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Abstract
Image interpolation is intrinsically a severely under-determined inverse
problem. Traditional non-adaptive interpolation methods do not account for
local image statistics around the edges of image structures. In practice, this
results in artifacts such as jagged edges, blurring and/or edge halos. To
overcome this shortcoming, edge-directed interpolation has been introduced
in different forms. One variant, new edge-directed interpolation (NEDI), has
successfully exploited the ‘geometric duality’ that links the low-resolution
image to its corresponding high-resolution image. It has been demonstrated
that for scalar images, NEDI is able to produce better results than non-adaptive
traditional methods, both visually and quantitatively. In this work, we return
to the root of NEDI as a least-squares estimation method of neighborhood
patterns and propose a robust scheme to improve it. The improvement is
twofold: firstly, a robust least-squares technique is used to improve NEDI’s
performance to outliers and noise; secondly, the NEDI algorithm is extended
with the recently proposed non-local mean estimation scheme. Moreover, the
edge-directed concept is applied to the interpolation of multi-valued diffusion-
weighted images. The framework is tested on phantom scalar images and real
diffusion images, and is shown to achieve better results than the non-adaptive
methods as well as NEDI, in terms of visual quality as well as quantitative
measures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Image interpolation (upsampling) aims to resolve the unknown, high-resolution (HR) pixels
from the known, low-resolution (LR) pixels. Since the LR image is an approximation of
the HR image, interpolation is an inverse problem. Additionally, as the number of unknown
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HR pixels usually exceeds that of the known LR pixels, it is in general an ill-posed problem.
Certain models concerning the relation between HR and LR pixels will have to be used in
order to determine the HR pixels from the LR ones (Thévenaz et al 2000). The most widely
used interpolation methods (Lehmann et al 1999), such as bi-linear interpolation (Meijering
2002) and bicubic interpolation (Keys 1981), readily employ global space-invariant models
that fail to respect the local statistics around the edges in the image. Consequently, they
produce artifacts such as jagged edges, blurring and/or edge halos (Thévenaz et al 2000).
Moreover, valid structural information can be lost during the interpolation by bi(tri)-linear or
even bi-cubic interpolation, as shown in Chao et al (2009).

In order to improve the interpolation quality, numerous methods based on more
sophisticated models have been proposed (Lee and Paik 1993, Jensen and Anastassiou 1995,
Allebach and Wong 1996, Morse and Schwartzwald 1998, Wang and Kreidieh 2007, Li and
Orchard 2001b). Adaptive interpolation techniques (Lee and Paik 1993) exploit the relation of
local image intensities, with ‘warped distance’, to adapt the linear interpolation coefficients to
better capture local features around the edges. Edge-directed interpolation (EDI) techniques
(Jensen and Anastassiou 1995, Allebach and Wong 1996, Morse and Schwartzwald 1998,
Wang and Kreidieh 2007) employ models that extract edge information in order to guide the
interpolation in different ways. The edge information is often extracted explicitly, for example,
in Jensen and Anastassiou (1995), and a parameterized edge model is used to predict the HR
edge information from the detected LR edge information. Alternatively, in Allebach and Wong
(1996), an HR edge map is first generated by filtering the input LR data, and the HR image
is generated with constraints from the HR edge map. This approach is similarly exploited in
Morse and Schwartzwald (1998) by means of extracting isophotes, or iso-contours, from the
LR image. Furthermore, in Wang and Kreidieh (2007), the edge orientations are extracted and
grouped into a finite set to guide the final interpolation.

Unfortunately, the pitfall of edge-interpolated techniques aforementioned is that they
have to explicitly extract the edge information and/or discretize the interpolation direction
into a finite set. The successful extraction of edge information still presents a challenge to
date, especially for certain low-contrast medical images. Also for multi-valued images such
as diffusion-weighted images (DWI), the definition of ‘edge’ is far from straightforward, in
contrast to the scalar case. Moreover, a finite set of interpolation directions can prove to be
artificial and unstable.

In order to avoid the problems associated with explicitly estimating edges, Li et al proposed
to exploit the ‘geometric duality’ between the covariance of a LR image and a HR image, with
the help of linear prediction theory, and guide the interpolation with the implicitly retained edge
information in covariance (Li and Orchard 2001b). Harnessing the mathematical elegance,
their method (new edge-directed interpolation, NEDI) is able to produce results both visually
pleasing and quantitatively competitive. However, because of the ordinary least-squares nature
of NEDI, it is not robust for outliers. In the presence of heavy noise, this drawback will further
severely hamper the performance of NEDI, as we will discuss more in detail in later sections. In
this work, we utilize a robust least-squares technique to improve this drawback. Furthermore,
since NEDI uses a least-squares fit of the pattern of the neighborhoods to achieve optimal
interpolation, we make the connection between NEDI and the non-local mean (NLM) method
(Buades et al 2005). As is shown, NLM can provide a measure of the similarity between
neighborhood patterns. The NLM concept is incorporated into our algorithm such that it links
directly to the improved least-squares framework of NEDI.

As an application, our proposed interpolation method is applied to DWI MR images.
Diffusion MR image processing tasks involve interpolations in both pre- and post-processing
stages. As mentioned previously, traditional interpolation methods are shown to be liable to
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lose image structural information. Moreover, interpolation is further complicated by the low
signal-to-noise ratio, which is characteristic for DWI (Basser and Pajevic 2000a), in which
the magnitude MR images are plagued by the Rician noise (Gudbjartsson and Patz 1995) (as
opposed to the typical Gaussian noise in the common digital images). Sophisticated techniques
have already been developed to upsample the diffusion MR images in the slice direction (Mai
et al 2010), while for in-plane upsampling the traditional bi(tri)-linear interpolation methods
are still the most commonly used in practice. By contrast, our algorithm is shown to preserve
the image structure for diffusion MR image interpolation.

This paper is organized as follows. Section 2 covers our methodology. Firstly,
section 2.1 briefly introduces NEDI; secondly, section 2.2 details our reinterpretation of NEDI
as a least-squares method, and then section 2.3 provides the details of our improvements based
on the new understanding of NEDI. In section 3, experiments on phantom images, synthetic
brain images and real MR brain images are described. Finally, in section 4, conclusions are
drawn, and prospects for future work are given.

2. Methods

First, it should be noted that while the original NEDI algorithm is 2D based, there is no
algorithmic barrier that hinders its extension to 3D images. However, in this work, we limit
our attention to 2D images and treat the 3D volumes as a series of 2D slices. This is out of
consideration that multi-slice MR images, especially DW images, typically have thick slices,
as compared to the much smaller in-plane pixel dimension.

2.1. New edge-directed interpolation

We assume the LR image xi,j of dimensions W × H , defined on a domain � with
� = {(i, j)|1 � i � W, 1 � j � H }, to be a downsampled version of the HR image y2i−1,2j−1

of dimension (2W − 1) × (2H − 1), i.e. y2i−1,2j−1 = xi,j , as shown in figure 1. The goal of
interpolation is to compute pixel intensities y2i,2j , y2i−1,2j and y2i,2j−1. Let us consider for
example the reconstruction of y2i,2j . It is assumed that this value can be reconstructed from
its immediate n × n neighbors (without loss of generality, n is taken to be 2 in the following)
by a weighted sum:

ŷ2i,2j =
1∑

k=0

1∑
l=0

α2k+lxi+k,j+l , (1)

where α2k+l is the weight of each neighbor pixel xi+k,j+l in determining y2i,2j . According to
the classical Wiener filtering theory (Jayant and Noll 1984), the optimal linear interpolation
coefficients are given by

α = R−1r, (2)

where α is the vector containing weights αi , and R and r are the local covariances (Li and
Orchard 2001a) at HR, which are unknown. However, assuming the so-called ‘geometric
duality’ (Li and Orchard 2001a), the correspondence between the HR covariance and the
known LR covariance can be established, so that the HR covariance can be estimated from the
LR one. Therefore, we have

R = 1

N
CT C, r = 1

N
CT x, (3)

where x = [x1, x2, x3, x4]T is the neighbor vector that contains the N (4 in this case) immediate
neighbors of pixel y2i,2j . Using the correspondence between the LR and HR images as shown
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Figure 1. The overlay of the image domains of LR and HR image. Black pixels are the known
y2i−1,2j−1 pixels (HR image, outer index), which coincide with the xi,j pixels (LR image, inner
index). Center gray pixel (y4,4) and other white pixels (y2i,2j , y2i−1,2j and y2i,2j−1) are to be
determined.

in figure 1, x can be replaced with y = [y1, y2, y3, y4]T , where yi is the corresponding known
HR pixel of the LR pixel xi. C is the 4 × N matrix, the kth (k � N ) row of which contains the
four neighbors of yk. Then, the weights αi can be estimated from C and y as follows:

α = (CT C)−1(CT y). (4)

For pixels y2i−1,2j and y2i,2j−1, the computations are similar, except for a rotation and scaling
of the neighborhood (Li and Orchard 2001b). It is worth noting that according to the original
NEDI paper, the computation outlined previously is only performed on pixels for which the
standard deviation of the intensities of its neighbors is larger than a certain threshold. This, as
a crude form of edge detection, helps to alleviate the computational load, while still avoiding
estimating edges explicitly. We have retained this mechanism in the implementation of our
algorithm.

2.2. NEDI reinterpreted as least-squares fitting

Here we continue the discussion by looking at the NEDI formula, equation (4), from another
view point. Equation (4) was derived from the Wiener filtering theory (Jayant and Noll 1984).
However, we can immediately see that equation (4) is actually the solution to a least-squares
problem:

α̂ = arg min
α

‖y − C × α‖2 . (5)

Now let us further decompose the above-vectorized formula:

α̂ = arg min
α

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

r1

r2

r3

r4

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥

2

= arg min
α

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

y1

y2

y3

y4

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

y1,1, · · · , y1,4

y2,1, · · · , y2,4

y3,1, · · · , y3,4

y4,1, · · · , y4,4

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

α1

α2

α3

α4

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥

2

, (6)

where ri is the residual for each fit: ri = yi − [yi,1, . . . , yi,4] · α. Following the logic in
equation (1), we can interpret the weights α as characteristics of the pattern of a pixel’s
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Figure 2. A comparison of 1D data fitting between OLS and the robust iterative reweighted
least-squares (IRLS) technique (or robust regression). Blue points indicate the original discrete
data points, which construct a slanted edge structure, with additive noise. The first one and the last
two data points are outliers outside of the edge. The red line is the result from OLS fitting. For
the IRLS fittings, the green line is the result for c = 3.0, black line for c = 2.0, yellow line for
c = 1.0, magenta line for c = 7.0 and brown line for c = 0.2.

surrounding neighbors. Therefore, the meaning of equation (4) becomes much clearer: what
it achieves is a least-squares fit of the patterns of the neighborhoods (row elements in C) in
the search area spanned by y.

With NEDI interpreted as such, we now look at the algorithm (and its flaws) from another
point of view. As is well documented, ordinary least-squares (OLS) estimation as used in the
original NEDI is far from robust, and liable to the influence of outliers and/or noise (Zhang
1997). While the presence of noise is obviously detrimental to the image interpolation task,
‘outliers’ in the context of NEDI are those pixels that do not belong in the same edge, as do
other edge pixels. For a 1D demonstration, see figure 2. As shown in figure 2, the presence
of noise and ‘outliers’ in the computation might consequently undermine the ability of NEDI
to discern the edge and guide the interpolation. We will detail the improvements we propose
with respect to this shortcoming of NEDI in the following section.

2.3. Robust NEDI

In this section, we propose two improvements to the original NEDI algorithm. Firstly, the
estimation is made robust with respect to outliers and/or noise. Secondly, NLM weighting is
incorporated for performance improvement.
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Figure 3. A simulation test for determining the optimal weighting function.

2.3.1. Robust IRLS fitting. In the literature, numerous methods to overcome the non-
robustness of OLS estimation have been proposed (Zhang 1997). In our work, we start from
the well-known IRLS fitting method (Holland and Welsch 1977). In IRLS, the sum of the
squared residuals, weighted with a function of the residuals from the previous iteration, is
iteratively minimized, i.e.

α(k) = arg min
α(k)

∑
i

ωR
(
r

(k−1)
i

)(
r

(k)
i

)2
, (7)

where the superscript (k) indicates the iteration k. The function ωR(x) is a monotonically
non-increasing function of x.

The most commonly used weighting functions include the ‘bisquare function’, ‘Huber
function’, ‘fair function’ and ‘Welsch function’. For a complete description of each function,
readers are referred to (Zhang 1997). Since the choice of the weighting function is application-
dependent and crucial for the outcome, we conducted a simulation test to determine the optimal
weighting function. The simulation was set up as in figure 3(a), in which a 4-neighborhood
setup was used. The intensities of the four pixels, yi (0 � i � 3), were randomized between
a preset range, Yim � yi � YiM . The intensity of the central pixel Y was then set as a
weighted sum, with weights α fixed and known. Each IRLS testing, with different weighting
functions, was supplied with 15 datasets of neighbors and central pixels (which were corrupted
with 10% Rician noise and 10% outliers), in order to perform a robust regression to estimate
weights αR . The error in weights estimation can then be computed as ‖α − αR‖. This
simulation was repeated 100 000 times, and the accumulated errors for each IRLS with different
weighting function are shown in figure 3(b). From this test, we can conclude that the ‘Welsch
function’ is preferable to other functions, and it is adopted in the final implementation of this
work.

The power of IRLS can be effectively shown in a 1D demonstration in figure 2, where the
weighting function is taken to be the ‘Welsch function’ (Zhang 1997), ωR(x) = e−x2/c2

, with
c controlling the weighting function’s behavior with respect to outliers. According to (Zhang
1997), setting c = 2.985 46 can achieve an optimal asymptotic efficiency. In figure 2, where



Robust edge-directed interpolation of magnetic resonance images 7293

the IRLS fitting results for different c are shown, it is found that c values clustering around
the aforementioned optimum value would result in more or less the same fitting results, while
values that deviate far from that (for example, when c = 0.2 or 7.0) would result in similar
results as in OLS. Therefore, we adopt the value as recommended in the literature.

2.3.2. NLM weighting. Since we have reinterpreted NEDI as a least-squares fit of the
neighborhood patterns, it is desirable to maximize its ability for doing so, while keeping
in mind the context for ‘robustness’. The newly emerged NLM algorithm (Buades et al
2005) proved promising for this purpose. The NLM algorithm was designed specifically
for denoising purposes, whose success is largely due to its ability to differentiate between
non-local neighborhood patterns (non-local ‘patches’). In other words, the NLM algorithm
estimates the underlying, noiseless pixel values from its non-local neighboring pixels based on
the similarity of their corresponding neighborhoods. Despite the algorithmic difference, this
is the same principle as NEDI, especially after our reinterpretation. Furthermore, NLM does
so with robustness and efficiency. We therefore apply NLM to our algorithm, by incorporating
it into the reweighting part of the least-squares fit. The NLM-weighted iterative least-squares
fit will take the following form:

α(k) = arg min
α(k)

∑
i

ωN
i · ωR

(
r

(k−1)
i

) · (
r

(k)
i

)2
, (8)

where ωN
i is the NLM weight function (Buades et al 2005) and is expressed as

ωN
i = e

− ‖N i−Ncurrent‖2

h2 , (9)

where N i stands for the vector that contains the intensities of the neighborhood of the ith
pixel, N current that of the neighborhood of the current pixel, and h controls the smoothness of
the NLM weight function.

According to Buades et al (2005), in a typical denoising application of the NLM,
h ≈ 10 · σ , where σ is the standard deviation of the noise in the image. For our specific
application of NLM for interpolation purpose, we conducted experiments to ascertain the
optimal h. As shown in figure 4, we tested with different h values (as a factor of noise
standard deviation σ ) on synthetic phantom images (see section 3) with different σ being
10% (black), 20% (red) and 30% (blue) of the mean intensity of the synthetic image.
The optimal h values, in terms of peak signal-to-noise ratio (PSNR, Y axis), are found to
coincide on h = 1 · σ , as indicated by the indigo line in figure 4. This indicates a uniform
scale factor of 1 when it comes to decide the value of h as a function of σ , regardless
of the noise levels (our experiments suggest that the factor of 1 also applies to cases with
different upsampling factors, different images, etc). Note that the scale factor of 1 is also
in accordance with further developments of the NLM algorithm in the denoising application,
e.g. Manjón et al (2008). Figures 5(a)–(c) show sample images from our NLM weighting
influence test: figure 5(a) without NLM weighting, figure 5(b) robust IRLS with optimal
NLM weighting, and figure 5(c) with excessive NLM weighting (with high h). The artifacts
in figure 5(a) mainly come from the singular results during the IRLS computation, which
is caused by inappropriately assigning edge-pixels and non-edge pixels into the estimation.
It can be seen that with NLM weighting, the interpolation result is more smooth, and less
artifact-prone, while oversmoothing with a high h tends to lose structural details. Since
part of the neighborhood pixel values are originally unknown, the computation in equation
(8) has to be iterative. For the pseudo-code of the NLM weighted IRLS fitting, see
figure 6.



7294 Z Mai et al

0 5 10 15 20

23

24

25

26

27

28

n=1

 σ=10%
 σ=20%
 σ=30%

P
S

N
R

h :n( σ)

Figure 4. A demonstration of the impact of different h values on interpolation. The h values used
are factors of the standard deviation of the noise σ . Noise levels used are 10% (black), 20% (red)
and 30% (blue) of the mean intensity of the synthetic image.

(a) IRLS without NLM
weighting

(b) IRLS with optimal NLM
weighting

(c) IRLS with heavy NLM
weighting

Figure 5. A demonstration of the impact of different NLM weightings on the interpolation. (a)–(c)
Sample images from our NLM weighting influence test: (a) without NLM weighting, (b) the robust
IRLS with optimal NLM weighting and (c) with excessive NLM weighting (high h).

With the two proposed improvements, our algorithm is able to distinguish robustly
between neighborhoods of different intensity patterns. As a simple example, we show in
figure 7 an edge pattern, where four sample neighborhoods are considered. It is easy to
see that the drastic difference between N2 and other neighborhood regions ensures that N2

will get a small NLM weighting, therefore minimizing its influence on the outcome of the
estimation. On the other hand, N1 and N3 are very similar, and therefore should be retained
in the estimation. Furthermore, the pattern of N4, under linear regression, is also similar to
that of N1 and N3, and would contribute to the final estimation of the intensity pattern as well.
As mentioned in the previous section, we retain the simple edge detection scheme from the
original NEDI method to alleviate the computation load. Moreover, the computation is carried
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Figure 6. The pseudo-code for the NLM weighted IRLS fitting.
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N4 

Figure 7. A simple example to demonstrate the ability of our method to distinguish between
neighborhoods of different patterns.

out in a neighborhood of 7 by 7 pixels, which we have found to be a good balance between
computation load and algorithm performance.

3. Results and discussion

3.1. Experimental setup

In this section, we present the results for our robust NEDI (R-NEDI), as compared to bicubic
interpolation and NEDI, on geometric phantom images, synthetic images (from Brainweb
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(Collins et al 1998)) and real MR images. The original 2D images, including the slices
from the 3D volumes for both synthetic and real images, were of a dimension of 256 × 256,
downsampled by a factor of 4, adding Rician noise of varying levels, and then used as the
input for different interpolation methods. For real diffusion MR images, we show here the
results from a real rat brain atlas of size 256 × 256 × 21, with six gradient directions, each
with seven repetitions, b0 = 800 s mm−2. It is important, however, to note that no special
treatment is taken regarding the correlation between channels of the multi-valued DW images,
i.e. each channel is interpolated independently. While the inter-channel correlation can be
exploited to produce better interpolation results for certain multi-valued images (e.g. color
images in Tschumperle and Deriche (2002) and diffusion tensor (DT) images in Zhenhua et al
(2010)), we here emphasize more on the impact of a certain methodology on the scalar-valued
images.

For numerical evaluation, we use PSNR and structural similarity index (SSIM) (Wang
et al 2004) for comparing the scalar image interpolation. For each measurement of PSNR or
SSIM of the interpolated images, five interpolations with different noise were carried out to
obtain the mean value. For evaluation of DT images that resulted from the interpolation for
the DWI, we used the overlapping of eigenvalue/eigenvector pairs (OVL) (Basser and Pajevic
2000b) to measure how well the interpolation is in agreement with the ground truth.

3.2. Geometric phantom image

Firstly, for the phantom images, the interpolation results for three different methods with
Rician noise (standard deviation ranging from 5% to 40% of the image mean intensity) are
shown in figure 8. As demonstrated in figure 8, both edge-directed methods are able to better
capture the edges which the bicubic method renders as jagged ones. However, due to the
limitations of NEDI discussed in section 2.2, the NEDI result features artifacts around the thin
edges, which become worse as the noise level increases. The explanation for this behavior
of NEDI is rooted in its OLS scheme: it treats all neighbors inside a local region with equal
importance, regardless of whether they belong to the same edge pattern or not. Consequently,
the edge pattern estimated by NEDI will not truly reflect the real one. This drawback becomes
apparent when the neighborhood contains small and/or thin edge patterns, and it is further
exacerbated by the presence of the noise, as shown in figure 8. In comparison, R-NEDI not
only corrects for that, but also better preserves the shape of the rings, even for high noise
levels.

3.3. Synthetic and real images

For synthetic images, the results (with Rician noise from 5% to 20%) are shown in
figure 9. Again the bicubic results feature jagged edges and distorted image structures (as
with heavy noise). The NEDI method is able to eliminate the jagged artifacts, yet as the noise
increases, it produces unnatural texture-like artifacts. By contrast, our improved algorithm
not only retains the edge-preserving ability, but it can also reproduce the image structures
more consistently, even in the case of heavy noise. The PSNR and SSIM comparison for
synthetic images in figure 11 demonstrates quantitative evidence to the qualitative observation
above.

As for real scalar images, combining figure 10 and figure 11, a steady trend is the
deterioration of the interpolations with increasing noise level, which is to be expected.
Interestingly, the bicubic method does not necessarily produce worse results than NEDI.
For example, when the noise level is 10%, the PSNR and SSIM for the bicubic method are
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(a) Original hi-res (b) Downsampled
low-res

(c) BC 5% (d) NEDI 5% (e) R-NEDI 5%

(f) BC 10% (g) NEDI 10% (h) R-NEDI 10%

(i) BC 20% (j) NEDI 20% (k) R-NEDI 20%

(l) BC 40% (m) NEDI 40% (n) R-NEDI 40%

Figure 8. The comparison of interpolations on a phantom image of dense thin edge patterns. Top
row: from left to right are the original, HR image and the downsampled, LR image. Bottom rows:
from left to right are the bicubic interpolation, NEDI result and R-NEDI result, respectively. From
second top row to bottom, Rician noise is added in the downsampled images in each row. The
standard deviations of the noise are set to be 5%, 10%, 20% and 40% of the mean image intensity,
respectively.
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(a) Original hi-res (b) Downsampled
low-res

(c) BC 5% (d) NEDI 5% (e) R-NEDI 5%

(f) BC 10% (g) NEDI 10% (h) R-NEDI 10%

(i) BC 20% (j) NEDI 20% (k) R-NEDI 20%

Figure 9. The comparison of interpolations on a synthetic brain image from Brainweb. Top row:
from left to right are the original, HR image and the downsampled, LR image. Bottom rows:
from left to right are the bicubic interpolation, NEDI result and R-NEDI result, respectively. From
second top row to bottom, Rician noise is added in the downsampled images in each row. The
standard deviations of the noise are set to be 5%, 10% and 20% of the mean image intensity,
respectively.
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(a) Original hi-
res

(b) Downsam-
pled low-res

(c) BC 5% (d) NEDI 5% (e) R-NEDI
5%

(f) BC 10% (g) NEDI 10% (h) R-NEDI
10%

(i) BC 20% (j) NEDI 20% (k) R-NEDI
20%

Figure 10. The comparison of interpolations on a real rat brain image. Top row: from left to right
are the original, HR image and the downsampled, LR image. Bottom rows: from left to right are
the bicubic interpolation, NEDI result and R-NEDI result, respectively. From second top row to
bottom, Rician noise is added in the downsampled images in each row. The standard deviations of
the noise are set to be 5%, 10% and 20% of the mean image intensity, respectively.
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Figure 11. PSNR and SSIM comparison of interpolations for phantom, synthetic and real images.
For phantom images, Rician noise from 2% to 40% is added, while for synthetic and real images,
Rician noise from 2% to 20% is added. On the left column, (a), (c) and (e) are the PSNR
comparisons for phantom image, synthetic image and real image, respectively. On the right
column, (b), (d) and (f) are the corresponding SSIM comparisons. Black lines are for the bicubic
results, red lines the NEDI results, and blue lines the R-NEDI results. Measurements are carried
out five times, with mean values shown here. Error bars are omitted because the standard deviations
of measurements are insignificant compared to the mean values.
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Figure 12. Algorithm evaluation with edge masking. (a) The edge map generated with the Canny
edge detector on a real image. (b) The PSNR comparison between bicubic, NEDI and R-NEDI
with and without the edge masking. Rician noise from 2% to 20% is added.

34.6 and 0.597, respectively, both better than those of NEDI, 34.3 and 0.592, respectively.
Visually, it is not difficult to find fault in the bicubic interpolations, as evidenced by the jagged
edges around the structure boundaries. However, despite the absence of jagged edges, NEDI
produces blurred edges, as well as the textures similar to the synthetic case. In comparison,
R-NEDI (35.4 and 0.616 for PSNR and SSIM) produces smooth and defined edges, while
texture artifacts caused by the noise are still largely under control.

The efficiency of the algorithm can also be demonstrated by its performance exclusively
on the ‘edge’ pixels. The edge pixels are detected with one of the widely used methods, Canny
detector (Canny 1986), on the real image, as shown in figure 12(a). Figure 12(b) shows that
the PSNR of the three methods we compared with and without edge masking, with respect
to varying levels of Rician noise. It is shown that the interpolation error increases in general
with an edge masking (overall drop in the PSNR), which is quite understandable given the fast
changing statistics around edge points and henceforth the associated difficulty of capturing
them. However, our edge-directed method is still able to reproduce the edge structure more
accurately than either the bicubic interpolation or NEDI.

Finally, we show the FA overlay, as well as the OVL, in figure 13. The FA map of the
DTI estimated from the interpolated DWI is given a color code of green. The ground truth
FA map (estimated from the ground truth DTI which is derived from the ground truth DWI)
is given red. Both are overlaid onto each other, resulting in the FA overlay map. Wherever
the interpolation results do not agree with the ground truth, the overlay map will show a patch
of either red or green. The comparison shows that the R-NEDI result shows fewer red/green
patches, whose presence indicates the inaccuracy of interpolation. As mentioned before, DW
images (and henceforth DT images) contain a lot of orientational information that is encoded
in the image structures. Non edge-preserving methods will have difficulty in preserving and
reproducing the structural information, and further lose the valid orientational information
inherent in the DW images, as evidenced in the FA overlay figure. This further demonstrates
visually that the robust edge-preserving ability of our R-NEDI method can translate into the
preservation of the essential structural information of the DW images.
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(a) BC 10% (OVL: 0.812) (b) R-NEDI 10% (OVL: 0.837)

(c) BC 20% (OVL: 0.701) (d) R-NEDI 20% (OVL: 0.722)

Figure 13. Comparison of the FA overlay with the DT images as estimated from the interpolated
DWI. The FA maps for interpolations are estimated from the DT images that are estimated from
the corresponding DWI interpolations. The ground truth FA map is estimated similarly from the
ground truth DWI. From left to right are the bicubic interpolation and R-NEDI result, respectively.
From top to bottom, the standard deviations of the added Rician noise are set to be 10% and
20% of the mean image intensity, respectively. OVL as a measure of the similarity between the
interpolation and the ground truth is included in the brackets.

4. Conclusion

In this work, we have improved upon NEDI based on our new understanding for its least-
squares fitting nature, and extended the edge-directed concept onto the diffusion MR image
interpolation. The source of non-robustness of NEDI was identified and improvements were
suggested accordingly. Our improvements on the original NEDI not only strengthen its
ability to implicitly retain the edge information, but also make it more robust to noise.
Our experiments have demonstrated that R-NEDI produces superior results compared to
conventional interpolation methods. Moreover, its robust ability to reconstruct the fine details
about image structures also makes it suitable for use in certain feature-dense image processing
tasks, e.g. atlas construction (Van Hecke et al 2008), where registration could benefit from
a more accurate and robust interpolation of the images. As for prospective works, this
edge-directed concept for diffusion MR image interpolation can be further investigated with
more robust models for least-squares estimation. Furthermore, it could also be extended to
interpolate on arbitrary spatial points.
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