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Abstract: Terahertz (THz) computed tomography (CT) is an emerging nondestructive and8

non-ionizing imaging method. Most THz reconstruction methods rely on the Radon transform,9

originating from X-ray imaging, in which the X-rays propagate in straight lines. However, a THz10

beam has a finite width, and ignoring its shape results in blurred reconstructed images. Moreover,11

accounting for the THz beam model in a straightforward way in an iterative reconstruction method12

results in extreme demands in memory and in slow convergence. In this paper, we propose13

an efficient iterative reconstruction that incorporates the THz beam shape, while avoiding the14

above disadvantages. Both simulation and real experiments show that our approach results in15

improved resolution recovery in the reconstructed image. Furthermore, we propose a suitable16

preconditioner to improve the convergence speed of our reconstruction.17

1 Introduction19

THz imaging is a relatively recent field in imaging science with the first reported results dating20

back from 1995 [1]. It is a non-invasive, non-destructive and non-ionizing imaging technique21

with which the interior of objects can be visualized. THz imaging has a wide range of application22

domains, such as the study of biological materials (e.g., human breast tumors [2], human23

bones [3]), glass fibre-reinforced polymers [4], artwork, and ancient artefacts examination [5–7],24

as well as security and surveillance [8–10].25

THz transmission imaging can be applied to perform tomography - a method, where, by combining26

multiple projection images acquired from different angles, the internal structure of a sample can27

be reconstructed. Most THz CT reconstruction methods are based on the Radon transform [11]28

to model the forward projection [12–16], in which it is assumed that radiation propagates on a29

straight path through samples. When imaging in the THz range, however, this assumption no30

longer holds, and wave-like effects such as refraction, reflection, diffraction and the THz beam31

shape will lower the image quality of the reconstructed images if they are not accounted for in32

the reconstruction algorithm.33

A common way to account for refraction is through the application of ray tracing techniques in34

the implementation of the forward model. By simulating both the beam shape and beam steering35

with ray tracing, realistic simulation of projection artifacts can be achieved [17]. However,36

incorporating the THz beam model into a reconstruction algorithm remains a challenging task. It37

also has been shown that applying ray tracing to an a priory known set of interfaces, e.g., from38

a CAD model, can compensate for refraction and reflection losses, resulting in a significant39

improvement in the reconstruction quality [15, 18]. Another possibility of accounting for the40

effects of refraction is using nonlinear mathematical refraction models based on Maxwell’s41

equations [19]. Without prior knowledge on the interfaces, incorporation of reflection and42

refraction losses in a reconstruction remains a challenging task. For soft materials, such as43

polyethylene foams, however, the beam shape plays a more dominant role in the reconstructed44



image quality than refraction and reflection losses.45

In the literature, different techniques were proposed for improving resolution and signal to46

noise ratio of THz images [20–22]. An approach to the beam shape compensation in THz CT47

reconstruction was described in [23]. There, authors proposed the modification of the Radon48

transform that accounts for the beam shape by adding a convolution of the projected volume with49

the THz beam model. To compensate for the projection blur in the reconstruction process, a50

deconvolution with the beam shape of the back-projected images was proposed, which resulted51

in improved sharpness of the reconstructed images. However, since in the forward projection52

the sample is imaged with a beam of which the width changes as it passes through it, a simple53

deconvolution cannot compensate for the varying width.54

In this paper, we introduce a generic iterative reconstruction approach, into which the beam shape55

can be incorporated. It requires both the THz forward projection operator and its adjoint, which56

performs an additional convolution with the THz beam model in the back projection, instead of57

the deconvolution. However, the system of linear equations in this case has two problems. Firstly,58

the system matrix in such system is not sparse, which makes iterative reconstruction unfeasible59

due to a large amount of memory needed to store it. Secondly, the system’s high condition60

number results in slow convergence rates (the condition number of a matrix measures how much61

a small change in the input vector changes the solution of the system, making it a predictor for62

convergence rates). In our work, we address both problems, by proposing an adaptation of the63

system matrix to the THz forward projection model for which the iterative reconstruction methods64

can be applied directly. Furthermore, we propose a preconditioner to increase convergence rates65

and analyze its effect on the reconstruction. We show on both simulated and experimental THz66

data that our reconstruction method results in improved resolution in the resulting images.67

2 Methods and experiments68

In this section, firstly, the derivation and reasoning behind our THz projection model are explained69

in part 2.1. Then, we set the ground works for our iterative reconstruction methods, by discussing70

the drawbacks of inverse techniques. This then leads into part 2.2, where the different iterative71

methods are fleshed out. Finally, our simulated and real data experiments are discussed in part72

2.3, as well as our experimental THz setup.73

2.1 THz forward projection and its inverse74

The Radon transform is defined as follows [24]:75

𝑅𝜃 (𝜌, ℎ) =
+∞∭

−∞

𝜇(𝑥, 𝑦, 𝑧)𝛿(𝜌 − 𝑥 cos 𝜃 − 𝑦 sin 𝜃)𝛿(𝑧 − ℎ)𝑑𝑥𝑑𝑦𝑑𝑧, (1)

with 𝜇 the attenuation coefficient, 𝜃 the projection angle, and 𝜌 and ℎ the displacements of76

the projection along the projection line and the z-axis respectively. In this model, the beam is77

approximated by a line with zero width, which is a valid approximation if the wavelength of the78

radiation is small compared to the size of the object. In THz imaging, this assumption no longer79

holds, resulting in more blurry images when compared to X-ray projections. To minimize image80

blur, the beam width must be taken into account in CT reconstructions [25].81

The Radon transform can be derived from the Beer-Lambert law, which is in turn a solution of the82

differential equation 𝑑𝐼 (𝑧) = −𝜇(𝑧)𝐼 (𝑧)𝑑𝑧 that describes the beam intensity loss as it propagates83

in the 𝑧 direction through matter with the attenuation coefficient 𝜇 :84

𝑇 = 𝑒−
∫
𝐿
𝜇𝑑𝑠 , (2)

with 𝑇 the beam transmission, and 𝐿 the path of the beam. A similar reasoning can be applied85



for deriving the Beer-Lambert law that describes the propagation of the beam with a point spread86

function (PSF) Φ(𝑥, 𝑦, 𝑧):87

𝑑𝐼 (𝑧) = −
{∬

Φ(𝑥, 𝑦, 𝑧)𝜇(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦
}
𝐼 (𝑧)𝑑𝑧. (3)

In Eq. (3), Φ(𝑥, 𝑦, 𝑧) can be interpreted as weights of the attenuation coefficients computed in the88

plane perpendicular to the propagation direction. The solution to Eq. (3) is:89

𝐼 (𝑧) = 𝐼0𝑒
−

∫ 𝑧

0 {
∬

Φ(𝑥,𝑦,𝑧′ )𝜇 (𝑥,𝑦,𝑧′ )𝑑𝑥𝑑𝑦}𝑑𝑧′ , (4)

with 𝐼0 the intensity measured without an object. This results in the following transmission 𝑇 :90

𝑇 =
𝐼

𝐼0
= 𝑒−

∫
Φ(𝑥,𝑦,𝑧)𝜇 (𝑥,𝑦,𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 . (5)

Using Eq. (5), we construct a modified Radon transform for the beam propagating in the (𝑥, 𝑦)91

plane:92

𝑝𝜃 (𝜌, ℎ) =
∭

Φ(𝜌 − 𝑥 cos 𝜃 − 𝑦 sin 𝜃,−𝑥 sin 𝜃 + 𝑦 cos 𝜃, ℎ − 𝑧)𝜇(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧, (6)

which we further refer to as the THz Radon transform. Here, Φ𝜃 is the light distribution Φ93

translated and rotated in the same manner as the beam would be in the measurement. Eq. (6) can94

be rewritten as a 2D convolution, perpendicular to the propagation direction [23]:95

𝑝𝜃 (𝜌, ℎ) =
∭

𝜇 ∗Φ𝜃 (𝑥, 𝑦, 𝑧)𝛿(ℎ − 𝑧)𝛿(𝜌 − 𝑥 cos 𝜃 − 𝑦 sin 𝜃)𝑑𝑥𝑑𝑦𝑑𝑧, (7)

with Φ𝜃 (𝑥, 𝑦, 𝑧) the rotated beam PSF. The intensity profile of the beam in THz imaging is96

typically approximated with a Gaussian distribution [23]:97

Φ(𝑥, 𝑦, 𝑧) = 2
𝜋

1
𝑤2 (𝑦)

𝑒
− 2(𝑥2+𝑧2 )

𝑤2 (𝑦) (8)

with 𝑦 the axial distance from the beam focus. The function 𝑤(𝑦) represents the beam width and98

is given by:99

𝑤(𝑦) = 𝑤0

√︄
1 +

(
𝑦

𝑧𝑅

)2
(9)

with 𝑤0 = 𝑤(0) the beam waist’s radius, 𝑧𝑅 the Rayleigh range (𝑧𝑅 =
𝜋𝑤2

0
𝜆

) and 𝜆 the wavelength100

of the beam. In the case 𝜇(𝑥, 𝑦, 𝑧) is constant in the 𝑧-direction, using the following definition:101

Φ2𝐷 (𝑥, 𝑦) =
∫

Φ(𝑥, 𝑦, 𝑧)𝑑𝑧 =
√︂

2
𝜋

1
𝑤(𝑦) 𝑒

− 2𝑥2
𝑤2 (𝑦) , (10)

and rotating it over an angle 𝜃:102

Φ2𝐷
𝜃 (𝑥, 𝑦) =

√︂
2
𝜋

1
𝑤 (−𝑥 sin 𝜃 + 𝑦 cos 𝜃) 𝑒

− 2(𝑥 cos 𝜃+𝑦 sin 𝜃 )2
𝑤2 (−𝑥 sin 𝜃+𝑦 cos 𝜃 ) , (11)

Eq. (7) turns into a 2D transform:103

𝑝𝜃 (𝜌) =
∬

𝜇 ∗Φ2𝐷
𝜃 (𝑥, 𝑦)𝛿(𝜌 − 𝑥 cos 𝜃 − 𝑦 sin 𝜃)𝑑𝑥𝑑𝑦, (12)



Fig. 1. Visualisation of the 2D THz Radon transform.The attenuation (right) is
convolved with the beam profile (left), and subsequently projected over an angle 𝜃.

with ∗ a 1D convolution perpendicular to the projection direction and Φ2𝐷
𝜃

the intensity profile104

rotated over an angle of 𝜃 which defines the projection direction (Fig. 1). Now that a model105

for the forward projection is defined, it is possible to describe a reconstruction method able to106

recover the original attenuation image 𝜇(𝑥, 𝑦) back from the projections 𝑝𝜃 (𝜌).107

To create a fast reconstruction method, a possible inverse of the 2D THz Radon transform needs to108

be considered first. In the infinite Rayleigh length limit, the width of the beam becomes constant:109

lim
𝑧𝑅→∞

Φ2𝐷 (𝑥, 𝑦) =
√︂

2
𝜋

1
𝑤0

𝑒
− 2𝑥2

𝑤2
0 = Φ2𝐷 (𝑥, 0) = Φ2𝐷

0 . (13)

Now that Φ2𝐷
0 is independent of 𝑦, Eq. (12) can be inverted as follows (formula derivation can be110

found in Appendix A):111

𝜇(𝑥, 𝑦) = 1
4𝜋2

∫ 𝜋

0

∫ +∞

−∞
|𝜔 |𝑒𝑖𝜔 (𝑥 cos 𝜃+𝑦 sin 𝜃 ) F [𝑝𝜃 (𝜌)] (𝜔)

F [Φ2𝐷
0 ] (𝜔)

𝑑𝜔𝑑𝜃, (14)

where F [·] represents the Fourier transform. Eq. (14) can be rewritten in the form of the inverse112

Radon transform, also known as the filtered back projection (FBP) [26]. In this case, 𝑝𝜃 (𝜌) is113

first deconvolved with Φ2𝐷
0 , resulting in 𝑝′

𝜃
(𝜌′):114

𝑝′𝜃 (𝜌′) =
1

2𝜋

∫
𝑒𝑖𝜌

′𝜈

∫
𝑝𝜃 (𝜌)𝑒−𝑖𝜈𝜌𝑑𝜌∫

Φ2𝐷
0 (𝑥′)𝑒−𝑖𝜈𝑥′𝑑𝑥′

𝑑𝜈 (15)

Then, FBP can be applied to reconstruct 𝜇(𝑥, 𝑦):115

𝜇(𝑥, 𝑦) = 1
4𝜋2

∫ 𝜋

0

∫ +∞

−∞
|𝜔 |𝑒𝑖𝜔 (𝑥 cos 𝜃+𝑦 sin 𝜃 )F [𝑝′𝜃 (𝜌′)] (𝜔)𝑑𝜔𝑑𝜃. (16)

In practice, to achieve the highest possible resolution, the beam is focused on a sample, resulting116

in a finite value for 𝑧𝑅. In this case, Eq. (14) is not the inversion of Eq. (12). Although the117

inverse of Eq. (12) cannot be found, it is still possible to retrieve the transposed of Eq. (12) which118

corresponds to the back-projection operator of the system. The latter can be leveraged in an119

iterative reconstruction, allowing for 𝑧𝑅 to be of arbitrary value. Hence we will resort to this type120

of reconstruction technique instead. Acquiring Eq. (16) was not in vain though, as it showcases a121

way of rearranging the forward projection into a combination of sparse matrices. This results in122

a dramatic reduction of memory consumption, and henceforth will be used in the next section123

when constructing the iterative reconstruction techniques.”124

2.2 Efficient iterative reconstruction125

As for the conventional Radon transform, Eq. (12) can be rewriten as a system of linear equations:126

𝒑 = 𝑾𝒙, (17)



with 𝒑 the vector of projection pixels, i.e., the discretized version of 𝑝𝜃 (𝜌), 𝑾 the system matrix127

and 𝒙 the vector of image pixels, i.e., the discretized scalar field of the attenuation coefficient128

𝜇(𝑥, 𝑦). However, unlike in the conventional forward projection model, the system matrix 𝑾 is129

no longer sparse, which makes it unfeasible to store in the computer memory. Besides, the system130

in Eq. (17) has a high condition number, resulting in a low convergence rate. With the goal of131

solving the dense system matrix problem, we first prove that the transformation represented by132

𝑾 can be rewritten as a combination of three transformations: a convolution 𝑪 with Φ2𝐷
0 , the133

Radon transform 𝑾𝑅, and an additional correction matrix (𝑯x or 𝑯p) applied to either the image134

pixels 𝒙, or to the projection pixels projected with the Radon transform 𝑾𝑅:135

𝑾𝒙=𝑪𝑾R(𝑯x𝒙) = 𝑪𝑯p(𝑾R𝒙). (18)

Splitting 𝑾 into three sparse matrices greatly reduces the amount of memory needed for136

calculations. The system in Eq. (18) can be solved by any preferred iterative reconstruction. In137

this paper, we applied gradient descend with the step size 𝛾𝑘 chosen by the Barzilai–Borwein138

method [27]:139

𝒙𝑘+1 = 𝒙𝑘 + 𝛾𝑘𝑾
𝑇

(
𝒑 −𝑾𝒙𝑘

)
. (19)

Depending on how the correction matrix is defined, we describe two iterative solutions in the140

following sections.141

2.2.1 Definition of the correction matrix142

Applying the correction matrix 𝑯x to the image pixels 𝒙 results in the following linear system:143

𝑾𝒙=𝑪𝑾R(𝑯x𝒙) = 𝒑. (20)

Let ℎ(𝑥, 𝑦) be the solution in the constant beam limit, i.e., the result of FBP from Eq. (16), i.e.,144

𝒉 = 𝑯𝑥𝒙. The linear relation ℎ(𝑥, 𝑦) = 𝐻𝑥𝜇(𝑥, 𝑦), with 𝐻𝑥 (·) the transformation that links145

ℎ(𝑥, 𝑦) and 𝜇(𝑥, 𝑦), can then be expressed as follows:146

ℎ(𝑥, 𝑦) =
√︂

2
𝜋

𝑧𝑅

𝑤0

+∞∬
−∞

𝛿(𝑦′ (𝑦′ − 𝑦) + 𝑥′ (𝑥′ − 𝑥))𝑒
−

2𝑧2
𝑅
(𝑥−𝑥′ )2

𝑤2
0 𝑦′2 𝜇(𝑥′, 𝑦′)𝑑𝑥′𝑑𝑦′. (21)

We will further refer the solution of the system in Eq. (20) as the Reconstruction with Image147

Space Correction (RISC).148

A second option for defining the system in Eq. (17) is by using the correction matrix 𝑯𝑝:149

𝑾𝒙=𝑪𝑯p(𝑾R𝒙) = 𝒑. (22)

To derive 𝑯𝑝 , we begin with rewriting Eq. (10) as follows:150

Φ2𝐷 (𝑥, 𝑦) =
∫ +∞

−∞

∫ +∞

−∞
𝑁1 (𝑎)𝑁2 (𝑏)𝛿(𝑥 − 𝑎𝑦 − 𝑏)𝑑𝑎𝑑𝑏 (23)

with 𝑁1 (𝑎) = 1√
2𝜋𝜎𝑎

𝑒
− 𝑎2

2𝜎2
𝑎 and 𝑁2 (𝑏) = 1√

2𝜋𝜎𝑏

𝑒
− 𝑏2

2𝜎2
𝑏 two normal distributions. By setting151

𝜎𝑎 =
𝑤0
2𝑧𝑅 and 𝜎𝑏 =

𝑤0
2 , Φ2𝐷 (𝑥, 𝑦) in Eq. (23) becomes equal to the one defined in Eq. (10).152

Hence, Eq. (7) can be rewritten as a sum of line integrals:153

𝑝𝜃 (𝜌) =
∬

𝑁1 (𝑎)𝑁2 (𝑏)
1

√
𝑎2 + 1

𝑑𝑎𝑑𝑏

∫
𝐿

𝜇(r)𝑑𝑠 (24)

The path r(𝑠) can be described by: r(𝑠) =
(
𝑠, 𝑎 sin 𝜃+cos 𝜃

𝑎 cos 𝜃−sin 𝜃
𝑠 − 𝑏+𝜌

𝑎 cos 𝜃−sin 𝜃

)
.154



By defining 𝑞𝜑 (𝑡) as the Radon transform of 𝜇(𝑥, 𝑦):155

𝑞𝜑 (𝑡) =
∬

𝜇(𝑥, 𝑦)𝛿 (cos(𝜑)𝑥 + sin(𝜑)𝑦 − 𝑡) 𝑑𝑥𝑑𝑦, (25)

and applying 𝑝′
𝜃
(𝜌) from Eq. (15), Eq. (24) can be rewritten as follows:156

𝑝′𝜃 =

∫ 𝜋
2

− +𝜋
2

∫ +∞

−∞

𝑁1 (tan(𝜃 − 𝜑))
| cos(𝜃 − 𝜑) | 𝛿 (𝑡 − 𝜌 | cos(𝜃 − 𝜑) |) 𝑞𝜑 (𝑡)𝑑𝑡𝑑𝜑. (26)

The transformation in Eq. (26) applied to 𝑞𝜑 (𝑡) defines the desired matrix 𝑯𝑝 . We will further157

refer the solution of the system in Eq. (22) as Reconstruction with Sinogram Space Correction158

(RSSC).159

2.2.2 Improving convergence by applying a preconditioner160

To solve the problem of slow convergence of directly applied gradient descend to solve either161

Eq. (20) or Eq. (22), the inverted matrices 𝑾−1
R and 𝑪−1 can be applied as preconditioners to162

the systems in Eq. (20) or Eq. (22). Applying 𝑪−1 as the preconditioner to Eq. (20) gives the163

following system of linear equations:164

𝑾𝑅𝑯𝑥𝒙 = 𝑪−1 𝒑. (27)

We will refer the solution of Eq. (27) as RISC with preconditoner (RISC-P).165

Applying 𝑾−1
R 𝑪−1 as the preconditioner to Eq. (20) is equivalent to first applying Eq. (16). In166

this case only 𝑯𝑥 is needed for iterative reconstruction of 𝒙, resulting in the following system:167

𝑯x𝒙=𝑾−1
R 𝑪−1 𝒑 (28)

The system in Eq. (28) demonstrated fast convergence, but severe artifacts in the resulting168

reconstructed image exclude it from further consideration [28].169

𝑪−1 can also be applied as the preconditioner to Eq. (22), resulting in the following system:170

𝑯p𝑾R𝒙=𝑪-1 𝒑. (29)

The solution of Eq. (29) will be referred as RSSC with preconditoner (RSSC-P).171

2.3 Experiments172

2.3.1 Simulated CT data173

To study the reconstruction quality and convergence speed of the proposed methods, two phantoms174

of size 200 × 200 pixels each were generated (see Fig. 2). The two phantoms are designed175

to uncover potential reconstruction artifacts. Both phantoms are binary images, with black176

corresponding to 0 and white - to 1. First, the 2D THz Radon transform was applied to both177

phantoms to generate the sinograms 𝑝𝜃 (𝜌) with 250 angles spreading from 0 to 180 degrees.178

For the beam PSF, a Gaussian beam with frequency 500 GHz and 𝑤0 = 3 mm was chosen. Next,179

the simulated sinograms were applied as input data for the conventional FBP, as well as for all180

four proposed iterative reconstruction methods from section 2.2. To quantify the reconstruction181

quality, the reconstructed images were compared to the original phantoms by applying two182

metrics: the mean squared error (MSE) and the structural similarity index measure (SSIM) [29].183

The convergence of the proposed iterative reconstructions is studied by tracking the MSE value184

over a sufficiently high number of iterations.185



(a) (b) (c) (d)

Fig. 2. (a-b) Simulated experiment phantoms, (c-d) and their 2D THz sinograms.

Fig. 3. THz CT system: Tx - THz transmitter, Rx - THz receiver, 1,3 - collimating
mirrors, 2, 4 - focusing mirrors, 5 - XYZ-stage, 6 - rotation stage, 7 - foam sample.

2.3.2 Experimental setup for THz CT186

All THz CT data was acquired with a THz set up suitable for raster scanning CT (see Fig. 3), based187

on the TeraScan 1550 Toptica system [30]. THz radiation is generated with two near-IR lasers188

and a photomixer based on an InGaAs photodiode. This is achieved by optical heterodyining two189

lasers into continuous wave (CW) THz radiation, exactly at the frequency difference of the lasers.190

Another InGaAs photomixer serves as a terahertz receiver, allowing for coherent lock-in detection191

of the photocurrent [30]. The resulting cone beam of THz light generated at the transmitter is192

focused on the sample to ensure the highest possible resolution. The transmitted light is then193

focused onto the receiver that represents a single pixel of the acquired image. The setup requires194

a combination of four precisely aligned off-axis parabolic mirrors that perform both collimation195

and focusing of the THz beam. In Fig. 3, the reflected focal length (RFL) for mirrors 1 and 4 is 2196

inches, and 4 inches for mirrors 2 and 3. The three translation stages combined with the rotation197

stage enable us to perform CT acquisitions. The system is equipped with the Phase Modulation198

extension of Toptica [31] that allows for fast signal amplitude and phase retrieval for every pixel.199



The photocurrent detected at the receiver is proportional to the THz field amplitude:200

𝐼𝑅𝑥 ∝ 𝐸𝑇𝐻𝑧 cos
(
2𝜋𝜈
𝑐

Δ𝐿

)
= 𝐸𝑇𝐻𝑧𝑅𝑒(𝑒𝑖𝑘Δ𝐿), (30)

where 𝑐 is the speed of light, 𝜈 is the THz frequency, 𝑘 = 2𝜋𝜈
𝑐

the wave number, and Δ𝐿 is the201

optical path difference between the receiver and transmitter arms. In our setup, the phase of202

𝐼𝑅𝑥 is modulated with Δ𝐿 by changing the fiber arms in the fiber stretcher [31], allowing us to203

measure the amplitude and phase of 𝐼𝑅𝑥 for every pixel.204

Absorption and refraction can be taken into account simultaneously by defining a complex205

refractive index 𝑛 = 𝑛 + 𝑖𝜅. In case the beam passes through a sample with a refractive index 𝑛206

for a distance 𝑑, the optical path difference is expected to change as follows:207

Δ𝐿 → Δ𝐿 −
∫
𝑑

𝑛
𝑎𝑖𝑟

𝑑𝑧 +
∫
𝑑

𝑛𝑑𝑧 ≈ Δ𝐿 − 𝑑 +
∫
𝑑

(𝑛 + 𝑖𝜅)𝑑𝑧, (31)

where we assume 𝑛
𝑎𝑖𝑟

≈ 1. Thus by adding the sample to the setup, the measured photocurrent208

is changed to:209

𝐼𝑅𝑥 ∝ 𝐸𝑇𝐻𝑧𝑅𝑒(𝑒𝑖𝑘 (Δ𝐿−𝑑)𝑒𝑖𝑘
∫
𝑑
(𝑛+𝑖𝜅 )𝑑𝑧) = 𝐸𝑇𝐻𝑧𝑒

− 1
2
∫
𝑑
𝜇𝑑𝑧 cos

(
𝑘Δ𝐿 + 𝑘

∫
𝑑

(𝑛 − 1)𝑑𝑧
)
, (32)

where the known correlation 𝜇 = 2𝑘𝜅 between the attenuation coefficient 𝜇 and the imaginary210

part of refractive index 𝜅 was used [15]. Hence, the following transmission 𝑇 and phase contrast211

ΔΦ can be extracted for every pixel:212

𝑇 =

(
𝐸𝑇𝐻𝑧𝑒

− 1
2
∫
𝑑
𝜇𝑑𝑧

𝐸𝑇𝐻𝑧

)2

= 𝑒−
∫
𝑑
𝜇𝑑𝑧 , (33)

213

ΔΦ = 𝑘

∫
𝑑

(𝑛 − 1)𝑑𝑧 + 𝑚2𝜋, with 𝑚 ∈ Z, (34)

Note, that transmission in Eq. (33) matches the Beer-Lambert law, allowing us to compute the214

attenuation contrast. The refractive index can be retrieved from the phase contrast from Eq. (34).215

Applying the same logic as in section 2.1, the influence of the beam shape can be added to this216

model by approximating the path difference as follows:217

Δ𝐿 → Δ𝐿 − 𝑑 +
∫
𝑑

{∬
Φ(𝑥, 𝑦, 𝑧) (𝑛(𝑥, 𝑦, 𝑧) + 𝑖𝜅(𝑥, 𝑦, 𝑧))𝑑𝑥𝑑𝑦

}
𝑑𝑧, (35)

resulting in the following transmission and phase contrast:218

𝑇 = 𝑒−
∫
Φ(𝑥,𝑦)𝜇 (𝑥,𝑦)𝑑𝑥𝑑𝑦

ΔΦ = 𝑘

∫
Φ(𝑥, 𝑦) (𝑛(𝑥, 𝑦) − 1)𝑑𝑥𝑑𝑦 + 𝑚2𝜋 with 𝑚 ∈ Z,

(36)

Eq. (36) allows us to apply the iterative reconstruction methods described in 2.2.219

2.3.3 THz data acquisition and processing220

In this paper, we focus only on minimizing CT reconstruction artifacts caused by the THz beam221

shape, neglecting any other phenomena. However, reflections and refraction can be very strong222

in the THz domain for most dielectric materials, which makes the choice for a proper sample a223



(a) (b) (c)

Fig. 4. 2D sinograms of the sample: (a) X-ray attenuation contrast, (b) THz attenuation
contrast. (c) THz phase contrast.

challenging problem. Ideally, the sample should cause only beam attenuation, and no refraction224

at all. The tested sample for this work is made of polyethylene packaging foam, which has the225

desired properties, thanks to its low density. The sample has a cuboid shape with a side of ca. 20226

mm and a through hole of ca. 7 mm. To acquire THz CT data of the sample, it was scanned in227

the THz system described in section 2.3.2 at 500 GHz, which corresponds to the wavelength of228

ca. 0.6 mm, resulting in 2D sinograms of the attenuation and phase contrast (Fig. 4). The beam229

width and Rayleigh length of the beam were determined to be equal to 𝑤0 = 3.34 mm and 𝑧𝑅 =230

58.50 mm respectively for these measurements.231

To validate and test our reconstruction algorithms, we compare results of iterative THz recon-232

structions with the reference 2D reconstruction of the sample, which was extracted from a high233

resolution 3D X-ray image acquired in a FleXCT system [32] (see Fig. 5a). To this end, a weighted234

average 𝜇(𝑥, 𝑦) of the 3D image 𝜇3𝐷 (𝑥, 𝑦, 𝑧) along the vertical direction was computed, with235

weights that correspond to a Gaussian beam profile at the focal point (Fig. 5c):236

𝜇(𝑥, 𝑦) =
∫ ∞

−∞

√︂
2

𝜋𝑤0
𝑒
−2

(𝑧−𝑧 𝑓 𝑝 )2

𝑤2
0 𝜇3𝐷 (𝑥, 𝑦, 𝑧)𝑑𝑧 (37)

with 𝑧 𝑓 𝑝 the z-coordinate of the focal point. The resulting 2D reference image of 𝜇(𝑥, 𝑦) is237

shown in Fig. 5f.238

3 Results and discussion239

3.1 Simulated data240

The qualitative results of all proposed reconstructions are shown in Fig. 6 for the circles phantom,241

and in Fig. 7 for the spider web phantom. For both phantoms, the gradient descent was performed242

for 3000 iterations to output the final image. The quantitative comparison of the reconstructions243

in Fig. 6 and Fig. 7 is presented in Table 1.244

A noticeable aspect when comparing the two reconstruction options RISC and RSSC is the245

appearance of a black spot in the center of the image for RISC and RISC-P. This is caused by246

the approximations made by discretizing 𝐻𝑥 , which is not present in RSSC. The discretization247

𝐻𝑝 does not cause such artifacts (Fig. 7) and thus RSSC-P result in better reconstruction. The248

difference between RISC and RSSC is small, in terms of the mean squared error and SSIM, but249

RSSC removes the centre artifact, resulting in a straight upgrade compared to RISC. We conclude250

that RSSC-P is the method of choice for fast accurate reconstruction.251

To quantify the convergence rates, the condition numbers were calculated for RISC and RISC-P252

for 𝒙 of size 50 × 50 × 50, which a forward projection of the 50 × 50 pixels image and with 50253

projection angles. The condition numbers 𝜅𝑅𝐼𝑆𝐶 = 4.4·1017 and 𝜅𝑅𝐼𝑆𝐶−𝑃 = 2.0·1010 clearly254

demonstrate the advantage of applying the preconditioner in RISC-P. In Fig. 8, the convergence255



(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) Experimental sample inside the FleXCT system and (d) its top view, (b)
X-ray 3D image of the sample in the isometric view and (e) top view, (c) side view of
the 3D X-ray image with the visualisation of weighted summation (red), (f) and the
reference 2D X-ray reconstruction.

(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) Circles phantom, and its reconstructions with (d) conventional FBP, (b)
RISC and (c) RISC-P, (e), RSSC, (f), RSSC-P.

rate of the MSE is compared for the proposed gradient descent reconstructions. Using the256

preconditioner results in faster convergence for both systems RISC-P and RSSC-P, compared to257

their non-preconditioner versions. However, after executing gradient descent long enough for the258

non-preconditioner systems, the reconstructed images can be of a slightly higher quality than the259

ones reconstructed using their preconditioner versions Fig. 8b. So while RISC and RSSC have a260



(a) (b) (c)

(d) (e) (f)

Fig. 7. (a) Spider web phantom, and its reconstructions with (d) conventional FBP, (b)
RISC and (c) RISC-P, (e), RSSC, (f), RSSC-P.

(a) (b)

Fig. 8. The MSE in function of the iterations for (a) circles phantom and (b) spider web
phantom

slow convergence rate, because the inverted transformations never need to be approximated, they261

do give the most accurate results over a relatively high number of iterations.262

3.2 THz CT data263

Both attenuation and phase contrast sinograms were first reconstructed with Barzilai–Borwein264

gradient descent with the conventional 2D Radon transform as a forward projection model265

(see Fig.9a,b). Since the reconstruction from the attenuation contrast sinogram resulted in a266

significantly lower quality compared to the phase contrast reconstruction, we further focused on267

only the phase contrast reconstruction. This data was then applied as an input for the different268

gradient descent-based (Barzilai–Borwein method [27]) reconstruction techniques: RSSC, RSSC-269

P, and a conventional (no beam compensation) CT method (Fig. 9). The conventional CT method270

is referred to as "Conventional GD" in Fig. 10.271

To compare quantitatively using the X-ray reference image as the ground truth, the reference image272

was first transformed to match each reconstruction’s orientation, position and scale. Applying273



Method
Circles Spider web

MSE, ×10−4 SSIM MSE, ×10−4 SSIM

FBP 93.53 0.9332 9.46 0.5157

RISC 3.37 0.9749 1.48 0.8235

RISC-P 4.65 0.9831 1.19 0.8606

RSSC 6.00 0.9744 1.15 0.8608

RSSC-P 4.32 0.9831 0.93 0.8817

Table 1. Comparison of reconstructions on simulated data. For all iterative reconstruc-
tions, the gradient descent was performed for 500 iterations.

(a) (b) (c) (d)

Fig. 9. (a) Iterative reconstruction of the attenuation contrast without beam shape
compensation, (b) iterative reconstruction of the phase contrast without beam shape
compensation, reconstruction of the phase contrast with (c) RSSC, and (d) RSSC-P. For
all reconstructions, the gradient descent was performed for 3000 iterations.

Method MSE SSIM

Conventional method 4.0 · 10−6 0.9951

RSSC 2.1 · 10−6 0.9978

RSSC-P 2.8 · 10−6 0.9973

Table 2. Reconstruction quality of the phase contrast reconstructions after 50 iterations.

these affine transformations, the pixel values were mapped to the ones from the THz phase shift274

reconstruction. To evaluate the accuracy of our reconstruction methods the MSE and SSIM275

of each image are compared after 50 iterations (Table 2). The reconstruction progress of the276

different reconstruction methods is visible in Fig. 10, where the MSE is plotted in function of the277

iteration count.278

Our system does not take reflection and refraction losses into effect, which then will be wrongly279

interpreted as attenuation losses by the reconstruction algorithm. This explains the high280

attenuation prediction at the edges of the reconstruction. The refraction reconstruction is less281

effected by this phenomenon, because it is derived from phase contrast, not intensity loss.282

Comparing the different reconstruction methods on the phase contrast sinogram, it is clear that283

both beam compensation methods greatly improve the MSE and SSIM. In Fig. 10 it is clear that284

RSSC-P indeed converges more quickly compared to RSSC. It quickly loses its edge though285



Fig. 10. The MSE in function of the iteration count of the three gradient descent (GD)
iterative reconstructions. Conventional GD refers to a gradient descent without beam
shape compensation.

because of overfitting, which can be mitigated by regularization. This means that the best results286

are achieved by RSSC, which is also shown by comparing the SSIM at 50 iterations The MSE287

and SSIM values in case of reconstruction from experimental data over 50 iterations is noticeably288

smaller than for the reconstruction from simulated data over 500 iterations. This discrepancy can289

be explained by the fact that the simulated tests were applied to discrete phantoms.290

4 Conclusion291

In this paper, a generic iterative reconstruction approach, into which the beam shape can be292

incorporated, was introduced. It is based on a modified version of the Radon transform in293

which the projected volume is convolved with the beam point spread function. Unfortunately,294

introducing the system matrix representing this modified version of the Radon transform, demands295

an extreme amount of memory and results in slow convergence. To address the extreme memory296

consumption caused by the system matrix density, we proposed splitting it into three sparse297

matrices, representing the convolution with the constant beam, conventional Radon transform, and298

an additional correction operator. The split can be done in two ways, depending on whether the299

correction is applied in the image space, or the projection space. We described both options, and300

by applying a preconditioner, we managed to increase the convergence rates of the corresponding301

iterative reconstructions.302

The quality of the images reconstructed by the proposed methods was studied on both simulated303

and THz data, as well as the effects of applying the preconditioner on the reconstruction quality304

and convergence speed. The experiment on simulated data demonstrated improved sharpness305

in the reconstructed images. To validate and test our reconstruction algorithms on the THz306

data, measurements taken by a FleXCT system were considered as the ground truth. With307

the use of a THz set up, based on the TeraScan 1550 Toptica system, 2D sinograms of both308

attenuation and phase contrasts of a sample made of polyethylene foam were acquired. The309



latter of which, was then utilized in iterative reconstructions. Compensating for the beam shape,310

by applying our proposed reconstruction methods to the phase contrast sinogram, resulted in311

improved reconstruction accuracy both for MSE and SSIM. Applying the preconditioner to the312

THz data reconstruction, resulted in worse image quality, which, looking at the convergence313

rate, is clearly caused by overfitting. The reconstruction methods proposed in this paper are not314

limited to THz, but can be applied to any type of wide beam measurement.315
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Appendix A Derivation of the 2D THz Radon transform inversion330

For the constant beam case, Eq. (12) becomes:331

𝑝𝜃 (𝜌) =
∬

𝜇 ∗Φ2𝐷
𝜃 (𝑥, 0)𝛿(𝜌 − 𝑥 cos 𝜃 − 𝑦 sin 𝜃)𝑑𝑥𝑑𝑦.

(38)

This can then can be rewritten in the parameterized form:332

𝑝𝜃 (𝜌) =
∬

𝜇(𝑥 cos 𝜃 − 𝑦 sin 𝜃, 𝑥 sin 𝜃 + 𝑦 cos 𝜃)Φ2𝐷
0 (𝜌 − 𝑥)𝑑𝑥𝑑𝑦, (39)

and after applying the Fourier transform:333

F [𝑝𝜃 (𝜌)] (𝜔) =
∬ (∫

𝑒−𝑖𝜌𝜔𝜇(𝑥 cos 𝜃 − 𝑦 sin 𝜃, 𝑥 sin 𝜃 + 𝑦 cos 𝜃)Φ2𝐷
0 (𝜌 − 𝑥)𝑑𝜌

)
𝑑𝑥𝑑𝑦

=

∫ (∫
𝑒−𝑖𝑥𝜔𝜇(𝑥 cos 𝜃 − 𝑦 sin 𝜃, 𝑥 sin 𝜃 + 𝑦 cos 𝜃)𝑑𝑥

)
F [Φ2𝐷

0 (𝜌)] (𝜔)𝑑𝑦.
(40)

The Fourier transform F [Φ2𝐷
0 ] (𝜔), which is independent of the dummy variables 𝑥 and 𝑦, can334

be brought to the left side of the equal sign:335



F [𝑝𝜃 (𝜌)] (𝜔)
F [Φ2𝐷

0 ] (𝜔)
=

∬
𝑒−𝑖𝑥𝜔𝜇(𝑥 cos 𝜃 − 𝑦 sin 𝜃, 𝑥 sin 𝜃 + 𝑦 cos 𝜃)𝑑𝑥𝑑𝑦

=

∬
𝑒−𝑖 (𝑥 cos 𝜃+𝑦 sin 𝜃 )𝜔𝜇(𝑥, 𝑦)𝑑𝑥𝑑𝑦.

(41)

Now it can easily be proven, that Eq. (14), indeed results in a formula for 𝜇(𝑥, 𝑦):336 ∫ 𝜋

0

∫ +∞

−∞

|𝜔 |
4𝜋2 𝑒

𝑖𝜔 (𝑥′ cos 𝜃+𝑦′ sin 𝜃 ) F [𝑝𝜃 (𝜌)] (𝜔)
F [Φ2𝐷

0 ] (𝜔)
𝑑𝜔𝑑𝜃

=
1

4𝜋2

∫ 𝜋

0

∫ +∞

−∞

(∬
|𝜔|𝜇𝑒−𝑖 (𝑥−𝑥′ )𝜔 cos 𝜃+(𝑦−𝑦′ ) sin 𝜔𝜃𝑑𝑥𝑑𝑦

)
𝑑𝜔𝑑𝜃.

(42)

As a last step, we substitute 𝜂 = 𝜔 cos 𝜃 and 𝜁 = 𝜔 sin 𝜃:337 ∫ 𝜋

0

∫ +∞

−∞

|𝜔 |
4𝜋2 𝑒

𝑖𝜔 (𝑥′ cos 𝜃+𝑦′ sin 𝜃 ) F [𝑝𝜃 (𝜌)] (𝜔)
F [Φ2𝐷

0 ] (𝜔)
𝑑𝜔𝑑𝜃

=
1

4𝜋2

∬ (∬
𝜇𝑒−𝑖 (𝑥−𝑥

′ )𝜂+(𝑦−𝑦′ )𝜁 𝑑𝑥𝑑𝑦

)
𝑑𝜂𝑑𝜁 = 𝜇(𝑥′, 𝑦′),

(43)
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