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Partial Discreteness: A Novel Prior for Magnetic
Resonance Image Reconstruction

Gabriel Ramos-Llordén∗, Member, IEEE, Arnold J. den Dekker, and Jan Sijbers

Abstract— An important factor influencing the quality
of magnetic resonance (MR) images is the reconstruction
method that is employed, and specifically, the type of prior
knowledge that is exploited during reconstruction. In this
work, we introduce a new type of prior knowledge, partial
discreteness (PD), where a small number of regions in
the image are assumed to be homogeneous and can be
well represented by a constant magnitude. In particular, we
mathematically formalize the partial discreteness property
based on a Gaussian Mixture Model (GMM) and derive a
partial discreteness image representation that character-
izes the salient features of partially discrete images: a
constant intensity in homogeneous areas and texture in
heterogeneous areas. The partial discreteness representa-
tion is then used to construct a novel prior dedicated to the
reconstructionof partially discrete MR images. The strength
of the proposed prior is demonstrated on various simulated
and real k-space data-based experiments with partially dis-
crete images. Results demonstrate that the PD algorithm
performs competitively with state-of-the-art reconstruction
methods, being flexible and easy to implement.

Index Terms— MRI reconstruction, partial discreteness,
Gaussian Mixture Model, sparsity, segmentation.

I. INTRODUCTION

MAGNETIC Resonance Imaging (MRI) is a unique
imaging method for medical diagnosis because of its

excellent image quality, the absence of ionizing radiation and
its versatility [1]. However, MRI is a relatively slow technique,
which hinders its applicability in speed demanding modalities
(e.g., time-resolved acquisitions or 3-D imaging [2]), limits the
patient throughput [1], and increases the chances of subject
motion.

Hardware improvements and dedicated sequence design
have been proposed to speed up the imaging process [3],
but physical constraints such as slew-rate or gradient ampli-
tudes [4] limit the acquisition time of each sample. Hence,
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the only way to further decrease the scan time is to acquire
less data samples. Simply reducing the number of samples,
however, leads to image reconstruction artefacts, hampering
both visual and quantitative analysis [2].

In MRI, the acquired samples, a.k.a. the k-space data, are
samples of the Fourier transform of the spatial magnetization
distribution (the image) [5]. From sampling theory, it is well-
known that if the k-space is sampled with a Cartesian scheme
fulfilling the Nyquist condition, exact recovery of the finite
support image is possible [2]. However, if the number of
k-space data points is reduced, the Nyquist condition is
violated, making the inverse problem of image reconstruction
ill-posed without prior knowledge [2].

Fortunately, prior knowledge comes in different forms.
It can be included by exploiting image properties, such as
smoothness, both in the image and Fourier domain [6], [7],
sparsity in a specific image representation [4] (e.g., Fourier [8],
Wavelet [9], [10], Curvelet [11], Shearlet [12], or redundant
dictionaries [1], [13]), number of discrete gray levels [14],
minimal Total Variation (TV) [15], [16], [17], limited image
support [18], [19], or spatial constraints [20]–[22]. Addition-
ally, prior knowledge can come from anatomical information
derived from a training dataset [23], [24] or can be extracted
from reference images [25].

In this work, we introduce a novel type of prior knowl-
edge for MR images that possess, apart from heterogeneous
regions, a number of quasi-constant intensity regions. That
is, the magnitude range is assumed to be partially discrete.
Partial discrete tomography has recently successfully been
introduced as a prior in X-ray tomography [26], [27] and
electron tomography [28], [29], however, to the authors’
knowledge not yet in MRI. There is a number of MRI
applications where the partial discreteness assumption may be
exploited. Implants MR imaging is a paradigmatic example,
where the homogeneous composition of implants naturally
leads to partially discrete images [30]. Contrast-enhanced
MRI sequences also produce images that meet the partial
discreteness assumption, e.g. contrast-enhanced MR Angiog-
raphy (MRA) [4]. Finally, the use of specific pulse sequences,
such as T2-weighted or short tau inversion recovery (STIR)
sequences, may produce hyper-intense regions in brain cyst
imaging [31].

Specifically, our contribution is the following. We math-
ematically formalize the partial discreteness property and
propose a decomposition of every image into its partial
discreteness representation and its residual form. The partial
discreteness representation is constructed from 1) an auto-
learned Gaussian Mixture Model (GMM) [32] specifically
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designed to fulfill the partial discreteness assumption and
2) the fusion of the a posteriori probability maps with
intensity information, both derived from the GMM and the
image itself. Because partially discrete images admit an accu-
rate partial discreteness representation, we enforce sparsity
in the residual form to promote this type of solution in
the reconstruction of under-sampled MR images. In this
work, the partial discreteness prior is implemented in a
phase-constrained MR reconstruction formulation [33]–[37]
with the common assumption of a smoothly varying phase
image [4], [18].

We illustrate the potential of the partial discreteness prior
by showing examples of applications with under-sampled sim-
ulated and real k-space data. Thereby, the proposed partially
discrete reconstruction method is compared to state-of-the-art
MR reconstruction methods.

This paper is organized as follows. Section II describes the
MR image reconstruction problem as an optimization problem.
In Section III, we present the novel partial discreteness
prior, which is incorporated in a constrained optimization
method in Section IV. Section V illustrates the application
of this method to a variety of under-sampling scenarios, in
comparison with state-of-the-art methods. This section also
summarizes a sensitivity analysis of the proposed method to
various parameters and deviations from assumptions. Finally,
conclusions are summarized in Section VI.

II. IMAGE RECONSTRUCTION AS AN

OPTIMIZATION PROBLEM

A. Algebraic Linear Model

MR image reconstruction is often described as an algebraic
reconstruction problem. The starting point is the linear forward
model that results when the Fourier integral is discretized on a
spatial grid [5]. Let y ∈ CM denote the k-space data. Then, the
image x ∈ CN is related to y through the following algebraic
linear model [38]:

y = Ax + n, (1)

with matrix A ∈ CM×N the Fourier encoding matrix and
n ∈ CM complex valued white Gaussian noise [5]. In the
absence of prior knowledge, x is commonly estimated
by minimizing ||y − Ax||22, which is, given the Gaussian
noise statistics, equivalent to the Maximum Likelihood (ML)
estimator [39].

If prior knowledge is incorporated, the reconstruction prob-
lem can be recast as a constrained optimization problem [4],
[40]–[41] in the form of

min
x
�(x) s.t . ||y − Ax||22 ≤ ε, (2)

where ε in the so called data fidelity condition is usually set
below the expected noise level [4].

The function �(·), which is called the prior term or simply
the prior, is defined such that it incorporates prior knowledge
into the solution. The lower �(x), the more x is in agreement
with the prior knowledge.

B. A Note on the Phase

Partial discreteness is applicable to the magnitude of the
image. Many methods have been proposed that enforce prior
knowledge on the magnitude image only [4], [15], though MR
images are inherently complex valued [39]. By noting that
x = �m with m ∈ R

N+ , � = diag(eiψx ) and ψx the phase of x,
the optimization problem (2) restricted to magnitude images,
also known as phase-constrained formulation [33]–[37], can
be elegantly reformulated as:

min
m
�(m) s.t . ||y − Ãm||22 ≤ ε (3)

with m ∈ R
N+ and Ã = A� .

In our work, the required phase estimate, ψ̂x, is obtained
from a low resolution recovered image, as proposed in [4].
Details are provided in subsection IV-C. Hence, in what
follows, we will assume that x ∈ R

N+ .

III. PARTIAL DISCRETENESS

A. A Bayesian Model for Partial Discreteness

Consider the following decomposition of an image into a
piece-wise homogeneous part and a texture part:

x =
K∑

k=1

xAk

︸ ︷︷ ︸
piece-wise homogeneous part

+ xĀ︸︷︷︸
texture part

, (4)

where A = ∪K
k=1Ak represents the union of K disjoint

homogeneous regions (i.e., pixel sets) of x, and Ā is the texture
region. For each pixel n = 1, . . . , N , xĀ ∈ R

N+ and xAk ∈ R
N+

are defined as

(xĀ)n =
{
(x)n, if n ∈ Ā
0, if n /∈ Ā (5)

and

(xAk )n =
{
ηk, if n ∈ Ak

0, if n /∈ Ak ,
(6)

respectively, with ηk the constant intensity of the homogeneous
set Ak . In this work, we assume that |Ak | � 1,∀k. While
ideally suited to describe partially discrete images, this model
is unpractical since the location, cardinality, and intensity of
the sets {Ak}K

k=1 are unknown in practice.
Keeping Eq. (4) in mind, in this subsection we approximate

Eq. (4) with a realizable model, effectively preserving the dis-
tinct characteristics of partially discrete images. To that end, a
Bayesian framework is proposed which relies on 1) a Gaussian
Mixture Model (GMM) that captures the particular intensity
properties of Eq. (4) and 2) an unsupervised Bayesian proba-
bilistic segmentation. The proposed methodology allows us to
identify the different sets and estimate the probabilities that a
pixel belongs to each of these sets (probabilistic segmentation)
in an unsupervised manner. In what follows, we start with
the construction of the GMM. The probabilistic segmentation
is described afterwards. With these two main ingredients,
we present the Bayesian model for partially discrete images
in subsection III-B. With the partial discreteness property
formalized, the partial discreteness prior is then defined
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1) The GMM Construction: We consider the pixels’ inten-
sities of the image x, [x1, . . . , xN ]T , as a vector of realizations
of a random variable, X : � �→ R+. We assume that each pixel
n = 1, . . . , N only belongs to one specific, unknown set Ak

or Ā. Assigning a probability to the event that a pixel belongs
to a specific set, we define:

P(n ∈ Ak) = πk, with k = 1, . . . , K and (7)

P(n ∈ Ā) = πĀ = 1 −
K∑

k=1

πk, (8)

where it is assumed that the probabilities πk and πĀ are
independent of the pixel n, and no a priori spatial information
is incorporated. Hence, in what follows, we will denote
P(n ∈ A) as P(A). Each of the pixels’ intensities, x1, . . . , xN ,
is assumed to have been generated by one (randomly selected
and unknown) element of a set of K + 1 random sources.
The source-conditional distributions of the random variable
X are characterized by the conditional probability density
functions (PDFs) fX |Ak (x) and fX |Ā(x) [42]. It is reasonable
to assume that the individual conditional PDFs for the homo-
geneous sets all belong to the same location-scale family and
can be well modeled by Gaussian distributions:

fX |Ak (x; ηk, σk) = 1√
2πσ 2

k

e
− (x−ηk )

2

2σ2
k , (9)

where the dispersion of X around the specific discrete value
ηk is represented by the standard deviation σk . A small
value of σk reflects the typical low dispersion of such homo-
geneous regions. Of course, that does not mean that no
intensity variations are allowed, as these always occur in real
scenarios.

The conditional PDF fX |Ā(x; θĀ) models the random
variable X in the texture part. Texture modeling through
statistical distributions is beyond the scope of this paper.
The interested reader is referred to [43]–[45]. We deem
that the shape of fX |Ā(x; θĀ) can be well modeled by a
mixture of Gaussian PDFs, and therefore θĀ are the Gaussian
mixture model (GMM) parameters. The use of a GMM for
fX |Ā(x; θĀ) should be seen as a way to describe arbitrarily
complex distributions [46] and not as an attempt to model
quasi-discrete components, as in the case of fX |Ak (x; ηk, σk).

Simple application of the law of total probability [42] with
events {n ∈ Ak}K

k=1 and {n ∈ Ā}, yields the final GMM:

fX (x; θ) =
K∑

k=1

πk fX |Ak (x; ηk, σk)+ πĀ fX |Ā
(
x; θĀ

)
(10)

with θ = [θA, θ Ā] and where θA = {πk, ηk , σk}K
k=1.

2) Bayesian Probabilistic Segmentation: Bayes’ theo-
rem [42] now allows us to derive the a posteriori probabilities
P(Ak |x) and P(Ā|x) as

P(Ak |x) = πk fX |Ak (x; ηk, σk)

fX (x; θ)
and (11)

P(Ā|x) = πĀ fX |Ā
(
x; θĀ

)
fX (x; θ)

, (12)

Fig. 1. Illustration of probability maps for a partially discrete image.

respectively. These a posteriori probabilities denote the prob-
abilities of a pixel belonging to each of the K + 1 sets given
that its intensity is equal to x . If Eqs.(11)–(12) are evaluated
for each pixel n = 1, . . . , N , we obtain what is dubbed
throughout this work, probability maps, that is, pk ∈ [0, 1]N

and pĀ ∈ [0, 1]N which are pixel-wise defined as

(pk)n = πk fX |Ak (xn; ηk, σk)∑K
k=1 πk fX |Ak (xn; ηk, σk)+ πĀ fX |Ā

(
xn; θ Ā

)
(13)

and

(pĀ)n = πĀ fX |Ā
(
xn; θĀ

)
∑K

k=1 πk fX |Ak (xn; ηk, σk)+ πĀ fX |Ā
(
xn; θ Ā

) .
(14)

Given a pixel, its a posteriori probability of belonging to a
specific set can be determined from the corresponding proba-
bility map. This Bayesian framework frames a probabilistic
segmentation scheme. Indeed, it is not possible to strictly
assign pixels to specific sets but, instead, the probability of
this assignment can be inferred. Another relevant point of
the Bayesian segmentation is that not just local but global
information is considered. This information is derived through
fX (x; θ). An illustration of the probabilistic segmentation
associated to a partially discrete image is shown in Fig. 1.

These maps constitute the core of the partial discreteness
representation that we propose in the next subsection III-B.
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B. The Partial Discreteness Prior

Given a partially discrete image x, and its associated GMM
fX (x; θ), the partial discreteness representation of x, denoted
as P(x) ∈ R

N+ , is defined as:

P(x) =
K∑

k=1

ηkpk + xρ ◦ pĀ (15)

where ◦ denotes the Hadamard product and xρ is a spatially
filtered version of x with a circularly symmetric Gaussian filter
with standard deviation ρ in the image domain. For partially
discrete images, the partial discreteness representation essen-
tially behaves as Eq. (4).

Behavior in homogeneous regions
In a homogeneous region Ak′ , the pixels’ intensities mini-

mally vary with respect to the mean ηk′ . When the probability
maps for the homogeneous regions are evaluated, all except the
one associated to Ak′ approximate zero. This is due to the fact
that their conditional PDFs { fX |Ak (x; ηk, σk)}K

k=1 are highly
concentrated around their mean and when evaluated far from
their mode they rapidly fall off to zero. As a consequence, each
of the P(Ak |x) with k �= k ′ vanishes as well. Furthermore, the
lack of intensity dispersion that characterizes the homogeneous
regions is not captured by fX |Ā(x; θĀ). Therefore, exclusively
the remaining probability map of Ak′ , pk′ , is approximately
one. Hence, the partial discreteness representation becomes

P(x) ≈ ηk′ pk′ ≈ xAk′ , (16)

as desired.
Behavior in texture regions
In texture regions, the characteristic intensity variability is

solely represented by the conditional PDF fX |Ā(x; θĀ). As a
result, we get

P(x) ≈ xρ ◦ pĀ ≈ xρ. (17)

Note that P(x) does not exactly approach x but a Gaussian
filtered version of x. The use of the Gaussian filter should
be seen as a way to make partial discreteness a stable
representation under very high spatial frequency perturbations
that do not correspond to the original texture x. In our
experiments, the value ρ = 2 was consistently used. With
this value, the corresponding cut-off frequency is high enough
to preserve structural details. Note that in the limit case, which
corresponds to ρ = 0, P(x) ≈ x, since the Gaussian kernel
degenerates into a delta function.

Behavior in the frontier between regions
In the frontier between regions, none of the a posteriori

probabilities has a prevailing effect (see zoomed image of
Fig.1(e)). Indeed, P(x) is a mixture of intensities. Particularly,
the intensity along a given profile which crosses two regions
is a (convex) combination of two values. If the two regions
are a homogeneous region Ak and the texture region Ā, such
values are the mean ηk and xρ , the filtered texture. The closer
we are to Ak , the higher pk = 1 − pĀ is. Thus, P(x)
approaches ηk . The nearer we are to Ā, the larger pĀ is
and P(x) then approaches xρ . If the interface divides two
homogeneous regions, let’s say Ak and Ak′ , then P(x) is a
convex combination of the two corresponding mean values,
that is, ηk and ηk′ .

In summary, P(x) ≈ x for partially discrete images.
Therefore, instead of the strict but unpractical model of Eq. (4),
we can fairly justify the employment of the partial discreteness
representation for the kind of images targeted in this work.

Based on this representation, the partial discreteness prior
for the optimization problem (2) can be defined. We first note
that a partial discreteness representation P(x) can be assigned
to every image x. In practice, this requires that the number of
homogeneous regions K is given and we have estimates of
the GMM parameters, θ̂ = [θ̂A, θ̂ Ā], (details about the GMM
learning procedure are presented in subsection IV-B). Then,
the estimated probability maps can be constructed pixel-wise
from Eqs.(13-14) by replacing the given GMM parameters by
the GMM estimates.

A partial discreteness representation is now obtained by
substituting the estimated probability maps and {η̂k}K

k=1 in
Eq. (15). The thus obtained partial discreteness representation
P(x) is unique for each x. More interestingly, every image x
can be represented through its partial discreteness represen-
tation, including images that are not strictly partially discrete.
Indeed, every image x ∈ R

N+ can be decomposed as

x = P(x)+ (I − P)(x), (18)

where I: RN �→ RN is the identity operator. The usefulness of
this decomposition is that the second term, the residual form,
serves as a measure of the partial discreteness error for all
types of images. On the one hand, a partially discrete image
is well represented by its partial discreteness representation, so
its residual form, (I −P)(x), can be assumed to be small. On
the other hand, images that do not obey the partial discreteness
assumption possess a non-negligible residual form. Obviously,
the prior �(·) should be defined in agreement with this
reasoning.

For partially discrete images, (I − P)(x) is almost zero
except along edges. Since edges generally represent only a
small fraction of the partially discrete image, we can justify
that the residual form is sparse. Searching for the x that has
the sparsest residual form implies to make the l0 (pseudo)
norm of the residual form minimal. As this combinatorial
optimization problem is intractable, it is common practice to
resort to other sparsity inducing norms, such as the l1 norm, the
l p (0 < p < 1) semi-norms or other non-convex functionals
such as log penalty functions [2]. To illustrate partial discrete-
ness, we use the l1 norm in our experiments.

Hence, we define our partial discreteness prior �(·) as

�(x) = ||(I − P)(x)||1. (19)

IV. METHOD

In this section, we propose a new reconstruction method that
incorporates the partial discreteness (PD) prior term Eq.(19).
The method will be denoted by the acronym PD.

A. Split Bregman Reconstruction Algorithm

In most of the MRI reconstruction algorithms the inequality
constrained problem (3) is transformed into an unconstrained
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problem of the form
min

x∈R
N+

J (x, λ) (20)

with

J (x, λ) = �(x)+ λ

2
||Ãx − y||22. (21)

Solving this new unconstrained problem is equivalent to
solving (3) if and only if λ is selected according to the
Karush-Kuhn-Tucker (KKT) conditions [2]. Otherwise, the
unconstrained solution, that is, the solution of (20), may not
meet the data fidelity condition. Within the KKT approach,
the optimal λ is called the KKT multiplier [47]. Unfortu-
nately, the analytic determination of the KKT multiplier is
rather difficult or, in most of the cases, even impossible [2].
As an alternative to the KKT technique, several iterative
optimization algorithms replace the original problem (3) by
a sequence of unconstrained minimization problems (as (20))
where the cost function J (·, λ) is augmented to account for
the constraints [48]. These subproblems are iteratively solved
in combination with an update of some of the parameters
included now in the augmented cost function. This class of
algorithms includes penalty-based methods [47], Augmented
Lagrangian (AL) methods [49], [50], and Split Bregman
methods [51]–[53]. Ideally, the sequence of solutions of each
subproblem asymptotically approaches the original KKT solu-
tion, i.e., it solves problem (3). It should be noted that partial
discreteness is not limited to a specific optimization algorithm.
In this work, to illustrate its potential, the Split Bregman
method is chosen for the following practical reasons: it is
numerically more stable than penalty-based methods [53] and
it is simpler than AL methods. With the Split Bregman method,
J (·, λ) is modified with the so-called Bregman distance [54].
We refer the reader to [53] for a more detailed explanation.
After some algebra, it can be demonstrated [53] that this
method adopts the following simplified recursive scheme:

x(t+1) = arg min
x∈R

N+
�(x)+ λ

2
||Ãx − b(t)||22 and (22)

b(t+1) = b(t) + y − Ãx(t+1). (23)

The parameters update is done in Eq. (23), through the modi-
fied data vector b [53]. Each of the unconstrained minimization
problems (Eq. (22)) is solved with a modified version of
the Majorize-Minimize (MM)-based algorithm proposed by
Muckley et al. [55], with the non-linear conjugate gradient
method. Exact convergence properties for these subproblems
can be demonstrated [55]. Further details on the MM-based
algorithm, details on how to impose the real positiveness
constraint, as well as the analytical derivation of the gradient
of �(x) are provided in the supplementary file which comes
with this paper.

B. GMM Learning

Estimating the GMM parameters, θ̂ = [θ̂A, θ̂ Ā], is often
called GMM training or learning. To learn the GMM, a set of
samples drawn from the GMM, and a learning criterion are
required.

1) Training Data: If a dataset of fully-sampled recon-
structed partially discrete images from the same object is a
priori available, it can be used to train the GMM. However,
in this work, we focus on the automatic application of the
algorithm, and the GMM is learned in situ from an image
reconstructed from under-sampled k-space data. Specifically,
in our experiments, the GMM is trained with the magnitude of
a low-resolution image xLR calculated at the beginning of the
algorithm. Such image is obtained as follows: an NHamm-point
symmetric Hamming window is applied to the under-sampled
k-space data y and then, an inverse Fourier transform of the
windowed k-space data is calculated. Additionally, the GMM
can be retrained every TGMM iterations in order to keep track
of the variations in the GMM along the reconstruction process.

2) GMM Learning Criterion: To train the GMM described
by Eq. (10), we use the algorithm proposed by Figueiredo and
Jain [32]. In this algorithm, the Minimum Message Length
criterion is implemented. It estimates the parameters of each
component as well as the optimal number of components (i.e.,
the total number of classes) of the GMM. Another benefit of
this learning algorithm is that a careful initialization is not
required, as opposed to ML expectation-maximization based
methods [32].

3) The Selection of K: Once the GMM described by
Eq. (10) is learned, the number of homogeneous regions K
should be selected and the corresponding conditional PDFs
for the homogeneous regions, { fX |Ak (x; η̂k, σ̂k)}K

k=1, should
be detected. In our work, we advocate for a manual selection
of K , prior to the application of the PD algorithm. In this
approach, K is selected by visual inspection of the image
obtained by basic zero-filled (ZF) reconstruction. For most
images we investigated, at least two homogeneous regions
can be discerned: a background and a hyper-intense region.
The corresponding conditional PDFs are easily identified by
selecting those with the lowest and highest estimated mean,
respectively. The remaining conditional PDFs are arranged
in ascending order with respect to their standard deviation.
Selecting K ≥ 3 homogeneous regions may enhance the
performance of the PD if the partially discrete image at hand is
indeed constituted of more homogeneous regions than just the
background and a hyper-intense region. This was illustrated
in a simulation experiment that was set up to evaluate the
sensitivity of the PD method to the selection of K and which
is described in subsection II-A of the supplementary file.
If K = 3, in addition to the conditional PDFs associated
to the background and hyper-intense region, the conditional
PDF with the lowest standard deviation is chosen. If K = 4,
also the second conditional PDF is selected and so on. In the
experiments that we performed to compare PD with state of
the art reconstruction methods, we consistently set K equal to
2, which can be considered as a conservative choice.

C. Parameters Selection

For convex reconstruction problems with noiseless under-
sampled data y, independent of the λ selection in Eq. (22), the
iterative solutions of the Split Bregman method asymptotically
satisfy the data fidelity condition (Ãx = y) and monotonically
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Fig. 2. Pseudo-code of the PD algorithm.

decrease the prior term [53]. For non-convex prior terms,
such as partial discreteness, and with noisy data y, as in
problem (3), global convergence cannot be guaranteed. Fortu-
nately, in this situation, the Split Bregman algorithm has been
experimentally observed to converge, even though theoretical
proof is still lacking [56]–[60].

To achieve a good performance, a careful initialization x(0)

and an adequate selection of λ are of great importance. Our
choice for x(0) is the magnitude of the low-resolution recon-
structed image xLR. This image was used as well for training
the GMM. Our magnitude image |xLR| lacks details and
texture is hardly preserved, but it has important advantages for
partial discreteness: 1) artefacts are not so strongly manifested
as in other x(0) choices (e.g., Tikhonov regularization on x),
and 2) the background area is easily discernible. Consequently,
the initial partial discreteness representation, P(|xLR|), does
not undesirably magnify artefacts, and more important, the
background is already accurately represented by P(|xLR|).
The low resolution image xLR also serves to estimate the
phase ψx. From this image, the principal complex argument
is voxel-wise calculated [4]. With the estimated phase image,
ψ̂x ∈ (−π, π]N , Ã is defined. The basis for defining the
weighting λ parameter is the following simple rule: the better
the type of image we are reconstructing adheres to a partially
discrete image, the lower λ should be. Furthermore, the design
of λ should take into account that the prior term �(·) is often
several orders of magnitude larger than the data fidelity l2
norm. Empirically, we have corroborated that a satisfactory
formula in our experiments was the following:

λ = 2(1 − r) · 103, (24)

with 0 ≤ r < 1 a value which we term the partial discreteness
degree. In practice, the more constant we expect the hyper-
intense regions to be, the closer r should be to 1. The closer r
is to 0, the less relevant the partial discreteness prior becomes.

The pseudo code of the proposed PD algorithm is presented
in Fig. 2.

D. Multi-Coil Extension

The proposed method can be extended to be applicable
to multi-coil acquisitions. In that case, the algebraic linear
model (Eq. (1)) should be extended. Let yr ∈ CM be the
k-space data acquired by the r -th coil, with r = 1, . . . , R.
The relation with the reconstructed image xr is again

yr = Axr + nr . (25)

Each of xr ∈ CN is related to the true magnitude par-
tially discrete image x ∈ R

N+ through the coil sensitivities,
cr ∈ CN , as xr = Cr�x with Cr = diag(cr ). If we call
yT = [yT

1 , yT
2 , . . . , yT

R] and Ã = ABlock� with

ABlock =

⎡
⎢⎢⎢⎣

A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

C1
C2
...

CR

⎤
⎥⎥⎥⎦ , (26)

partial discreteness can be applied as in subsection IV-A.

E. Relation to Non-Local Total Variation (NLTV)

Because partially discrete images are composed of several
homogeneous regions with very low intensity variation, it
may be tempting to reconstruct them with spatially-adapted
versions of TV-based methods, such as Non-Local (NL) TV
algorithms [61], [62], [16]. Here, we provide an insight-
ful comparison between NLTV and our partial discreteness
prior. While NLTV accounts for the low intensity variation
using concepts rooted in calculus of variations and measure
theory [61], partial discreteness uses tools from Bayesian
inference and unsupervised learning and clustering.

Aside from being different in nature, both approaches han-
dle prior information very differently. On one hand, partial
discreteness promotes quasi-constant images in an explicit
fashion, through the partial discreteness representation, i.e.,
an image. On the other hand, NLTV does it indirectly, through
the non-local gradient [61], [63]. Indeed, in NLTV algorithms,
the spatial gradient of x, included in the original TV measure,
is replaced by the non-local gradient of x: a vector ∇w

m x ∈ RN

which at pixel m is defined as [16]

(∇w
m x)n = √

wmn(xm − xn) with n = 1, . . . , N, (27)

where W�{wmn} ∈ R
N×N+ is the graph matrix. In order to

define the NLTV term, first the l2 norm of each ∇w
m x with

m = 1, . . . , N is taken and then, the l1 norm of the resulting
vector is calculated [16]. The graph matrix W plays the role
of adaptive mechanism and weights the intensity differences
according to the image spatial content. A large weight wmn is
assigned to two similar pixels, therefore penalizing deviation
in intensity. Intensity deviations of pairs of dissimilar pixels
must not contribute to the NLTV term, hence, zero values
are selected in this case. The interested reader is referred
to [16] for a more specific interpretation. At this point, a
pertinent observation can be made. NLTV still needs a learning
mechanism to account for the image structure and thus to
define W. This means that the performance of NLTV can not
be separately assessed from the learning process. In fact, since
the graph matrix W is the tool which most leverages NLTV
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performance, it should be very carefully designed. Yet, the
selection of an appropriate similarity metric for weighting the
pixels is still arguable and application-dependent [61], [63],
not to mention the computational complexity of exhaustive
searches in patch-based similarity algorithms [63]. Fortunately,
the problem with the similarity metrics is circumvented with
partial discreteness. The learning mechanism is naturally
embedded into the GMM, which carries its own sophisticated
learning/clustering procedure, based on Bayesian inference.
The special image features of partially discrete images are
condensed in the partial discreteness representation, derived
from the unified framework presented in subsection III-A.

We emphasize the importance of the GMM in the construc-
tion of the partial discreteness prior. Its employment in MRI
is not new. For instance, it has been used for unsupervised seg-
mentation [64] and bias field correction [65], [66]. On top of
that, it has been exploited as prior knowledge in model-based
image restoration problems, where it has shown excellent
results [67]. Certainly, in the Compressed Sensing (CS) field, it
has been recently proved [68] that exact signal reconstruction
drawn from a GMM is achievable with a substantially less
number of measurements than commonly required with other
sparse recovery methods.

V. EXPERIMENTS

In this section, we describe the experiments that were
carried out to evaluate the performance of the proposed PD
algorithm. First, PD was compared against state-of-the-art
reconstruction methods, conducting experiments on simulated
as well as real k-space data. Next, dedicated simulation
experiments on a digital phantom were performed to test the
sensitivity of the algorithm to (i) the pre-selected number of
homogeneous regions, K , (ii) phase profiles that do not satisfy
the assumption of a slowly varying phase, and (iii) intensity
inhomogeneity or bias field [69], [70]. In all experiments, the
starting point was a fully sampled data set which was retro-
spectively under-sampled. Throughout, validation was not only
based on visual assessment but also on quantitative results.
We employed the following measures to evaluate the recon-
struction quality: the Peak Signal-to-Noise Ratio (PSNR) [1],
the Quantitative Index based on Local Variance (QILV) [71],
the High Frequency Error Norm (HFEN) [1] and the Feature
Similarity Index Metric (FSIM) [72].

A. Comparison of PD With State-of-the-Art Methods

Comparative experiments were conducted on simulated as
well as real k-space data. Different types of under-sampling
scenarios were considered, namely, structural and random
patterns. In this way, we show that PD does not require
any specific assumption on the type of sampling, in contrast
to common CS-based reconstruction methods [73]. PD was
compared against the basic ZF reconstruction as well as
three state-of-the-art reconstruction methods dedicated to the
reconstruction of under-sampled data, namely:

1) SparseMRI, proposed by Lustig [4], which implements
the concept of CS including, as prior terms, TV
and l1-wavelet sparsity. The Matlab code is publicly
available [74].

2) CS+NLTV, proposed by Lian [16], which incorporates
NLTV in the CS framework.

3) LORAKS proposed by Haldar [18]. LORAKS assumes
images to have small finite support compared to the
Field Of View (FOV) and/or a slowly varying phase.
The Matlab code is publicly available [75], [76].

SparseMRI was applied with the built-in parameters, except
for the TV weight and the number of iterations. Those values
were extensively varied until no further artefacts reduction
could be achieved. LORAKS was implemented with the built-
in parameters. Experiments with different settings did not
provide any remarkable difference. We followed the guidelines
presented in the original work [16] to implement CS+NLTV.
Parameter settings were chosen according to the recipe in the
original work. Regarding PD, the length of the Hamming win-
dow NHamm was set in all experiments to 50. PD was stopped
with the following parameters: Tmax = 8 and Tol = 10−4.
For simplicity and speed, we did not retrain the GMM.
Regarding the weighting parameter λ, the corresponding r
value is mentioned. The number of discrete classes were in
all experiments set to K = 2.

1) Simulated k-Space Data: For the simulation experi-
ment, a 256 × 256 actual magnitude brain actual magnitude
brain MR image (Fig. 3(a)) was used as ground-truth. The
image was acquired with an Inversion Recovery (IR) pulse
sequence on a 3T Siemens scanner with 32 coils. A smoothly
varying phase was simulated by Legendre polynomials up to
the second degree. Legendre polynomials were used because
of their demonstrated suitability for simulating slow-varying
intensity profiles [77]. The resulting complex image was
polluted with additive complex-valued white Gaussian noise
with uncorrelated real and imaginary parts of equal standard
deviation σ . The value of σ was chosen such that the signal-
to-noise ratio (SNR), defined as

SNR = x
σ

(28)

with x the spatial mean of the magnitude image x, was equal
to 10. From the noisy, complex valued image, k-space samples
on a Cartesian grid were generated using the linear model of
Eq. (1). Single-coil data were mimicked with structural under-
sampling: a pseudo radial sampling mask (Fig. 3(b)) with 70%
of non-acquired k-space points. This procedure was repeated
NRuns = 20 times with different noise realizations. We chose
a moderate value of the partial discreteness degree, r , i.e.,
r = 0.1, which was observed to give reconstructed images
with good details preservation.

The expected value of the magnitude of the reconstructed
images, that is, the sample mean over the NRuns realizations are
shown in Fig. 3. Root-Mean-Squared Error (RMSE) maps are
presented as well. Numerical results are provided in Table I.

From Fig. 3, it can be observed that SparseMRI
and CS+NLTV, though successful in removing noise, do
not recover a high resolution image. Their RMSE maps
reveal substantial structural errors, mainly located at edges.
This observation agrees with what was already pointed out
in [18] for SparseMRI. As expected, edges are slightly better
preserved with CS+NLTV [16]. All LORAKS versions and
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Fig. 3. Visual results for the experiment with simulated k-space data. The sample mean of the magnitude of the reconstructed images are shown
in companion of the RMSE maps. To highlight small errors, the colorbar range of the RMSE maps was adapted to [0, T ], where T is 40% of the
maximum value which was found in all RMSE maps (i.e., considering altogether).

TABLE I
QUANTITATIVE RESULTS FOR THE EXPERIMENT

WITH SIMULATED k -SPACE DATA

specially PD restore images with substantially higher resolu-
tion than ZF, SparseMRI and CS+NLTV. Indeed, their RMSE
maps exhibit a noisy pattern with a very moderate structural
degradation effect. This is expected if reconstruction methods
succeed in recovering high-resolution missing k-space data
(see the fully sampled case).

Among all LORAKS versions, S-LORAKS seems to per-
form best. However, still some (small) structural details errors
can be observed. These are considerably attenuated with PD
though. Numerical results are in agreement with visual find-
ings. PD obtains the best result (disregarding the fully sampled
scenario), in terms of QILV, HFEN, and FSIM. PD is closely
followed by S-LORAKS, while there is a significant difference
compared to CS+NLTV and SparseMRI. The highest PSNR
for SparseMRI might be attributed to its noise removal capabil-
ity, having a relevant effect specially in the background. With
an Intel Core i7-4770K 3.5 GHz (32 GB RAM) processor, the
average time for LORAKS reconstruction was about 10 min.
The Singular Value Decomposition (SVD) incorporated in the
method is probably the reason of such a computational burden.

As already mentioned in subsection IV-E, the calculation of W
for the CS+NLTV method is computationally quite expensive.
With the parameters chosen as those recommended in the orig-
inal work [16], the average computation time for CS+NLTV
was about 8 min. PD was able to reconstruct images within
roughly 4 min. The main computational effort is in the
GMM learning. Note that when the GMM parameters are
known, each of the subproblems of the Split Bregman method
can be rapidly implemented with the MM algorithm presented
in the supplementary file. Clearly, the fastest algorithm is
SparseMRI with a computation time sometimes below 1 min.
It should be noted that all algorithms were implemented
in Matlab. A C++ implementation would greatly speed up
all algorithms. This holds especially for the graph matrix
calculation of CS+NLTV and the GMM learning for PD.

2) In Vivo Human Knee k-Space Data: In this experi-
ment, in vivo 3-D fully sampled k-space data of a human
knee were employed. The k-space data, available at [78], were
acquired with a 3-D Fast Spin Echo (FSE) pulse sequence
on a 3T scanner with eight coils. From the 3-D k-space
data, 2-D slice reconstruction was accomplished. We applied
an inverse Fourier transform [18] along the third dimension,
and then, one and the same mid-sagittal 2-D k-space slice
was extracted per each coil. This approach is valid since
the 3-D Fourier transform is a separable operator [79]. The
corresponding k-space slices (320 × 320) were under-sampled
with a random phase-encoding mask of 50% of missing
k-space lines (Fig. 4(b)).

For ease of comparison, and because publicly available
Matlab codes of SparseMRI and LORAKS only permit single-
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Fig. 4. Visual results for the experiment with real k-space data of the knee. The SoS reconstructed images are shown in companion of the absolute
errors maps. To highlight small errors, the colorbar range of the absolute error maps was adapted to [0, T ], where T is 40% of the maximum value
which was found in all absolute error maps (i.e., considering altogether).

TABLE II
QUANTITATIVE RESULTS FOR THE EXPERIMENT WITH

in vivo HUMAN KNEE k -SPACE DATA

coil reconstruction, each of the eight 2-D k-space data sets
were reconstructed independently. To create a final image per
method, the eight reconstructed images were combined using
the Sum of Squares (SoS) method [80].

Since the FSE sequence produces a highly bright and
constant area in the cartilage region, it is reasonable to assume
the partial discreteness holds even more than in the simulation
experiment. Therefore, for PD, we increased the r value to 0.9.

Reconstructed SoS images as well as the absolute error
maps (with the magnitude of the fully sampled image as
ground truth), are shown in Fig. 4, while quantitative results
are reported in Table II.

We can draw similar conclusions about the performance of
PD in comparison to the rest of the methods. The artefacts
manifested due to the random sampling are partially removed
by SparseMRI and CS+NLTV, but both methods failed in
recovering highly detailed clinical relevant areas, for example,
the contours in the cartilage region. PD restored a higher

detailed image as can be seen as well by looking at the errors
map. Concerning the LORAKS versions, we first notice that
C-LORAKS failed to converge (results not shown).
G-LORAKS was able to recover a better defined cartilage
but still it is largely outperformed by S-LORAKS and
PD. Reconstructed images with S-LORAKS are slightly
less accurate than those obtained by PD, as is manifest
in the metrics of Table II. Certainly, PD scores best for
metrics which are specially conceived to assess small details
preservation, that is, QILV and HFEN. The best FSIM
case for G-LORAKS may be understood if we notice that
G-LORAKS provides a good balance between artefacts
suppression and structural details preservation. Finally, the
highest PSRN for CS+NLTV could be largely based on its
ability for artefacts removal.

The computational time of all methods, for each coil, were
very similar to the times reported in the simulation experiment
and hence they are not repeated here.

3) In Vivo Human Brain k-Space Data: To finish the
experiments section, we validate PD in a truly multi-coil
reconstruction scheme, where coil sensitivities estimation is
required. In vivo 3-D fully sampled k-space data were used
again, this time, from a human brain. K-space data were
acquired with a 3T scanner with eight coils. To allow for 2-D
slice reconstruction, we followed the same routine as in the
knee experiment. Specifically, we applied an inverse Fourier
transform along the second dimension and then, one and the
same mid-axial 2-D k-space slice was extracted per each coil.
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TABLE III
QUANTITATIVE RESULTS FOR THE EXPERIMENT

WITH in Vivo HUMAN BRAIN k -SPACE DATA

The resulting k-space slices (230 × 180) were under-sampled
with a 2-D variable density random mask of 75% of missing
k-space points (Fig. 5(b)).

Coil sensitivities, {cr }R=8
r=1 , were estimated with the SoS

method [80]. Next, the initial low-reconstructed image xLR
was obtained as xLR = AH

BlockyNHamm where AH
Block denotes

the Hermitian transpose of ABlock and yNHamm are the under-
sampled k-space data filtered with a Hamming window
(NHamm = 50). The phase ψx was estimated from xLR as well.
From ψ̂x, � was determined after which Ã was redefined as
proposed in subsection IV-D. Finally, PD was applied with
the same Split Bregman method. As in the brain simulation
experiment, r = 0.1 was selected. We also compared PD
with the ZF reconstruction, calculated as AH

Blocky, and with
the CS+NLTV method. In both cases, the coil estimation
procedure was done in exactly the same manner as for PD.

Undoubtedly, it can be seen from Fig. 5 that the
magnitude of the reconstructed image with PD possesses
higher resolution than the image restored with CS+NLTV
and specially ZF. A closer look at zoomed images
(Fig. 5(j-l)) reveals that the interfaces between white/gray
matter are better preserved with PD compared to CS+NLTV.
Absolute error maps also demonstrate that higher structural
errors are more widely manifested with CS+NLTV than
with PD.

Quantitative results in Table III further suggest the superi-
ority of PD in detail preservation and resolution enhancement.
PD ranked best for three of the four metrics.

Nevertheless, it is also clear that NLTV outperforms PD in
noise suppression. This is not surprising since the NLTV prior
term, incorporated in the CS+NLTV method, has proved to be
a very effective denoising mechanism [62]. Indeed, the first
application of the TV measure in the image processing field
was noise removal [81].

It is interesting to remark that our partial discreteness
prior does not attempt to remove noise but to recover the
unknown partially discrete image using a priori information,
which we carefully modeled from its special structure. Neither
the GMM nor the Bayesian probabilistic segmentation were
designed to tackle noise. However, showing its flexibility, our
partial discreteness prior can easily accommodate a simple
regularization term in companion of the partial discreteness
representation to cope with noise while still exploiting all the
potential of this novel image representation. For the reader’s
interest, we point out that the a posteriori probability maps
derived from the GMM have a broad range of applications
for MR reconstruction, tissue-selective filtering being one of
them. A reduced list of these applications and some extensions
of the GMM are given at the end of the conclusion section.

B. Sensitivity Analysis of the PD Method

This subsection summarizes the main results of a sensitivity
analysis of the proposed PD method to various parameters and
deviations from assumptions. The analysis is based on dedi-
cated simulation experiments, which are extensively discussed
in the supplementary file accompanying this paper.

1) Sensitivity to the Pre-Selected Number of
Homogeneous Regions, K: To test the sensitivity to
the pre-selected number of homogeneous regions K , a
dedicated simulation experiment was conducted on a digital
phantom image. This simulation experiment is described in
subsection II-A of the supplementary file. The results of the
experiment show a clear gain in reconstruction quality if at
least one homogeneous region (e.g., background) is chosen.
A further substantial improvement was achieved by also
incorporating the hyper-intense region (K = 2). The optimal
value of K for the phantom image was found to be equal
to 4, which demonstrates that for particular partially discrete
images, the performance of PD can be further improved by
selecting K higher than 2. Obviously, the optimal value of
K will depend on the image to be reconstructed. Note that
in the experiments that we performed to compare PD with
state-of-the-art reconstruction methods (see subsection V-A),
K was consistently set equal to 2, which can be considered
as a conservative choice.

2) Sensitivity to Non-Slowly Varying Phase: As
described in subsection IV-B, the required estimate of the
image phase is obtained from a low resolution image xLR.
The rationale for this procedure is that real-life phase images
are often slowly varying. Note that a slowly varying or smooth
phase is a common assumption in MR image reconstruction
methods [4]. Nevertheless, phase images may also have signif-
icantly higher spatial frequency content [82], especially when
gradient echo instead of spin echo imaging sequences are
used [83]. To study the sensitivity of the PD algorithm to non-
slowly varying phase, we carried out a simulation experiment
(cfr. subsection II-B of the supplementary file), in which the
performance of PD for three different phase profiles was
evaluated. As expected, the performance of PD degrades for
highly-varying phase profiles, which indicates the importance
of the smooth phase assumption. However, it was also found
that PD is robust to moderate phase variations.

3) Sensitivity to Bias Fields: Bias fields are undesired low
frequency signals induced by inhomogeneities in the magnetic
fields of the MRI system [84]. The presence of a bias field may
challenge the main assumption underlying the PD method,
namely that the image to be reconstructed contains regions
of quasi-constant intensity. To evaluate the performance of
the PD method in the presence of a bias field, dedicated
simulation experiments were conducted on a digital phantom.
These simulation experiments are described in subsection II-C
of the supplementary file. Bias fields with different degrees
of variation were considered. The results of the simulation
experiments show that, in general, the performance of PD
deteriorates when the degree of variation of the bias field
increases. In addition, since not all homogeneous regions may
be equally affected, a bias field may also influence the optimal
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Fig. 5. Visual results for the experiment with real k-space data of the brain. The magnitude of the multi-coil reconstructed images are shown in
companion of the absolute error maps. To highlight small errors, the colorbar range of the absolute error maps was adapted to [0, T ], where T is
40% of the maximum value which was found in all absolute error maps (i.e., considering altogether).

choice of K , suggesting that in the presence of a severe bias
field, a conservative choice of K is advisable, as is further
motivated in subsection II-C of the supplementary file. In this
supplementary file, we also elaborate on the possibility of
improving the robustness of the PD method by including a
bias field correction technique.

VI. CONCLUSIONS

In this work, we have presented a novel prior, partial
discreteness, for the reconstruction of MR images with quasi-
constant intensity regions as well as heterogeneous regions.
We have shown that every image can be additively decom-
posed into its partial discreteness representation and its resid-
ual form. The partial discreteness representation, which is
based on a GMM, embodies the basic features of partially
discrete images: constant intensity in homogeneous regions
and texture in heterogeneous regions. Exploiting this partial
discreteness representation in MR image reconstruction, by
enforcing sparsity on the residual form, we have been able to
reconstruct highly detailed images from under-sampled data
with structural and random under-sampling schemes, namely,
pseudo-radial, random phase-encoding and pseudo-random
variable density sampling. In this work, partial discreteness

has been implemented in a phase-constrained formulation
where the phase map was estimated from a low-resolution
image. Hence, we have implicitly made the common assump-
tion of smoothly varying phase images [4], [18]. Furthermore,
it seems that no special assumptions on the type of sampling
pattern seem to be required for partial discreteness. Exper-
iments performed on both simulated and real k-space data
have shown that the newly proposed reconstruction method PD
performs competitively with and often better than state-of-the-
art reconstruction methods such as SparseMRI, LORAKS and
CS+NLTV. The results suggest that PD allows better texture
preservation than SparseMRI (CS with TV prior), avoiding the
staircasing effect, and even CS+NLTV. This is because in the
partial discreteness representation, which is the core of PD,
edges are modeled not solely based on intensity or its gradient
but merely based on Bayesian (a posteriori) probabilities of
GMM classes. Enforcing sparsity on the residual form instead
of the (non-local) gradient, as (non-local) TV promotes, is less
restrictive. Furthermore, PD outperforms LORAKS in terms of
computation time, while providing images as highly detailed
as LORAKS does.

In future work, we will explore the extension of the uni-
variate GMM within the PD method to a multivariate GMM.
The use of a multivariate GMM allows the joint reconstruction
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of a set of images, thereby exploiting the correlation between
those images. Such an approach may be useful in, for example,
accelerated dynamic MRI [85], diffusion-weighted MRI,
3D imaging or simultaneous multi-slice reconstruction [86].

Finally, we note that the probabilistic image presentation
in PD inherently leads to tissue classification embedded in
a Bayesian framework. A posteriori probability maps derived
from the GMM may be used for tissue segmentation [64],
texture analysis or tissue-selective filtering schemes [87], [88].
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