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ABSTRACT Terahertz (THz) pulse/time-domain imaging attracted increased interest in recent years mostly
due to its ability to extract dielectric properties of sample materials (i.e., absorption coefficient and the
refraction index) from the amplitude and phase of each spectral component of the THz pulse. The resulting
data from a THz time-domain system represents a 3-dimensional (3D) hyperspectral cube which contains
several 2D images corresponding to different frequencies or bands. Due to a frequency-dependent non-
zero THz beam waist, these 2D images are corrupted by blurring artifacts: a THz beam waist is wider on
lower frequencies leading to more blurry corresponding 2D images. At higher frequencies, the beam waist
is smaller resulting in sharper, but noisier images due to the decrease in the THz signal amplitude. The main
focus of this work is the joint reduction of blur and noise from THz time-domain images. We propose two
instances of a fast joint deblurring and denoising approach which is able to deal with THz time-domain
images corrupted by different noise types and frequency-dependent blur. The experiments performed on
synthetic and real THz time-domain images show that the proposed approach outperforms conventional
2D deblurring approaches and methods tailored to remote sensing hyperspectral images. To the best of our
knowledge, this is the first time that a joint deblurring and denoising approach tailored to THz time-domain
images is proposed taking into consideration band-dependent blur and different noise types.

INDEX TERMS Deblurring, denoising, THz imaging, THz-TDS.

I. INTRODUCTION
The terahertz (THz) region of the electromagnetic spectrum
lies between 0.1 and 10 THz. In the past, this region, a so-
called THz gap, which is located in between the microwave
and the infrared band, was mostly neglected due to lack of
inexpensive sources and detectors [1]. Nevertheless, in recent
years, scientists from both electronics and optics pioneered
many new THz techniques and systems enabling faster
growth of the THz scientific field. This rapid growth is mostly
due to immense progress in THz sources development [2] and
the fact that the non-ionizing THz radiation, able to penetrate
dialectic materials, is used inmany applications (e.g., security
[3], conservation of cultural heritage [4], and medicine [5]).

In this work, we are focused on a pulsed/time-domain THz
imaging system in the transmission mode (the THz beam
is transmitted through the sample). The THz time-domain
spectroscopy (THz-TDS), a technique primarily developed
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for spectroscopy, has a huge impact on THz imaging [6]. A
typical THz-TDS system contains a sub-picosecond pulsed
laser followed by an antenna. The laser generates a sequence
of pulses used to both generate and detect the THz radiation.
A THz detector receives the THz radiation only for a short
period of time, sampling the THz field at various delays. The
structure of a THz-TDS system (i.e., a THz detector usually
has a one (or few)-pixel structure [7], [8]) and the THz pulse
generation procedure lead to measuring the THz electric field
as a function of time, acquiring both amplitude and phase
of detected pulses. For imaging applications, a THz pulse
corresponding to a single pixel is transformed into a fre-
quency domain by applying the Fourier transform: every pixel
contains a complete THz time-domain waveform containing
both the amplitude and the phase. Moreover, to be suitable for
imaging, a THz-TDS system contains a set of focusing optics
which increases the spatial resolution. The resulting data
from a THz-TDS system represents a 3-dimensional (3D)
hyperspectral cube which contains several two-dimensional
(2D) images corresponding to different frequencies or bands.
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FIGURE 1. THz-TDS system in the transmittance mode.

Here, we are focused to exploiting imaging possibili-
ties when working with THz time-domain hyperspectral
(THz-HS) images.

There are many advantages of THz-TDS imaging. To name
only a few: (i) THz-TDS has the ability to measure both the
spectral amplitude, which is related to absorption of the sam-
ple, and phase, which relates to the sample thickness and den-
sity. The goal is to extract dielectric properties of the sample
material (the absorption coefficient and the index of refrac-
tion) from the amplitude and phase of each spectral compo-
nent in the THz pulse. (ii) The THz radiation generated by
THz-TDS has a broad bandwidth (e.g., from 0.076 to 2 THz)
used for spectroscopy asmanymaterials have a unique finger-
print in the THz range [9]. iii) Additionally, we may choose
to calculate a transmittance and phase-difference image by
measuring a reference background by leaving the optical
path open. An illustration of a simplified THz system in the
transmission mode is shown in Figure 1.
The focal spot of the THz beam has a complex structure

depending on a system design, focusing optics, and system
frequencies. Namely, a THz beam waist (minimum beam
radius) is wider at lower frequencies resulting in blurrier
images. Contrary to that, at higher frequencies, we have a
smaller beam waist and thus sharper images that are noisier
since these images have lower amplitudes. Figure 2 shows
three bands of THz-HS amplitude and phase images with
the above-mentioned effects of blur and noise visible in the
amplitude image. We assume that every pixel in the resulting
image is blurred following a point-spread function (PSF)
which represents an intersection of the THz beam on a fixed
frequency in the sample position. Further, the THz-HS phase
image (Figure 2 bottom row) shows different characteristics
compared to the amplitude image: on some frequencies (e.g.,
1.1368 THz), the structure and thickness of the leaf are more
visible. The leaf was inserted in a black envelope prior to
scanning and even if the envelope is made from a thin paper,
we can see a clear difference in phase in the THz-HS phase
image (the yellow stripe on the right-hand side).

The main focus of this work is jointly removing blur and
noise from THz-HS amplitude and transmittance images.
To jointly deblur and denoise THz-HS images, we exploit

FIGURE 2. The THz-HS amplitude image (upper row) and phase image
(bottom row) of a leaf at three different frequencies.

sparse HS image representations linked with their low-rank
and self-similarity characteristics. Additionally, 2D images
corresponding to one band are small in size (e.g., 41 × 61
pixels) compared to the PSF (e.g., 20 × 20 pixels) and not
governed by similar statistics as in natural images. Thismakes
the use of standard deblurring approaches to deblur THz-
HS images difficult as these approaches are mostly tailored
to natural or remote sensing images. Nevertheless, success-
ful restoration of all bands of THz-HS images represents a
huge impact on the non-destructive analysis of samples that
contain multiple materials sometimes visible in different THz
frequency ranges.

A. RELATED WORK
In recent years, several methods are proposed to deal with
the above-mentioned blurring effects and increase the res-
olution of, mostly, 2D THz images. The authors of [10]
tested several well-know super-resolution approaches applied
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to THz images, such as projection on a convex set, iter-
ative backprojection, Richardson-Lucy deblurring method
[11], [12], and 2D wavelet decomposition reconstruction.
These approaches are mainly developed for natural images
and tested on THz images without additional adjustments,
thus leading to limited performance. Other methods consider
removing the blurring effects from THz images tailored to
a specific application, such as THz computed tomography
(CT) [13]. Here, the authors extend three well-known CT
reconstruction approaches (i.e., back-projection of filtered
projections, simultaneous algebraic reconstruction technique,
and ordered subsets expectation-maximization) by introduc-
ing a convolution filter which corresponds to a THz beam.
The method first introduces the acquisition simulator to esti-
mate the impact of the THz beam profile on the projection
sets. Furthermore, they remove the impact of the THz beam
(i.e., convolution filter) by employing Wiener deconvolution
[14]. In [15], the authors use a specially designed phantom
to estimate the THz beam profile (i.e., PSF) related to a 2D
image which corresponds to a fixed THz frequency and then
employs Wiener deconvolution to remove its effect.

The recent progress in deep learning and neural net-
works (NN) inspired several papers for single THz image
deblurring [16] and super-resolution [17], [18]. These
methods use synthesized data to train NNs. One of the main
limitations of NN-based methods is the requirement of a
large number of THz images for training which is challeng-
ing to obtain. The one-pixel acquisition procedure is time-
consuming: for instance, it takes around 2h for obtaining
50× 50× 263 pixels image with the 0.2 mm acquisition step
size. Moreover, raw THz images are corrupted by system-
dependent blur and noise that is not possible to remove dur-
ing the acquisition and reflection/refraction artifacts that are
challenging to synthesize.

As previously explained, THz-HS images contain several
bands corresponding to different frequencies (e.g., the leaf
image dataset from Figure 2 has 263 bands). Therefore, next
to the 2D deblurring methods applied to separate bands,
it is natural to explore denoising, deblurring, and super-
resolution approaches that consider bands of THz-HS images
jointly. In the past, many methods have been developed to
tackle these problems present in remote sensing HS images
[19]–[22]. Low-rank and self-similarity characteristics of
HS images inspired development of several state-of-the-art
denoising methods [20], [21]. Moreover, some methods deal
with HS image deblurring as part of other problems, such
as segmentation [23] or unmixing [24]. Others are com-
bining low-resolution HS images with high-resolution mul-
tispectral images to tackle the HS image super-resolution
problem [25]. In [22], the authors proposed joint deblur-
ring and denoising approach for HS images based on prin-
cipal component analysis (PCA) and total variation (TV).
They first employ dimensionality reduction using PCA fol-
lowed by image restoration applied to a few HS image-
bands. This approach combined with the methods exploiting
low-rank and self-similarity characteristics inspired us to

propose a joint denoising and deblurring method for THz-HS
images.

Nevertheless, all the above mentioned HS image deblur-
ring methods assume the same blurring effects over bands,
an assumption that does not hold for THz-HS images. Here,
the blurring effects, and therefore PSF, strongly depend on
frequencies that are changing over bands. In order to tackle
this challenge, we developed a method which contains sev-
eral steps: i) we first assume that HS images live in a
k-dimensional subspace, where k is much lower than the
number of bands; ii) we project the original HS images into
this subspace and perform denoising and deblurring only on
the projected HS image; iii) finally, we reconstruct the sharp
image by returning it into the original domain. This approach
is a straightforward extension of the so-called FastHyDe
method introduced in [21]. There are two main differences
between FastHyDe and the proposed method: 1) we added a
deblurring step and 2) we are considering different PSFs for
different bands in the projected HS image.

B. CONTRIBUTIONS
Most of HS image denoising and deblurringmethods are slow
as they are usually reconstructing bands separately. In our
work, we take full advantage of the high spectral correlation
in the images to create a fast joint deblurring and denoising
method:

1) We perform band by band deblurring and denoising
only on the projected data which have k bands (e.g., in our
implementation k = 10 which is much lower than origi-
nal 263 bands), making the proposed approach significantly
faster.

2) We are performing deblurring and denoising jointly:
by projecting HS images into low-dimensional subspace,
we remove a bulk of noise, making band by band deblurring
much easier as noise is mostly removed.

3) We are considering different blur and noise over bands
and therefore, we are able to tackle challenging real THz-HS
images.

4) We are able to deal with three noise types: Gaussian
i.i.d., Gaussian non-i.i.d., and Poissonian noise. We assume
these noise types tomake the proposedmethodmore robust as
THz-HS images in practice may be corrupted by noise from
several sources [26]. With this assumption, we can restore
both amplitude and transmittance THz-HS images.

5) We extended a deblurring method based on the well-
known PCA and TV approaches, originally developed for
remote sensingHS images [22] for tackling THz time-domain
images.

To the best of our knowledge, this is the first time that a
joint deblurring and denoising approach tailored to THz-HS
images is proposed taking into consideration band-dependent
blur and different noise types.

C. OUTLINE
In Section II, we briefly describe the THz beam modelling
procedure. Section III reviews the FastHyDe method and
introduces two instances of the proposed framework tailored
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FIGURE 3. Measured THz beam profile: A - measured PSF on 0.76 THz
with A1 and A2 representing 2D Gaussian distribution in two directions; B
- fitted Gaussian distribution.

to three noise types. After presenting the proposed frame-
work, in Sections IV and V we evaluate it on synthetic and
real data respectively. Section VI concludes the manuscript
and introduces the future work.

II. BEAM MODELLING
As previously explained, a THz beam has a non-zero beam
waist and therefore introduces blurring effects in the result-
ing THz images. In order to remove these effects, in this work,
we assume to know a THz beam shape and therefore, PSF in
the position of a scanned sample. We follow the general beam
modelling formulation where the THz beam is modelled as
a Gaussian distribution parametrized by a beam waist and a
frequency or wavelength [13]. Here, the radius of the beam at
some position x from the beam waist w0 is

w(x) = w0

√
1+ (

x
xR

)2, (1)

where xR =
πw2

0
λ

is the Rayleigh range with λ representing a
wavelength. Moreover, the intensity distribution over cross-
section in 3D is modelled as

I (x, y, z) = I0(
w0

w(x)
)2exp(

−2(y2 + z2)
w2(x)

), (2)

with I0 as the beam intensity at the center of w0 and y and z
as distances from the beam axes in two directions.

To check the Gaussian beam assumption, we measured
a THz beam and a beam profile at different frequencies.
Measuring is done with a 3 mm aperture moved with a 1 mm
step. Scanning square was set to 2cm× 2cm. Figure 3 shows
a measured PSF on 0.76 THz (on the left side) and fitted
Gaussian distribution (on the right side).

From (2), it is clear that several parameters define a THz
beam: the wavelength (λ), the beam waist (w0), and the
intensity of the beam at w0 (I0). We can set these parameters
to control a PSF model which represents an intersection
of the 3D THz beam in a position of the scanned sample
(see Figure 4).

III. FORMULATION AND PROPOSED METHOD
A. HS IMAGE DENOISING IN SUBSPACE DOMAIN
Assuming additive noise, a hyperspectral denoising problem
is usually modelled as follows

Y = X+ N, (3)

FIGURE 4. Influence of a THz beam waist on PSF: Examples of PSFs for
1 THz, I0 = 1, and different w0 in mm presented with the numbers in the
upper-left corner.

where Y ∈ Rb×n represents an observed HS image with the
rows containing b spectral bands. Every band is a vectorized
image with n pixels corresponding to the transmittance or
absorption coefficients. X ∈ Rb×n and N ∈ Rb×n represent
an underlying clean HS image and noise, respectively.

Considering the high correlation between channels,
we assume that the spectral vectors xi, for i = 1, . . . , n, live
in a k-dimensional subspace Sk , with k � b. Following this
assumption and defining E = [e1, . . . , ek ] ∈ Rb×k as a basis
for Sk , we may write

X = EA, (4)

whereA ∈ Rk×n holds the representation coefficients ofX in
Sk . The rows of A are herein called eigen-images. The above
assumption is crucial as matrix E may be learned directly
from Y by a singular value decomposition (SVD) of Y or
subspace identification methods (e.g., HySime [20]).

The second assumption in [21] is self-similarity of eigen-
images. Namely, eigen-images contain similar non-local
image patches and therefore may be tackled by state-of-the-
art denoising approaches based on a form of prior knowl-
edge where the mentioned self-similarity is fully exploited
(e.g., BM3D [27]).

Furthermore, the FastHyDe method is tailored to three
noise types: Gaussian i.i.d, Gausian non-i.i.d, and Poisso-
nian noise. Here, we will follow the same path starting
from explaining the model with Gaussian i.i.d noise over all
components of N.
With E learned from the observed matrix Y, the problem

of denoising eigen-images is formulated as

Â ∈ argmin
A

1
2
||EA− Y||2F + α8(A)

= argmin
A

1
2
||A− ETY||2F + α8(A), (5)

where ||M||F =
√
trace(MMT ) is the Frobenius norm of a

matrix M. The first term in (5) stands for the data fidelity
and the second term represents a regularizer with the regular-
ization parameter α which controls the relative contribution
of the regularizer. In this work, a regularizer 8(·) depicts
a prior knowledge that corresponds to self-similarity of image
patches in the spatial domain.
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Algorithm 1 HS Image Denoising in Subspace Domain
(FastHyDe)
Input: Noisy HS image: Y
Output: Denoised HS image: X̂
1: Learn the subspaceE fromY using SVD or HySime [20].
2: Compute noisy eigen-images ETY.
3: Denoise eigen-images by a state-of-the-art denoiser one

by one to get Â.
4: Compute an estimate of the clean HS image: X̂ = EÂ.

We assume that eigen-images are decorrelated since the
projection on subspace is a decorrelation transform. Thus the
regularizer 8 can be decoupled as

8(A) =
k∑
i=1

8i(ai), (6)

where ai is the ith eigen-image, i.e., ith row of matrix A
(more details can be find in [21]). Under this assumption,
the equation (5) for one eigen-image ai may be written
as

âi = argmin
ai

1
2
||ai − eTi Y||

2
2 + α8i(ai). (7)

Recalling a definition of the proximity operator (PO) of a
convex function f , computed at v

proxf (v) = argmin
x

1
2
||x− v||2F + f (x), (8)

it is clear that (7) is the PO of function 8i at eTi Y.
Moreover, a PO can be seen as a denoising operator with

the function f as a regularizer. This fact inspired a pro-
posal of an image restoration framework, so-called plug-and-
play [28], which promotes using state-of-the-art denoisers
directly instead of finding an optimal regularizer and its
PO. The FastHyDe method uses the same framework and
replaces (7) with a state-of-the-art denoiser based on the
non-local similarity property of image patches (e.g., BM3D
[27]).

The FastHyDe method is summarized in Algorithm 1.

B. HS IMAGE DEBLURRING IN SUBSPACE DOMAIN
A HS image deblurring problem is usually modelled as

Y = XH+ N, (9)

where H ∈ Rn×n represents a blurring operator, which
models a convolution of the HS image-bands and PSF. The
above model assumes the same blurring operator over bands.
If we want to remove blurring artefacts, the straightfor-
ward approach would be to perform band by band deblur-
ring. Therefore, the deblurring problem for one band is
modelled as

yi = Hxi + n, (10)

where yi, xi, and n represent an observed vectorized image of
the ith band (ith row of Y), a sharp image of the ith band, and
noise respectively.

A common approach to tackle (10) is by solving the
optimization problem

x̂i = argmin
xi

1
2
||yi −Hxi||22 + γig(xi), (11)

where g(·) captures some form of regularizer or prior knowl-
edge on xi and γi its corresponding regularization parameter.
One of the widely used regularization techniques for HS
image deblurring is total variation (TV) [22] with

g(xi) = |∇xi|, (12)

where ∇ represents the discrete gradient operator. TV is also
known as a smoothing operator and it is widely used in image
restoration problems for noise reduction. However, band by
band TV-based deblurring of HS images is not fully utilizing
cross-band correlation. Furthermore, the image reconstruc-
tion for each band and the parameter settings (i.e., γi needs to
be set for every band separately) lead to a high computational
cost.

One way to exploit cross-band correlation is by using the
TV group sparsity regularization [29], where

g(xi) =
b∑
j=1

||∇xj||2, (13)

where b represents a number of bands. The group sparsity
combines the gradient coefficients of all spectral bands at the
same spatial position. However, we still need to perform band
by band deblurring and set a regularization parameter.

To overcome these two problems, in [22], the authors
proposed an approach which contains several steps. They first
perform principal component analyses (PCA) to decorrelate
the HS image and then perform image deblurring only on the
first p PCs by solving

x̂PCi = argmin
xPCi

1
2
||yPCi −HxPCi ||

2
2 + γ1

p∑
j=1

||∇xPCj ||2. (14)

On the rest b− p PCs they only perform denoising:

x̂PCi = argmin
xPCi

1
2
||yPCi − xPCi ||

2
2 + γ2

b∑
j=p+1

||∇xPCj ||2. (15)

γ1 and γ2 represent the regularization parameters for deblur-
ring and denoising problems respectively. This approach is
based on the assumption that most of the information is
concentrated in the first several PCs while the rest contain
a large amount of noise.

C. PROPOSED METHOD
The above-mentioned approach and the FastHyDe method
inspired us to propose a new framework for HS image
denoising and deblurring jointly. Namely, we extended the
FastHyDe method to perform denoising and deblurring of
THz-HS images. The main idea is to perform deblurring after
subspace estimation, only on eigen-images, and not on the
original HS image-bands. The main motivation behind this
approach lies in the fact that after projection a bulk of noise
is removed leading to better deblurring performance.
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FIGURE 5. THz-HS joint deblurring and denoising pipeline illustration.

Similar to the FastHyDe approach, we start with subspace
estimation from the observed image Y and compute eigen-
images. The number of eigen-images is the same as the
number of subspaces k which is significantly lower than the
number of bands (in our implementation k = 10). Deblur-
ring is performed by applying (11) on all k eigen-images
followed by a state-of-the-art denoising. In implementation,
PSFs related to eigen-images (i.e., H in (11)) are set by
following the procedure introduced in Section II. To reduce
the number of parameters for a THz beammodelling, some of
them are fixed to pre-defined values (e.g., frequency= 1 THz
and I0 = 1) and w0 is hand-tuned for the best results.

As explained in the introduction, one of the main char-
acteristics of THz-HS images is that they are not corrupted
equally over bands, namely: i) the beam waist depends on a
frequency and therefore, the PSFs are different for different
bands; ii) a noise level increases over bands. This fact leads
to rewriting (10) as

yi = Hixi + ni, (16)

where Hi represents a blurring operator for ith band and ni
denotes the corresponding noise components. From here, (11)
becomes

x̂i = argmin
xi

1
2
||yi −Hixi||22 + γig(xi). (17)

If deblurring is applied only on eigen-images, for the ith
image we have

ãi = argmin
ai

1
2
||yi −HiEai||22 + γig(ai). (18)

Similar as for FastHyDe, our approach contains several
steps listed in Algorithm 2 and illustrated in Figure 5.

Deblurring of THz-HS images is a challenging task due to
several reasons: 1) different bands are corrupted by different
blurs; 2) in the spatial domain THz-HS images are small
in size (e.g., 91 × 41 pixels) compared to the size of PSF
(e.g., 20× 20 pixels). The same is true for eigen-images and
therefore the choice of a deblurringmethod has a great impact
on the overall results.

To deblur eigen-images, we tested two well-known deblur-
ring approaches for 2d images: the Richardson-Lucy method
[11], [12] and TV-based deblurring [30]. We chose the

Algorithm 2 THz-HS Deblurring and Denoising
Input: Corrupted (blurry and noisy) THz images: Y
Output: Deblurred and denoised THz images: X̂
1: Learn the subspaceE fromY using SVD or HySime [20].
2: Compute corrupted eigen-images ETY.
3: Set PSFs for each eigen-image.
4: Deblur one by one eigen-images applying (18) to get Ã.
5: Denoise Ã by a state-of-the-art denoiser one by one to

get Â.
6: Compute an estimate of the clean THz images: X̂ = EÂ.

Richardson-Lucy method as it is a simple approach where
we are searching for a maximum likelihood solution without
the use of any regularization. The majority of state-of-the-art
deblurring methods use regularization or prior knowledge
tailored to natural images. Therefore, due to the size and
structure of THz images which is different from natural
images, a strong regularizer will lead to poor deblurring
results. Furthermore, the Richardson-Lucy method requires
only one input parameter, namely, the number of iterations.
Here, the number of iterations is fixed for all eigen-images.
Moreover, we use TV-based deblurring as it is arguably the
most common approach for hyperspectral image restoration
and it can be used for different image types. We use the
TV-based deblurring method from [30] with the following
formulation:

x̂i = argmin
xi

µ

2
||yi −Hixi||22 + ||xi||TV , (19)

with
||xi||TV =

∑
j

√
β2x [Dxxi]

2
j + β

2
y [Dyxi]

2
j . (20)

Operators Dx and Dy are the forward finite-difference oper-
ators along the horizontal and vertical directions and βx
and βy are constants. [·]j denotes the jth component of the
vector xi and µ the regularization parameter. We chose to
use this approach as it uses an augmented Lagrangian opti-
mization method which makes the method fast. Furthermore,
the author provided a publicly available Matlab code.1

1https://nl.mathworks.com/matlabcentral/fileexchange/43600-deconvtv-
fast-algorithm-for-total-variation-deconvolution
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D. ADDITIVE GAUSSIAN NON-I.I.D. NOISE
Assuming Gaussian i.i.d. noise, the spectral covarianceCγ =
σ 2I, with σ representing a noise level and I the identity
matrix. For non-i.i.d Gaussian noise, following the formula-
tion from [21], we consider the observation model (9) with N
as zero-mean, Gaussian, pixelwise independent with the spec-
tral covariance Cγ = E[njnTj ], where nj represents a column
of N. Note that Cγ can be estimated by hyperspectral noise
estimation methods such as, HySime [20]. Converting non-
i.i.d. scenario to i.i.d. one, leads to rewriting the observation
data as

Ȳ =
√
C−1γ Y, (21)

where the noise covariance matrix is

C̄γ = E[
√
C−1γ nj(

√
C−1γ nj)T ]

= E[
√
C−1γ njnTj

√
C−1γ

T
]

= E[
√
C−1γ Cγ

√
C−1γ

T
] = I. (22)

The above conversion is considered as an image pre-
processing. The image Ȳwith i.i.d. noise now can be denoised
and deblurred using the method we proposed in Subsec-
tion III-C. Finally, the clean HS image is estimated as X̂ =√
Cγ Ē ˆ̄A, where Ē is learned from Ȳ and ˆ̄A represent esti-

mated eigen-images of Ȳ.

E. POISONNIAN NOISE
When assuming Poissonian noise, we may apply the
Anscombe transformation to Y [31]:

Ȳ = 2
√
Y+

3
8
. (23)

The Anscombe transformation converts Poissonian noise to
an approximation of Gaussian noise. From here, to formulate
a deblurring problem, we are following the steps explained in
Subsection III-D.

IV. EVALUATION WITH SYNTHETIC DATA
To evaluate the proposed method, we created 200 synthetic
hyperspectral images. When creating synthetic data, we took
into consideration several aspects: 1) size of the synthetic
images should be close to the size of real (acquired) images
(e.g., 61× 41× 263 pixels); 2) PSFs are different over bands
and controlled by setting w0 and λ in (1) and (2); 3) we are
considering different noise types and levels in order to syn-
thesize both amplitude and transmittance images; 4) intensity
change over bands is taken into account. Next, wewill explain
in more details how we synthesized images.

A. CREATING SYNTHETIC DATA
As briefly explained in the introduction, when using
THz-TDS system in the transmittance mode, we may have
four output images: amplitude, phase, transmittance, and
phase-difference. We aim to deblur both amplitude and trans-
mittance images as they have a different role in some appli-
cations, such as detection of water content in plants [32].

FIGURE 6. Spectral responses of (A) THz-HS amplitude image, (B) THz-HS
transmittance image, and (C) their pixel-by-pixel difference.

We apply the same approach to these two types of THz
images with different noise type assumption (more details in
Section V). To see a difference between amplitude and trans-
mittance images, we may look at their spectral responses and
pixel-by-pixel difference shown in Figure 6. We plotted the
intensity of the pixel at the same position in the spatial domain
in both images over all bands (whole frequency range). From
here, it is clear that the spectral responses have a different
distribution over bands that we should take into account when
creating synthetic images. Note that the peaks visible in the
spectral response of the transmittance image is probably due
to water vapour as the THz radiation is highly absorbed by
water [33].

The synthetic images are created by following three main
steps: 1) extract spectral responses from a real image or use
a THz spectral library such the one provided by NICT THz
Project2; 2) combine spectral responses with a grayscale or
an RGB image which contains simple-shaped objects; 3) add
blur and noise to all bands. The whole procedure is illustrated
in Figure 7. The synthetic datasets are created by considering
two noise types:
• The first set contains 100 test images corrupted by Gaus-
sian i.i.d. noise (ni ∼ N (0, σ 2I)) with the maximum
noise level for the band corresponding to the highest
frequency σ = 0.1. The band corresponding to the
lowest frequency is a considered noise free.

• The second set contains 100 test images corrupted by
Poissonian noise with yi ∼ P(αxi), where P(m) rep-
resents a vector of independent random variables with
the Poisson distribution whose parameters are defined
as m = [mi]. The parameter α is chosen such that

SNR = α
(
∑

i m
2
i )∑

i mi
. SNR is set from 80 dB for the first

band to 25 dB for the last one.

2https://webbook.nist.gov/chemistry/thz-ir/
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FIGURE 7. Creating THz-HS synthetic data.

B. EXPERIMENTS WITH SYNTHETIC DATA
To evaluate the proposed framework, as a measurement met-
rics, we use well-known peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM), and improvement on
signal-to-noise ratio (ISNR) defined as

ISNR = 10log10
||x− y||22
||x− x̂||22

, (24)

where x, y, and x̂ represent the ground truth image,
the observed image, and the estimated image of one band
respectively.

We tested the proposed joint deblurring and denoising
framework with the deblurring step performed with two 2D
deblurring approaches: Richardson-Lucy method (R-L) and
TV-based deblurring (TV). Additionally, we tested these two
image deblurring methods by applying them to separate HS
image-bands. Before performing band by band deblurring,
HS images were denoised with the FastHyDe method. This
is an important preprocessing step as noise may influence
the deblurring results significantly. Additionally, the obtained
results are compared with the PCA-based method introduced
in [22] (PCA + TV).

To set the blurring filters corresponding to eigen-images
when testing the proposed method we: i) hand-tuned a PSF-
related parameter, beamwaist (w0) and ii) fixed the frequency
on a pre-defined value.

Figure 8 shows mean ISNR values over all bands for
100 test images from the second set (i.e., images corrupted by
Poissonian noise). The proposed framework with TV-based
deblurring step shows the best results in terms of mean ISNR.
Some ISNR values for the R-L method applied to HS image-
bands separately are below zero which means that the PSNR
values of the estimated image are below the PSNR of the
corresponding blurred image.

Furthermore, Figure 9 shows the visual results obtained on
two synthetic THz-HS images selected from the first set, one
containing simple-shaped squared objects (left) and the other
with several objects which combined give the more complex-
shape structure (right). We show the estimated images cor-
responding to four bands (i.e., bands 44, 70, 150, and 263).
The first row presents the ground truth bands and the second
row shows corrupted (blurred and noisy) ones. Results of

FIGURE 8. Comparison of mean ISNR over bands of 100 synthetic images
from the second set. R-L: Denoising + Band by band deblurring with the
R-L method; TV: Denoising + Band by band deblurring with TV-based
method; PCA + TV: PCA method with the TV-based deblurring; Ours +
R-L: The proposed framework with the R-L step; Ours + TV: The proposed
framework with the TV-based step.

band by band deblurring with R-L and TV are shown in
rows three and four, respectively (note that the HS images
are denoised before deblurring).We can see that the estimated
image obtained by R-L contains ringing artefacts. Addition-
ally, results obtainedwith both band by band deblurringmeth-
ods suffer from cyclic boundary artifacts. The results obtained
with the PCA-based method are presented in the fifth row.
Finally, the results of the proposed framework are presented
in rows six (Ours + R-L) and seven (Ours + TV). The PCA-
based method gives comparable results to the proposed one
with more constant output over bands compared to the band
by band deblurring.

Finally, Figure 10 shows PSNR, SSIM, and ISNR values
over bands for TV-based band by band deblurring and the
proposed framework with the TV-based step. The experi-
ments are performed on the image from the right-hand side
of Figure 9 (as previously, the THz-HS image is denoised
before 2D deblurring). We chose to compare these two
approaches due to two reasons: i) on lower bands, visually the
results are comparable and the difference in the performance
can only be fully appreciated when analysing ISNR values.
ii) The proposed method (Ours + TV), arguably shows the
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FIGURE 9. Comparison of visual results performed on synthetic THz-HS images. R-L: Denoising + Band by band deblurring
with the R-L method; TV: Denoising + Band by band deblurring with TV-based method; PCA + TV: PCA method with the
TV-based deblurring; Ours + R-L: The proposed framework with the R-L step; Ours + TV: The proposed framework with
TV-based step.

FIGURE 10. Values of PSNR, SSIM, and ISNR over bands (synthetic image
from Figure 9 - right): The proposed framework with TV-based step vs.
band by band TV deblurring.

best performance when tested on synthetic THz images.
PSNR values are comparable for both methods. Nevertheless,

the proposed method significantly outperforms band by band
deblurring in terms of SSIM and ISNR.

V. EVALUATION WITH REAL DATA
The real data are acquired using a non-commercial THz-TDS
system with the configuration illustrated in Figure 1. The
frequency step is set to 7.6 GHz starting from 0 to 2 THz
(263 frequencies in total). The system gives four hyperspec-
tral images as explained above: amplitude, transmittance,
phase, and phase difference.We acquired three sets of images.
The first set contains a leaf (spatial dimension 91×41 pixels)
and the second contains three simple objects with known
dimensions: plastic plate, knife blade, and metal ring (image
spatial dimension is 61 × 41 pixels). The metal ring has an
inner diameter of 20 mm and an outer diameter of 25.5 mm.
The knife’s short edge is 15 mm, the long edge is 29 mm,
and it has a centre hole of 3.5 mm. The plastic plate has a
diameter of 18 mm. The third set of images contains a choco-
late bar with whole hazelnuts (Leche Con Avellanas Enteras
Melk Hele Hazelnoot by Ritter Sport). The leaf and the
simple-shaped objects are placed in a black non-transparent
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TABLE 1. Running time of the proposed framework compared to the PCA-based method and methods for 2d band by band image deblurring. Columns:
1) Tested methods; 2) Amplitude image with spatial size 61× 41 pixels; 3) Transmittance image with spatial size 61× 41 pixels; 4) Amplitude image with
spatial size 91× 41 pixels; 5) Transmittance image with spatial size 91× 41 pixels.

FIGURE 11. THz-HS amplitude (left) and transmittance (right) images estimates for different noise types. Columns: 44, 70, 150, and
263 band respectively; Rows: Real THz time-domain image, Gaussian i.i.d., Gaussian non-i.i.d., and Poissonian noise.

envelope during scanning. The chocolate is scanned inside
a wrap.

Similar to the experiments with synthetic data, the PSFs
assumed for eigen-images are hand-tuned by setting the
appropriate parameters, a frequency and a beam waist.

First, we compare the running times of the proposed frame-
work with the Richardson-Lucy approach (Ours + R-L)
and TV-based approach (Ours + TV) as a 2D deblurring
step, with the running times of band by band-based deblur-
ring and the PCA-based method. The results are presented
in Table 1. It is clear that the proposed framework signifi-
cantly speeds up the deblurring process compared to the band
by band approaches. Compared to the PCA-based deblurring,
the proposed method halve the processing time. Deblurring
is slightly faster if we use the R-L step compared to the
TV-based step as we limit the number of iterations (here
we perform only four iterations). We tested both amplitude
and transmittance images. For amplitude images, we assume

Gaussian i.i.d. noise and for transmittance images, we assume
Poissonian noise. By assuming Poissonian noise, we employ
the Anscombe transformation which may slightly increase
the processing time.

Next, we tested how the choice of a noise type influ-
ence the results. Figure 11 shows four bands of estimated
amplitude and transmittance images with the assumption of
three noise types: Gaussian i.i.d., Gaussian non-i.i.d., and
Poissonian noise. To estimate the images, we used the pro-
posed framework with the R-L step. The results imply that
we should assume Gaussian noise if we deal with amplitude
THz-HS images and Poissonian noise in case of transmittance
images.

Furthermore, Figure 12 shows the influence of two
2D-based deblurring methods introduced as a step of the
proposed framework on the estimated amplitude and trans-
mittance images. As explained previously, in the case of an
amplitude image we assume Gaussian i.i.d. noise and for the
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FIGURE 12. THz-HS amplitude (left) and transmittance (right) image estimates for different choice of inner deblurring method. Columns: 44, 70,
150, and 263 band respectively; Rows: Real THz time-domain image, results of the proposed method with R-L deblurring, and results of the
proposed method with TV deblurring.

FIGURE 13. Our methods compared to 2D band-by-band deblurring and the method based
on PCA tested on the leaf transmittance image.

transmittance image, we assume Poissonian noise. For both,
amplitude and transmittance images, the results show that

when the TV-basedmethod is employed we lose some details,
i.e., the image is over-smoothed.
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FIGURE 14. Our methods compared to 2d band-by-band deblurring and the method based on PCA
tested on the amplitude image that contains simple objects.

FIGURE 15. Bands of the chocolate bar sample.

Next, we compared the performance of the R-L and TV
methods applied band by band and as a step of the pro-
posed framework. Additionally, the PCA-based deblurring
is tested. Figures 13 and 14 show the four bands of the
estimated transmittance THz-HS image containing a leaf
and the amplitude THz-HS image containing simple-shaped
objects respectively. The results of the proposed framework
show more constant performance over bands compared to
the band by band deblurring. The images estimated with the
R-L method show the ringing artifacts and poor deblurring
results on lower bands. The TV-based method over-smooths
the resulting images. As previously explained, before per-
forming band by band deblurring we denoise the images with
the FastHyDe method. Similarly as TV-based band by band
deblurring, PCA + TV over-smooths small details and intro-
duces additional artifacts in higher bands when dealing with
the transmittance image. Note that the PCA-based approach
is implemented in its original form with the blurring kernel
fixed and equal for all PC bands. The halo artifact, especially
visible in bands corresponding to higher frequencies, most
likely arose due to reflection losses (the ring is made of metal
and therefore highly reflecting in the THz domain).

Figure 15 shows four selected bands of the transmittance
image obtained on the chocolate bar sample. A chocolate

FIGURE 16. Our methods compared to 2d band-by-band deblurring and
the method based on PCA tested on the transmittance image that
contains chocolate sample.

bar contains two main parts, chocolate and hazelnuts, and
it is highly absorbing leading do the low amplitude of the
transmitted signal and thus, strong noise in the resulting
image (note that 0.9079 THz corresponds to band 120).

Figure 16 shows the results obtained on the chocolate with
hazelnuts sample. The results are presented as false RGB
images created by combining three bands (i.e., 70, 71, and 72)
corresponding to 0.526, 0.534, and 0.542 THz respectively.
As previously, the HS image is denoised prior to performing
band by band deblurring (i.e., R-L and TV methods). The
results of the 2D-based methods show limited performance:
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FIGURE 17. PCA-based method: setting the blurring kernel parameters. The experiments
performed on the leaf amplitude image.

the R-L method generates severe ringing artifacts and the
TV-based method over-smooths image borders. The PCA +
TV method (with PSFs fixed over bands) shows promising
results with keeping pixels intensity levels close to the raw
data. When applying this method, the border of hazelnuts
remains blurred and thus, less distinguishable. The proposed
methods (i.e., Ours+ R-L and Ours+ TV) remove the noise
fully and slightly sharpen the image inner-structure leading
to better identification of different parts of the sample (e.g.,
chocolate and hazelnuts).

Finally, we adapted the PCA-based approach, originally
developed for remote sensing HS images, to THz-HS images
by varying the PSFs corresponding to different PCs. The
results with the fixed and varied PSFs are presented in Fig-
ure 17. Here, the frequency is set to 1 THz and we only vary
the beam waist (w0).

VI. CONCLUSION
In this work, we propose a joint deblurring and denois-
ing method tailored to THz (amplitude and transmittance)
time-domain images. The proposed method is inspired by
well-known restoration methods for remote sensing HS
images and adjusted to time-domain THz images. The exper-
iments performed on synthetic and real data show that

the proposed method outperforms existing ones in several
aspects: i) computational cost, ii) robustness to different noise
types, and iii) overall deblurring and denoising performance
assessed visually and by applying threemeasurementmetrics,
e.g., PSNR, SSIM, and ISNR.

Moreover, we explore the PCA-based method, originally
developed for remote sensing HS images, and extended it for
tackling THz-HS images. To the best of our knowledge, this
is the first time that THz-HS images are jointly deblurred and
denoised by taking into consideration variations over bands.

The limitation of the proposed approach is reflected in
the fact that the parameters of PSFs corresponding to eigen-
images are hand-tuned. These is due to the fact that these
PSFs are not a linear combination of the original ones (i.e.,
blurring kernels corresponding to the original bands) and
therefore, can not be easily calculated from the measured
blurring kernels. The calculation of the PSFs is covered by
our current work. Our future work will tend to overcome the
need for manual parameter settings (e.g., THz beam waist
and parameters related to the 2D deblurring step). Moreover,
we are working on a new procedure for THz data synthesiza-
tion that can improve evaluation of model-based methods and
open a path for developing novel approaches based on deep
neural networks.
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