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Purpose: To study, from a machine learning perspective,
the performance of several machine learning classifiers
that use texture analysis features extracted from soft-tis-
sue tumors in nonenhanced T1-MRI images to discrimi-
nate between malignant and benign tumors.

Materials and Methods: Texture analysis features were
extracted from the tumor regions from T1-MRI images of
clinically proven cases of 49 malignant and 86 benign
soft-tissue tumors. Three conventional machine learning
classifiers were trained and tested. The best classifier was
compared to the radiologists by means of the McNemar’s
statistical test.

Results: The SVM classifier performs better than the neu-
ral network and the C4.5 decision tree based on the anal-
ysis of their receiver operating curves (ROC) and cost
curves. The classification accuracy of the SVM, which was
93% (91% specificity; 94% sensitivity), was better than
the radiologist classification accuracy of 90% (92% speci-
ficity; 81% sensitivity).

Conclusion: Machine learning classifiers trained with
texture analysis features are potentially valuable for
detecting malignant tumors in T1-MRI images. Analysis of
the learning curves of the classifiers showed that a train-
ing data size smaller than 100 T1-MRI images is sufficient
to train a machine learning classifier that performs as
well as expert radiologists.
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MAGNETIC RESONANCE IMAGING (MR]) is currently
regarded as the standard diagnostic tool for detection
and grading of soft-tissue tumors (1). Radiologists of-
ten look for certain features in MRI images to decide
whether a given tumor is benign or malignant. For
example, radiologists differentiate tumors based on
features that describe the biological activity of the tu-
mor such as the tumor size, the shape of the bounda-
ries of the tumor, the presence of necrosis, edema,
and invasion of the surrounding tissue. Some impor-
tant characteristic features of a benign tumor include
small size, well-defined margins, and homogeneous
T1-MRI signal intensity. Malignant tumors typically
have larger size, are poorly marginated, heterogene-
ous in signal intensity in T1-MRI, may exhibit peritu-
moral edema, and invasion or encasement of adjacent
structures (2). Among the mentioned features, the
MRI signal homogeneity in T1-MRI is the most corre-
lated feature with tumor pathology. It has been
reported that if the tumor region in T1-MRI is inhomo-
geneous, then it is 90% of the time a malignant tumor
(1). Malignant tumors show inhomogeneous (heteroge-
neous) signal in T1-MRI signal because they have an
increased vascularity and have large extracellular
spaces compared to benign tumors. However, there
are some exceptions where some types of benign
tumors show an inhomogeneous T1-MRI signal while
some types of malignant tumors show homogeneous
T1-MRI signal. Examples of benign tumors that are
likely to show inhomogeneous T1-MRI intensities are:
hemangioma (cavernous, spindle cell), giant cell tu-
mor (tenosynovial diffuse), and schwannoma.
Examples of malignant tumors that may show homo-
geneous MRI intensities are: leiomyosarcoma, fibro-
sarcoma (adult type myxoid-myxofibrosarcoma), and
synovial sarcoma. Due to the signal intensity overlap,
the discrimination between benign and malignant
tumors based on visual assessment of signal homoge-
neity or heterogeneity cannot always be conclusive. As
human visual abilities to differentiate within a wide
range of texture is very limited (3,4), analyzing tumors
by automated texture analysis algorithms might have
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Figure 1. Two regions cut from soft-tissue tumors; one is cut from a benign tumor and the other from a malignant tumor. It
is very difficult to distinguish between the tumors visually. The two rows at the bottom are a subset of the extracted texture

analysis features that clearly show the difference quantitatively.

the potential to discriminate between some cases of
malignancy that humans cannot recognize easily by
visual inspection.

The signal homogeneity or heterogeneity of the tu-
mor areas in T1-MRI images can be quantified by tex-
ture analysis algorithms (5-8). Applying texture analy-
sis algorithms to the tumor areas results in numerical
values that quantify the degree of homogeneity or het-
erogeneity of the tumor. Figure 1 shows an example of
the value of some texture features extracted from ma-
lignant and benign soft-tissue tumors. The figure
clearly shows that benign and malignant tumors have
very distinctive numerical values.

Characterizing texture in MRI images is still
assessed visually by radiologists. Such subjective
methods can produce a high risk of misinterpretation
and can also contribute to inter- and intraobserver
variation in making the correct classification. A fur-
ther limitation is associated with the visual coarse
categorization of texture variation into two categories
(homogeneous versus heterogeneous) that makes it
difficult to distinguish small differences in texture
changes. The ability to measure small differences in
texture is particularly important to reduce the diagno-
sis errors caused by the overlap of the textures
between the benign and the malignant tumors.

Even though there are several biological features
that can be used to differentiate benign from malig-
nant tumors, from an image analysis perspective tex-
ture features are preferred over other tumor features
such as the mean MRI signal intensity or the shape of
the boundaries of the tumor for several reasons. First,
texture features are very easy to calculate in a reason-
able amount of time. Second, texture features are
largely correlated to tumor pathology (9,10). Third,
some texture features are very robust to changes in
MRI acquisition settings, invariant to changes in
image resolution, and unaffected by the corruption of
the MRI image by magnetic field inhomogeneity. Two
recent research articles (8,11) extensively studied the
value of texture analysis features for classification of
soft-tissue tumors. In Ref. 8 it is shown that texture

analysis features extracted from T1-weighted MRI
images acquired by different MRI machines are statis-
tically very similar for the same tissue type. The work
reported in Ref. 11 extended the previous study and
showed that texture analysis features are useful for
discrimination between benign and malignant soft-tis-
sue masses in MRI images.

The main objective of the current study was to
extract a large number of texture features from tumor
areas and to comprehensively evaluate several
machine learning classifiers that are trained with
these texture analysis features to discriminate malig-
nant from benign soft-tissue tumors. From the tumor
regions in the T1-MRI images with pathologically pro-
ven soft-tissue tumors, 300 texture features were
extracted. The texture features were reduced from
300 to 13 texture features by an optimal feature selec-
tion procedure. Three classifiers were trained with the
selected 13 texture features. Several comparative
studies were performed to find the best classifier that
fits the problem domain well.

For estimating the classification errors and compar-
ing the classifier models several sources of variation
were taken into account (12,13). The first source of
variation is the influence of using a specific limited
training dataset on the classifiers’ performance. We
used the learning curves plots to study how the clas-
sifiers performance might be affected by changing the
size of the training data. From the learning curves we
estimated the minimum size of the training dataset
needed to train the classifiers with an optimal
performance.

The second source of variation is the internal ran-
domness of the training algorithms. Classifier per-
formances are largely affected by the training set
characteristics as well as the parameter setting of the
classifiers. Therefore, it is dangerous to draw conclu-
sions from training a single classifier or running a
single testing experiment. A single training and testing
experiment is not a reliable estimator of the true error
rate of a classification scheme. A random
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Table 1
Patients Database*

Juntu et al.

Type of tumor Benign tumors (n = 86)

Malignant tumors (n = 49)

Fibrous tissue tumors Fibroma (3)

Fibromatosis (10)

Lipoma deep (intramuscular,
Perineural) (16)

Lipoma cutaneous (3)

Lipomabalstoma (2)

Myositis ossificans (3)

Degenerated schwannoma (4)

Plexiform schwannoma (3)

Lipomatous tumors

Cartilage and bone tumors
Neural tumors

Fibrosarcoma, myxoid (8)
Fibrosarcoma infantile (2)
Dedifferentiated liposarcoma (7)

Myxoid liposarcoma (5)

Liposarcoma (4)

Extraskeletal chondrosarcoma (well differentiated) (5)
Malignant peripheral nerve sheath tumor (MPNST) (4)

Usual schwannoma (neurilemoma) (12)

Endothelial tumors of blood
and lymph vessels
Smooth muscle tumors

Cavernous hemangioma (14)

Leiomyoma (3)
Angiomyoma (2)

Granular cell tumor (5)
Myxoma (intramuscular) (6)

Miscellaneous tumors

Angiosarcoma (1)
Leiomyosarcoma (8)

Synovial sarcoma (4)
Ewing’s sarcoma (1)

The second and third columns show the pathology of the tumors (number of patients).

subsampling of the training dataset by a cross-valida-
tion procedure should be used to minimize the classi-
fication error estimation bias. We trained the classi-
fiers several times by randomly sampling small
subsets from the full dataset using the 10-fold cross-
validation procedure. For consistency, exactly the
same data were used to train and test all classifiers;
this is often called a paired experimental design. The
results of testing the classifiers were validated by
applying several statistical tests such as computing
the confidence intervals of the receiver operating
curves (ROC).

Finally, the way the classifiers are tested and eval-
uated could bias the final results if not done properly.
Different methods were applied to test and compare the
classifiers’ performance. For example, we plotted the
ROC curves and cost curves of the classifiers. We com-
puted the confidence intervals of the area under the
curves (AUC) and applied a pairwise statistical test to
compare the classifiers. We applied the nonparametric
McNemar's statistical test to compare the performance
of the best trained classifier with the radiologists.

MATERIALS AND METHODS
Patient Dataset and MRI Images

The datasets used in this study were collected from
the database of the Belgian Soft Tissue Neoplasm
Registry (BSTNR) which was collected by the Univer-
sity Hospital of Antwerpen (UZA) over several years.
The BSTNR is a multi-institutional database project
involving nearly all MRI centers in Belgium with the
cooperation of some European MRI centers. This initi-
ative, which started before the year 2001, had two
main goals. First, it provides a second opinion report
for diagnosing difficult cases of soft-tissue tumors as
a benefit toward all cooperating radiologists. Second,
it serves as a scientific databank of soft-tissue tumors
that are rare lesions in the daily radiological practice.
Currently, the center database contains more than
1500 histologically confirmed cases of soft-tissue

tumors. For this study we obtained a collection of non-
enhanced T1-weighted MRI images of 135 patients.
Among the 135 cases there were 49 cases with malig-
nant tumors and 86 cases with benign tumors. All tu-
mor cases were pathologically confirmed, which we
used as the gold standard for training and testing the
classifiers. This collection of T1-MR images were
acquired using various scanner types (Siemens, Phi-
lips, and GE). The pulse sequence for all the MRI
images was a T1-weighted imaging sequence, however,
with different repetition time (TR) and echo time. On av-
erage, the MRI images were acquired using a TR (aver-
age = 580 msec) and TE (average = 15 msec). The age
range of the patients with benign tumors was 18-73
years old, while for the patients with malignant tumors
the age range was 15-85 years old. Some more details
about the dataset are listed in Table 1. For constructing
Table 1 we adopted the classification system proposed
by the World Health Organization (WHO) (14) and fol-
lowed the guidelines given in Ref (15).

Most texture features are commonly measured in
small square or rectangular areas (area of interest
[AOI]) from the MRI images. For such purposes we
selected non-overlapping areas of sizes 50 x 50 pixels
from the tumor regions in the T1-MRI images. Since
training machine learning classifiers require large
datasets and given the fact that we had only 135 dif-
ferent cases of soft-tissue tumors, we increased the
size of the training dataset by computing texture fea-
tures from several regions for each patient. However,
we made sure that such regions were not selected
from the same MRI image but selected from several
MRI images. In total, we selected 681 tumor regions
(253 benign tumors regions and 428 malignant
tumors regions). Increasing the size of the training
dataset by adding virtual data samples is a common
practice in machine learning (16,17). First, virtual
examples prevent classifiers from overfitting the train-
ing data, which is equivalent to adding a regulariza-
tion term to the cost function that has to be mini-
mized (18). Second, adding virtual examples is
equivalent to incorporating a sort of prior knowledge
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Table 2
Texture Analysis Methods and the Corresponding Texture Parameters

683

Methods Calculated parameters
First order:
Histogram Mean, minimum, variance, skewness, kurtosis, 1%, 10%, 50%, 90%, 99% percentiles.

Second order:
Coocurrence matrix
{6 = 0°, 45°, 90°, 135°} and
{d =1,2,3,4,5}
Absolute gradient distribution

Angular second moment, contrast, sum of squares, inverse difference moment, sum average,
correlation, entropy, difference variance, difference entropy.
Mean of absolute gradient, variance of absolute gradient, skewness of absolute

gradient, kurtosis of absolute gradient.

Higher order:
Runlength graylevel matrix
fraction of image in run.
Autoregressive texture model 04, 05, 03, 04, 05, o.
Filtering techniques:

Wavelets

Short run emphasis moment, long run emphasis moment, run length nonuniformity,

Energies of wavelet coefficients of sub bands at successive scales.

which makes the trained classifiers more robust to
variation in texture features caused by a change of
imaging acquisition settings or differences in MRI
machine models (16-18).

Texture Features Computation

For feature computation, the 681 tumor subimages
with sizes of 50 x 50 pixels were imported to the soft-
ware package MaZda 3.20 (Institute of Electronics,
Technical University of Lodz, Poland) (19). The MaZda
software program allows computation of 300 texture
features based on statistical, wavelet filtering, and
model-based methods. To ensure the consistency of
the calculated texture feature across all the tumor
subimages, we wrote some macros for the MaZda pro-
gram that read tumor subimages and calculate the
tumors’ texture features with the same texture analy-
sis parameters setting. All the 300-texture features
offered by the MaZda program were calculated for the
681 tumor subimages. Table 2 shows the texture
analysis methods and the calculated texture features
used in this study.

Feature Selection

Training machine learning classifiers with large num-
bers of texture features can lead to classifier overfit-
ting, reduces the generalization capabilities of the
classifiers and slows down the training process.
Before training the classifiers the number of texture
features were reduced by a feature selection proce-
dure to remove the unimportant and uninformative
texture features. Since MaZda program has a limited
number of feature selection methods, we exported the
computed texture features to the machine learning
package Weka 3.5.8 (20) to experiment with different
feature selection methods. To keep the loss of texture
information by the feature selection procedure to a
minimum we tested eight feature selection methods
that belong to three feature selection families as
follows:

1) Subset feature search selection methods: Such
methods literally search the set of possible fea-

tures for the optimal subset. We used four differ-
ent techniques, namely: the forward search, the
backward search, the bidirectional search, and
the greedy search.

2) Feature ranking methods: Rank the texture fea-
tures by a numeric value and eliminate all fea-
tures that do not achieve an adequate score. We
used two ranking methods, one that ranks fea-
tures by the chi-square statistics and the other
method ranks features by the information gain
criteria.

3) Embedded methods: The feature selection is
combined with a classifier to evaluate the dis-
crimination power of a selected subset. We used
two embedded methods, one that uses the C4.5
decision trees classifier and one based on the
Vapnik’s SVM classifier.

In total, eight feature selection methods were tested
to select eight optimal features subsets out of the full
300 texture features. We used simple Bayes classifier
to evaluate the power of the eight features subsets for
discrimination between the benign and the malignant
tumors. The results of applying the Bayes classifier
trained with the full 300 texture features were consid-
ered a baseline for the effectiveness of the selected
texture features subsets. Based on the Bayes classi-
fier results, the texture features subset that was
selected by the forward search method was the best
subset with a minimum loss of information (Table 3).

Trained Classifiers

We trained three classifiers that represent typical
implementations of three machine learning algo-
rithms. The first classifier is a multilayer perceptron
neural network classifier with two hidden layers, an
input layer of 13 nodes that correspond to the
selected texture feature subset by the forward search
method, and two nodes at the output layer corre-
sponding to the benign and malignant classes. The
neural network trained with a backpropagation algo-
rithm with a learning rate = 0.3, momentum = 0.2,
and a training time of 1000 epochs. The second
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Table 3
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Eight Texture Feature Subsets Selected by the Three Feature Selection Methods*

Best features selection

Feature ranking Wrappers

Bidirectional
search

Backward
search

Forward

Feature name search

Greedy
stepwise

C4.5
decision trees

Information
gain

Chi-squares
statistics

Vapnik’s
SVM

Skewness . . .

Kurtosis

Per 0.01%

Per 0.1%

Per 0.5%

S(1,0),Contrast

S(1,0), InvDfMom

S(1,0), DifVarnc

S(1,1), Contrast

S(1,1), Correl

S(1,1), DifVarnc

S(1,1), DifEntrp

S(1,—1), Contrast

S(1,—1), InvDfMom

S(1,—1), Entropy

S(1,—1), DifVarnc

S(2,0), SumVarnc ° °

S(2,—-2), Correlat

S(3,0), SumVarnc .

S(3,0), DiffEntrp

S(4,0), Entropy

S(4,0), Contrast . °

S(0,4), InvDfMom
),
)
),

),
),
),
),
),
),
),

S(0,4), DifEntrp
S(0,5), AngScMom
S(0,5), Contrast
Horzl_RINonUni
Horzl_LngREmph .
Horzl_ShrtREmp

Horz_Fraction ° .
Vertl_RLNNonUni

dgr_LngREmph45 ° . .
dgr_Fraction45
dr_LngREmph135
GrSkewness .
Teta2 °
Tetad

Sigma .
WavEnHH_s-1 °

ACC% 76.8
TP 0.8
TN 0.74
AUC 0.87

771
0.79
0.73
0.86

7.7
0.8
0.74
0.85

78 67.99 65.34
0.83 0.65 0.56
0.69 0.73 0.81
0.83 0.72 0.75

70.77
0.7
0.73
0.78

78
0.86
0.64
0.84

The shaded columns show the best texture features subset which was used to train the classifiers. The last four rows are the results of

evaluation of each texture subset using the Bayes classifier.

classifier was Quinlan’s C4.5 decision tree classifier
built with a minimum of two instances per leaf. After
training, each node in the tree was guaranteed to
have at least two objects. The tree was pruned with a
3-fold pruning procedure such that 2-fold were used
for growing the tree and one for the pruning process.
The confidence factor that controls the pruning pro-
cess was set to a small value so that there was a bal-
ance between growing the tree and the pruning pro-
cess. Finally, the third classifier was the Vapnik's
nonlinear SVM classifier that used the RBF kernel
with a large bandwidth (¢ = 1000) and a cost coeffi-

cient (C = 1.0). The bandwidth and the cost coefficient
were selected empirically by a grid search method. We
preferred to keep the default parameter settings of the
trained classifiers as originally defined by the
PRTOOLs 4.0, the machine learning Matlab (Math-
Works, Natick, MA) toolbox unless we found that the
default parameters were not set properly for certain
classifier. In such cases we estimated the classifier
parameters using the training data. We sampled small
random subsets from the training data, estimated the
classifier parameters, and took the average of the esti-
mated parameters. For the purpose of classifiers
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comparison we preferred to use the default classifiers
parameter setting to avoid tuning the classifiers to
that specific tumor training dataset. For example, for
the neural network classifier we kept the learning
rate, the momentum, and the initial conditions to
their default values. Such simple approach might
result in lower estimates of the true error rate; how-
ever, it minimizes the effect of expert bias that tunes
the classifiers to the specific problem domain. Fur-
thermore, the bias introduced by such a parameter
selection scheme affects all the learning algorithms
equally.

A single training and testing partition are not reli-
able estimators of the true error rate of a classification
method on a limited dataset. A leave-one-out classifi-
cation method is too computationally expensive to be
used. According to previous recommendations
(12,21), a 10-fold cross-validation procedure was cho-
sen to train the classifiers. The 10-fold cross-valida-
tion method has been found to provide an adequate
and accurate estimate of the true error rate. In each
iteration the 10-fold cross-validation splits the data
into two random parts, 90% training part and 10%
testing part. However, it ensures that the proportions
of examples from each class remains fixed throughout
all iterations.

Sample Size and the Classifier Performance

Classifiers become unstable when trained by small
size training dataset (22). The performance of most
classifiers can be improved by increasing the size of
the training dataset. Learning curves are commonly
used to study the generalization properties of the
trained classifiers as a function of the number of
training data examples.

To plot the learning curves the selected classifiers
were trained with training subsets of different sizes
that were randomly sampled from the full training
data. On a typical learning curve the horizontal axis
(x-axis) represents the number of examples used for
training, while the vertical axis (y-axis) represents the
error rate of the classifiers tested against a set of
examples unseen during the training process. We ran-
domly sampled with replacement small training sub-
sets that contained 5, 10, 15, 20, 25, 30, 35..., 200
examples from the full data. The three classifiers, the
neural network, the C4.5 decision trees, and the SVM
were trained using the training subsets and tested on
the rest of the data that were not included in the
training subsets. This procedure was repeated 10
times and the averages of the classification errors
were calculated and plotted.

ROC and the Cost Curves

Analyzing the ROCs of classifiers is a well-established
method in the machine learning literature for evaluat-
ing and comparing classifier performances. The ROC
encapsulates all information contained in the confu-
sion matrices of several training and testing experi-
ments. With the ROC we can visualize classifier per-
formances over a wide range of the training data
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Table 4
Table Constructed From the SVM Classifier and the Radiologists
Diagnosis for Performing McNemar’s Test

n00:8
Niyg = 10
Noo + Nio = 18

Noy = 2
iy = 115
No1 + Nq1 = 117

Noo + No1 = 10
Nip + N1y = 125
n=135

distribution. The ROC is a valuable tool to find an
optimal operating point or a decision threshold for a
given classifier trained by certain training dataset.

To summarize the information contained in the ROC
curve, the AUC of an ROC curve is recommended as a
single number evaluation method of a machine learning
algorithm. The AUC is a global summary measure of
the classifier performance that is independent of the
training dataset probability distribution, independent of
the classification error costs and the decision threshold
(23). The cost curves, which have been proposed
recently (24), complement the ROC curves analysis by
displaying the same information contained in the ROC
in a different way. However, they are much better for
comparison between the classifiers, especially in the
case when the ROC curves cross.

To compare the selected classifiers we trained them
using the 10-fold cross-validation method and plotted
their ROC and cost curves. We performed a pairwise
statistical comparison and computed the confidence
intervals and P-values of the AUC of the ROC. We also
plotted the cost curves to find out why the performan-
ces of the classifiers overlap in some areas of the ROC
curves.

Comparison Between the Radiologists
and the Best Classifier

Once the classifiers are trained, evaluated, and com-
pared, the next logical step is to apply some statistical
tests such as McNemar's test (12,13) to compare the
performance of the best classifier to expert radiologists.

The first step to apply McNemar’s test is to con-
struct a table as shown in Table 4. The table cells
summarize the number of agreements and disagree-
ments between the trained classifier and the radiolog-
ists for classifying benign and malignant tumors. The
entries in Table 4 are as follows: The diagonal ele-
ments: ngp = 8 is the number of tumor examples mis-
classified by both the radiologists and the SVM classi-
fier, n;; = 115 is the number of tumor examples that
are correctly classified by both the radiologists and
the SVM classifier. The off-diagonal elements: ny; = 2
is the number of tumor examples that are correctly
classified by the radiologists but incorrectly classified
by the SVM classifier, and n;p = 10 is the number of
tumor examples that are correctly classified by the
SVM classifier but incorrectly classified by the radiol-
ogists. Notice that the off-diagonal elements in Table
4 are the only numbers used in McNemar’s test. The
second step is to test the null hypothesis: Hp: ng; =
n;o that the classifier and the radiologists have the
same error rate against the alternative hypothesis:
H;: ng; # njo. We computed the chi-square value
using the equation shown below and tested the
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results against the theoretical chi-square with one
degree of freedom.

)22:(\”01_“10|_1)2 i
No1 + Mo

RESULTS
Feature Selection Analysis

In the texture feature selection step, eight different tex-
ture subsets were selected as shown in the Table 3.
The first column of the table shows the texture features’
names as specified by the MaZda package. Each
selected subset is displayed in a single column in Table
3 where the specific selected texture features are indi-
cated by black bullets. Each one of the eight feature
selection methods selected slightly different texture
subsets. However, feature selection methods that
belong to the same family selected very similar texture
subsets. The Bayes classifier was used to identify a sin-
gle optimal texture subset out of the eight subsets. The
Bayes classifier results of evaluation of the eight texture
subsets are listed in the last bottom rows of Table 3.
We listed the accuracy of classification (ACC %), the
true positive rate (TP), the true negative rate (TN), and
finally the AUC. The result of training the Bayes classi-
fier with the full 300 texture features was: ACC =
73.7%, TP = 0.74, TN = 0.69, and AUC = 0.71, which
we used as a baseline to test the effectiveness of the
selected texture subset. The texture subset that was
selected by the forward search method has the highest
AUC value (AUC = 0.78) compared to the AUC values
of the other feature selection methods; hence, it was
chosen for training the classifiers.

Analysis of the Learning Curves and
Some Observations

Figure 2 shows the learning curves of the three
trained classifiers: the neural network, the C4.5 deci-
sion tree, and the support vector machine. As
expected, the error rates of the trained classifiers
decrease as the number of training examples
increase. The learning curves have a fast decreasing
portion early in the curve, followed with a relatively
slow decreasing portion, and finally a plateau portion
when the learning error rates no longer decrease with
more data. A reasonable small classification error rate
is achievable across the three classifiers with a train-
ing sample size of around 60 training samples. As the
size of training data increases over 60 samples, the
performance of the classifiers improve very slowly.
This observation points to the fact that training the
classifiers with a very large training dataset will not
improve the classifier performances very significantly.
The training curves do not cross in the plateau area
and are relatively smooth, which indicates that the
classifiers were nearly stable and robust to random
variation of the training data samples. The average
error rates of the classifiers after training with more
than 60 data samples are: 0.14 for the support vector
machine, 0.17 for the C4.5 decision tree, and 0.22 for

Juntu et al.
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Figure 2. The learning curves were produced by training the
three classifiers with different training data sizes. Each point
in each learning curve is the averaged classification error of
10 random cross-validation experiments. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]

the backpropagation neural network. The C4.5 deci-
sion tree and the support vector machine are rela-
tively stable after training with a training set of size of
around 60 samples. However, the neural network
classifier became stable after training with around
100 samples. That might be explained by the fact that
the neural network classifier is very flexible and can
easily overfit the training data when the size of the
data is small. Neural networks do not have a built-in
mechanism to control overfitting the training data.
However, there are some heuristics that can be fol-
lowed to reduce the overfitting process such as reduc-
ing the training time to keep the node firing in the lin-
ear regions of the sigmoid functions. The support
vector machine classifier is similarly very flexible, like
the neural network; however, it became stable very
early during the training process since it has a built-
in mechanism to control overfitting the training data.

Analysis of the ROC and the Cost Curves

Figure 3 shows the ROC of the support vector
machine, the neural network, and the decision trees
classifier. In general, the three classifiers perform
much better than the trivial random classifier since
the three curves lie above the diagonal line. The best
classifier is the support vector machines since its
ROC curve is located at the top of Fig. 3. The AUC, as
a general summary measure of the classifiers per-
formance, was AUC = 0.91 for the support vector
machine, AUC = 0.88 for the C4.5 decision tree, and
AUC = 0.85 for the backpropagation neural network.
The optimal operating points of the three classifiers
are indicated by the solid circles at (FP = 0.15, TP =
0.91) for the SVM, (FP = 0.20, TP = 0.89) for the deci-
sion trees, and (FP = 0.49,TP = 0.93) for the neural
network, where the numbers inside the brackets indi-
cate the false positive (FP) and the true positive (TP).
These three points are the maximum optimal (FP, NP)
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Figure 3. The ROCs of the neural network, the decision tree,
and the support vector machine. The curves cross, which indi-
cate that the classifiers behavior change based on the distribu-
tion of the malignant and benign cases in the training dataset.
The closed circles on the top of the ROCs represent the optimal
operating points of the three classifiers based on the current
training dataset. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

points when the three classifiers are trained with the
full training dataset.

From the ROC we calculated the AUC and some
other related statistics and obtained the following: the
SVM (AUC = 0.91, SE = 0.0246, CI = 0.827-0.921),
the neural networks (AUC = 0.85, SE = 0.0331, CI =
0.707-0.827), and the C4.5 decision tree (AUC =
0.88, SE = 0.0251, CI = 0.821-0.917) where SE is
the standard error and CI represents the 95% confi-
dence interval. Apparently the SVM has the highest
AUC value, which indicates that it is the best classi-
fier. The standard errors are reasonably small, result-
ing in relatively narrow confidence intervals. The
lower limits of the confidence intervals of the AUC of
the three classifiers exceed the 0.5 value (the AUC of
a random classifier) and hence the three classifiers
perform much better than a random classifier.

To compare the three classifiers, we applied pair-
wise statistical tests based on the difference in the
AUC of the three classifiers. The null hypothesis is
that the difference in the AUC between two classifiers
is equal to zero. The results of the pairwise compari-
son of the AUC of the three ROC curves are shown in
Table 5. The pairwise comparison between the SVM
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versus the neural networks and the SVM versus the
C4.5 decision trees show that their confidence inter-
vals do not include the O value with a < 0.001, which
means that in both cases the difference in AUC of the
ROC are statistically significant. On the other hand,
the pairwise comparison between the neural network
versus the C4.5 decision tree shows no significant dif-
ference between their AUC values since the confidence
interval contains the O value with nonsignificant P-
value = 0.683.

The former analysis of the pairwise comparison test
can be supported by plotting the cost curves of the
three classifiers. Figure 4 clearly shows that the cost
curve of the SVM vector machine is the lower one since
it has the lowest normalized expected cost of about 0.1
for a wide range of probability cost function (PCF =
0.20-0.75). In that range the support vector machine is
insensitive to the distribution of the benign and malig-
nant tumors in the training dataset or to change of the
cost of misclassification. On the other hand, the cost
curves of the C4.5 decision tree and the neural network
overlap at a probability cost function of about PCF =
0.42. Such overlap indicates that their performances
are sensitive to the tumors class distribution in the
training dataset and also sensitive to the cost of mis-
classification. In Fig. 4 the cost curves of the three clas-
sifiers are completely located within the triangular area
that is defined by the long-dashed lines. All classifiers
for which their cost curves completely fall inside this
triangular area always perform much better than a
random trivial classifier. The short-dotted lines touch-
ing each cost curve are the operating lines of the three
classifiers. The operating lines are equivalent to the
black circles that represent the operating points of the
classifiers in the ROCs. As a matter of fact, the cost
curves and the ROCs are dual representations of the
same information content where every point in the
ROC maps into a line above the cost curve and vice
versa (see Ref. 23 for more details).

Statistical Comparison Between the SVM
Classifier and the Radiologists

For each tumor case we calculated the texture fea-
tures from one tumor subimage. We trained with a
leave-one-out cross-validation procedure the Vapnik’s
support vector classifier (which was the best classi-
fier). We constructed Table 4 by comparing the radiol-
ogist’s diagnosis of the tumor images and the classifi-
cation results of the support vector machine classifier.
We obtained the results of the radiologists’ diagnosis

Table 5
Pairwise Comparison Between the AUC of the Three Classifiers*
SVM vs. NN SVM vs. C4.5 NN vs. C4.5

Difference between AUC areas 0.06 0.03 0.03
Standard error (SE) 0.00898 0.0154 0.0121
95% confidence interval (Cl) 0.0911-0.126 0.0735-0.134 —0.0188-0.0287
Significance level P < 0.001 P <0.001 P =0.683
z statistics 12.07 6.731 0.408

The SVM is better than the NN and C4.5 since the P-value in the first and second columns are less than 0.001 and the confidence inter-

vals do not include the 0 value. See text for more details.
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Table 7
Errors in Benign vs. Malignant Classification of the Full Training
Set by SVM Classifier
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Figure 4. The cost curves of the neural network, the C4.5 deci-
sion tree, and the support vector machine. All cost curves fall
inside the triangular area. The cost curve of the support vector
machine classifier is the lowest curve and does not cross the
other two curves for a wide range of probability cost function (the
x-axis of the plot), which shows that it is the best classifier. The
C4.5 decision tree classifier and the neural networks classifier
have overlapping performance depending on the characteristics
of the training dataset and the misclassification cost. The opti-
mal operating lines are the thin lines on top of the cost curves.
[Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

of the training data from the database of soft-tissue
tumors (BSNR) of the University Hospital of Ant-
werpen where the MRI images of each patient were
assessed by at least two radiologists.

The with 95% CI was calculated using McNemar’s
test. Using Eq. [1] and the data in Table 4 we obtained
the estimated chi-square value, which is larger than
the tabulated theoretical value. Hence, we rejected the
null hypothesis that both the radiologists and the
support vector machines perform equally. To validate
the statistical testing result we calculated the kappa
statistics (k = 0.526) which shows that the strength of
agreement is considered “moderate.” Since the SVM
classifier has a higher classification accuracy than the
radiologists, we conclude that the SVM is better.
Finally, Table 6 lists some performance parameters of
the support vector machines and the radiologist.

Overall, the SVM classifier performs better than the
radiologists since it has better classification accuracy.
The specificity of the radiologists is slightly better
than the SVM classifier since the SVM classifier mis-

Table 6
Several Performance Parameters for the Radiologists and the
SVM Classifier

Radiologists SVM
Accuracy % 90 93
Sensitivity % 81 94
Specificity % 92 91
AUC % 85 92

Pathology

diagnosis SVM classification Histology
Benign Malignant Fibroma

Benign Malignant Deep lipoma
Benign Malignant Leiomyoma

Benign Malignant Fibromotosis
Benign Malignant Lipoma cutaneous
Malignant Benign Fibrosarcoma, Myxoid
Malignant Benign Leiomyosarcoma
Malignant Benign Synovail sarcoma
Malignant Benign Myxoid liposarcoma

takenly classify few benign tumors cases as malignant
tumors. In Table 7 we list the tumors that are missed
by the support vector machine classifier.

DISCUSSION

Machine learning classifiers trained with texture anal-
ysis features extracted from the tumor areas in T1-
weighted MR images are potentially valuable tools for
the differentiation between malignant and benign
tumors. We demonstrated that the classification
results correlated very well with the clinical status of
the patients. Even though we used a large training
dataset compared to what we have seen in other pub-
lished studies, the size of the training MRI dataset
still represents a small random sample from the whole
population of soft-tissue tumors. For practical appli-
cations we need much larger training samples to cover
all different pathological types of malignant and be-
nign tumors. Several published studies have shown
the importance and value of texture features for dis-
criminating benign from malignant soft-tissue tumors
by training some machine learning classifiers such as
neural networks and the k-NN classifier (8,9,11).
However, these studies did not evaluate the trained
classifiers comprehensively, which we tried to cover in
this study. Comparison of the SVM with the radiolog-
ist based on McNemar’s nonparametric statistical test
showed that the SVM performed as good as or better
than the radiologists. The SVM classifier was trained
with texture analysis features that quantify the signal
homogeneity and heterogeneity of the T1-MRI. The
radiologists diagnosed the tumors using different MR
images modalities (T1-MRI, PD-MRI, T2-MRI, and
chemically enhanced images) and other nonimage in-
formation such as the laboratory tests and the medi-
cal history of the patients.

In conclusion, the results were not surprising given
the fact that texture analysis by computer algorithms
can extract more texture information from the tumor
regions compared to what humans can do based only
on visual assessment. We mention a similar example
from the analysis of digitized mammograms field where
a computerized method for calculating a breast density
index (BDI) can quantitatively model the radiologists’
perception of the breast density (25). We think that an
index derived from texture analysis can play a similar
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role for discrimination between malignant and benign
soft-tissue tumors since it can subjectively model the
human perception of signal homogeneity and heteroge-
neity of the tumor areas in T1-MRI.
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