor model was fitted to the motion-corrected data using
a constrained nonlinear regression method [Koay et al., 2006] and, subsequently,
mean diffusivity (MD) and fractional anisotropy (FA) were calculated from the
tensor’s eigenvalues. Glyph visualization was done with ExploreDTI [Leemans
et al., 2009].

7.2.5 Optimization of reconstruction parameters

While the SNR dependencies of both CSD and bedpostx have previously been
studied in great detail [Tournier et al., 2007, 2008, Behrens et al., 2007], in this
study, additional experiments were performed to select optimal reconstruction
parameters tuned specifically for the data sets used in this study. For this purpose,
extensive simulations were performed using parameters measured from the real
data themselves, to determine the most suitable reconstruction parameters to use
for each method, and hence ensure optimal detection of fiber orientations given our
particular acquisition parameters.

These simulations were performed as follows. First, noise-free DW data were
generated for voxels assumed to contain a number (1, 2 or 3) of fiber orientations,
by combining DW signals generated assuming axially symmetric diffusion tensor
profiles for each fiber population [Leemans et al., 2005], with inter-fiber angles
ranging from 90° to 10°. The eigenvalues of the constituent tensors were set to [1.7
0.3 0.3]×10−3mm2/s, corresponding to the average values found in the midsagittal
area of the splenium of the corpus callosum in the real data sets. The same gradient
directions and b-value were used as in the real data acquisition. Next, Rician noise
was added using SNR = 15, corresponding to the lower end of the range of SNR
values measured in the real data sets, and the number of fiber orientations was
estimated from the resulting noisy simulated data using both CSD and bedpostx.
This procedure was repeated for 1000 Rician noise instances.

For both CSD and bedpostx, outcome was measured as the proportion of
false positives, defined as any simulated run where the number of estimated
fiber orientations was greater than the actual number simulated. For CSD, the
reconstruction parameter of interest was the threshold on the fODF peak amplitude,
used to identify distinct orientations (see earlier). For bedpostx, the reconstruction
parameter of interest was the ARD weight, with higher weights resulting in fewer
secondary fibers per voxel. For both methods, the smallest reconstruction parameter
that resulted in zero false positives was used for the analysis of the in vivo data.
The minimum resolvable angle of both methods (i.e., the inter-fiber angle at which
the correct number of fiber orientations can still be reliably estimated) was also
assessed using these simulations for a range of volume fractions.
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7.2.6 In vivo estimation of fiber orientations

To estimate the fiber orientations and their respective volume fractions over all
WM voxels, both CSD and bedpostx methods were applied to the real data sets
of both subjects, using the procedures described in the previous corresponding
sections, and the conservative reconstruction parameters specifically tuned in the
simulations above. To avoid partial volume effects with isotropic compartments,
such as gray matter (GM) and cerebrospinal fluid (CSF), the analysis was restricted
to voxels within a pure WM mask, derived from the T1-weighted images. The
T1-derived WM mask was generated as follows. First, a tissue probability map was
estimated from the T1-weighted image (Fig. 7.2a) using the unified segmentation
tool from SPM [Ashburner and Friston, 2005] (Fig. 7.2b). Next, the T1-weighted
image was registered to the FA image using 3D non-rigid b-spline based registration
with Mattes mutual information as the similarity measure [Mattes et al., 2001,
Klein et al., 2010] (Fig. 7.2d). The derived transform was then used to warp the
WM probability map from the T1-weighted image to the diffusion images, allowing
easy identification of WM voxels inside the DW volume. To restrict the study
to pure WM voxels only, a binary WM mask was created by selecting all voxels
with WM probability higher than 95% (Fig. 7.2c). Finally, a small number of
voxels at the edges of the WM mask were removed, since they were found to
contain high MD values resulting from partial voluming with CSF (as indicated
by the red voxels in Fig. 7.2c). These outliers were identified using the criterion
MD > median(MD) + 1.5× IQR(MD) (where IQR is the inter-quartile range over
the whole mask).

(a) (b) (c) (d)

Fig. 7.2: Computation of the WM mask: T1-weighted image (a) and the corresponding
WM/GM/CSF segmentation (b). WM probability is colored red, GM probability green
and CSF probability blue. The WM probability map is thresholded at 95% to create a
binary WM map (c). MD outliers resulting from partial volume effect at the interface
between WM and CSF are colored red. Co-registered T1-weighted image (gray) overlayed
with FA image (pink) (d).

In addition, the reproducibility of the CSD reconstruction was assessed using a
residual bootstrap approach, described previously [Jeurissen et al., 2011]. 1000
residual bootstrap realizations of the entire data set were generated, using a spherical
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harmonics model with maximum harmonic degree lmax = 8 [Jeurissen et al., 2011].
Unfortunately, it was not possible to perform the equivalent experiments for
bedpostx due to its prohibitively long processing times.

To further illustrate the ‘global’ consistency of the multi-fiber voxels, a fiber
tractography technique was used, based on the CSD fODF maxima [Jeurissen
et al., 2009, 2011, Fillard et al., 2011]. The step size was set to 0.2 mm. Tracking
was terminated when the extracted fODF orientation amplitude dropped below
the same threshold that was used for the fiber orientation extraction, or when
the angle between two successive steps exceeded 10°. A seed ROI was placed in a
region with more than 2 fiber orientations. Tract visualization was performed with
the ExploreDTI diffusion MRI toolbox [Leemans et al., 2009].

The effect of using different values for the threshold on the fODF amplitude
(for CSD) and the partial volume fractions (for bedpostx) was also investigated.
This was done by plotting the proportion of WM voxels estimated as containing
1, 2 or ≥3 fiber orientations as a function of these thresholds. Finally, both fiber
orientation estimation methods are limited by their minimum detectable crossing
angle; the angle at which fibers cross will therefore have an impact on the results.
This issue was examined by plotting a histogram of the inter-fiber angle over all
voxels.

7.2.7 Assessment of impact on DTI

To assess the practical impact of these findings for tractography or anisotropy
analyses, two further analyses were performed. Tractography analyses will obviously
be affected by errors in the estimated fiber orientations. Therefore, the angle
between the fiber orientations estimated by the primary eigenvector of the diffusion
tensor, and the nearest peak to this direction in the CSD fODF was measured in
each voxel, and displayed both as a map and as a histogram over all WM voxels. For
anisotropy analyses, issues will arise if fibers with secondary or tertiary orientations
take up a substantial volume fraction of the voxel. Therefore, the ratio of the
volume fractions of the non-dominant versus all fiber orientations were estimated
in each WM voxel, and displayed both as a map, and using histograms.

7.3 Results

7.3.1 Optimization of reconstruction parameters

Fig. 7.3 demonstrates the need for an appropriate fODF threshold (for CSD) or
ARD weight (for bedpostx) to remove spurious fiber orientations from the results.
For CSD, the number of false positives dropped rapidly with increasing fODF
threshold, and was already below 1 in 1000 with a threshold of 0.02. However,
for false positives to be completely removed, a threshold of 0.1 was required. For
bedpostx, the number of false positives dropped with increasing ARD weight, and
reached zero at a weight value of 10. These values (0.1 for the CSD fODF threshold,
10 for the ARD weight) were therefore used for all subsequent analyses, including
the in vivo data analyses, unless otherwise stated.
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Fig. 7.3: Multi-fiber simulations (specificity): The relative number of false positives as a
function of the CSD fODF threshold (a) and the bedpostx ARD weight (b) for 1-fiber
(red curve) and 2-fiber (green curve) voxels.

The sensitivity of both methods with respect to volume fraction and inter-fiber
angle is shown in Fig. 7.4. As the inter-fiber angle dropped below approximately 60°,
CSD fODF peaks started to merge to form a single peak, with merging occurring
in almost all cases at an inter-fiber angle of approximately 45°; these would hence
no longer be counted as separate fiber orientations (Fig. 7.4a,c). On the other hand,
bedpostx was unable to consistently report three fiber orientations when three fiber
orientations were simulated, reporting 1 or 2 fiber orientations instead (Fig. 7.4d),
in agreement with earlier simulations performed in Behrens et al. [2007]. For the
2 fiber simulations (Fig. 7.4b), bedpostx performed similarly to CSD, although
it failed to recover fibers with small volume fractions that could still be reliably
detected using CSD. Note that while it is in theory possible to boost the minimum
resolvable angle of bedpost using a smaller ARD weight, this would result in an
increased number of false positives (Fig. 7.3b).

7.3.2 In vivo estimation of fiber orientations

When applied to the in vivo data, both methods performed as predicted by the
simulations. In voxels where CSD reports 1 or 2 fiber orientations, bedpostx usually
reports the same number of fiber orientations, and the orientations are almost
identical (Fig. 7.5), consistent with our simulation results (Fig. 7.4). In voxels where
CSD reports ≥3 fiber orientations, bedpostx reports only 1 or 2 fiber orientations,
again in agreement with the simulation results. Note that while these orientations
constitute a subset of the orientations estimated using CSD in most voxels, in some
cases they are not consistent with those estimated using CSD. Note also that in
voxels with 3 fiber orientations, the CSD orientations are very coherent, showing
continuous transitions with the surrounding orientations, even those corresponding
to small fODF amplitudes (Fig. 7.5b).

The maps of the number of fiber populations detected (Fig. 7.6), and of their
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(a) 2-fiber voxels: CSD
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(b) 2-fiber voxels: bedpostx
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(c) 3-fiber voxels: CSD
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(d) 3-fiber voxels: bedpostx

Fig. 7.4: Multi-fiber simulations (minimum resolvable angle): The average number of
detected fiber orientations in 2-fiber and 3-fiber voxels as a function of angle. The different
colors represent the different weights of the constituent DWI signals.
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(a) CSD fODFs: coronal ROI (b) CSD fODFs: axial ROI

(c) CSD orientations: coronal ROI (d) CSD orientations: axial ROI

(e) bedpostx orientations: coronal ROI (f) bedpostx orientations: axial ROI

Fig. 7.5: Examples of the extracted fiber orientations in two regions containing crossing
fibers. The CSD fODFs and the extracted fiber orientations are shown in (a)-(b) and
(c)-(d), respectively. The bedpostx fiber orientations are shown in (e)-(f).

162



7.3. Results

respective orientations (Figs. 7.7 and 7.8) both show a high degree of structural
coherence and symmetry, supporting genuine anatomical features. Note that these
figures correspond to the results for subject 1 only; the results for subject 2 are
broadly equivalent. Large, bilaterally symmetrical clusters of single fiber voxels
(colored in red) are found mainly in the largest bundles such as parts of the corpus
callosum (CC, arrow 1), middle cerebellar peduncle (arrow 2), and the posterior limb
of the internal capsule (arrow 3). Large clusters of voxels containing 2 orientations
are also present, again symmetrically distributed throughout the brain. Examples
of regions containing 2 fiber orientations (colored in green) include: the mixture of
transverse pontine (oriented left-right) and motor (oriented inferior-superior) fibers
(arrow 4); and the mixture of fibers from the superior longitudinal fasciculus (SLF)
(oriented anterior-posterior) and corona radiata (oriented inferior-superior) (arrow
5). Large clusters of voxels with ≥3 fiber populations (colored in blue) can also be
found in the CSD results, for example in the regions where fibers from the corona
radiata (inferior-superior), SLF (anterior-posterior) and CC (left-right) interdigitate
(arrow 6). In contrast, no consistent areas containing ≥3 orientations were observed
in the bedpostx results: in those regions where CSD identified ≥3 orientations,
bedpostx reported only 1 or 2 orientations, consistent with the simulation results
(Fig. 7.4).

Table 7.1 summarizes the incidence of 1, 2 and ≥3 fiber orientations in all WM
voxels. Using CSD, these were estimated to be approximately 9%, 46% and 45%
respectively; two or more fiber orientations were found in approximately 90% of all
WM voxels. Using bedpostx, these were estimated to be approximately 37%, 62%
and 1% respectively; in this case, complex fiber configurations were observed in
approximately 63% of all WM voxels.

# orientations 1 2 ≥ 3 ≥ 2

CSD
subject 1 9.5% 47.1% 43.3% 90.5%

subject 2 8.4% 45.0% 46.6% 91.6%

bedpostx
subject 1 36.1% 62.9% 0.9% 64.0%

subject 2 37.5% 61.9% 0.4% 62.3%

Behrens et al. [2007] ∼ 67.7% ∼ 33.3% 0% ∼ 33.3%

Table 7.1: Percentages of single- and multi-fiber voxels throughout the WM for CSD
and bedpostx and for different subjects. For reference, we also included the estimates
previously reported in Behrens et al. [2007].

Fig. 7.9 shows the fiber orientations extracted using CSD from the individual
bootstrap realizations in the crossing fiber region depicted in Fig. 7.5b. To aid
visibility, only 30 residual bootstrap realizations were plotted. Notice that the
orientations are very clustered, indicating that the same fiber orientations are
recovered consistently over bootstrap realizations, even in three-fiber voxels.

Fig. 7.10 shows the CSD fiber tracking results when seeding in a three fiber
region. Notice how the locally-extracted fiber orientations are globally consistent
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(a) CSD

(b) bedpostx

Fig. 7.6: Number of fiber orientations per voxel (red: 1; green: 2; blue: ≥3) for subject 1
estimated with CSD (a) and bedpostx (b). The numbered arrows in (a) correspond to the
following structures: 1: corpus callosum (CC); 2: middle cerebellar peduncle; 3: posterior
limb of the internal capsule; 4: pons/motor pathways; 5: superior longitudinal fasciculus
(SLF)/corona radiata; 6: corona radiata/SLF/CC.
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(a) primary fiber orientation

(b) secondary fiber orientation

(c) tertiary fiber orientation

Fig. 7.7: The primary (a), secondary (b) and tertiary (c) fiber orientations (in order of
decreasing fODF amplitude) extracted for subject 1 with CSD, shown as RGB color maps
(red: left-right, green: anterior-posterior, blue: inferior-superior).
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(a) primary fiber orientation

(b) secondary fiber orientation

(c) tertiary fiber orientation

Fig. 7.8: The primary (a), secondary (b) and tertiary (c) fiber orientations (in order of
decreasing volume fraction) extracted for subject 1 with bedpostx, shown as RGB color
maps (red: left-right, green: anterior-posterior, blue: inferior-superior).
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Fig. 7.9: Consistency of the orientations across residual bootstrap realizations, for the
same region as Fig. 7.5d. To aid visualization, only 30 realizations are shown.

and result in anatomically plausible fiber bundles. Commissural fibers from the CC
are shown in red, association fibers form the arcuate fasciculus are colored green
and projection fibers from the corticospinal tract are shown in blue.

Using the residual bootstrap approach we were also able to estimate the uncer-
tainty in the percentages reported in Table I for the CSD case. The 95% confidence
intervals for the percentage of 1, 2 and ≥3 fiber voxels were ±0.3%, ±0.5% and
±0.7%, respectively, for subject 1, and ±0.6%, ±1.3% and ±1.7%, respectively, for
subject 2. These small confidence intervals demonstrate the reproducibility of our
CSD results with these data sets.

The effect of the fODF threshold (for CSD) or the partial volume threshold (for
bedpostx) is shown in Fig. 7.11. As expected, an increase in the thresholds results
in a reduction of the proportion of multi-fiber voxels for both approaches. For
bedpostx, the results are relatively stable for partial volume thresholds between
approximately 0.01 and 0.1 (the actual value used was 0.05). By contrast, the CSD
results do not show a region that is stable with respect to the fODF threshold.
Initially, the proportion of ≥3 fiber voxels reduces while the proportion of 2 fiber
voxels increases, as would be expected. At an fODF threshold of approximately
0.2, the proportion of both 2 and ≥3 fiber voxels reduces while that of single fiber
voxels increases. Importantly, even with a doubling of the fODF threshold to a
value of 0.2 (actual value used was 0.1), the proportion of multi-fiber voxels is still
very high at approximately 78%.

The performance of both methods with respect to inter-fiber angle can be
appreciated from the histograms shown in Fig. 7.12. With CSD, a much higher
number of 90° crossings was detected, presumably due to its better performance in
3-fiber cases, as previously shown in Figs. 7.4 and 7.5. CSD also detects a higher
proportion of small inter-fiber angles, again in line with the simulation results
in Fig. 7.4. In both cases, almost all inter-fiber angles detected are larger than
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L

Fig. 7.10: Tractography in a 3-fiber region reveals global consistency of 3-fiber orientations.
Seed region is indicated by a magenta arrowhead. Commissural fibers are colored red,
association fibers green and projection fibers blue. All three pathways identified using
CSD tracking are anatomically plausible.
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Fig. 7.11: Percentages of single- and multi-fiber voxels throughout the WM for different
CSD fODF thresholds (a)-(b) and bedpostx volume fraction thresholds (c)-(d). The actual
threshold values used in this study are shown as a dashed line.
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approximately 40°, the minimum angle that could be resolved by both methods
in the simulations. It is likely that smaller crossing angles do exist in the data,
but cannot be resolved with the methods used. Since these would be labeled as
single-fiber voxels, it is likely that the present results underestimate both the extent
and the impact of the problem.
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(b) bedpostx

Fig. 7.12: Histogram of the average inter-fiber angle for all voxels with ≥2 fiber populations
for both CSD (a) and bedpostx (b).

7.3.3 Assessment of impact on DTI

The practical implications of these findings for tractography can be appreciated
from Fig. 7.13. The fiber orientations estimated using the tensor model and the
nearest CSD peak are consistent only in single fiber regions (e.g. CC). In multi-fiber
regions, the average angular error is approximately 11°. In half of all WM voxels,
the angular error is greater than 8° (Fig. 7.13b,c).

The practical impact of these findings for anisotropy analyses can be appreciated
from Fig. 7.14. Most WM voxels contain contributions from non-dominant fiber
orientations that would be sufficiently large to affect tensor-derived measures of
anisotropy (as well as radial and axial diffusivities [Wheeler-Kingshott and Cercig-
nani, 2009]). For example, assuming a non-dominant partial volume fraction greater
than 25% is sufficient to influence anisotropy measures significantly, approximately
75% of all WM voxels would be affected (Fig. 7.14b,c). Conversely, it can be seen
that half of all WM voxels contain more than 40% contamination from crossing
fibers.

7.4 Discussion

The aim of this study was to provide a more accurate estimate of the extent and
impact of the crossing fiber problem in DW-MRI. Using CSD, we observed multiple
fiber orientations in approximately 90% of all WM voxels, a much higher proportion
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Fig. 7.13: The angle between the fiber orientation estimated by the primary eigenvector
from DTI and the nearest CSD fiber orientation, (a) displayed overlaid on an anatomical
reference image, (b) as a histogram over all WM voxels, and (c) as the corresponding
cumulative histogram.
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Fig. 7.14: The non-dominant volume fraction measured by CSD, (a) displayed overlaid
on an anatomical reference image, (b) as a histogram over all WM voxels, and (c) as the
corresponding cumulative histogram.
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than previously reported. With bedpostx, multiple fiber orientations were detected
in approximately 63% of all WM voxels, again a much higher proportion than the
value of 33% previously reported using the same algorithm, as discussed below
[Behrens et al., 2007].

7.4.1 Implications for DTI

The impact of these findings for diffusion tensor imaging is profound, particularly for
tensor-based tractography, but also for tensor-derived scalar measures. It is widely
acknowledged that the fiber orientation estimated using the primary eigenvector
of the diffusion tensor will be erroneous in crossing fiber voxels, and that these
errors will introduce some degree of corruption in the estimated WM pathways
[Jones, 2010]. However, until now the proportion of WM voxels affected by crossing
fiber effects was often assumed to be relatively small. Our results clearly indicate
that this assumption is not valid. With such a high proportion of WM voxels
containing multiple fiber orientations, it is very unlikely that any WM tract will
remain entirely within single fiber voxels over its entire path. Indeed, as shown in
Fig. 7.13, errors in the estimated fiber orientations are widespread throughout the
WM: in over half the WM, these errors are larger than 8°. It follows that these
errors will adversely and significantly affect the delineation of WM tracts, and
lead to large numbers of both false positive and negative results as the tracking
algorithm veers off-course, away from the true end-point of the WM tract (false
negatives [Behrens et al., 2007, Jeurissen et al., 2011]), and/or into adjacent yet
unrelated WM tracts (false positives [Jeurissen et al., 2011, Pierpaoli et al., 2001]).
Moreover, it should be emphasized that these errors are provided with respect to
the nearest fiber orientation; errors with respect to other fiber orientations that
might be present will obviously be considerably greater.

In addition, it is well known that tensor-derived measures of so-called ‘WM
integrity’, such as fractional anisotropy (FA), as well of other indices such as axial
and radial diffusivity, all of which are currently widely used, become ambiguous
in these regions [Wheeler-Kingshott and Cercignani, 2009, Jones and Cercignani,
2010]. In Pierpaoli et al. [2001], it was shown that Wallerian degeneration can
lead to increased diffusion anisotropy in the rostral pons, where transverse pontine
fibers are crossing the descending motor pathways. Wallerian degeneration of
the motor pathways causes the transverse pontine fibers to become the dominant
pathway and, paradoxically, the measured diffusion anisotropy can increase because
fibers are now more coherently oriented within the voxel. In another study, choice
reaction time of healthy volunteers was found to be positively correlated with FA
[Tuch et al., 2005]. The myelin hypothesis would predict a negative correlation
between reaction time and FA because increased myelin thickness would cause
increased FA and faster nerve conduction velocity, which would in turn result in a
shorter reaction time. However, in regions containing multiple fiber orientations,
increased FA of an individual fiber population can result in a decrease in the
overall FA. Although this observation could be explained by increased axonal
diameters [Alexander et al., 2010], crossing-fiber effects offer a much more simple
and likely explanation, especially given that crossing fibers can readily be observed
in the region identified. In yet another study, increased diffusion anisotropy was
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measured in the centrum semiovale of patients with mild cognitive impairment and
mild Alzheimer’s disease [Douaud et al., 2011]. This was explained by a relative
preservation of motor-related projection fibers crossing with the association fibers of
the SLF. These examples show that while tensor-derived indices are highly sensitive
to changes in the underlying tissue diffusion, their specificity in terms of biological
interpretation is very ambiguous as any observed changes can also be explained by
fiber crossings.

Note that this does not imply that DTI analyses are “wrong” in themselves.
Assuming that the DTI analysis was performed well, avoiding all the known pitfalls
[Jones and Cercignani, 2010], an observed change in FA is highly likely to correspond
to a true underlying biophysical phenomenon. The issue arises from the usual
practice of interpreting FA a marker of WM integrity. As illustrated by the examples,
in the presence of crossing fibers, the interpretation of increases (or decreases) in FA
become highly ambiguous, as they can correspond to either increased or decreased
WM integrity, or indeed to changes in the relative volume fractions of the various
fiber populations. As shown in Fig. 7.14, the proportion of WM voxels where these
measures are expected to be significantly confounded is of the order of 75%; given
that the interpretation commonly ascribed to these measures is only valid in single
fiber regions, this implies that there are very few regions of brain WM where these
measures (including FA and radial/axial diffusivities) can reliably be interpreted
as markers of ‘WM integrity’.

While the data used in this study are of much higher quality than would
typically be acquired, it is important to emphasize that these ‘crossing fiber’ issues
will still be present to the same extent in any DW-MRI data set. With lower
quality data, the power to detect WM voxels containing complex configurations
would undeniably be lower, and the estimated proportion of affected voxels would
most likely be lower than that reported here. However, while the statistical power
to detect multiple fiber orientations would be lower, these multi-fiber voxels are
nonetheless present in the data. Clearly, the impact on tensor-derived estimates of
orientation, anisotropy or radial/axial diffusivity would be identical, with the only
difference being noisier estimates.

7.4.2 Robustness of approach

Given the importance of these findings, great care was taken to ensure the robustness
of our results, and particularly to avoid any overestimation of the number of fiber
orientations. In particular:

• For each subject we collected 720 DW images, 12 times the amount of data
collected in Behrens et al. [2007]. With such a large data set, a higher
reliability can be achieved for any subsequent analysis than with a traditional
scan consisting of approximately 60 DW images [Jones, 2004].

• Cardiac motion causes local misregistrations of the DW images [Skare and
Andersson, 2001, Pierpaoli et al., 2003, Jones and Pierpaoli, 2005], and local
signal attenuation in voxels affected by pulsatile motion [Atkinson et al.,
2006, Walker et al., 2011]. Both effects could potentially lead to artifactual
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fiber orientations being detected inside WM voxels. To avoid such pulsation
artifacts, cardiac gating was applied [Jones and Cercignani, 2010].

• Head motion and eddy currents cause global misregistration of the DW
images which could also introduce artifactual multi-fiber voxels due to the
mixing of fiber bundles with different orientations. We therefore corrected
for subject motion and eddy-current distortions, including the required B-
matrix adjustments [Leemans and Jones, 2009] and appropriate modulation
of the DW images with the Jacobian of the transformation matrix [Jones and
Cercignani, 2010].

• Previous studies have employed an FA threshold to select WM voxels [Behrens
et al., 2007], a method very likely to include both false positives (some GM
voxels may have FA > 0.1) and false negatives (3-fiber WM voxels may have
FA < 0.1). To avoid such issues, an objective WM selection method was used
based on the corresponding T1-weighted images (Fig. 7.2).

• Extensive simulations were performed using parameters derived from the real
data to carefully tune the fODF threshold and the ARD weight (Fig. 7.3). Note
that we opted for specificity over sensitivity and selected very conservative
thresholds.

In this study we used a b-value of b = 1200 s/mm2. While this can be considered
relatively low for HARDI reconstruction methods, this b-value corresponds to what
most diffusion MRI studies are currently using [Jones et al., 1999], and our findings
are therefore relevant for the vast majority of current DW-MRI studies. However,
a consequence of this relatively low b-value is that the minimum angle that can
resolved reliably is limited to approximately 55° using our method (Fig. 7.4). The
practical consequence is that fiber orientations with an inter-fiber angle smaller than
55° will tend to merge into one (average) fiber orientation, making overestimation
of the number of fiber orientations very unlikely. Additionally, it shows that even
at b-values employed in common practice, multi-fiber voxels can be detected in a
large extent of the WM. In the absence of noise and artifacts, performing the same
experiment with increased b-values would likely increase the ability of both CSD
and bedpostx to resolve smaller inter-fiber angles [Tournier et al., 2007, Behrens
et al., 2007, Alexander and Barker, 2005]. However, at high b-values, the reduced
SNR of the DW images makes it difficult to use registration-based motion and
eddy-current correction techniques. Given the long scan time used in this study,
robust motion correction was deemed imperative, and a more moderate b-value
was therefore chosen

In this study, we did not specifically investigate voxels with more than three
fiber orientations, as the volume fractions of the constituent fiber bundles would
become very small and result in small corresponding fODF peak amplitudes in
the CSD case (this is not an issue for bedpostx since it rarely reported more than
2 fiber orientations). A very small fODF threshold would be required to detect
such small fODF peaks, increasing the risk of introducing false positives (Fig. 7.3a).
Furthermore, as the number of fiber orientations increases, the angle between them
will tend to decrease. This will cause many of these fiber orientations to merge
(Fig. 7.4). Nonetheless, we emphasize that this maximum of 3 fiber orientations
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per voxel does not influence the results for the lower orientation counts, since the
fODF estimated by CSD is independent of this parameter; it is only used in the
subsequent step, to select the 3 largest peaks in the fODF.

A further issue relates to the fact that ‘bending’ and ‘fanning’ configurations
contain a range of fiber orientations, which cannot be adequately described using
a single discrete number. Nonetheless, while these configurations do not contain
‘crossing fibers’ as such, it is clear that they can only be labeled as containing
multiple fiber orientations. In this study, the fODF estimated for such configurations
will tend to contain a single peak when the curvature remains relatively small, or
multiple distinct peaks when the curvature is sufficiently large. From this point of
view, it is clear that our approach remains conservative.

The voxel size used in this study was 2.4× 2.4× 2.4mm3, a value typical of the
DTI literature. This value was chosen since the primary focus of this study was
to estimate the extent and impact of the crossing fiber problem given currently
established data acquisition parameters. From a theoretical perspective, increasing
spatial resolution has the potential to resolve a proportion of voxels where multiple
coherent fiber bundles ‘brush’, i.e. at the interface between coherent fiber bundles.
However, it should be noted that some voxels will always be located at the interface
between bundles, and will therefore still contain crossing fibers. Furthermore,
increasing the resolution will not resolve cases where individual axons of multiple
fiber bundles ‘interdigitate’, unless the resolution is increased to the level of the
axonal diameter (i.e. of the order of 1 µm), which is clearly impossible with current
technology. Consequently, while increasing the resolution may reduce the incidence
of multi-fiber voxels to some extent, it will not remove the problem altogether. From
a practical perspective, increasing the spatial resolution is a challenging task. For
example: simply reducing the voxel size from 2.4× 2.4× 2.4mm3 to 2× 2× 2mm3

would almost halve the SNR, which can only be recovered by acquiring 4 signal
averages, whilst requiring an increased number of slices to achieve the same spatial
coverage. The corresponding increase in scan time required by such an approach is
clearly not practical for the vast majority of diffusion studies.

As shown in Fig. 7.5, the fiber orientations extracted using CSD are very consis-
tent with the surrounding orientations, supporting genuine anatomical structures.
The same can be deduced from the highly clustered and smoothly transitioning
color encoded orientation maps in Figs. 7.7 and 7.8 and from the anatomically
plausible fiber tracking results in Fig. 7.10. Moreover, by repeating the experiment
on a large collection of residual bootstrap realizations and on a different subject,
we have shown that our results are consistent both across noise realizations of the
same data set (Fig. 7.9) and across subjects (Table I).

The full course of the relationship between the fODF threshold and the number
of WM voxels with multiple fiber orientations can be seen in Fig. 7.11a. Even using
an extremely conservative threshold of 0.2, multiple fiber orientations are still found
in approximately 78% of all WM voxels. Further increasing the threshold will
result in many small fiber populations being discarded and the introduction of WM
voxels without any fiber orientation. Fig. 7.11b shows the relationship between the
bedpostx volume fraction threshold and the number of WM voxels with multiple
fiber orientations. In the range of [0.01 0.1], the number of fiber orientations
reported by the bedpostx method is stable, indicating that the ARD has indeed
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forced compartments to zero, for which it believed evidence was not sufficiently
strong. Starting from a threshold of 0.1, small secondary volume fractions are being
discarded, increasing the number of single fiber voxels and introducing WM voxels
without any fiber orientation.

7.4.3 Differences between CSD and bedpostx

The two methods used in this study, CSD and bedpostx, provided very different
results. These differences can be explained by the simulation results shown in
Fig. 7.4, and the in vivo results in Fig. 7.5: in voxels containing ≥3 fiber orientations,
bedpostx will instead report 1 or 2 fiber orientations. Note that the original authors
of the ARD method also reported similar limitations [Behrens et al., 2007]. This
explains both the increase in 1 and 2 fiber voxels and the relative absence of ≥3
fiber voxels in the bedpostx results, ultimately resulting in a lower percentage of
multi-fiber voxels.

The large difference between the bedpostx results in this study (63% multi-fiber
voxels) and the bedpostx results from the original study conducted by Behrens et al.
[2007] (33% multi-fiber voxels), can be attributed mostly to the use of a much larger
number of DW images, increasing the effective SNR of our data sets: improving
SNR will increase the model evidence for smaller fiber volume fractions, resulting
in a larger number of significant fiber orientations. In addition, in this study the
ARD weight was tuned specifically to our data, and a longer ‘burn-in’ (a tunable
parameter in bedpostx) was used to ensure convergence. Additionally, Behrens
et al. [2007] used an FA threshold to select WM voxels, implicitly assuming that all
voxels with FA > 0.1 are considered WM, possibly excluding multi-fiber voxels on
account of being too isotropic, introducing a bias towards low orientation counts.
In addition, low FA values can become unreliable in the presence of noise [Jones
and Cercignani, 2010]. To avoid such issues in our study, an objective WM selection
method was used based on the corresponding T1-weighted images (Fig. 7.1).

7.4.4 Towards new measures of WM ‘integrity’

An interesting alternative approach to tensor-based scalar metrics is to use the
volume fractions as identified by mixture model approaches (such as, for instance,
bedpostx and CSD) as a quantitative index. Jbabdi et al. [2010] make tract-wise
comparisons directly on the volume fractions as obtained with bedpostx, assuming
that increased volume fractions correspond to an increased axonal density along
the corresponding fiber orientation. Raffelt et al. [2012] use the fODF derived
with spherical deconvolution and make voxel-wise comparisons directly on the full
fODF. Their measure, dubbed ‘apparent fiber density’ (AFD) assumes that any
differences in the fODF amplitude along a given orientation can be attributed to
differences in the relative amount of underlying axons thought to be aligned with
this orientation. Recent advances allow non-linear registration of fODF images
[Raffelt et al., 2011], including appropriate reorientation and modulation, thus
enabling group comparisons of AFD between patients and controls. While DTI
offers an ambiguous average scalar metric for the entire voxel, these new methods
provide directionally dependent metrics, which can be associated with individual
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fiber tracts, providing more specific and more readily interpretable results.

7.5 Conclusion
In this chapter, we investigated the prevalence of complex fiber configurations in
WM tissue with diffusion MRI. Our results indicate that multiple fiber orientations
can be found in a much higher percentage of WM voxels (approximately 90%) than
previously reported, with CSD providing much higher estimates than bedpostx.
These findings have obvious and profound implications for both tractography and
anisotropy analyses, and strengthen the growing awareness that fiber tractography
and ‘WM integrity’ metrics derived from DTI need to be interpreted with extreme
caution.
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Conclusion

In this dissertation we developed a new deterministic tractography algorithm
based on CSD which is able to track through regions of complex fiber architec-
ture, enabling a more accurate delineation of many of the WM pathways of the
brain. These improved delineations are not only of interest for the purpose of
visualization and exploratory anatomical research, but can also be used as ROIs
for the quantitative analysis of popular scalar diffusion indices. In a recent study
on Alzheimer’s disease, it was shown that improved delineation of the superior lon-
gitudinal fasciculus using CSD tractography, significantly increased the sensitivity
to detect WM abnormalities as opposed to results obtained with conventional DTI
based tractography.

While deterministic CSD tractography in itself is able to produce impressive
results, it assumes a unique fiber orientation estimate in each voxel, neglecting
the uncertainty associated with each step. As diffusion MRI is known to be a
noisy imaging technique and errors are known to propagate during tractography,
different noise realizations of the same data set can produce substantially different
tractography results. Even a small error at one point in the trajectory can cause the
algorithm to enter and follow a different WM tract, leading to erroneous statements
about the WM ‘connectivity’. To characterize this uncertainty, we developed a new
probabilistic tractography algorithm based on CSD which generates a large
collection or distribution of possible trajectories from each seed point. Brain regions
that contain higher densities of the resulting trajectories are then deemed to have a
higher probability of ‘connection’ with the seed point. To create such a distribution
we made use of a statistical technique called bootstrapping. Using simulations
we have benchmarked different variations of the bootstrap. Our results showed
that the ‘classic bootstrap’ significantly underestimates the uncertainty when only
a few repeated acquisitions are available, which is typically the case. This large
downward bias can be removed by using the bootknife approach, allowing accurate
CSD fiber orientation uncertainty estimates with only a limited set of repeated
measurements and without making assumptions about the sources of uncertainty
in the data. However, in a clinical setting, even a few repeated measurements
can render acquisition time unacceptably long. This limitation can be overcome
using model-based residual bootstrapping techniques, that require only a single
acquisition. Simulations showed that the combination of the residual bootstrap
with the modified spherical harmonics model allows accurate estimates of the
CSD fiber trajectory uncertainty, bringing it into the clinical realm. Using real
data from a healthy volunteer we have shown that probabilistic CSD tractography
produces much more plausible trajectories than its DTI counterpart, even in large
WM structures such as the corpus callosum, superior longitudinal fasciculus and
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corticospinal tract, with probabilistic DTI tractography producing many false
positives and false negatives in regions of complex fiber architecture.

To underline the importance of this work, we set out to assess the prevalence
of voxels containing multiple fiber orientations, as these are the voxels where
multi-fiber reconstruction algorithm would result in improved tractography results.
For this purpose, we acquired large, high quality DW data sets and extracted
the fiber orientations using both CSD and the bedpostx algorithm. Our results
indicated that multiple fiber orientations can be found in a much higher percentage
of WM voxels than previously reported, with CSD providing much higher estimates
than bedpostx. These findings have obvious and profound implications for both
tractography and integrity analyses, and strengthen the growing awareness that fiber
tractography and ‘WM integrity’ metrics derived from DTI need to be interpreted
with extreme caution.

Note that in the above text, we systematically wrote ‘connectivity’ between
quotation marks. Indeed, there is still a significant gap between connectivity in
the diffusion MRI data and actual anatomical connectivity in the WM. In the
introductory chapters we provided an overview of the major limitations of diffusion
MRI at the level of the acquisition (low spatial resolution, low SNR, motion and
eddy current distortions), together with the major limitations of fiber tractography
(noise and artifacts induced errors, modeling errors and integration errors). All
these factors will influence the accuracy and precision of the reconstructed fiber
pathways. Probabilistic tractography is already an important step forward, in that
it gives us an indication of the precision of the results. Unfortunately it says nothing
about the accuracy. Probabilistic tractography algorithms are as susceptible to
systematic errors in the data acquisition and analysis pipeline as deterministic
algorithms. Even without systematic errors, the interpretation of probabilistic
tractography results remains a challenging task. For example, it can be shown in
a set of pathways comprising identical microstructure, that the path deemed to
mediate the highest connectivity by probabilistic tractography, will be the shortest,
simplest and straightest path. The popular interpretation of tractography in terms
of ‘connectivity’ thus remains questionable and one should always be aware of
the underlying limitations, pitfalls and confounds when using these methods for
neuroscientific research.
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List of abbreviations

3D three dimensional

AD axial diffusivity

ADC apparent diffusion coefficient

AFD apparent fiber density

ARD automatic relevance determination

ASSET array spatial sensitivity encoding technique

bedpostx Bayesian estimation of diffusion parameters obtained using sampling
techniques with modeling of crossing fibers

CC corpus callosum

CHARMED composite hindered and restricted model of diffusion

CI confidence interval

CL coefficient of linearity

CP coefficient of planarity

CS coefficient of sphericity

CSD constrained spherical deconvolution

CSF cerebrospinal fluid

CST corticospinal tract

dODF diffusion orientation distribution function

DSI diffusion spectrum imaging

DT diffusion tensor

DTI diffusion tensor imaging

DW diffusion-weighted

DWI diffusion-weighted imaging

EPI echo-planar imaging
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List of abbreviations

FA fractional anisotropy

FC Fiber Cup

FE first eigenvector

FEFA first eigenvector fractional anisotropy

FFT fast Fourier transform

fODF fiber orientation distribution function

FOV field of view

fMRI functional magnetic resonance imaging

FRT Funk-Radon transform

FSL FMRIB Software Library

GFA generalized fractional anisotropy

GM gray matter

GRAPPA generalized autocalibrating partially parallel acquisition

HARD high angular resolution diffusion

HARDI high angular resolution diffusion imaging

IFFT inverse fast Fourier transform

IQR interquartile range

MCMC Markov chain Monte Carlo

MD mean diffusivity

MICCAI Medical Image Computing and Computer Assisted Intervention

MR magnetic resonance

MRI magnetic resonance imaging

NEX number of excitations

NMR nuclear magnetic resonance

ODF orientation distribution function

PAS persistent angular structure

PDF probability density function

PDV principal diffusion vector

PGSE pulsed gradient spin-echo

186



List of abbreviations

QBI q-ball imaging

RBW receiver bandwidth

RD radial diffusivity

RF radio frequency

RGB red green blue

RK2 second order Runge-Kutta integration

RK4 fourth order Runge-Kutta integration

RMSE root mean squared error

ROI region of interest

SD spherical deconvolution

SE spin-echo

SH spherical harmonics

SLF superior longitudinal fasciculus

SNR signal-to-noise ratio

SPM Statistical Parametric Mapping

sRMSE symmetrized root mean squared error

TE echo time

TH thickness

TI inversion time

TR repetition time

uODF uncertainty orientation distribution function

VC visitation count

WM white matter
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Involvement in diffusion MRI software
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Achtergrond

Magnetische resonantie beeldvorming (MRI) combineert een krachtige magneet,
radiogolven en geavanceerde computers om gedetailleerde informatie te verschaffen
over de plaats, omvang en samenstelling van zachte lichaamsweefsels. MRI gebruikt
geen röntgenstraling maar maakt gebruik van de magnetische eigenschappen van
de waterstofkernen in ons lichaam. Door een heel sterk magnetisch veld worden de
moleculen een kant op gericht. Door vervolgens een kort radiosignaal in te sturen
worden deze moleculen even uit hun positie geduwd. Bij het teruggaan naar hun
oorspronkelijke situatie geven ze een heel klein elektromagnetisch signaal af dat
kan worden waargenomen in de scanner. Doordat waterstofkernen in verschillende
weefsels verschillend reageren, is het mogelijk mooie contrastbeelden te maken. Zo
is MRI onmisbaar geworden om de hersenen op een niet-invasieve manier in al hun
anatomische details te visualiseren.

Diffusie MRI (DW-MRI) is een gespecialiseerde vorm van MRI die toelaat om de
willekeurige bewegingen (of diffusie) van de waterstofkernen in biologische weefsels
te meten. In een omgeving zonder obstakels, bijvoorbeeld in een glas water, zal de
bewegelijkheid van de waterstofkernen in alle richtingen hetzelfde zijn. In weefsels
met een sterke vezelstructuur daarentegen, zoals bijvoorbeeld in de witte stof van
de hersenen, zullen de waterstofkernen meer bewegen langsheen de vezels dan
loodrecht daarop. Op basis van dit principe kan op een indirecte manier informatie
verkregen worden over de oriëntatie van de onderliggende microstructuur. Met
behulp van vezeltractografie kan de lokale oriëntatie-informatie geïntegreerd worden
tot globale vezelbundels. Op deze manier kunnen verbindingen in de gehele witte
stof van de hersenen worden gereconstrueerd. Dergelijk onderzoek naar de “neurale
bekabeling” van de hersenen is erg belangrijk bij het plannen van hersenoperaties
en bij het bestuderen van neurodegeneratieve aandoeningen zoals multiple sclerose
en de ziekte van Alzheimer.

Het meeste gebruikte model om diffusie informatie voor te stellen is de diffusie
tensor. Diffusie tensor beeldvorming (DTI) vereist slechts een beperkt aantal
DW-MRI scans, waardoor het erg populair is voor klinische toepassingen. DTI is
echter niet in staat om complexe vezelconfiguraties, bv. kruisende vezelbundels
binnen één voxel, te beschrijven. In zulke voxels is de oriëntatie-informatie on-
betrouwbaar. Recente acquisitie methoden die diffusie opmeten met hoge hoek
resolutie en sterke diffusiegevoeligheid (zogenaamde HARDI-acquisities) en nieuwe
reconstructietechnieken maken het echter mogelijk om verschillende vezeloriëntaties
te onderscheiden in één enkele voxel.
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Bijdrage
In dit proefschrift worden nieuwe methoden voor vezeltractografie voorgesteld die
gebruik maken van HARDI data en die in staat zijn de vezelbundels te reconstrueren
in regio’s met complexe vezeloriëntaties.

De lokale vezeloriëntaties worden uit de DW-MRI data bepaald met behulp
van sferische deconvolutie. Sferische deconvolutie laat toe in elke voxel de volledige
vezeloriëntatie distributie functie (fODF) te bepalen, gebruik makende van het
principe van deconvolutie. Door te eisen dat de fODF geen negatieve waarden mag
aannemen, is het mogelijk om op een betrouwbare manier verschillende vezeloriën-
taties te onderscheiden op basis van relatief bescheiden acquisities. Vervolgens wordt
de richtinginformatie van de lokale fODFs geïntegreerd tot globale hersenvezel-
bundels d.m.v. deterministische vezeltractografie. Experimenten op fantoomdata
en reële data tonen aan dat de vezelbanen die op deze manier verkregen worden
beter overeenstemmen met de onderliggende microstructuur dan de vezelbanen
verkregen met de gangbare DTI vezeltractografie. Er werd ook aangetoond dat de
verbeterde aflijning van bepaalde hersenstructuren op basis van tractografie met
sferische deconvolutie kan leiden tot verhoogde sensitiviteit in het detecteren van
neurodegeneratieve aandoeningen.

Aangezien DW-MRI beelden typisch erg ruizig zijn, gaan de gereconstrueerde
vezelbanen gepaard met betrekkelijk hoge onzekerheid. Verschillende opnamen
kunnen bijvoorbeeld aanleiding geven tot substantieel verschillende tractografie
resultaten. Om de onzekerheid van de gereconstrueerde vezelbanen in kaart te
brengen werd er ook een probabilistische tractografie methode ontwikkelde op
basis van sferische deconvolutie. In tegenstelling tot deterministische tractografie,
waarbij voor elk startpunt één vezeltraject wordt bepaald, wordt bij probabilistische
tractografie voor elke startpunt een distributie van trajecten bepaald. Regio’s met
een hogere dichtheid aan verbindingen zijn dan met een hogere waarschijnlijkheid
verbonden met het startpunt. De lokale vezeloriëntatie-onzekerheid wordt bepaald
met behulp van de residual bootstrap methode, een statistische procedure gebaseerd
op resampling. Experimenten op fantoomdata tonen aan dat deze methode een
nauwkeurig beeld geeft van de onzekerheid van de gereconstrueerde vezelbanen,
zonder herhaalde DW-MRI scans te vereisen. Op basis van reële data kon bovendien
worden aangetoond dat probabilistische tractografie met sferische deconvolutie
aanleiding geeft tot een meer plausibele aflijning van diverse hersenvezelbundels.

Tot slot werd er onderzoek gedaan naar de prevalentie van voxels met meerdere
vezeloriëntaties, aangezien dit de voxels zijn waar de ontwikkelde tractografie
algoritmen tot verbeterde resultaten leiden. Dit onderzoek toont aan dat complexe
vezeloriëntaties terug te vinden zijn in ongeveer 90% van de voxels in de witte stof,
een veel groter percentage dan tot nu toe werd aangenomen. Dit toont aan dat
tractografie op basis van DTI erg onbetrouwbaar is en onderstreept nog eens het
belang van de methoden ontwikkeld in dit werk.
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