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Abstract

Diffusion weighted images (DWI), from which the corresponding diffusion tensor images (DTI) are estimated, are commonly acquired
with anisotropic discretizations. Traditional methods to up-sample diffusion weighted images generally rely on scene-based interpolation and
do not exploit structural information from the images. In this study, a DTI up-sampling framework is presented that incorporates the
underlying anatomical shape information by means of non-rigid inter-slice registration. A strategy is proposed to reorient the interpolated
tensor in order to maintain its proper orientation. Tests on phantom as well as on real data sets show that the proposed method is able to
produce better results compared to scene based interpolation methods in terms of the accuracy of DWI/DTI interpolation, especially when
diffusion tensor orientation is taken into account.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

In typical medical imaging systems, the acquired images
are usually organized in a slice by slice fashion. The distance
between consecutive slices is generally larger than that
between two neighboring voxels in the same slice, which
results in anisotropic discrete grids. However, many image
processing tasks, such as visualization, manipulation, and
analysis of image data [1] often require isotropically sampled
volume data. Hence, there is a need for techniques that up-
sample anisotropic image into an isotropic discretization.

In general, interpolation methods can be grouped into two
categories [2]:

Scene-based interpolation
In scene-based methods, the interpolated (INT) image

intensities are mostly determined by their spatial relation
to existing intensities. Linear, cubic spline and window
sinc interpolations [3,4] are the typical variants among
them. Despite their relatively easy implementation and
high speed, this group of methods can produce many
interpolation errors (see Fig. 1).
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Object-based interpolation
In object-based methods, the INT intensities are

determined by extracting and incorporating information
about the imaged objects, features or structures inherent
in the image. Methods for information extraction
include contour extraction, correspondence registration,
etc. Our framework roughly follows the concept
proposed by Goshtasby et al. in [5]: neighboring slices
are registered, after which the transformation is used to
guide the interpolation.

In comparison, object-based methods proved to be more
accurate, mainly because the underlying image structures are
accounted for.

In the literature, the up-sampling methods for conven-
tional scalar images, such as ordinary magnetic resonance
(MR) images, either based on scene-based method or object-
based method, are well documented. However, for the target
of this paper, the multi-valued diffusion weighted/tensor
images, traditional treatments are mostly a direct extension
of the scalar method to a vectorized one, for example, as
done in the popular image processing toolset ITK [6]. More
sophisticated methods have been proposed, for example,
Tschumperle et al. [7] developed a vectorized anisotropic
diffusion filter based on second-order Partial Differential
Equation to address the problem of multi-valued image
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Fig. 1. A typical artifact generated by linear interpolation. The middle slice is
interpolated linearly between the first and the third. Instead of showing the
properly shrunken sphere, linear interpolation shows the gray shading.
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interpolation. However, the anisotropic diffusion in the
slicing direction will be heavily impeded by the partial
volume effect inherent in the thick-sliced images, not to
mention that their vectorization does not really take into
account the specifics of the tensor geometry, such as tensor
orientation.

In order to apply the aforementioned registration-based
concept to the diffusion-weighted images (DWI)/diffusion
tensor images (DTI) interpolation, with the proper appreci-
ation for the tensor information, it is imperative to consider
the progresses made regarding DWI/DTI registration.
Alexander et al. adapted the multi-resolution elastic match-
ing algorithm [8] for matching DTI, and also proposed
different strategies for tensor reorientation (TR). Unfortu-
nately, their method does not incorporate a free-form
registration method, resulting in a limited degree of freedom
in the produced transform and the limited quality of
registration. Rohde et al. [9] proposed an intensity based
registration method capable of performing affine and
nonlinear registration of multichannel images. A more
sophisticated non-rigid registration based on a viscous fluid
model was proposed by Van Hecke et al. [10], with excellent
results. In order to maximize the registration correspondence,
Studholme [11] proposed a multi-channel (MC) mutual
information (MI) metric, with inter-channel interaction, to
include the DT information into the optimization to achieve a
better registration. It is clear that not only a free-form non-
rigid registration is needed, but also is necessary a
maximized information combination involving both DW
and DTI. Furthermore, with respect to tensor reorientation,
Chao et al. have investigated the influence of different
interpolation methods on the regional fractional anisotropic
study after spatial normalization [12]. The importance of
tensor reorientation in the interpolation context will also be
addressed in this paper.

Recently, a Riemannian framework based on an advanced
handling of DTI tensors in their mathematically native
Riemannian space was proposed by Pennec et al. [13]. Not
only does it provide a new method for a direct DTI
interpolation (without interpolating first on DWI), but also
does it eliminate some of the less desirable effects of the
traditional Euclidean tensor interpolation.

In view of the variety of DW/DT registration methods, we
developed our interpolation framework as follows:

1. Non-rigid DWI/DTI inter-slice registration is per-
formed in order to obtain the displacements that morph
image features between neighboring slices.

2. Proper intermediate displacements are determined to
warp the image onto the interpolation plane, after
which the corresponding INT DT is reoriented.

Our method starts by interpolation of the DWI,
followed by DTI estimation. We will group methods
operating in similar manner as DWDT interpolation, as
opposed to another method group that directly interpolates
on tensors, which will be referred to as Direct Diffusion
Tensor (DiDT) interpolation. The common methods in the
DWDT group include the linear interpolation and the
windowed sinc interpolation, while the DiDT group
includes the traditional tensor matrix coefficient interpola-
tion (which will be later denoted as Euclidean interpola-
tion) and the newly emerged Riemannian interpolation. In
this paper, we also compare both method groups.

This paper will be organized as follows: Section 2 details
the methodology for both registration and interpolation,
including tensor reorientation. Section 3 discusses results
obtained from both phantom and real data tests. Finally, in
Section 4, we will give some concluding remarks as well as
some prospect for future work.
2. Method

As mentioned in the introduction, our method mainly
consists of two parts: the first part is a non-rigid inter-slice
registration to determine the inter-slice feature correspon-
dence, and the second part is an adaptive interpolation
guided by the correspondence.

2.1. Registration framework

The common objective in two-dimensional image
registration is to achieve spatial correspondence between
two images: the target, or end image E=E(x,y) with spatial
coordinates (x,y), and the source, or start image S=S(x′,y′)
with spatial coordinates (x′,y′). Both images are defined on
the same 2D domain, or (x,y), (x′,y′)∈Ω={(i,j)|0≤ibX,
0≤jbY}, where X and Y denote the dimensions of the
image. The correspondence is a function that maps (x,y) to
(x′,y′), f(x,y)→(x′,y′). A mapping can be either parametric
or non-parametric. A parametric mapping is typically
associated with rigid spatial transformations, e.g., transla-
tion, rotation, scaling, etc., that are parameterized by global
parameters, such as translational displacement, rotation
angle and scaling factor. A non-parametric mapping is
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typically associated with non-rigid spatial transformations
and does not have a closed form expression as a function of
global parameters. Both types of mappings can be written as

f x0; y0ð Þ = x; yð Þ + Yd x; yð Þ ð1Þ
where dY(x,y) denotes the displacement vector.

For two images to be registered, the correspondence
should maximize a similarity measure, wherein we have the
optimum displacement field:

Ydm x; yð Þ = arg min
Y
d x;yð Þ

ℰ S x; yð Þ + Yd x; yð Þ
h i

;E x; yð Þ
n o

ð2Þ

where ℰ [.] is a cost energy function (CEF) that evaluates
how good a certain mapping f is in achieving the
correspondence between two images. The specific form for
the actual CEF will be given in the following sections.

As discussed in the introduction, DTI/DWI registration
techniques based on different similarity measures come in
great variety. For our task, two registration models, Optical
flow registration and MI registration, prove to be favorable,
because they are able to achieve accurate registration in an
efficient way. This is preferable, given the fact that image
interpolation serves mainly as an intermediate step between
image acquisition and image analysis.

2.1.1. Optical flow registration
Optical flow is the pattern of apparent motion associated

with objects in a visual scene [14]. It is widely used in image/
video processing such as motion detection and motion
compensated encoding. The relevancy of the optical flow
method to inter-slice interpolation is obvious: the spatial
transformation between consecutive slices can be viewed as
temporal morphology of the anatomical features that can be
captured by the optical flow.

The optical flow constraint equation has different
variants [14]. Here we use the force-symmetric optical flow
constraint equation:

1
2
Yd x; yð Þ � jYIs x; yð Þ + jYIe x; yð Þ

h i
= Is − Ieð Þ: ð3Þ

where dY(x,y) is the displacement vector, and ▿YIs(x,y) and
▿YIe(x,y) are the spatial gradients of the intensity at (x,y) of
the starting and the end slice, respectively. Instead of
solving, Eq. (3) directly, we construct a cost energy function
ℰ [dY] that, after minimization, leads to the optimal
displacement field dY(x,y):

ℰ Yd
h i

=
ZZ

X
dxdy

1
2
Yd jYIs x; yð Þ+jYIe x; yð Þ
h i

− Is− Ieð Þ
� �2

ð4Þ

The Controlled Grid (CG) technique [15] is used to search
for the optimal dY(x,y). In CG, the image slice is divided into
a grid with uniform-sized cells gk, with nx×ny control points
ϕi,j. Only the displacement vectors at the control points,
dϕ(i,j), are free variables; the remaining vectors are
interpolated with third order B-splines,

Yd x; yð Þ = BS d/
� �

=
X3
l =0

X3
m=0

Bl uð ÞBm vð Þd/ i + l; j + mð Þ

ð5Þ
where dϕ denotes the set of control point displacement
vectors, BS is the B-spline interpolation kernel, i=[x/nx]−1,
j=[y/ny]−1, u=x/nx−[x/nx], v=y/ny−[y/ny], and Bl represents
the lth basis function of the B-spline [16]. The purpose of
using B-spline is also to accommodate a non-rigid free-
form interslice transformation, as opposed to a rigid
transformation that does not allow too many degrees of
freedom.

It is obvious that the number of control points nx×ny
determines the number of degrees of freedom in a mapping f.
However, from the perspective of computational complexity,
a bigger grid size leads to an exponentially bigger
computational load. The proper procedure is to combine
the benefits of low computational load and high degrees of
freedom in a multi-resolutional approach [16]. That is, with
grids of decreasing grid cell sizes, we can proceed
hierarchically through a series of solutions to approximate
the ideal one progressively. LetΦ1,…,ΦR denote a hierarchy
of control grids with increasing grid sizes. Furthermore, each
control grid Φr along with the associated B-spline
interpolation defines a local deformation field drY(x,y) at
each level r. Their sum through the hierarchy forms the
overall local deformation field:

Yd x; yð Þ =
XR
r=1

Ydr x; yð Þ ð6Þ

We assume that the number of control points in both x and
y directions always doubles from one level r to the next level
r+1. Therefore, the position of the control point ϕ2i,2j

r+1 is
incident on that of the control point ϕi,j

r. The displacement
vectors for the new control points at level r+1 can be
calculated from the values at level r using a B-spline
decomposition algorithm [17]. Note that Eq. (4) is an
analytical function of dY(x,y), which in turn is a function of
the grid control point displacement vectors dYϕ(i,j).

ℰ d/
� �

=
ZZ

X
dxdy

�
1
2
BS Yd/

� 	

� jYIs x; yð Þ+jYIe x; yð Þ
h i

− Is− Ieð Þ
�2

ð7Þ

Hence, the gradient of Eq. (7) with respect to dYϕ(i,j) can
be computed and used in a gradient descent search algorithm
to speed up the optimization process.

2.1.2. MI registration

The structure of our MI registration resembles that of the
optical flow registration, as we also use the CG technique to



Fig. 2. The balanced bi-mapping registration mechanism. In Channel I, slice
1 is registered to slice 2, while in Channel II, slice 2 is registered to slice 1
The displacement parameters dYϕ

l (i,j) and dYϕ
ll (i,j) are inverse to each other.

Fig. 3. An example illustrating the necessity for displacement vector
interpolation. The four vectors 1–4 represent the displacements from the
start slice to the end slice in this local area. For interpolating the intensity in
point r, it is apparent that neither Vector 2 nor 3 is the proper choice, bu
their interpolation (dash line) is.

Table 1
A comparison of DWI interpolation methods with regards to MSE of INT
DWI on phantom and real images with both B0 image and an average ove
all DWI

MSE Phantom Real image

B0 image DWI avg. B0 image DWI avg

LI 69787 3503 10125 2796
wSinc 65.29% 71.05% 87.12% 96.10%
OF 57.01% 55.87% 74.92% 81.15%
ADW 55.75% 54.84% 73.05% 77.75%
DT 61.60% 62.75% 74.55% 86.70%
DWDT 54.81% 53.07% 73.36% 80.15%

Only the actual MSE for LI is shown here, the rest of the entries for othe
methods in the table are the ratios of their MSE to LI MSE. The ratio is
computed as MSEX/MSELI×100%, where X stands for one of the methods
listed in the table except LI.
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.

robustly minimize a CEF in order to find the optimal
displacement field. However, we used MI to determine how
optimal one displacement field is in matching two slices. In
addition to its wide use in normal MR image registration, MI
has also been proposed as a robust criterion for DTI
similarity [10,18], even when the relation between the image
intensities is not readily comparable. The MI between a start
image deformed by a displacement field dYϕ(x,y), S′=S[(x,y)+
dY(x,y)], and an end image E=E(x,y) can be expressed as

MI Yd x; yð Þ
� 	

=
X
IsaS V

X
IeaE

p Is; Ieð Þlog p Is; Ieð Þ
pE Ieð ÞpS VIs ð8Þ

where Is and Ie represent the intensities of images S′ and E,
p(Is,Ie) is the joint intensity distribution of the deformed start
image and the end image, pS′(Is) and pE(Ie) are the marginal
intensity distribution of S′ and E, respectively. Therefore,
the CEF for MI registration with CG technique will take the
following form:

ℰ Yd/
h i

= MI BS Yd/
� 	h i

; ð9Þ

where dYϕ is the set of control point displacement vectors,
and BS is the same B-spline kernel as in the previous section.
Since Eq. (9) is in closed analytical form, its gradient with
respect to a specific dYϕ(i,j) can be computed analytically
Fig. 4. The difference from the ground truth. Panel A shows the difference of
LI method's result from the ground truth, while Panel B shows that of the RI
method (using the MI registration method with multi-channels of all DWI).
Both images are equally rescaled for better visibility.
t

r

.

r

and used in a gradient descent optimizer. In order to reach an
optimal solution robustly, the CG technique is also used in a
multi-resolutional manner.

2.1.3. Multi-channel registration
Practically, a registration procedure that is only based on

DWIs is sufficient to extract the necessary information for
interpolation. However, the incorporation of DT information
into the registration can enhance it [19], especially in the
white matter regions which, in general, are relatively
homogeneous in the scalar-valued T2-weighted images
[11]. Therefore, we adopted our MI registration framework
with anMC approach. That is, we can compute theMCMI for
two multi-channel image, S={Si(x′,y′)|i=1,…,N} and E=
{Ej(x,y)|j=1,…,N}, whereN is the number of image channels,
and each Si(x′,y′) or Ej(x,y) is defined on the same 2D domain
Ω as the single-channel image. The MCMI is computed as

MCMI Yd x; yð Þ
� 	

=
XN
i=1

MIi
Yd x; yð Þ

� 	
ð10Þ

where MIi is the MI of the ith channel of the start image
undergoing the deformation dY(x,y) and the end image.

image of Fig. 2
image of Fig. 3
image of Fig. 4


Fig. 5. Panel A shows the ellipsoid representation of the ground truth tensor of the phantom image we used (tensors are color-coded with FA), Panel B shows the
INT tensors from our RI method without TR, and Panel C shows the RI method's result after TR.

Table 2
A comparison of the DWDI interpolation methods and DiDT interpolation
methods with regards to different MSE measures of INT DTI

MSETC MSEA OVL MSEFA

LI 3.35×.10−9 0.3550 0.851 7.57×.10−5

wSinc 95.82% 0.3401 0.873 92.21%
EI 100.3% 0.3789 0.842 102.9%
RieI 98.51% 0.3692 0.847 100.3%
OF 92.54% 0.3405 0.890 89.56%
OF+TR 88.96% 0.3225 0.902 89.56%
DWDT 90.45% 0.3395 0.893 87.85%
DWDT+TR 84.78% 0.3165 0.911 87.85%

RI method is shown with and without TR. Only results from real data are
shown. Only the actualMSETC andMSEFA for LI are shown here, the rest of
the corresponding entries for other methods in the table are the ratios of their
MSETC/(MSEFA) to LI MSETC/(MSEFA). The ratio is computed as MSEXM
MSELIM×100%, where X stands for one of the methods listed in the table
except LI, and M stands for either TC or FA.
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Different combination are used, including a combination of
all DWI (ADW), a combination of DTI (DT) and a
combination of all DWI and DTI (DWDT). The choice of
ADW is obvious and also in common use, while the use of
DT and DWDT are reported to have better results, see [9]
and [10]. Note that the MC approach is not applied to the
Optical Flow registration. The reason is out of optimization
consideration: The scalar components for different channels
can vary greatly in magnitude, which, in a multi-channel
Optical Flow registration, can result in a lack of sufficient
driving force from channels of small scalar magnitude.
Consequently, the gradient descent search would be
suboptimal. On the other hand, in the MI registration
method, the MI similarity measure ensures that driving
forces from different channels are comparable in magnitude.

2.2. Interpolation

2.2.1. Modified Registration guided Interpolation
Our interpolation scheme is based on the standard

procedure as described in [20]. However, our modified
interpolation scheme improves upon it in two ways:

1. Balanced bi-mapping interpolation: Registration-based
interpolation methods rely on two assumptions [21]:
First, the pair of slices to be registered shares similar
anatomical features. Second, the registration algorithm
used is able to produce the necessary spatial transfor-
mations to map the correspondence from the similar
features. While the second assumption can be largely
upheld with the sophisticated non-rigid transformation
driven by either optical flow or MI, along with the use
of a highly dense control grid, the first one is more
problematic. Anisotropic real images are often accom-
panied with large inter-slice changes, e.g., anatomical
structures missing from one slice to the next. Therefore,
the continuous mapping produced from our smooth-
field registration will be unable to characterize this kind
of morphology. It is common practice that one
performs two registrations on the same pair of slices
with different registration directions: first from the start
image to the end image, then from the end image to the
start image. The final interpolation will be a weighted
sum of the two resulting INT images [21]. However,
neither the Optical Flow registration nor the MI
registration can guarantee a bi-directional mapping,
i.e., a mapping, obtained from a start-to-end registra-
tion, that is also the result of an end-to-start registration.
Consequently, the weighted sum may also result in
similar artifacts as in scene-based interpolation. In
order to reduce interpolation error in this regard, we
/

image of Fig. 5
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introduce a balanced bi-mapping mechanism into the
registration. This mechanism is essentially a variant of
the multi-channel approach, as it puts the forward (start
to end) and backward (end to start) slice pairs in two
different channels and minimizes the CEF against two
sets of control point displacement vectors dYϕ that are
inverse to each other, see Fig. 2.

2. Displacement vectors interpolation: In [20], only one
displacement vector was used to evaluate the INT
intensity. This is largely justifiable, given a slow-
changing displacement field. However, in case of a
displacement field with drastic local deformations, one
single displacement vector is not enough to reflect the
true morphology in the local area. For an example, see
. 6. The FA overlay map. In each figure, the FA of the INT image is given a co
ges are overlaid. The overlay map will show a color code of yellow where int
tching. One can observe that the RI's overlay map shows less green or red than a
Fig. 3. Therefore, for each point (x,y) to be INT, we
search four displacement vectors (VY1, V

Y
2, V
Y
3, V
Y
4) that

bound up this point, and that are closest to it, with the
distances to (x,y) as (l1, l2, l3, l4).

Then, a displacement vector VY is INT from these four
as:

YV =

P4
i=1

→
Vi
li

P4
i=1

1
li

ð11Þ

VY will be used to evaluate the intensity. In general, the
bounding vectors can be found within a certain radius
lor code of red, and the FA of the ground truth is given green, and the two
erpolation matches with the ground truth, and either red or green when no
ll the other maps, indicating a higher degree of agreement with ground truth
t

.

image of Fig. 6
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of the INT point. Yet, special cases include, for
example, that one of the vectors is incident on the
point, or that the point is on image boundary so that it
does not have four bounding vectors. For the former
case, simply the incident vector is used; and for the
latter case, the closest vector will be used instead of the
interpolation of four bounding vectors.

2.2.2. Tensor reorientation
The registration-based interpolation scheme is designed

to achieve optimal DWI interpolation results. However,
due to the limitation mentioned in the previous section,
one must use the weighted sum of two interpolations
obtained from two registrations in opposite directions. This
could cause the tensors further estimated from the INT
DWI to be not properly oriented, especially not in
consistency with its corresponding starting and end tensors
Fig. 7. The angular difference from the ground truth. Panel A shows the angular di
truth, as computed by arcos ( eY1

LI· eY1
GT), scaled between 0°(black) and 90°(white),

Panel B–D show the angular difference for EI, RieI and wSincI methods. Panel E an
with TR, respectively. It can be seen that the RI methods produce significantly les
on the start and the end slice, respectively. Hence, the need
to reorient the INT tensor. TR has been discussed
extensively for normal DWI/DTI registration [8,10,22].
The technique we used in this paper is an adaptation of the
technique of preservation of principal directions (PPD) [8].
First, for each INT tensor, its corresponding starting tensor
and end tensor are found via the incident points of the
displacement vector VY with which the image intensity is
INT. Then, we apply the Jacobian of the local deformation
field for interpolation to the start tensor to ascertain the
proper orientation of the tensor, i.e., the new eigenvectors
{ e′Y1 |i=1,2,3}. If the angle between the first eigenvector of
the original INT tensor and e′Y1 is larger than a threshold
angle θT, the INT tensor is reoriented according to the new
eigenvectors, similar to [8]. The difference of our PPD
technique from [8] is that the Jacobian for our local
deformation field is 2–dimensional. In order to apply the
fference between the first eigenvectors of LI method's result and the ground
and masked with an FA threshold to exclude areas with FA smaller than 0.2.
d Panel F show the angular difference for results from RI without TR and RI
s error, and the extra TR step can also further reduce the error.

image of Fig. 7


1504 Z. Mai et al. / Magnetic Resonance Imaging 28 (2010) 1497–1506
2D Jacobian to the 3D tensor to reorient it, we construct
the 3D Jacobian as

J 3ð Þ =







dx
dxV

dx
dyV

0

dy
dxV

dy
dyV

0

0 0 1






 ð12Þ

where (x',y') and (x,y) are the coordinate systems for the
starting slice and the end slice, respectively, dx/dx′
describes the small transformational variation in x caused
by a small variation in x′, and the other derivatives are
similarly interpreted.
3. Experiments and results

In this section, we report the results of our interpolation
framework on both phantom and real images. Furthermore,
as stated in Section 1, a comparison between the DWDT
interpolation and the DiDT interpolation will also be
forwarded. The DWDT interpolation methods include linear
interpolation (LI), windowed sinc interpolation (wSinc,
with a window width=2 [23]), and also our registration-
based interpolation (RI); the DiDT interpolation methods
include the Euclidean interpolation (EI) and the Riemannian
interpolation (RieI). For comparing the DWI interpolation,
the conventional mean squared error (MSE) of the INT
image with respect to the ground truth image is used.
Furthermore, when it comes to the comparison of DTI
interpolation, to account for tensor orientations, we use
four measures:

1. Tensor Component MSE: It measures the mean
squared errors of INT tensor components from the
ground truth (GT), and is expressed as follows:

MSETC =
1
6N

XN
n=1

X6
i=1

DTINT
n;i −DTGT

n;i

� 	2
ð13Þ

where DTn,i is the i
th component of the nth tensor, and

N is the number of INT tensors.
2. Angular MSE of first Eigenvector: It measures how

well the first eigenvector of the INT tensor is aligned to
that of the GT, and takes the form:

MSEA =
1
N

XN
n=1

arccos Ye INT
n;1 �Ye GT

n;1

� 	
ð14Þ

where eYn,1 denotes the first eigenvector of the nth tensor.
3. Overlapping of Eigenvalue/Eigenvector pair: It mea-

sures the overlapping of the INT tensor and the GT
tensor. The value 0 indicates zero overlapping, while
the value 1 means complete overlapping of the two.

OVL =
1
N

XN
n=1

P3
k¼1

λINT
n;k λ

GT
n;k

Ye INT
n;k �Ye GT

n;k

� 	

P3
k¼1

λINT
n;k λ

GT
n;k

ð15Þ

where λn,k is the k
th Eigenvalue of the nth tensor.

4. Fractional anisotropy (FA) MSE: It measures the mean
squared errors between the FA of INT tensor and that
of the GT, with the form:

MSEFA =
1
N

XN
n=1

f GTn − f INTn

� �2 ð16Þ

where fn is the FA value for the nth tensor.

We first tested our interpolation framework on the helix
phantom generated with the National Alliance for Medical
Imaging Computing [24] library. The phantom itself is a
helix, with the DT oriented also along the helix. The original
image has a dimension of 80×80×20, with one baseline
image and 12 DWI for 12 gradient directions. The ground
truth for the phantom images can be easily generated by
using the same geometrical parameters except doubling the
slice number. For real image tests, DWI data sets of rat brain
with the dimension of 256×256×29 were used, each with a
voxel dimension of 0.137×0.137×0.43 mm3, and with one
baseline image, 6 gradient directions, each direction with 7
repetitions, and in total 42 diffusion weighted images. The
ground truth for real data was obtained by extracting slices
with the even number indexes, and the interpolation was
performed on the remaining odd number slices.

A comparison between the image intensity MSE of the
INT helix and the real DWI for LI method, wSinc method and
the single/multi channel Optical Flow/MI methods is listed in
Table 1 (where the unit for diffusion coefficient is mm2/s). In
general, the object-based methods perform better than the
scene-based methods in terms of the MSE of the INT images.
This can also be confirmed from the comparison of the
difference between LI method and RI in Fig. 4, where the
result from RI method is shown to better capture the shape of
the image structure. In addition, the MI method is able to
achieve more accurate results with a multi-channel approach,
and although not all combinations of multi-channel modes
serve to better the performance (e.g., the DT case, which
lends weight to the argument that the inclusion of DT
information is complementary, not essential, to DWI
registration), clearly the registration, and consequently the
interpolation, benefits from the expansion of information
channels.

Now we proceed to demonstrate our results on DTI
interpolation. First, we studied the effect of TR on the
interpolation, as shown in the phantom example in Fig. 5.
Clearly without TR, the tensors can still be misaligned with
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respect to the ground truth. The results before and after TR
for the three proposed measures along with FA measures are
presented in Table 2. First, it can be noticed that, with respect
to all error measurements except for the MSETC measure,
DWDT methods in general perform better than DiDT
methods. This is not surprising, as a direct interpolation on
DTI is more susceptible to the influence of noise or partial
volume effect, and as a result the sensitive orientation
information can be lost. This gives support to the suggestion
that DWDT interpolation is able to produce more accurate
results than DiDT interpolation. Moreover, it can also be
seen that registration-based methods show significant gains
over scene-based methods, regardless of whether those
measures are invariant under TR or not. One way to visually
demonstrate how well the interpolation matches with the
ground truth is an FA overlay map, as shown in Fig. 6, where
one can see that the RI result indeed shows less mismatching.
Moreover, it is shown that, after TR, the INT tensors are not
only in better agreement with the ground truth, with respect
to the MSETC and MSEFA measurements, but also in better
angular alignment with it, as is revealed by the angular
measurements MSEA and Overlapping of Eigenvalue/
Eigenvector pairs. A comparison of the angular difference
in Fig. 7 also confirms it.
4. Conclusion

In this work, we have established an up-sampling
framework specifically for DWI/DTI. The framework is
able to extract the underlying feature information via a non-
rigid registration to guide the interpolation. Furthermore,
compared to other scene-based interpolation methods such as
linear interpolation or the higher order windowed sinc
interpolation, it is also able to achieve a better interpolation.
Moreover, it is also demonstrated that, when processing real
data, an extra Tensor Reorientation step is helpful in bringing
the INT DT to a better agreement with the ground truth.
Furthermore, a comparison between two method groups for
DTI interpolation also suggests that up-sampled DTI,
estimated from up-sampled DWI, are able to approximate
the ground truth better than up-sampled DTI that are directly
INT from the low-resolution DTI.

For future investigations, it would be interesting to fully
exploit the influence of extra channel of image information
(FA, mean diffusivity, etc.) on the registration and ultimately
the interpolation, also would be of interest to quantify,
locally and with robust statistics, the influence of registration
on the interpolation as well as the tensor reorientation.
Furthermore, the registration-guided interpolation process
itself can be regarded as a constraint variational problem,
from which the interpolation is obtained as a minimizer of
certain functional under various constraints. Therefore, it
would be beneficial to broaden the framework onto this
mathematical background, and to fully investigate the
possibilities of different constraints and solution methods.
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