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Summary

Multiple risk factors contributing to the onset and progression of knee osteoarthritis
(OA) have already been described in current literature, including the loss of a functional
meniscus. However, not all cases of early onset knee OA can be explained by the
currently known risk factors. Originating from an empirical observation in clinics, the
bony knee morphology is hypothesized to play a role in this multifactorial degenerative
condition. Innovations in biomedical imaging and AI computer vision algorithms
support the automation and scalability of 3D anatomical modeling. Next, automated
landmarking methods enable precise and transparent morphometric analysis of the
knee. Unique morphological traits, such as a narrow medial femoral condyle, appear
linked to medial knee degeneration, while size discrepancies in meniscal allograft
transplantation between donor supply (larger medial meniscal size) and acceptor
demand (smaller medial meniscal size) highlight challenges in matching donors with
recipients. Statistical shape analysis allows to compare the main modes of shape
variation between responders to arthroscopic partial medial meniscectomy (APMM)
and patients with the medial post-meniscectomy syndrome (MPMS; clinical diagnosis,
characterized by recurrent pain related to the meniscal deficiency).

In this PhD thesis, a prognostic model was developed for arthroscopic partial medial
meniscectomy (APMM) to differentiate, prior to surgery, between patients likely to
benefit from APMM and those at risk for developing medial post-meniscectomy
syndrome (MPMS). By integrating knee bone morphology, clinical, and demographic
data into an end-to-end machine learning pipeline, we aim to optimize patient selection
for APMM. This data-driven approach has the potential to improve surgical success
rates and reduce the occurrence of MPMS by identifying patients who may benefit from
alternative treatment options.
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Samenvatting

Meerdere risicofactoren die bijdragen aan het ontstaan en de progressie van artrose aan
de knie zijn al beschreven in de huidige literatuur, waaronder het verlies van een
functionele meniscus. Echter, niet alle gevallen van vroegtijdige knie artrose kunnen
worden verklaard door de momenteel bekende risicofactoren. Op basis van empirische
observaties in de klinische praktijk groeide de hypothese dat de botmorfologie van de
knie een rol kan spelen in deze multifactoriële degeneratieve aandoening. Innovaties in
biomedische beeldvorming en aritificiële intelligentie ondersteunen de automatisering
en schaalbaarheid van 3D bot morfologie analyse. Bovendien maken geautomatiseerde
methoden voor het aanduiden van anatomische oriëntatiepunten een nauwkeurige en
transparante morfometrische analyse van de knie mogelijk, zelfs in grote datasets.
Unieke morfologische kenmerken, zoals een smalle mediale femurcondyle, blijken
verband te houden met een degeneratief mediaal knie compartiment. Daarnaast
werden in de context van meniscus transplantaties verschillen in grootte opgemerkt
tussen de donors (grotere mediale meniscus) en de acceptors (kleinere mediale
meniscus). Statistische vormanalyse maakt het mogelijk om de voornaamste variaties in
knie vormen te vergelijken tussen patiënten die goed reageren op arthroscopische
partiële mediale meniscectomie (APMM) en patiënten met het mediale
post-meniscectomiesyndroom (MPMS; klinische diagnose, gekarakteriseerd door
terugkerende pijn gelinkt aan het gebrek aan functionele meniscus).

In dit doctoraatsonderzoek werd een prognostisch model ontwikkeld voor APMM om
voorafgaand aan de operatie een onderscheid te maken tussen patiënten die
waarschijnlijk baat hebben bij APMM en patiënten die risico lopen op het ontwikkelen
van het MPMS. De bot morfologie van de knie, klinische en demografische gegevens
werden geïntegreerd in een machine learning algoritme, met als doel om de
patiëntenselectie voor APMM te optimaliseren. Deze data-gedreven benadering heeft
het potentieel om de slaagkans van de operatie te verbeteren en de incidentie van
MPMS te verminderen door patiënten te identificeren die waarschijnlijk baat hebben bij
alternatieve behandelopties.
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Anatomy of the knee

Contrary to what one might think, the knee joint (and not the hip joint) is the largest
joint in the human body. It bears most of our weight and enables essential movement
patterns of the lower limb like walking, running and jumping. In this chapter, the
necessary anatomical background is provided to better understand the process of knee
degeneration described in the next chapter.

1.1 Anatomical reference frame

Firstly, for an accurate description of the human knee anatomy, a set of unambiguous
positional terms are needed to describe relative positions of anatomical structures. These
always refer to the standard anatomical position: the human body is standing upright
and at rest. The three main anatomical planes (Figure 1.1) are the coronal plane (or frontal
plane), sagittal plane and axial plane (or transverse plane). A coronal plane divides the
body in an anterior (front) and posterior (back) part. Sagittal planes divide a left from
a right part and are perpendicular to the mediolateral axis. Medial refers to a position
closer to the midline, while lateral means farther away from the midline. Finally, axial
planes cut the human body in a superior (upper) and an inferior (lower) part. All three
anatomical planes are perpendicular to each other.
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Figure 1.1: The three types of anatomical planes: coronal (or frontal), sagittal and axial
(or transverse) planes [1].

1.2 Bony anatomy of the knee

The knee consists of two joints: the tibiofemoral joint is mostly a hinge joint, connecting
the femur (thigh bone) and tibia (shin bone) while the patellofemoral joint is a saddle
joint, allowing the patella (kneecap) to slide in the trochlear groove of the femur. Acting
as a lever arm for the M. Quadriceps and patellar tendon, the patella is the largest
sesamoid bone (= bone embedded in tendon or muscle, to increase leverage and reduce
friction) in the human body [2] (Figure 1.2). This result in a larger lever arm for the
Musculus (M.) Quadriceps and patellar tendon, helping to achieve the same rotational
momentum around the flexion-extension axis with a smaller muscle contraction. In this
PhD dissertation, we will focus mainly on the tibiofemoral joint, as this is the main
load-bearing part of the knee.
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Figure 1.2: Medial view of a right knee: the patella acts as a fulcrum to increase the lever
arm of the M. Quadriceps and patellar tendon. Figure adapted from [2].

From a distal view, the distal femur consists of a medial and lateral condyle, and the
intercondylar notch in between (Figure 1.3). In a sagittal cross-section, the condyles
have a J-curve shape (Figure 1.4), and they articulate with the tibial plateau, allowing
for flexion and extension of the knee.

The proximal tibia consists of a medial and lateral tibial plateau, with the intercondylar
eminence in between (Figure 1.5).The condylus medialis or medial tibial plateau is part
of the medial compartment of the tibiofemoral joint. Similarly, the condylus lateralis or
lateral tibial plateau is part of the lateral compartment of the tibiofemoral joint. The
eminentia intercondylaris or intercondylar eminence is located between the medial and
lateral tibial plateau and is characterized by two bone ridges or prominences
mediolaterally: the medial tibial spine at the lateral border of the medial tibial plateau
and the lateral tibial spine at the medial border of the lateral tibial plateau.
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Figure 1.3: Anatomy of the distal femur. The facies patellaris refers to the trochlear
groove and is part of the patellofemoral joint. The medial femoral condyle (or condylus
medialis) is part of the medial compartment of the tibiofemoral joint. Similarly, the
lateral femoral condyle (or condylus lateralis) is part of the lateral compartment of the
tibiofemoral joint. The fossa intercondylaris is also referred to as the femoral notch, the
space between the medial and lateral femoral condyle. Figure adapted from [3].
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Figure 1.4: Lateral X-ray of a knee. The medial and lateral condyle are in superposition
as they are behind one another from a lateral viewpoint. The red J-curve is the contour
of the lateral femoral condyle projection.

Figure 1.5: Anatomy of the proximal tibia (shin bone) and fibula (calf bone). Figure
adapted from [4].
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1.2.1 Articular cartilage

The articular contact surfaces of the tibiofemoral joint (medial condyle and tibial
plateau, lateral condyle and tibial plateau) are covered with a layer of hyaline cartilage,
as well as the articular contact surfaces of the patellofemoral joint (femoral trochlea and
patellar facets). The cartilage of the knee is mainly composed of an extracellular matrix
rich in collagen fibers and proteoglycans [5]. This specific tissue composition is
associated to its functions The collagen fibers ensure tensile strength, enabling it to
withstand the imposed stress by weight-bearing activities. Meanwhile, the
proteoglycans, with their ability to attract and retain water, create a cushioning effect,
allowing for shock-absorption and resistance against compression. In collaboration
with the intra-articular synovial fluid, it helps to minimize friction between the two
bones during movement. This combination of properties makes knee cartilage an
essential component for smooth, pain-free articulation. Articular chondrocytes are the
cells that are responsible for this extracellular matrix composition, production and
maintenance of the cartilage [6] trough different pathways, mediated by enzymes,
growth factors and inflammatory cytokines.

1.3 Soft-tissue enveloppe

1.3.1 Knee capsule

The knee is a large synovial joint, characterized by a layer of cartilage at the femoral and
the tibial epiphysis. The articular joint space (between both bone ends) is encapsulated
by a fibrous capsule, lined with a layer of synovium at the inside [7]. The synovial cells
in the synovium layer produce the synovial fluid, containing collagen, hyaluronan and
inflammatory mediators. This viscous synovial fluid acts as a lubricant and nutrient for
the adjacent cartilage layer: a very thin layer of synovial fluid between the femoral and
tibial cartilage minimizes the friction during flexion and extension of the knee.
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Figure 1.6: Generalization of a human synovial joint. The joint capsule encapsulates both
bone ends and is lined with a layer of synovial membrane at the inside [8].

1.3.2 Muscles

M. Quadriceps The M. Quadriceps consists of four separate parts (called ’heads’):
three superficial (vastus medialis, laterals and rectus femoris) and one deep (vastus
intermedius) head. It is a biarticular muscle, spanning both the hip (however only the
rectus femoris head) and the knee anteriorly, thereby acting as a hip flexor (only the
rectus femoris) and knee extensor. The vastus medialis originates from the medial side
of the femur and inserts together with the tendons of the vastus lateralis, intermedius
and rectus femoris at the quadriceps tendon on the patella. The vastus lateralis
originates from the greater trochanter, intertrochanteric line and linea aspera of the
femur. The vastus intermedius originates from the anterolateral side of the upper
two-thirds of the femur. Finally, the rectus femoris originates from the anterior inferior
iliac spine and a groove above the rim of the acetabulum. All four heads insert into the
quadriceps tendon on the patella, which in turn is linked to the tibia trough patellar
tendon at the tibial tuberositas.

Hamstringmuscles The hamstring muscles are a muscle group located at the posterior
aspect of the thigh. They consist of the M. semitendinosus, the M. semimembranosus and
M. biceps femoris. Following their origin at the posterior aspect of the femur and the
ischium (hip bone), and their insertion at the posterior part of the proximal tibia, they
are the main flexors of the knee.

M. Gastrocnemius The M. Gastrocnemius is also a biarticular muscle, spanning both
the knee and the ankle joint, thereby fulfilling a dual action: knee flexion and ankle



10 CHAPTER 1. ANATOMY OF THE KNEE

plantarflexion. It originates superior to the femur condyles and merges together with
the M. Soleus insertion in the Achilles tendon at the calcaneus (heel bone) in the foot.

1.3.3 Ligaments

Cruciate ligaments There are two cruciate ligaments in the knee: the anterior cruciate
ligament and the posterior cruciate ligament. The anterior cruciate ligament restricts
anterior movement of the tibia to the femur, while the posterior cruciate ligament limits
posterior motion of the tibia to the femur [9]. Together, the cruciate ligaments are the
primary anteroposterior stabilizers of the knee. Moreover, as secondary stabilizers, they
limit the endoration of the tibia w.r.t. the femur.

Collateral ligaments There are two collateral ligaments in the knee: a medial and a
lateral collateral ligament (Figure: 1.7). The medial collateral ligament (MCL) is
composed of two parts: a superficial MCL (sMCL) and a deep MCL (dMCL) [9]. The
sMCL is a broad, flat band that originates from the adductor tubercle on the medial
femoral condyle and inserts at the medial tibial metaphysis 4-5 cm below the joint line.
The dMCL is attaches the medial meniscus to the distal femur (meniscofemoral
ligament) and the proximal tibia (meniscotibial ligament) along the fibers of the joint
capsule. Because of its origin and insertion, the complete MCL acts as a stabilizer
against valgus forces, which push the knee inward. The LCL originates from the lateral
epicondyle and inserts onto the head of the fibula, leading to a resistance against varus
forces, which push the knee outward.

Figure 1.7: Schematic overview of the knee ligaments and menisci in a frontal view. [10]
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1.3.4 Menisci

Medial meniscus The medial meniscus is a C-shaped, fibrocartilaginous structure,
between the medial femoral condyle and the medial tibial plateau [11]. Its primary
function is load distribution, shock absorption, and stabilization of the knee.
Anatomically, the medial meniscus is attached firmly to the tibia via the anterior and
posterior horns (Figure: 1.8). The peripheral border is thicker than the inner edge,
resulting in a typical triangular-like cross-section as seen on MRI. Because of its shape,
it enhances the congruency between the convex medial femoral condyle and the rather
flat tibial plateau, serving as a knee stabilizer. The meniscus is partially vascularized,
with the outer one-third receiving blood supply, contributing to its limited healing
capacity. The inner two-thirds, being avascular, rely on synovial fluid for nutrient
diffusion and have none to very limited regenerative capacities. The medial meniscus is
also anchored to the joint capsule and the medial collateral ligament (dMCL), restricting
its mobility compared to the lateral meniscus, and making it more susceptible to injury.

Lateral meniscus The lateral meniscus is an O-shaped, fibrocartilaginous structure,
situated between the lateral femoral condyle and the lateral tibial plateau [11]. Similarly
to the medial meniscus, it plays a role in load distribution, shock absorption, and joint
stability. Unlike the medial meniscus, the lateral meniscus is more uniformly shaped
and covers a larger portion of the tibial articular surface. It is attached to the tibia via
the anterior and posterior horns (Figure: 1.8) and is also connected to the femur
through the meniscofemoral ligaments (Humphrey and Wrisberg ligaments). The
lateral meniscus is more mobile due to its looser attachment to the joint capsule and the
absence of a firm connection to the lateral collateral ligament. This increased mobility
decreases its susceptibility to injury compared to the medial meniscus. Comparable to
the medial meniscus, the peripheral one-third of the lateral meniscus is vascularized,
aiding in potential healing, while the inner two-thirds are avascular, relying on synovial
fluid for nutrient supply. These inner two-thirds therefore also have a limited
regeneration capacity.

Figure 1.8: Medial and lateral meniscus anatomy in relation to the tibial plateau (top
view) and cruciate ligaments. ACL: anterior cruciate ligament, PCL: posterior cruciate
ligament. Figure adapted from [10].
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1.4 Elementary knee biomechanics

1.4.1 Kinematics of the knee

While the main movement of the knee is flexion and extension, in total the tibia has 6
degrees of freedom to move around the femur: 3 translations and 3 rotations. The final
range of motion for each degree of freedom is determined by the complex interplay of
osseous geometry, knee ligaments and muscles [12] . During flexion and extension (=
the main degree of freedom of the knee), the femoral condyles roll and slide over the
tibial plateau. This motion is facilitated by the unique asymmetrical shape of the
femoral condyles and the corresponding tibial surfaces, with the medial and lateral
menisci acting as congruent, load-distributing intermediaries. During knee flexion, the
femur partly translates posterior (Figure 1.9). The anterior and posterior cruciate
ligaments (ACL and PCL) play crucial roles in guiding these movements, preventing
excessive anterior or posterior tibial translation, respectively. From a certain amount of
tension in the ACL (because of the ’backward’ rolling of the femur during flexion of the
knee), the femur stops rolling posteriorly and continues to rotate further while sliding
over the tibial plateau. Therefore, the ACL guides the femoral rollback during the
whole range of motion. Note that the lateral femoral condyle typically translates more
posteriorly than the medial femoral condyle, leading to some external femoral rotation
during flexion of the knee. This can be explained the following mechanisms. Firstly, the
lateral meniscus has a greater mobility in comparison to the medial meniscus leading to
less motion restriction in the lateral compartment. Additionally, the asymmetrical
geometry of distal femur and proximal tibia contributes to a greater posterior rollback
in the lateral compartment.
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Figure 1.9: Top view of a right tibial plateau with the transepicondylar axis (connecting
the medial and lateral epicondyle) projected on it. The arrow indicates the direction of
the consequent transepicondylar axis positions on discrete positions trough the flexion
range of motion. Figure adapted from [12].

1.4.2 Coronal alignment of the lower limb

Coronal alignment deviations at the level of the knee joint are a known risk factor for
unicompartmental knee degeneration, including degenerative meniscal lesions. Three
main categories of coronal alignment are considered: varus (bow-legged), neutral and
valgus (knock-kneed) alignment (Figure 1.10). In-silico and in-vitro experiments have
already established an altered load distribution across the different compartments with
varus knees more prone to overload in the medial compartment and valgus knees more
prone to overload in the lateral compartment. [13, 14].
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Figure 1.10: The three main categories of coronal knee alignment: (A) varus, (B) neutral
and (C) valgus knees. LBA: load-bearing axis (also referenced to as Mikulicz line), FM:
femoral mechanical axis, TM: tibial mechanical axis. Figure adapted from [15].

As a rule of thumb, while performing corrective osteotomies for excessive varus or
valgus alignment, the surgeon often aims for the line between the center of the hip and
the center of the ankle (load-bearing axis (LBA), also referenced to as Mikulicz line) to
cross the tibial plateau 4 +/- 2 mm medial to the center of the knee [16]. Additional
measurements are also commonly used to assess potential alignment abberrations in
the coronal plane (see Figure 1.11), such as the hip-knee-ankle (HKA) angle, femoral
mechanical angle (FMA) and tibial mechanical angle (TMA). These measurements
enable a more refined classification of alignment abnormalities [17, 18] and serve as
indispensable tools for a more patient-specific surgical planning.
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Figure 1.11: (Left) Measurement of the hip-knee-ankle angle (HKA): the angle between
the mechanical axes of the femur and tibia in the coronal plane. (Right) Measurements
of the femoral mechanical angle (FMA) and tibial mechanical angle (TMA). The FMA is
the angle as measured from the medial side between the femoral mechanical axis and a
tangent to the distal femoral condyles in the coronal plane. The TMA is then the angle,
again measured from the medial side, between the tibial mechanical axis and a tangent
to the tibial plateau in the coronal plane [19, 20].
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Degenerative meniscus and knee

osteoarthritis

Building further on the essentials of knee anatomy as provided in the previous chapter,
in this chapter the clinical challenge is described and situated within the degenerative
knee spectrum. The focus lies on the medial post-menisectomy syndrome, that
eventually leads to accelerated knee osteoarthritis. Given its large incidence, and for
matters of completeness, regular (longer term) post-meniscectomy knee osteoarthritis is
also discussed.

2.1 Introduction

Degenerative meniscus tears are strongly associated with knee osteoarthritis; a chronic
condition characterized by the progressive degradation of articular cartilage within the
knee joint. This deterioration manifests clinically as inflammation, pain, stiffness, and
functional impairment. The precise etiological relationship between degeneration of the
meniscus and knee osteoarthritis remains an area of active investigation. Two primary
hypotheses have been proposed [1, 2]:

1. The absence of a structurally intact meniscus may predispose the knee to
osteoarthritic changes due to altered load bearing and distribution.

2. Both cartilage and menisci are subject to the same inflammatory environment
(promoting extracellular matrix destruction) and pathological load distributions
(e.g. excessive varus or valgus knees) that are associated with knee osteoarthritis.

While the current standard treatment for meniscal lesions aims to preserve as much of
the meniscal tissue as possible, a total meniscectomy was one of the most frequently
performed knee surgeries in the previous decades. Still today, many of these patients
present in clinical practice with the consequences of a meniscus-deficient knee. As
already described in 1948 (!) by Fairbank et al. [3], radiographic joint space narrowing
(due to cartilage wear, radiographs show bone on bone in already advanced cases) and
degenerative changes occur more frequently in meniscus-deficient knees in comparison
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to those with an intact meniscus [4, 5]. While arthroscopic techniques and optimized
meniscal tissue-sparing approaches have been refined over time, irreparable meniscal
injuries continue to necessitate meniscectomy, leading to a functional meniscal
deficiency.

2.2 Degenerative meniscus lesions

2.2.1 Epidemiology and pathophysiology

Meniscus tears are primarily categorized based on their origin: traumatic or
non-traumatic. Although these two pathogenic pathways share some risk factors such
as lower limb coronal malalignment (excessive varus or valgus) and morbid obesity, the
mechanism of action in their pathogenesis is almost completely different. Therefore,
they should be considered as two distinct pathologies when considering treatment
options.

In contrast with traumatic lesions (as a result of knee trauma, predominantly in younger
active individuals, typically radial tears), degenerative meniscus lesions (Figure 2.1) are
generally non-traumatic and a part of normal aging. The ESSKA European meniscus
consensus group defined meniscus degeneration generally as follows: a slowly
developing process typically involving a horizontal cleavage in the meniscus of a
middle-aged or older person [6]. Their prevalence increases with increasing patient age:
from 19% in the group of 50-59 years old women to over 50% in the group of men
between 70 and 90 years old [7]. Their typology is often horizontal, (oblique) flap, or
complex tears (combination of different characteristics), and they are associated with
older age and no history of recent knee trauma. They typically occur at the body or
posterior horn of the medial meniscus. Figure 2.2 gives an visual overview of some of
the most frequent meniscal tear patterns.

Figure 2.1: Arthroscopy image of a degenerative medial meniscus (posterior horn). Note
the ragged, torn edges of the meniscus. Image adapted from [8].
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Figure 2.2: Simplified visual representation for some of the most frequent meniscus tear
patterns. [9].

2.2.2 Treatment options for degenerative meniscus lesions

Arthroscopic partial meniscectomy has been the standard treatment of (degenerative)
meniscal tears for many years now. To date, it is still one of the most frequently
performed knee surgeries worldwide [10, 11, 12, 13, 14]. It involves removing the
damaged portions of the meniscus during arthroscopy, a minimally invasive technique
with tiny incisions and a camera to visualize the intra-articular joint space. This
procedure aims to alleviate pain and enhance joint function by eliminating unstable
meniscal fragments that cause the mechanical symptoms. However, as it became clear
that arthroscopic partial meniscectomy is associated with a significant greater risk to
develop knee osteoarthritis [15, 16], its indications were scrutinized and there has been
a paradigm shift towards saving the meniscal tissue as much as possible [17].

Current guidelines recommend a conservative, non-surgical approach as the initial
management strategy for symptomatic degenerative tears. Incidental findings without
associated symptoms do not require intervention. Conservative treatment includes
pharmacological treatment (analgesics and non-steroidal anti-inflammatory drugs) to
alleviate pain and inflammation, as well as physiotherapy to strengthen the
periarticular knee musculature and enhance knee stability. According to the ESSKA
guidelines for surgical treatment of degenerative meniscal tears [6], a time interval of at
least 3 months after the initial symptom onset should be considered before the decision
of surgical treatment is made. Surgery might be indicated earlier in case of considerable
mechanical symptoms (e.g. restricted range of motion, ’locking’ of the knee,...).
Degenerative meniscal lesions are typically not amendable to meniscus repair (sutures).
The nature of these lesions, often characterized by complex patterns, and its location
typically within the avascular portion of the meniscus, severely limit the tissue’s
inherent healing capacity. Moreover, the degenerative process often compromises the
structural integrity of the meniscal tissue, making it suboptimal for suture fixation.
These factors collectively contribute to an elevated risk of repair failure. Therefore,
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because meniscal repair (with sutures) is typically unfeasible in these cases,
arthroscopic partial meniscectomy remains a valid treatment option with the goal of
immediate pain relief while preserving as much meniscal tissue as possible.

2.3 Post-meniscectomy syndrome

2.3.1 Epidemiology and pathophysiology

In addition to the majority of patients going towards end stage knee OA in the course of
several years (typically more than two years), a significant proportion of the
meniscectomy patients (between 6 and 25% [18]) will develop the post-meniscectomy
(pain) syndrome (Figure 2.3). This condition adds to the burden of the normally
expected knee osteoarthritis, which affects a majority of patients over time (rather
long-term consequence). It is a clinical complication after (partial) meniscectomy,
characterized by a toothache-like dull and nagging pain in combination with transient
joint effusions, after a short pain-free interval (typically within two years
post-meniscectomy), with or without additional cartilage damage [19]. The removal of
the meniscus, a critical load-bearing and shock-absorbing structure, alters the
biomechanical environment of the knee joint, resulting in increased mechanical stress
on the articular cartilage and subchondral bone. These altered biomechanics, combined
with the inflammatory environment associated with the meniscal injury and surgical
manipulation, is thought to accelerate the degenerative process [20], finally culminating
in pain, further meniscal tissue degradation and accelerated progression of knee
osteoarthritis [21, 22]. Given the prevalence of the (partial) meniscectomy procedure
worldwide, even in the face of meniscus-saving guidelines, this patient subgroup
cannot be overlooked. For those with unrelieved pain after conservative treatment and
who are ineligible for meniscus repair, the partial meniscectomy remains a valuable
treatment option.
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(a)

(b)

Figure 2.3: Potential consequences of a functional meniscus deficiency. (a) Average
situation post-meniscectomy: the knee evolves gradually to end-stage knee OA in an
unknown time (but generally speaken more than 5 years). (b) The post-meniscectomy
syndrome is associated with accelerated knee degeneration, leading to early end-stage
knee OA.

2.3.2 Treatment options for post-meniscectomy syndrome

Conservative treatment is the first step in the treatment algorithm of the
post-meniscectomy syndrome [19]. The meniscectomy resulted in a significant change
of load distribution in the tibiofemoral joint. Therefore, conservative treatment includes
the unloading of the affected knee (compartment) as much as possible by a reduction in
activity or sports. Furthermore, the use of crutches or unloader braces, insoles and
weight loss are additional tools to achieve this goal [23]. Personalized physiotherapy is
another conservative treatment option to improve quadriceps strength and core control,
potentially leading to a better control of the symptoms [24]. Currently, there is no
consensus to include intra-articular injection therapy, either with corticosteroids [19],
hyaluronic acid [25], platelet-rich plasma (PRP) [26] or mesenchymal stem cells [27].

When non-surgical treatment fails, surgical management of mechanical risk factors is
the next step to restore the knee ’homeostasis’ [28]. Following factors should be
assessed and corrected if necessary: lower limb alignment, knee stability and meniscal
deficiency. Lower limb malalignment can be corrected by performing osteotomy
surgery, either at the level of the distal femur (less frequent) and/or proximal tibia,
depending on the specific origin of the malalignment. In addition, knee instability
originating from ligament lesions or insufficiency should be managed by ligament
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reconstruction, with a special attention for ACL insufficiency [29]. After the diagnosis
of a symptomatic meniscal deficiency (root tear or removal of significant amount of
meniscal tissue) in a well-aligned and stable knee, meniscal substitution therapy can be
considered; including meniscus allograft transplantation (MAT), a meniscal scaffold or
even an artificial meniscus implant.

Meniscus scaffold

Meniscal scaffolds are three-dimensional biocompatible structures, capable of
supporting meniscus-like fibrocartilaginous tissue regeneration. They are well-suited to
treat partial or segmental meniscus defects [28]. The ideal patient for this treatment
option still has an intact meniscal rim, including intact anterior and posterior meniscal
horns. This ensures the scaffold can be fixated properly. A BMI below 35 kg/m2 and
cartilage damage below ICRS grade 3a are then the final additional patient selection
criteria [30]. The aim of a meniscal scaffold is to allow meniscus-like tissue to grow into
the scaffold and consequently restore and maintain the original meniscal function [31].

Meniscus allograft transplantation

When meniscal scaffolds are no option (peripheral meniscal rim transsected, meniscal
root tears or a large amount of meniscal tissue got lost) a meniscus allograft
transplantation (MAT) is an option to substitute the native meniscus. It has been proven
to be efficacious both from a biomechanical (reduction of contact stress [32]) and clinical
success rate [33] point of view. Given the scarcity in donor menisci, this treatment
option is still limited to younger patients (<50-55 years) [34, 18] with a higher
rehabilitation potential.

Artificial meniscus implant

Finally, as a last and still more experimental treatment option, an artificial meniscus
implant can be used to mimic the function of the natural meniscus [18]. Artificial
meniscus implants are synthetic, permanent devices designed to mimic the mechanical
function of a natural meniscus and aim to provide long-term relief from the symptoms
associated with meniscal loss. At the moment of writing, no such implant is
commercially available anymore [35, 20], though several are under development.

Prosthesis surgery

In cases where contraindications exist for the previously discussed meniscal
substitution therapies, a (unicompartmental) knee prosthesis is indicated when
conservative treatment (including pain management) have failed, surgical management
of mechanical risk factors has also failed or the patient has already end-stage knee
osteoarthritis (bone on bone, severe osteophytes,...).
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2.3.3 Prevention of the post-meniscectomy syndrome

It is clear the first step in preventing the post-meniscectomy syndrome is to save the
meniscus to the fullest extent possible. Additionally, analogous steps as in the actual
treatment of the post-meniscectomy syndrome might also have a preventive effect, such
as unloading the affected knee compartment, as well as ensuring a proper lower limb
alignment and aiming for a stable knee.

2.4 Knee osteoarthritis in the meniscus-deficient knee

2.4.1 Epidemiology and pathophysiology

Knee osteoarthritis (OA) in general is a highly prevalent degenerative joint disease
marked by the progressive deterioration of articular cartilage, subchondral bone
sclerosis, and the formation of osteophytes [36]. It manifests as pain, stiffness, and
decreased function in the affected knee, severely impacting the quality of life for those
afflicted . The pathophysiology of knee OA is multifaceted, involving both mechanical
and biological factors. Abnormal joint loading, genetic predisposition, and
inflammatory mediators all play a role in its development and progression.

While the previously described post-meniscectomy syndrome (see 2.3.1: Epidemiology
and pathophysiology) is a short-term consequence in the meniscus deficient knee, more
than 50% of the meniscectomy patients ultimately develop progressive symptomatic knee
osteoarthritis (OA) in the longer term [5, 37] (Figure 2.3). Therefore, knee OA can be seen
as a more chronic, slower consequence of the same traumatic or degenerative event (loss
of meniscal function [1]) that causes the more acute post-meniscectomy syndrome.

2.4.2 Delay of post-meniscectomy knee osteoarthritis

As the degenerative process of knee osteoarthritis is also (to a certain extent) part of
normal aging, the delay and slowing down of its onset and progression are a more
feasible aim then full prevention [36]. Obviously, meniscal substitution strategies as
delay strategy for knee osteoarthritis (OA) only make sense when there is no knee OA
yet and the cartilage damage is still limited. Unfortunately, at the time of writing,
meniscal substitution strategies cannot yet be implemented into routine clinical care for
every patient. The supply of matching healthy menisci from biobanks is scarce (see also
chapter 3: Meniscus Size Differs Between Patient and Donor Populations for Meniscus
Allograft Transplantation), artificial implants currently exhibit a relatively high failure
rate [38] and long-term clinical follow-up data remains limited [39].

Therefore, anticipating approaches for post-meniscectomy knee OA remain restricted to
the assessment of known mechanical risk factors such as coronal malalignment of the
lower limb, knee instability or excessive knee loading (either by activity level,
high-impact sports or overweight), analoguous to the workup in the treatment of the
post-meniscectomy syndrome [28]. Indeed, the treatment of the post-meniscectomy
syndrome also aims to slow down the progression of knee OA . This can be done
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through a combination of conservative (lifestyle changes, pain management, unloader
brace, physiotherapy,...) and surgical interventions (osteotomy, ligament reconstruction,
focal cartilage defect repair). In the last few decades, there has been a paradigm shift
towards joint-sparing surgery whenever possible [40]. Osteotomies, which involve
cutting and realigning bones to redistribute mechanical load and relieve pressure on the
affected area, have gained popularity. This surgical intervention can delay the need for
joint replacement and preserve the patient’s native joint for a longer period. Other
joint-sparing procedures, such as cartilage repair techniques for small focal lesions
including microfracture, autologous chondrocyte implantation (ACI), and
osteochondral autograft transplantation (OAT), aim to restore damaged cartilage and
improve joint function, albeit without achieving complete regeneration.

This paradigm shift towards joint preservation is also reflected in the development of
biological therapies [41]. Treatments such as platelet-rich plasma (PRP) and
mesenchymal stem cell (MSC) injections are being investigated for their potential to
promote tissue healing and modulate inflammation [42, 43]. Although these therapies
are still under study and not universally accepted as standard care, they represent a
promising direction in the effort to preserve joint health and function. Biologicals
(-mabs), targeting specific inflammatory pathways, are also under research for their
potential to modify disease progression [43].

2.4.3 Treatment options for post-meniscectomy knee osteoarthritis

Despite years of research by rheumatologist and the pharma-industry, no effective
disease-modifying osteoarthritis drugs are commercialized on the market yet [41].
Additionally, no orthopedic procedures allow for the regeneration of the degenerated
cartilage [36]. The management of knee osteoarthritis thus focuses on alleviating
symptoms, improving joint function, and slowing down disease progression (see 2.4.2:
Delay of post-meniscectomy knee osteoarthritis).

When all previously described joint-sparing management strategies fail, a
unicompartmental or total knee arthroplasty (TKA), commonly known as joint
replacement surgery, is performed. This procedure involves the surgical removal of the
damaged joint surfaces and their replacement with metal and plastic prosthetic
components designed to mimic the movement of a healthy knee. The primary goals of
TKA are to relieve pain, restore joint function, and improve the patient’s overall quality
of life. Post-surgical outcomes for TKA are generally positive, with a satisfaction rate of
about 80-90% [44, 45], indicating that the majority of patients experience substantial
improvements in their symptoms and functional abilities. Factors contributing to
patient satisfaction include pain relief, improved mobility, and the ability to return to
daily activities.

Overall, the emphasis on joint-sparing interventions underscores the importance of
early diagnosis. By prioritizing joint preservation, healthcare providers aim to improve
long-term outcomes for patients with knee osteoarthritis, enhancing their quality of life
and delaying the need for more invasive procedures such as total knee arthroplasty.
Effective management of knee OA requires a personalized approach, taking into
account the patient’s symptoms, disease severity, and overall health status. This
individualized strategy ensures that patients receive the most appropriate and effective
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treatments, thereby optimizing outcomes and enhancing quality of life.

2.5 Consolidating mechanical risk factors in knee OA

Articular cartilage is a specialized connective tissue composed mainly of water, collagen
(predominantly type II), and proteoglycans, which forms the extracellular matrix (ECM)
(cfr. section 1.2.1: Articular cartilage). The ECM provides structural support and
resilience, allowing the cartilage to withstand compressive forces. The maintenance of
this matrix is controlled by chondrocytes, the only cells residing within cartilage (only
2% of the total tissue volume), which are responsible for balancing the synthesis on one
hand and the degradation on the other hand of ECM components [46].

Chondrocytes maintain a balance between synthesis and degradation of ECM by
responding to mechanical stimuli through a process called mechanotransduction [47].
This involves converting physical forces into biochemical signals. Key to this process are
mechanosensors such as integrins and calcium channels [48, 49], which regulate the
cell’s response to different levels of strain. Under normal physiological conditions,
mechanical stimulation encourages chondrocytes to produce ECM enzymes, facilitating
cartilage repair and health. However, as mentioned earlier, under excessive strain, these
cells shift towards a catabolic state, releasing other enzymes like matrix
metalloproteinases (MMPs) that break down cartilage, contributing to degeneration
[50]. While the chondrocytes self are at microscale, mechanical stimuli caused by
loading the articular cartilage at macroscale are transduced by the surrounding ECM to
the level of the chondrocytes [51].

Thus, the local mechanical stimulus at the level of the chondrocyte is linked to the
cartilage tissue stress (and strain: the resulting deformation caused by this amount of
stress) at that specific spatial position. Stress is a physical quantity defined as the
amount of force exerted per unit area, as experienced by a material. In maximally
simplified static knee model, the stress in the cartilage (without making distinction of
different layers with different material properties, nor taking anisotropic material
characteristics into account) can then be calculated as follows:

� =
�

�
(2.1)

where F equals the applied compressive force or load on the cartilage and A equals the
contact surface area.

All of the previously described mechanical risk factors for knee OA either contribute to
the force or the contact area (Figure 2.4). A key contributor to the force exerted on the knee
joint is the patient’s body mass, rather than BMI. As the body is subject to gravitational
forces (�6 = < ∗ 6, with �6 the gravitational force, < the patient’s body mass and 6 the
gravitational constant) during the stance phase, this force is transmitted to the knee joint.
Next, the coronal alignment of the knee (see 1.4.2: Coronal alignment of the lower limb)
defines how that weight or load is distributed over the knee compartments and hence
contributes also to the force as locally experienced by the cartilage. Finally, also sports
and activity level have a multiplicative effect to the load applied to the knee joint, with
e.g. running causing a load of up to 4-8 times the body weight on the knee [52].
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Figure 2.4: Schematic overview of the mechanical risk factors hypothesized to drive knee
degeneration. Both the applied load or force on the knee joint, as well as the contact
surface (capacity to bear that load) are included.

In previous research, the emphasis has predominantly been on the load exerted on the
knee joint, with relatively little attention given to the denominator of the equation: the
size of the contact area, which may be significantly affected by inter-individual variability
in knee bony morphology, as well as the presence of a functional meniscus.

Although BMI is widely considered a major risk factor for knee osteoarthritis, it is the
patient’s actual body weight that has the most significant mechanical effect on knee
degeneration. The height factor in the BMI formula (i.e., inverse of height squared) has
minimal, if any, relevance to knee biomechanics, suggesting that BMI lacks direct
relevance in the pathological cascade of knee OA. Despite this, previous studies
showing BMI as a significant risk factor remain valid. This apparent paradox can be
resolved by interpreting BMI as a surrogate marker, where patient height may indirectly
represent the size of the knee joint’s contact area. Logically, individuals with smaller
statures have smaller knees, and taller individuals have larger knee structures.
Therefore also the knee size is hypothesized to be a risk factor in knee OA.

In this work, variations in the knee joint contact area, driven by individual differences in
bony morphology, are hypothesized to significantly modulate the impact of body
weight on the risk of knee osteoarthritis. Individuals with smaller weight-bearing knee
joint contact areas could exhibit a higher susceptibility to knee degeneration due to an
increased mechanical stress in the cartilage and menisci, in the absence of other
significant risk factors (lower limb malalignment, morbid obesity, meniscal status,...).
The following chapter outlines the clinical research objectives, as well as the necessary
technological framework needed to address them.
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Research objectives

For this joint PhD in Medical Sciences and Physics, two main aspects were present,
related to the two research domains. Advanced image processing techniques and
extensive automation of time-consuming tasks such as image segmentation were
essential to allow future clinical implementation and address the clinical challenges.
Thus, in line with the clinical background of the previous chapters, the clinical
objectives are described first, followed by a section on the required technology to
address these clinical challenges.

3.1 Clinical objectives

3.1.1 3D knee morphology as risk factor for symptomatic knee
degeneration in the meniscus deficient knee

Multiple risk factors contributing to the onset and progression of knee degeneration
have already been described in current literature. While the genetic aspect certainly
influence the tissue composition and quality, the focus in this work lies on the
mechanical aspect. Known risk factors are mainly related to the load (distribution)
applied on the knee joint: patient weight, coronal malalignment, activity patterns and
traumatic events. This however does not explain the observed inter-individual
variability in onset and progression rate to the fullest extent. A small subgroup of
patients comes into clinical practice with a degenerative knee at a relatively young age
with none of the previously described risk factors. Therefore, not only the applied load
should be taken into account, but also the individual capacity to bear that load.

In the absence of other contributing risk factors, bony knee morphology can play a
pronounced role in meniscus-deficient knees. Without a functional meniscus—whether
due to a prior partial meniscectomy, traumatic injury, or degenerative lesion—the bone
and cartilage are left as the primary structures to bear compressive and shear forces in
the knee. Based on the discussion in Section 2.5: Consolidating mechanical risk factors
in knee OA, we propose the hypothesis that symptomatic meniscus-deficient knees will
be smaller, or at least exhibit a smaller affected knee compartment, than asymptomatic
knees, assuming no additional mechanical risk factors, such as malalignment of the
lower limb, are present.
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3.1.2 Optimal patient selection for arthroscopic partial medial
meniscectomy

Despite the shift in clinical practice toward preserving the meniscus as much as
possible, there are still valid indications for an arthroscopic partial medial
meniscectomy, as discussed earlier. The key to improving the success rate of this
procedure may lie in refining the patient selection. A more precise, individualized
approach, such as a prognostic model that estimates a patient’s individual risk of
developing the medial post-meniscectomy syndrome, could represent an important
advancement. This model would allow clinicians to identify patients at high risk of
failure and suggest alternative treatments where appropriate, thereby reducing the
occurrence of poor outcomes.

The research described in this dissertation was conducted within the context of the
MEFISTO project, which aimed to develop innovative solutions for meniscal
replacement, including a bioactive resorbable meniscal scaffold and bioactive unloading
prosthesis (artificial meniscus implant). A key contribution of this research was the
development of a predictive algorithm based on the patient’s morphotype, designed to
predict the outcome of arthroscopic partial medial meniscectomy. The clinical relevance
of this algorithm is significant, as it marks a crucial first step toward a data-driven,
personalized treatment approach for managing meniscal injuries. By identifying
patients at elevated risk of meniscectomy failure, the model could help guide clinicians
toward meniscal substitution procedures or other alternatives, potentially preventing
the onset of post-meniscectomy complications (see section 2.3.3: Prevention of the
post-meniscectomy syndrome).

Given that meniscal substitution is typically reserved as a final option before joint
replacement in symptomatic meniscus deficient patients (see section 2.3.2: Treatment
options for post-meniscectomy syndrome), the predictive algorithm must demonstrate
both high sensitivity and specificity. Sensitivity is crucial for identifying patients who
are at risk of developing complications after meniscectomy, thus reducing the rate of
failed primary surgeries. However, the scarcity in meniscus allograft donors and the
relatively high failure rates of other meniscal substitution techniques necessitate
caution. These procedures should only be considered for patients at substantial risk of
meniscectomy failure, ensuring that the benefits of substitution outweigh the
complication or failure risks. Therefore, while sensitivity is important for capturing all
potential post-meniscectomy syndrome cases, the algorithm must also maintain high
specificity to prevent overuse of meniscal substitution treatments.

The development of an accurate, morphotype-based predictive model for arthroscopic
partial medial meniscectomy represents a fundamental innovation in personalized
orthopedic care. By improving patient selection, this model has the potential to enhance
the outcome of one of the most frequently performed procedures in orthopedics
worldwide and minimize or delay the need for more invasive procedures such as knee
arthroplasty surgery.
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3.2 Technological framework

In order to achieve the previously mentioned clinical objectives, automation is essential
to enable the autonomous processing of large imaging databases and allow fully
automated outcome prediction (see 3.2.4: Automated prediction of treatment response
versus failure). The first step to automate involves the creation of accurate 3D bone and
cartilage models form the raw imaging data, a process called ”image segmentation”.
Next, anatomical landmarks provide a simple and easy to visualize method to measure
distinct distances and angles of interest. Furthermore, statistical shape analysis allow to
automatically quantify the bone shape by means of just a confined number of modes of
shape variation.

3.2.1 Automated image segmentation

Manual image segmentation is a highly time-consuming process, thus a massive
efficiency gain will be achieved by automation of this step. Distinct approaches of
neural network architectures will be implemented and evaluated in a clinically relevant
way, by taking into account the anatomical location of eventual segmentation errors.
Additionally, the required time for training and inference will be compared over the
different network architectures. Following networks will be trained and evaluated:
nnUNet, MedNeXt, SwinUNetR and SegMamba.

3.2.2 Automated anatomical landmarking

Similarly, automation of anatomical landmark annotation in turn allows for the
automated calculation of landmark-based measures such as distances or angles.
Extensive validation of both the manual and automated method for morphometric
measurement analysis will be performed. Intra- and inter-observer variability will be
compared against inter-method variability both for positioning the anatomical
landmarks and obtaining the morphometric measurements. As the automated
landmarking process is mainly based on the same registration process of the statistical
shape analysis, this validations study will also ensure accurate point correspondences
further used in the statistical shape analysis.

3.2.3 Automated statistical shape analysis

As an alternative to anatomical landmark-based measurements, statistical shape
analysis allows to automatically quantify the bone shape by means of a confined
number of modes of shape variation. It captures shape variations over the complete
bone surface, thereby not limited to predefined landmarks, resulting in the detection of
more challenging patterns of shape variation.
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3.2.4 Automated prediction of treatment response versus failure

Finally, extracted bone shape features are integrated together with the clinical features
of interest (e.g. patient sex, weight,...) into a predictive framework for response versus
failure to treatment.

3.3 Outline of the thesis

In this opening part of the thesis, the clinical challenge was defined and situated.
Elementary knee anatomy background was provided in chapter 1 to support the
subsequent description of the pathophysiology related to meniscus and cartilage
degeneration in chapter 2. The clinical objectives and technological framework of this
PhD thesis are then introduced in the current chapter 3. The second main part of this
thesis is dedicated to the development and implementation of a technological
framework to address the clinical challenge. The first two chapters of this part explain
the need for a more efficient workflow and the evolution from a manual to a fully
automated approach to create accurate 3D bone models from raw imaging. Next, four
different neural network architectures to do this are discussed in chapter 6. These can
be employed to identify the anatomy of interest in the raw images. Consequently, the
automated process of anatomical landmark annotation based on these 3D bone models
is described in chapter 7, including an extensive validation study. As the bone shapes in
this study will be quantified not only by landmark-based measures, but also by a more
general statistical shape analysis, the technical background in chapter 8 aims to provide
a deeper understanding of this method. Both methods rely on the same surface
registrations step as detailed in section 8.3. Finally, in order to link a combination of
clinical (patient age, sex, weight,...) and morphological features to the treatment
outcome, a predictive model will be developed using a machine learning approach.
Some elementary concepts of machine learning are therefore described in chapter 9.
The third main part then describes the clinical applications of the previously illustrated
technological framework. Chapter 10 illustrates how to choose the best neural network
architecture for the segmentation task at hand (in this case: bone and cartilage from
knee MRI). The next chapter shortly describes two distinct applications of the surface
registration process described in section 8.3: one involves an automated method to
measure the femoral version and the other includes the estimation of the meniscus
geometry based on the knee bone geometry. The next two chapters 12 and 13 explore
studies demonstrating the potential role of knee morphology in the early onset and
rapid deterioration of knee degeneration, in the absence of other known risk factors.
Chapter 14 then highlights the observed morphological differences between the knees
with APMM response to treatment and the knees with MPMS. Next, the development
of a predictive model for MPMS in APMM patients is discussed in chapter 15. The final
part then includes a concluding chapter, as well as a final chapter describing the future
perspectives.



Part II

Methodological framework

Technical background on the image acquisition, processing and analysis for developing
of a morphotype-based prognostic model for arthroscopic partial medial meniscectomy.
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Image modalities

All patient-specific 3D models are derived from appropriate imaging. In this chapter,
some of the most frequently used image modalities in orthopaedics are explored, such
as computed tomography (CT) and magnetic resonance imaging (MRI). Furthermore,
some imaging key characteristics that have an influence on the subsequent
segmentation process are discussed. Although ultrasound (US) imaging presents
advantages such as low cost and high accessibility, it is not further discussed here. For
anatomical morphology analysis, US imaging introduces potential operator-dependent
variability, which may affect consistency. Furthermore, the retrospective interpretation
of US images is challenging without live patient interaction or precise information
about the spatial positioning of the US probe. Therefore, it is less suited for the
purposes of this study.

4.1 Computed Tomography

Computed Tomography (CT) provides detailed cross-sectional images of the human
body using X-ray technology.

4.1.1 Basic principles of CT imaging

CT imaging operates on the fundamental principle of differential X-ray attenuation by
various tissues. As X-rays pass through the body, they are absorbed at different rates
depending on the tissue material properties and thickness (Figure 4.1). In a very
simplified form (for homogeneous materials, and neglecting any scattering), the X-ray
intensity measured by the detector can be calculated by Beer-Lambert’s law (Eq. 4.1).
Thus, the intensity of the X-rays on the detector is mainly dependent on the tissue
characteristics and thickness, next to the initial X-ray intensity (�0) [1].
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Figure 4.1: Simplified illustration of X-ray attenuation. The initial beam of X-rays has an
intensity �0 and the intensity � decreases exponentially with the distance 3x travelled
inside the tissue. The material property � is responsible for the differential X-ray
absorption and intensity at the X-ray detector for distinct tissues.

� = �04
−�3G (4.1)

CT scanners produce images through the rotation of an X-ray source and detector
around the patient. The detector measures the attenuated X-rays, and sophisticated
algorithms reconstruct cross-sectional images from this raw scan data sinogram (Figure
4.2). The acquisition time of CT scans is considered fast and patient movement artifacts
are relatively rare. Resulting images exhibit varying shades of gray, correlating to tissue
X-ray absorption (and densities), facilitating the identification of anatomical structures
and abnormalities. The shades of gray in the image represent Hounsfields Units (HU):
the relative tissue radiodensity at a certain position in space. Therefore, HU is a
quantitative measure, which scales as follows: 0 HU represents radiodensity of distilled
water and -1000 HU represents the radiodensity of air at 0°C and 105 Pa.

Figure 4.2: CT raw data acquisition and image reconstruction. [2].

4.1.2 Challenges in CT imaging

Despite its benefits, CT imaging still poses some challenges:

• Radiation exposure: Repeated exposure to ionizing radiation raises concerns about
potential long-term risks, such as cancer, reduced fertility or genetic changes.
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• Image artifacts: Artifacts from patient movement or metallic implants (resulting in
X-ray scattering) can compromise image quality and interpretation.

• Less effective for soft tissue visualization, where the distinct tissues have similar
radiodensities.

4.1.3 Applications of CT in orthopaedics

CT imaging serves multiple clinical purposes in orthopaedics, including but not limited
to:

• Diagnosis of small bone fractures, which are difficult to detect on plain radiographs.

• Diagnosis and 3D surgical planning of malunion fractures (improper alignment of
the bone parts during healing).

• 3D lower limb alignment analysis in the three planes: coronal, sagittal and axial.

• Patient-specific surgical planning (Figure 4.3) and 3D printing of patient-specific
instruments (PSI)

Figure 4.3: CT-guided planning of a complex total knee prosthesis revision case. Optimal
size selection and positioning can be defined carefully pre-operatively and even further
finetuned during surgery [3].

4.1.4 Conclusion

In conclusion, CT scans are the optimal choice for bone imaging or imaging that needs
to be fast (emergencies, prevention of motion artifacts) and at an adequate resolution at
the same time, when a limited radiation exposure is acceptable.
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4.2 MRI

Magnetic Resonance Imaging (MRI) is a totally different technique, which produces also
detailed anatomical images in three dimensions. Based on the principles of nuclear
magnetic resonance (NMR), MRI exploits the magnetic properties of certain atomic
nuclei (usually hydrogen) to visualize soft tissues in biomedical imaging.

4.2.1 Basic principles of MRI

At its core, MRI relies on the behavior of hydrogen nuclei, which are abundant in the
human body (especially in soft tissues like muscles, ligaments and even cartilage) due
to the high water and fat content. These hydrogen nuclei possess a property called spin,
making them act like tiny magnets. When a patient is placed inside an MRI scanner, a
powerful external magnetic field (�0), typically 1.5 (most clinical settings) or 3.0 Tesla
(often in university hospitals or research facilities), aligns the spins of these hydrogen
nuclei to the magnetic field.

However, simply aligning the magnetic spins of the hydrogen nuclei is not sufficient for
imaging. The key to MRI is perturbing this alignment with a radiofrequency (RF) pulse.
This RF pulse is delivered at a specific frequency, known as the Larmor frequency 50,
which is determined by the strength of the magnetic field �0 and the gyromagnetic ratio
� for the atom of interest (in our case hydrogen).

When this specific RF pulse is applied, it tips the aligned hydrogen nuclei out of their
equilibrium position. Once the RF pulse is turned off, the hydrogen nuclei begin to relax
back to their original alignment with the magnetic field. As they do so, they emit energy
in the form of electromagnetic radio waves. These are then detected by the different coils
(e.g. a multi-channel knee coil captures these radio waves in different orientations while
scanning the knee) within the MRI scanner. The relaxation process occurs in two main
ways (Figure 4.4 parts b and c): longitudinal relaxation (T1) and transverse relaxation
(T2). T1 relaxation refers to the time it takes for the nuclei to realign with the magnetic
field, while T2 relaxation refers to the time it takes for the nuclei to lose phase coherence
among themselves.
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Figure 4.4: Schematic overview of the basic MRI principles. a) An external magnetic field
�0 (orange arrow) is applied (z‐direction), and induces a net magnetization vector ("0,
blue arrow) aligned with �0. When an orthogonal RF pulse is applied, "0 tilts 90° into
the transverse (xy) plane ("GH , green arrow). The magnetization returns to equilibrium
through two processes: T1 and T2 relaxation. b)T1 relaxation: T1 is a measure of the time
it takes for the initial longitudinal magnetic moment ("0) to recover. c) T2 relaxation:
T2 measures the loss of the transverse magnetic moment ("GH) due to dephasing [4].

The signals received by the coils are then processed to create images. In order to locate
the signal origin, spatial encoding is performed by applying different magnetic field
gradients in perpendicular directions, finally resulting in a raw k-space image. Next,
this is converted into a spatial domain image by applying inverse Fourier
transformation. In 2D MRI protocols, only signals from one specific slice at a time are
captured. Therefore, if a high number of slices is required (e.g. large area or fine slices),
the scan time increases linearly. Additionally, the size of the raw k-space is equivalent to
the final in-plane image resolution. A larger k-space to be sampled might have more
phase-encoding steps as a consequence, resulting in a longer scan time. Hence, the
maximal achievable in-plane image resolution is related to the maximal feasible scan
time (higher cost and risk for motion artifacts).

Recently, different acceleration algorithms have been developed to capture
high-resolution (near-)isotropic images within a reasonable scan time, including but not
limited to 3D-fast spin echo acquisition (SPACE/CUBE/VISTA depending on the MRI
manufacturer), parallel imaging techniques (e.g. SENSE, GRAPPA, CAIPIRINHA) and
also deep-learning techniques (e.g. Deep Resolve on Siemens MRI machines). While
originating from research environments, these 3D MRI techniques were proven to
perform interchangeably with standard 2D MRI protocols for diagnosing knee
abnormalities in orthopaedic clinical practice [5]. As a result, they now start to find
entrance into routine clinical use.
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4.2.2 Thick-Slice 2D MRI / Thin-Slice 3D MRI

MRI sequences can be categorized into thick-slice 2D and thin-slice 3D acquisition
protocols, each having distinct characteristics and applications.

2D MRI

• Acquires images slice by slice, each with a thickness of ca. 3 to 5 mm, commonly
used in clinical practice (Fig. 4.5 top row).

• Advantages:
Faster acquisition time and hence lower cost, useful for initial surveys and scanning
of large areas.

• Limitations:
By definition they provide a lower resolution in the slice-selection direction. As a
result, they are more prone to partial volume artifacts. These typically occur when
the sampled spatial location includes multiple tissues characterized by distinct
MRI signals. Finally, the low resolution in one direction makes them less accurate
for detailed anatomical studies. Hence, multiple sequences in perpendicular
acquisition planes are desirable to create accurate and smooth 3D models of the
anatomy of interest, in order to avoid coarse stair-step effects, caused the discrete
nature of the voxel grid in the slice direction.

3D MRI

• Acquires slabs of multiple slices at once as volumetric data, allowing for thin-slice
reconstructions in any plane (Fig. 4.5 bottom row), currently mainly used in
research and neuro-imaging.

• Advantages:
Higher spatial resolution, better anatomical detail, fewer artifacts. Additionally
these sequences are superior for multiplanar reconstructions and complex
anatomical areas. Only one scan sequence is needed to create accurate 3D models
of the anatomy of interest. Multiple sequences with different echo and repetition
times (TE and TR) might be useful to obtain multiple distinct tissue contrasts for
easier pathology diagnosis or anatomy delineation.

• Limitations:
Stricter hardware requirements, longer acquisition times, higher sensitivity to
patient motion due to the longer scan time, and increased computational
requirements for data processing.
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Figure 4.5: Top: example of a standard clinical 2D MRI sequence with a high in-
plane sagittal (right) resolution, but a rather course resolution in the axial (left) and
coronal (middle) cross sections. Bottom: example of a near-isotropic 3D MRI sequence,
voxel dimensions are below 1mm, resulting in adequate cross-sections in the three
main anatomical planes (left, middle and right). Note that not only the scan resolution
differs between these two sequences, also the image contrast is different due to different
acquisition parameters (proton density weighted versus dual echo steady state).

4.2.3 Challenges in MRI Imaging

Despite its benefits, MRI still poses some challenges:

• Artifacts: distortions or errors in MRI images that can obscure or mimic pathology.
Common artifacts include:

– Motion artifacts: Caused by patient movement during the scan, leading to
blurred images.

– Magnetic susceptibility artifacts: Result from variations in the magnetic
properties of different tissues or the presence of metal objects, disturbing the
homogeneous magnetic field.

• Cost and Accessibility: MRI is costly, both in terms of initial setup, scan time
(operators and staff) and ongoing maintenance. This can limit accessibility,
particularly in low-resource settings.

• Safety Concerns: The strong magnetic fields used in MRI can pose safety risks,
especially for patients with metal implants or other magnetic-sensitive devices.
Thorough pre-scan screening is required to ensure patient safety.



46 CHAPTER 4. IMAGE MODALITIES

• The trade-offs between scan time (typically 15-30 minutes per MRI of the knee),
scan resolution and signal-to-noise ratio (Figure 4.6). While higher resolution and
signal to noise ratio (SNR) are desirable for accurate diagnosis, they often
necessitate longer scan durations, leading to increased costs and higher chances of
motion artifacts due to patient movement during the scan. Moreover, any
adjustment to scan parameters that affects either scan resolution or SNR will
inevitably influence at least one of the other two factors. This intricate interplay
highlights the challenge of optimizing image quality while considering the
practical constraints of scan time and cost.

Figure 4.6: Trade-offs to consider during MRI scan protocol design. Image size is
determined by the field of view and the scan resolution (voxel size). A high signal to
noise ratio enhances differential tissue contrast, facilitating the delineation of distinct
anatomical structures. Finally, minimization of the scan acquisition time is important
to reduce costs and risk for motion artifacts.

4.2.4 Applications of MRI in Orthopaedics

While conventional radiographs or CT are the best-fit imaging modality for diagnosing
bone fractures, MRI is better-fit for soft tissue pathologies. Moreover, MRI does not
utilize ionizing radiation, being a safer options for multiple repetitive scans and annual
screenings compared to CT scans.

MRI is particularly valuable for knee specialists because it provides high-resolution
images of soft tissues, such as muscles, ligaments, tendons, cartilage and the menisci.
The versatility of MRI sequences, such as T1-weighted, T2-weighted, and proton
density (PD) sequences, allow for detailed evaluation of various conditions. For
instance, T1-weighted images are useful for visualizing the anatomy and fatty tissues,
while T2-weighted images highlight areas with high water content, such as edema or
inflammation, making it easier to identify injuries and pathological changes.

MRI has multiple applications in orthopaedics, including but not limited to:
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• Diagnosis of Soft Tissue Injuries: MRI is particularly effective for imaging soft
tissues, making it the preferred method for diagnosing muscle, ligament, and
tendon injuries. For example, MRI can provide detailed images of rotator cuff
tears in the shoulder, meniscal tears in the knee, and other soft tissue pathologies.

• Evaluation of Bone Pathologies: MRI can reveal some bone pathologies that are
not visible on radiographs or CT scans. Conditions such as bone marrow edema,
osteonecrosis, and stress fractures are often easier to assess with MRI.

• Preoperative Planning and Postoperative Assessment: MRI plays a crucial role in
preoperative planning by providing surgeons with detailed anatomical maps (e.g.
for mini-implants in the treatment of large focal cartilage defects). Postoperatively,
MRI is used to assess the success of surgical interventions and monitor the healing
process.

• Monitoring of Chronic Conditions: MRI is useful for monitoring chronic orthopedic
conditions such as rheumatoid arthritis and osteoarthritis. It can assess the extent
of joint damage, inflammation, and other pathological changes over time.

4.2.5 Conclusion

MRI is a powerful and versatile imaging modality that has revolutionized the field of
medical imaging. Despite its challenges, including scan artifacts, scan time and cost, its
unparalleled ability to visualize soft tissues and some specific bone pathologies makes it
an indispensable tool in orthopaedic clinical practice. As technology advances, continued
improvements in MRI techniques and accessibility will enhance its clinical utility and
expand its applications further.

4.3 Image modalities summary

CT MRI
Principle Differential X-ray attenuation Magnetic resonance of hydrogen nuclei

Challenges

Radiation Cost
Scatter artifacts (metal) Magnetic susceptibility artifacts

Soft tissue image contrast (metal: field inhomogenities)
Motion artifacts

Trade-off scan time/resolution/SNR
Safety (MRI compatibility)

Applications
Bone imaging Soft tissue imaging

3D anatomy modelling incl. bone marrow (fatty tissue, H-atoms)
3D anatomy modelling (3D scan protocols)
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Image segmentation and 3D meshing

In this chapter, an introduction will be given how 3D anatomy models are created from
biomedical imaging by means of a manual method. Multiple tools exist to assist the
human operator to achieve a faster and more efficient workflow. As these tools and
software packages still require human operator input, they are labeled as manual
segmentation tools. For matters of completeness, the 3D meshing of the segmented
image volume as final step will only be shortly described (5.2: 3D meshing) as this
commonly used algorithm is not the focus of this work.

5.1 Manual image segmentation

5.1.1 Introduction

Image segmentation is a computer vision task that involves dividing an image or a scan
volume into distinct regions, or segments, based on specific criteria. In medical
imaging, this process is performed for identifying and delineating anatomical
structures, lesions, or abnormalities within medical images. By accurately segmenting
these regions, physicians can gain valuable insights into disease diagnosis, treatment
planning, or monitoring disease progression.

Image segmentation algorithms employ various techniques, including thresholding,
edge detection, and machine learning approaches. Thresholding involves dividing an
image into regions based on intensity values, while edge detection aims to identify
boundaries between distinct anatomical regions. Machine learning algorithms,
particularly deep learning models, have shown remarkable success in image
segmentation by learning complex patterns and features within medical images (see
Chapter 6. Automated image segmentation: neural networks). They provide a huge
efficiency gain in this highly time-consuming task when performed manually [1]. In the
context of this PhD research project, 240 clinical MRI scans of the knee were manually
segmented, which took over a year to assemble the complete 3D shape database of
post-meniscectomized distal femora and proximal tibiae.

Because biomedical image segmentation per definition only encompasses the
delineation of anatomical structures in the image or scan domain, thus classifying each
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voxel as belonging to the structure or not, an additional step is needed to create a 3D
mesh suitable for 3D shape analysis (see section 5.2. 3D meshing). A 3D mesh is a
digital representation of three-dimensional object, as a network of interconnected
points (or vertices, these terms will be used interchangeably troughout this work)
defining the shape and surface of the object. Depending of the type of mesh it can be
used for visualization purposes, as input for 3D printing (typically triangulated surface
meshes) or in-silico biomechanical simulations such as in finite element analysis
(typically volumetric hexahedral meshes).

5.1.2 Software for manual image segmentation

While the basic nature of this task (classifiying voxels as belonging to the anatomy of
interest or not) does not necessitates advanced computations or algorithms, all available
(both commericial and open-source) software packages offer some tools to accelerate this
highly time-consuming task [2]. Some of the most useful tools include:

• Image registration: this technique aligns multiple images or sequences from
different sources or time points, ensuring consistency and accuracy in annotations
across the subject by moving all subjects or images into the same reference
coordinate system. Using the same reference coordinate system is crucial when
information or image features from different images or scan sequences are
combined.

• Thresholding: by setting a threshold value, voxels with intensities above or below
the threshold can be automatically classified as belonging to or not belonging to the
anatomy of interest. This can be a quick and effective method for simple structures
and works especially well in low-noise CT images.

• Region growing: this algorithm starts from a seed voxel and iteratively expands
the region based on similarity criteria, such as intensity or texture. It can be useful
for segmenting connected regions with a comparable appearance within an image.

• Slice interpolation: this technique creates intermediate slice annotations between
annotated slices. It is extremely helpful to reduce the number of slices that need
fully manual segmentation.

• Particle removal: for images with noise or artifacts that appear as small, isolated
objects, particle removal algorithms can help clean up the image and improve
annotation accuracy.

• Morphological operations: such as closing (filling holes) or opening (removing
small objects), can be used to refine the segmentation results and improve the
quality of the annotated regions.

• Boolean operations: such as union, intersection or subtraction allow to perform
logical operations with segmentation masks from multiple anatomies or objects.
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5.1.3 Challenges and pitfalls

Segmenting MRI scans from multiple thick-slice sequences is an iterative process:
changes made while inspecting one sequence might introduce new out-of-plane small
errors. Manual segmentation of thick-slice 2D MRI knee protocols imposes several
challenges due to the inherent limitations of this imaging modality. These challenges
can significantly impact the accuracy, efficiency, and reproducibility of segmentation
tasks.

2D MRI Segmentation: Time Consumption and Labor Intensity

The process of manually tracing anatomical structures in thick-slice images is
time-consuming and labor-intensive, particularly for relatively thin knee structures
such as cartilage, menisci and ligaments. Moreover, to ensure an accurate image
segmentation also in the out-of-plane direction, multiple MRI sequences (with
perpendicular acquisition planes) are necessary since interpolation over the interslice
distance of ca. 3,5mm potentially leads to inaccuracies for thin anatomical structures
(e.g. cartilage)[3]. When using multiple MRI sequences, it is crucial the patient did not
move between the acquisition of the sequences. An additional image registration step
can ensure all sequences to be aligned within the same reference coordinate system, but
adds onto the already high labor-intensity and time-consumption. Typically, the
manual segmentation of distal femur (bone + cartilage in a single mask) and proximal
tibia (bone + cartilage in a single mask) from a clinical thick-slice 2D MRI scan takes
between 2,5 and 5 hours, depending on the total image quality.

Figure 5.1: Screenshot from 3D Slicer [4] during the first step of image segmentation
from a thick-slice scan protocol. A clear staircase effect is visible on the preliminary 3D
visualization in the upper right corner, due to the large slice thickness.
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Figure 5.2: Screenshot from 3D Slicer [4] at the end of the image segmentation process.
By iteratively refining the segmentation over all available scan sequences (perpendicular
acquisition planes), a smooth and accurate final 3D model could be achieved.

Image Quality Limitations

• Partial Volume Effects: Thick slices (and thus large image voxels) are more prone
to partial volume effects, where a single voxel contains contributions from multiple
tissues. This makes it challenging to accurately identify tissue boundaries and can
potentially introduce errors in segmentation. For example, in a thick slice of the
knee joint, a single voxel might contain contributions from both cartilage and bone
or synovial fluid, making it challenging to distinguish between these tissues.

• Low Contrast: In some cases or scan protocols, images may have low contrast
between different tissues, making it challenging to distinguish them and
increasing the risk of segmentation errors. This can be particularly problematic in
regions with subtle anatomical variations or in the presence of imaging artifacts.
A typical example of this was sometimes encountered at the region of the
tuberositas tibiae, at the border between tibial cortex and patellar tendon.

• Artifacts: Imaging artifacts, such as motion artifacts, magnetic susceptibility
artifacts (e.g. due to the presence of metal), or noise, can further complicate the
segmentation process, particularly in regions with low signal-to-noise ratio (e.g.
scan volume borders). These artifacts can obscure tissue boundaries and make it
difficult to accurately delineate anatomical structures.

Segmentation Accuracy and Reproducibility

• Suboptimal Segmentation: Thick slices may not capture the fine anatomical
details required for accurate segmentation, leading to suboptimal results. This can
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be particularly problematic for studies that require precise measurements of thin
anatomical structures, such as cartilage thickness or meniscus morphology [5, 6].

• Inter-Observer and Intra-Observer Variability: variations in user interpretation
and performance can impact both inter-observer and intra-observer variability,
reducing the reliability of segmentation results. This can make it difficult to
compare results across different studies or to track changes in a patient’s condition
over time.

To address these challenges, researchers and clinicians are increasingly exploring
automated segmentation methods using machine learning and deep learning
techniques. These methods have the potential to significantly reduce the time required
for segmentation while improving accuracy, consistency, and reproducibility. By
automating the segmentation process, we can streamline clinical workflows, enhance
the reliability of quantitative measurements, and facilitate more efficient and accurate
diagnosis and treatment of knee joint pathologies.

5.2 3D meshing

The marching cubes algorithm is one of the most popular techniques for converting a
3D binary segmentation mask into a triangulated mesh representation. It operates by
examining each voxel in the mask (Figure 5.3) and determining the configuration of its
neighbors. Based on this configuration, a table of pre-computed triangle vertices is used
to generate a set of triangles that approximate the surface of the segmented object. By
iterating through all voxels in the mask, the algorithm constructs a complete 3D mesh
representing the segmented region (Figure 5.4). The marching cubes algorithm is an
efficient and widely used method in medical imaging and other fields where 3D
visualization and 3D surface analysis of segmented objects are required.
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Figure 5.3: Overlay of the voxel grid of the scan volume containing the 3D anatomy of
interest. The marching cubes algorithm runs over the complete image volume voxel by
voxel to create a surface mesh of the anatomy of interest.

Figure 5.4: Detail of a triangular 3D mesh structure of distal femur (upper mesh) and
proximal tibia (lower mesh) from a posterior point of view.
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Automated image segmentation: neural

networks

In this chapter, some elementary concepts of neural networks for computer vision
applications are explained. Furthermore, some design rationales for four recent
state-of-the-art neural network architectures are discussed. These neural networks are
implemented for automated knee MRI segmentation. Resulting performance and
accuracy are compared over these four neural network architectures in chapter 7:
Statistical parametric mapping for segmentation evaluation.

6.1 Introduction

The substantial time required for manual segmentation of knee MRI scans has
prompted a search for innovative solutions to address this issue, while maintaining at
least an equal level of accuracy and practical usability in clinics. Recently, significant
advancements in computer vision have been made, driven by the availability of large
datasets, open-source AI libraries like PyTorch [1] and TensorFlow [2], and the
continuous increase in computing power. Today’s neural networks, when provided
with suitable training data, are already well-equipped to handle highly repetitive tasks
such as image segmentation. The implementation of these innovative approaches for
the initial step in morphological analysis (=image segmentation), leads to a substantial
efficiency boost. This, in turn, by removing the first bottleneck, allows to scale the
process of anatomical morphology analysis to nearly unlimited dataset sizes. In this
chapter, we introduce the basic concept of neural networks and illustrate the evolution
over time in neural network architectures for image segmentation by some examples. In
a following chapter (Chapter 7. Statistical parametric mapping for segmentation
evaluation), some of these examples were implemented for segmentation of knee MRI
scans, and evaluated in a clinically relevant way by taking into account the spatial
(anatomical) location of eventual segmentation errors.
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6.2 Neural networks

Neural networks are computational models drawing inspiration from the human brain’s
architecture. Fundamentally, they consist of interconnected nodes, or neurons, arranged
in layers. The very first related implementation was the perceptron algorithm, which
is essentially a neural network consisting of 1 node (and thus also only one layer). The
analogy between a biological neuron and the perceptron algorithm is illustrated in Figure
6.1.

Figure 6.1: (a): Drawing of a biological neuron. It receives input from other neurons
trough its dendrites, the output signal is produced in the nucleus and transmitted trough
the axon. (b): Schematic representation of a perceptron node. This perceptron node
receives inputs from other perceptron nodes (denoted as x0, x1, ..., xn) and applies
weights (b, w1, ..., wn) to these inputs. The weighted inputs are processed through a
linear function followed by a (non-linear) activation function to produce the output of
the node. In this analogy, the inputs to the perceptron are equivalent to the dendrites
of the biological neuron, the linear and activation functions of the perceptron mirror the
processing function of the nucleus, and the output of the perceptron corresponds to the
function of the axon in the neuron. Figure adapted from [3].

6.2.1 Deep learning

A neural network with many (hidden) layers, is also called a deep neural network
(Figure 6.2). The concept of deep learning refers to these specific machine learning
architectures. Data is fed into the network, traversing these layers and undergoing
mathematical transformations. The strength of connections between neurons is
quantified by numerical values known as weights. Through a process analogous to
human learning, these weights are adjusted iteratively to optimize the network’s ability
to recognize patterns within the data. In essence, a neural network is a sophisticated
mathematical function capable of approximating intricate relationships between input
and output variables. This capacity to discover complex and non-linear patterns in
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voluminous datasets makes neural networks a powerful tool for many applications,
including image and speech recognition, natural language processing, and,
increasingly, diagnostic and predictive models in medicine.

Figure 6.2: Illustration of a neural network with two hidden layers. This is one of the
simplest neural network architectures: a multilayer perceptron (MLP) [4].

While the human brain employs biological structures for communication between
neurons, artificial neural networks utilize mathematical operations. The process of
learning, or training, in a neural network involves exposing it to large quantities of
labeled data and iteratively refining the weights to minimize prediction errors. This
adaptation is achieved through algorithms that calculate the error between the
network’s output and the desired outcome (loss function), and subsequently adjust the
weights accordingly during a process called backpropagation.

6.3 U-Net

The U-Net architecture, as introduced by Ronneberger et al. in their 2015 paper ”U-
Net: Convolutional Networks for Biomedical Image Segmentation” [5], has become a
fundament in the field of automated image segmentation. The architecture is named ”U-
Net” due to its distinctive U-shaped structure, which facilitates the capture of both local
and global features or image characteristics necessary for an accurate delineation of the
objects of interest.

The U-Net architecture consists of two main parts: a contracting path (encoder) and an
expansive path (decoder) (Figure 6.3). The contracting path follows the typical
architecture of a convolutional neural network (CNN). It comprises a series of
convolutional layers with small 3x3 kernels, followed by activations (ReLu) and 2x2
max-pooling operations with a stride of 2. These convolutional operations act like
distinct image filters to extract multiple image features and progressively reduce the
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spatial dimensions of the input image while increasing the number of feature channels.
Each feature channel then captures some specific image characteristics as calculated by
the corresponding convolutional filter. This process allows the network to capture and
learn increasingly abstract and complex features of the input data. In conclusion, the
encoder serves to extract essential contextual information from the input images, which
is critical for accurate segmentation. Variants on the default parameters (kernel size,
stride, type of activation function...) have been investigated (within the limitations
posed by the currently available hardware) and their success rates depend on the
specific task at hand.

Figure 6.3: Schematic overview of the U-Net architecture. The left leg of the ’U’ is the
encoding path, responsible for the extraction of meaningful image features. The right
leg of the ’U’ is the decoding path, which combines all image features maps at different
stages of the encoding path into segmentation mask at the same resolution of the original
image. Image adapted from [6]

As the spatial dimensions decrease, the information becomes increasingly compressed,
which is advantageous for capturing context. However, this could lead to a loss of spatial
resolution in the final network output. To counteract this, the U-Net introduces skip
connections that directly transfer feature maps at different levels from the encoder path to
the corresponding layers in the decoder. These connections allow the decoder to leverage
the intermediate high-resolution features learned during the encoding process, while
preserving spatial information that would otherwise be lost.

The expansive path, or decoder, then aims to recover the spatial resolution and
construct a detailed segmentation map. This path consists of upsampling layers, which
are implemented as transposed convolutions. Each upsampling operation doubles the
spatial dimensions of the feature maps (as per default, arbitrarily chosen). These are
followed by concatenation with the corresponding feature maps from the encoding
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path, provided through the skip connections. After concatenation, a series of 3x3
convolutions and an activation function (typically ReLu) refine the upsampled features.
The final layer is a 1x1 convolution that reduces the number of feature channels to the
desired number of classes for segmentation.

One of the key innovations of U-Net was the use of skip connections, which address
the challenge of recovering spatial information lost during the downsampling process.
By combining the coarse, abstract features from the deeper layers with the fine, detailed
features from the shallower or upper layers, the network can produce segmentation maps
with both high accuracy and spatial resolution.

The base U-Net architecture has been adapted and extended in numerous ways to
tackle a wide range of image segmentation problems also beyond biomedical
applications. Variants such as 3D U-Net have been developed for volumetric data,
making it suitable for tasks involving 3D medical imaging modalities like CT and MRI
scans. Additionally, various modifications have been introduced to enhance the
performance and efficiency of U-Net, including attention mechanisms, deeper and
wider networks, and the incorporation of residual connections.

The impact of U-Net on the field of image segmentation and computer vision cannot be
overstated. Its simple yet effective design has made it the standard architecture for
many segmentation tasks. The principles underlying U-Net, such as the
encoder-decoder structure and the use of skip connections, have influenced the design
of numerous subsequent architectures in computer vision.

6.4 nnU-Net

While the original U-Net already dates from 2015, its successors and derivates are still
state-of-the-art today. The currently most famous and frequently used derivate of the
original U-Net is the nnU-Net (also known as ’no new net’) [7]. The model name is
already indicative for its architecture: it is also just a U-Net, but the innovation lies in its
self-adapting nature of the model (hyper)parameters. In a traditional U-Net, all
(hyper)parameters and model architecture parameters (number of layers, kernel size of
convolutions,...) should be finetuned manually (which is huge time-consuming task).
On the other hand, nnU-Net automates these processes, thereby eliminating the need
for this massively time-consuming step. Futhermore, the open-source framework is
characterized by its ease-of-use and the implementation of multiple useful tools for
performing automated segmentation experiments (checkpointing, logging of model
parameters, logging of debug information, etc.).

6.4.1 Automated configuration

nnU-Net’s automation begins already during the first dataset loading. Upon receiving a
new dataset, nnU-Net evaluates its characteristics, such as image size, spacing, and
intensity distribution. Based on this analysis, it selects the optimal preprocessing steps,
including resampling, normalization, and useful data augmentation techniques. The
framework then determines the most suitable network configuration from a predefined
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set of U-Net variants, tailored to the dataset’s specific needs (Figure 6.4). Notably, the
framework not only considers the dataset’s specific needs but also takes into account the
constraints imposed by available hardware resources. In particular, the size of the GPU
memory significantly influences the determination of the image patch size.
Consequently, nnU-Net offers a valuable tool for efficiently maximizing the use of all
available computational power, eliminating the need for time-consuming trial-and-error
experimentation.

6.4.2 Predefined network architectures: 2D and 3D approaches

The nnU-Net framework employs three distinct U-Net configurations: a 2D U-Net, a 3D
U-Net, and a cascaded 3D U-Net. The 2D U-Net processes slices of 3D scan volumes
independently one by one, while the 3D U-Net handles entire 3D volumes at once,
providing better spatial context at the cost of increased computational demand (GPU
memory and operations). The cascaded 3D U-Net first applies a coarse 3D U-Net to the
downsampled image (low-resolution) and then performs a refinement step using a
second 3D U-Net with the full-resolution image and upsampled coarse 3D U-Net
segmentation results stacked in the input channel dimension.

6.4.3 Training and optimization

nnU-Net automatically employs the best-suited set of hyperparameters for training,
such as learning rate, batch size, and loss function, through a series of experiments with
cross-validation. It uses advanced optimization techniques, including stochastic
gradient descent (SGD) with momentum and adaptive learning rate schedules, to
ensure robust training. nnU-Net also incorporates strategies to address common
challenges in biomedical image segmentation, such as class imbalance and small object
segmentation, by employing techniques like patch sampling and class-specific loss
functions. Finally, some post-processing techniques such as small particle removal are
also readily available.

6.4.4 Conclusion

The nnUNet represents a significant advancement in the field of biomedical image
segmentation. Its automated, self-adapting framework simplifies the development of
high-performing segmentation models, democratizing access to advanced deep
learning techniques. By consistently achieving state-of-the-art results (or at least very
close to state-of-the-art) across diverse tasks and datasets, nnUNet has established itself
as a benchmark in the field.
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Figure 6.4: Schematic overview of the automated configuration of the nnU-Net.
Parameter interdependencies are represented by thin arrows and are modelled by a
set of heuristic rules. Finally, the data-dependent ’rule-based parameters’ are inferred
(green). The blue boxes represent ’fixed parameters’. Cross-validation (5-fold) is
implemented in the default training configuration. Depending on the dataset, up to three
configurations are trained (2D, low-resolution 3D, cascade or high-resolution 3D). Finally,
an empirical selection of the best performing ensemble on the available dataset is done,
including the decision to perform post-processing (yellow boxes represent the ’empirical
parameters’. The table below summarizes how all parameters are configured by the nnU-
Net framework. [7]
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6.5 Swin-UNetR

Before delving into the Swin-UnetR model architecture, it’s essential to learn about some
essential characteristics of Transformer models. Initially designed for natural language
processing (like GPT to mention the most famous one), these building blocks for neural
networks have revolutionized various fields, including computer vision.

6.5.1 Transformers

At the core of a transformer is the self-attention mechanism. Unlike recurrent neural
networks (RNNs), that process sequences sequentially (one by one, in a fixed order),
transformers can process information from different parts of the input simultaneously.
This allows for a more efficient modeling of long-range dependencies. Non-overlapping
image patches are first normalized (layer norm), before fed into the multi-head
attention network. Based on the similarity between elements, the self-attention
mechanism calculates a weighted sum of all input elements for each element. This
allows the model to focus on the most relevant parts of the input and capture also
global dependencies and patterns.

6.5.2 Swin Transformer

The Swin Transformer [8], a variant of the transformer architecture models, was
specifically designed for computer vision tasks. It introduces a hierarchical structure,
whose representation is computed with shifted windows (Swin). By alternating
between these shifted patch windows in successive layers, cross-window connections
are introduced. Similar to other transformer architectures, it divides the input image
into non-overlapping patches and progressively reduces the spatial resolution while
increasing the channel dimension. This hierarchical structure allows the Swin
Transformer to capture both local and global information efficiently.

6.5.3 Swin-UnetR: ATransformer-BasedMedical Image Segmentation
Model

Swin-UnetR [9] builds further upon the Swin Transformer and U-Net architectures to
create a powerful model for medical image segmentation. From U-Net, it employs the
encoder-decoder structure to capture both context and fine-grained details (Figure 6.5).
However, instead of using convolutional layers, it uses the Swin Transformer blocks to
extract the intermediate image feature maps. This allows the model to benefit from the
long-range dependencies (shallow layers) and hierarchical structure of the Swin
Transformer, while still capturing spatial information effectively.
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Figure 6.5: Swin-UnetR model architecture [9].

Architectural characteristics of the Swin-UnetR include:

• Encoder: The encoder part of Swin-UnetR consists of multiple Swin Transformer
blocks. Each block applies self-attention to the input features, followed by a feed-
forward network. As we move deeper into the encoder, the spatial resolution is
reduced while the channel dimension is increased, allowing the model to capture
higher-level features.

• Decoder: The decoder part of Swin-UnetR uses a similar architecture to the encoder
but with upsampling operations to increase the spatial resolution. The decoder also
incorporates skip connections, which combine features from the encoder with those
from the decoder, helping to preserve fine-grained details.

• Output Layer: The final layer of Swin-UnetR is a convolutional layer that produces
a segmentation map, where each pixel is assigned a class label.

The key advantages of Swin-UnetR are the following:

• Long-range dependencies: The Swin Transformer blocks enable the model to
capture long-range dependencies within the image, which is crucial for medical
image segmentation tasks.

• Hierarchical structure: The hierarchical structure of the Swin Transformer allows
the model to capture both local and global information, improving segmentation
accuracy.

• State-of-the-art performance: Swin-UnetR has achieved state-of-the-art
performance on various medical image segmentation benchmarks, demonstrating
its effectiveness.
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6.5.4 Conclusion

In conclusion, Swin-UnetR represents again a step forward in medical image
segmentation. By combining the strengths of transformers and U-Net, it offers a
powerful and efficient approach for tasks such as organ segmentation, lesion detection,
and more.

6.6 MedNeXt

While transformers indeed deserve their place amongst the state-of-the-art computer
vision models, they still face some difficulties when applied on smaller datasets.
Inspired by the hierarchical transformer architectures (such as Swin Transformers,
described before), the ConvNeXt network family was developped: a pure convolutional
network without actual transformer blocks. Their performance is on par with
Transformer networks in terms of accuracy and scalability, while its simplicity and
efficiency is inherited from standard convolutional networks. The MedNeXt
architecture aims to extend the benefits of the ConvNeXt networks to achieve
state-of-the-art performance also for segmentation of biomedical images.

6.6.1 From ConvNeXt...

The following model architecture design improvements were explored in [10]:

• Transformers divide the input image typically in non-overlapping patches, before
extracting the image features for each patch. The implementation of a 4x4
convolutional layer with a stride of 4 has the same effect.

• By implementing grouped convolutions (number of groups = number of
channels), combined with 1x1 convs, spatial and channel mixing is separated,
similar to vision Transformers.

• Similar to Transformer blocks, the inverted bottleneck (hidden layer channel
dimension of the MLP block being 4 times its input channel dimension) is
implemented in the ConvNeXt blocks.

• By moving up the position of the depthwise convolutional layer before the
inverted bottleneck (similar to Transformers where the multi-head attention block
is placed before the MLP layers), the more complex large kernel convolutional
layers only have to take into account a smaller account of channels (or feature
maps). The increase and decrease of the channel dimension in the inverted
bottleneck can then be performed by the more efficient 1x1 layers. The large
kernel sizes allow for a significant increase in receptive field of the convolutional
layers, and thus increases the ability to capture longer-distance dependencies. The
accuracy improvement however reach a plateau at certain kernel size.
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6.6.2 ...to MedNeXt

Originating from the ConvNeXt, the following changes were made to adapt MedNeXt to
the more complex taks of biomedical image (volume) analysis [11]:

• 3D imaging: While ConvNeXt was mainly designed for 2D image tasks, MedNeXt
allows for 3D medical images to be processed. All intermediate blocks where the
image data flows through are adapted to accept 3D imaging/volume data as input.

• ConvNeXt blocks: The further introduction of the inverted bottleneck also in the
’2x down’ (encoder, blue in Figure 6.6) and ’2x up blocks’ (decoder, green in Figure
6.6 is one of the changes of MedNeXt in comparison to ConvNeXt.

• Resampling: is done by the insertion of a strided (stride=2) convolution or
transposed convolution in the first depthwise convolutional layer of the block.
The corresponding channel increase or reduction is employed by the last
compressive convolutional layer of the block. Finally, a residual connection with
1x1x1 (transposed) convolution with a stride of 2, enables a better gradient flow
during backpropagation.

Figure 6.6: Schematic overview of the MedNeXt architecture. [11]

6.7 SegMamba

6.7.1 Introduction

The previously described neural networks were (more or less) ordered following the
model’s receptive field, in increasing order. The idea is that, similarly to manual
segmentation of full scans versus small patches, the model can learn some spatial
awareness related to the anatomy of interest, thereby acting as some sort of
regularisation. CNN-based methods have difficulties in recognizing global image
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relationships, as the convolutional layer acts by definition more on localized features.
The next upcoming family of segmentation algorithms, based on the Transformer
architecture, are employing a self-attention module to extract global information.
Hybrid approaches, combining the benefits of both segmentation algorithm families
have become state-of-the-art in a number of segmentation tasks and challenges. The
main drawback of implementing transformer architectures into computer vision
models, is the increased computation cost, related to the quadratic complexity ($2) in
the self-attention modules. Following the success of the transformers for computer
vision tasks, a new family of neural networks have emerged: Mamba-based models
originate from state space models and are developed to capture long-range
dependencies optimally while an efficiency improvement results in still feasible
computational requirements. Multiple derivations from this work in the natural
language processing domain have emerged. However, to date Mamba-based models
were not fully explored in the domain of MRI knee segmentation. SegMamba [12] is
one of the first segmentation algorithms that combines elements from the U-Net
architecture (U-shape structure to capture image volume features at different scales)
with Mamba blocks, allowing for the segmentation of 3D image volumes.

6.7.2 State space models

For clarity, the term ”state space models” will not be abbreviated in this work to prevent
confusion with the more commonly used concept of statistical shape model (SSM)
troughout this work. State space models were a concept originally developed in the
field of control engineering and signal processing [13]. They offer a way to model
processes where the driving forces (state) behind the variable of interest (space) are not
measurable. Where recurrent neural networks and convolutional neural networks lack
the ability to efficiently select the most informative data from the input, selective state
space models such as Mamba-based models have implemented a selection mechanism
by parametrizing the state space model parameters based on the input. Therefore,
irrelevant information is filtered out and important features are more efficiently
captured by the model’s state. As neural network model architectures and
implementation details are not the scope of this work, the interested reader is referred
to the base paper on Mamba [14] and this extensive survey paper on Mamba-based
neural networks [15].

6.7.3 Key architecture features of SegMamba

As the basic Mamba-blocks are designed to process one-dimensional input data,
SegMamba extends this to the whole-volume sequential modeling of three-dimensional
data, by implementing a tri-orientated spatial Mamba (TSMamba) block. It flattens the
three-dimensional input in three directions: forward, reverse and inter-slice.
Additionally, gated spatial convolution (GSC) modules aims to enhance the spatial
feature representation and feature-level uncertainty estimation (FUE) filter the
multi-scale features from the encoder, enhancing feature reuse.
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Tri-orientated spatial mamba (TSMamba) block

These TSMamba blocks are composed out of a gated spatial convolution, a normalization
layer, a tri-orientated Mamba module (ToM), another normalization layer and a MLP
layer, with residual connections as illustrated on the left in Figure 6.7.

Figure 6.7: An overview of the SegMamba model architecture. The encoder includes a
stem layer and multiple TSMamba blocks designed to extract features at multiple scales.
Within each TSMamba block, a gated spatial convolution (GSC) module captures the
spatial features, and a tri-orientated Mamba (ToM) module extracts global information
from forward, backward and inter-slice directions. [12]

Gated spatial convolution (GSC) Where the original Mamba layer omits spatial
information during flattening of the 3D features into a 1D sequence, the gated spatial
convolution (GSC) module captures the spatial relationships. Two convolutional blocks
(containing a norm, convolution, and nonlinear layer) with kernel sizes 3 × 3 × 3 and
1 × 1 × 1 are employed, followed by a pixel-by-pixel multiplication acting like a gate
mechanism. The features are finally fused by another convolutional block, as illustrated
in Figure 6.8.

Figure 6.8: (a) The gated spatial convolution. (b) The tri-orientated Mamba.[12]
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Tri-orientated Mamba module (ToM) The original Mamba block only captures global
dependencies in one direction (e.g. forward), thereby neglecting potential dependencies
in other directions (e.g. backward, out-of-plane or over multiple slices). To accomodate
for the high-dimensional nature of medical scans, the tri-orientated Mamba module
computes feature dependencies from three directions: forward, backward and
inter-slice. These three types of features are finally fused by summing them up.

Feature-level uncertainty estimation (FUE)

To estimate the feature-level uncertainty, the mean value across the channel dimension is
calculated and fed into a sigmoid function � for normalization purposes. The uncertainty
D 8 is then calculated as in Eq. 6.1.

D 8 = −Ī 8 log(Ī 8), and Ī 8 = �( 1
� 8

� 8∑
2=1

I 8 2) (6.1)

The final 8th scale feature is then computed as follows (Eq. 6.2):

Ĩ 8 = I 8 + I 8¤(1 − D1) (6.2)

6.7.4 Conclusion

The described additions to the Mamba base network enable SegMamba to model
long-range dependencies within volumetric data, while still operating at a high level of
efficiency during inference.
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Automated Landmark Annotation for

Morphometric Analysis of Distal Femur
and Proximal Tibia

This chapter describes our proposed algorithm for automated landmark annotation in
the context of bone morphometric analysis. The manual landmark-based method was
validated based on intra- and interobserver variability, and this was in turn compared to
the intermethod variability. The achieved high level of automation will lead to a faster,
scalable and human operator-independent morphometric analysis of the knee bones.

This work was previously published as: Grammens, J., Van Haver, A.,
Lumban-Gaol, I., Danckaers, F., Verdonk, P., Sijbers, J. (2024).
Automated Landmark Annotation for Morphometric Analysis of Distal
Femur and Proximal Tibia. Journal of imaging, 10(4), 90.
https://doi.org/10.3390/jimaging10040090

7.1 Introduction

In orthopedic clinical practice, patient-specific instruments and implants are highly
dependent on accurate anatomical characterization for the region of interest, for which
landmark analysis is a commonly used technique. It involves the use of 3D coordinates
of anatomically meaningful points to calculate relative distances and angles. Several
knee-specific applications exist, including a sizing and positioning tool for joint
replacement surgery [1], a matching tool for donors and acceptors in meniscal allograft
transplantation [2], or large-scale morphometric risk factor analysis [3, 4, 5]. All these
applications are based on a set of anatomical landmarks at the level of the distal femur
and proximal tibia. Traditional methods to identify anatomical landmarks involve
manual annotation, which is highly time-consuming and prone to substantial intra- and
inter-observer variability [6, 7]. Time consumption depends mainly on image quality
and experience level, plateauing towards the end of the learning curve. Clear landmark
definitions and well-described protocols are essential to limit this human
operator-induced variability [8]. Various automated approaches have been developed to
minimize subjectivity and processing time in annotation tasks. They can be divided
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into three large groups: knowledge-based, template-based and learning-based [9]. The
first category exploits knowledge of the human anatomy to characterize landmarks by a
set of unique geometric or anatomical characteristics such as surface normal direction,
local curvature, or spatial relation to other landmarks [10]. Template-based approaches
like statistical shape models start with an annotated template image or template mesh,
which is elastically deformed to match the image or mesh of the subject’s anatomy [11].
Lastly, several deep learning-based approaches have been proposed [12, 13], mainly
consisting of combinations or modifications to convolutional neural networks. We
propose a hybrid methodology combining a template-based algorithm with
knowledge-based optimization of landmark positions. More specifically, a fully
automated landmark annotation method is proposed for measurement of the medial
and lateral tibiofemoral joints in all three directions. Anatomical correspondences are
established by 3D surface registration [11], after which the landmark seeds are
propagated from the template mesh to the subject’s 3D bone and cartilage surface
meshes. Finally, landmarks defined at local extreme positions were optimized to ensure
their position at that outermost point. Our proposed automated landmarking tool is
compared with the average landmark coordinates and measurements from three
independent expert observers. Furthermore, the landmarking tool is tested for the 3D
morphometric analysis of the tibiofemoral joint, based on a retrospectively collected
dataset of 3D models of 20 knees. It does so by comparing the intra- and inter-observer
variability (manual, within, and between observers) with the inter-method (manual
versus automated method) variability and reliability. We hypothesize the inter-method
landmark variability to be non-inferior to the inter-observer landmark positioning
variability. Furthermore, we hypothesize that our automated morphometric
measurement variability is in line with the inter-observer morphometric measurement
variability.

7.2 Methods

7.2.1 Data and workflow

From a large multicenter database of arthroscopic partial meniscectomy patients, 20
randomly selected anonymized pre-operative knee MRI scans were randomly selected:
15 male (mean age ± SD: 49 ± 13 years) and 5 female (mean age ± SD: 58 ± 13 years)
subjects. Subjects with osteophytes (OARSI grade I–III) or major knee deformities (>5°
varus or valgus by clinical judgement) were excluded from the study. Informed consent
was obtained from all participants prior to their inclusion and the study protocol was
approved by the ethical committees according to the 1964 Declaration of Helsinki and
its later amendments.

Manual image segmentation The MRI scan data were loaded into Mimics 22.0
(Materialise, Leuven, Belgium) to create 3D models of the distal femur and proximal
tibia. For all subjects, MRI image sets in the three perpendicular anatomical planes were
available, following the standard clinical MRI protocols. At least two MRI image sets
with a perpendicular acquisition plane were used to segment the distal femur and
proximal tibia into two separate 3D models consisting of bone and cartilage. The
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resulting projected contours of the 3D models were then visually double-checked on the
remaining available image sets and manually finetuned in an iterative workflow using
the “Contour edit” tool of the software package. Finally, the 3D models of the distal
femur and proximal tibia were saved as triangular 3D surface meshes.

7.2.2 Manual landmark annotation

All included subjects (n = 20) were manually landmark-annotated by three trained
observers: one junior researcher (JG), one senior researcher (AVH), and one orthopedic
surgeon (ILG). All observers had at least 2 years of experience. One observer (JG)
performed all landmark annotations three times in a random case order with a
minimum interval of 1 month to avoid recall bias. The landmarks and morphometric
measurements of interest are defined and further described in ‘3.Observations’.

7.2.3 Automated landmark annotation

Registration of 3D Bone and Cartilage Models

Three-dimensional surface registration was performed to obtain a dense set of
anatomically corresponding pseudo-landmarks. The first step consisted of isotropic
remeshing of an arbitrary chosen bone and cartilage shape of interest [14], which served
as a template. Next, an iterative algorithm of rigid and constrained elastic deformations
[11] was used to register all 3D bone and cartilage meshes with the template (see also
Section 11.3. Surface registration). Next, the mean distal femur and proximal tibia bone
and cartilage shape were calculated by averaging the corresponding point coordinates
of the deformed meshes. Using the same iterative registration process as described
before, all 20 bone and cartilage shapes were again registered with the mean bone and
cartilage shape as a template. The mean distal femur and proximal tibia meshes
consisted of 47,622 and 46,721 vertices, respectively. All resulting deformed meshes
were visually checked for resulting mesh quality (triangle distortion).

Landmark propagation

From the obtained anatomical correspondences, all manually annotated landmarks (cf.
9.2.2 Manual landmark annotation) of all but one subject (the subject of interest for
automated landmark annotation) were propagated to the mean bone and cartilage
shape in a leave-one-out experiment. Their coordinates were averaged to define the
mean landmark position, projected on the mean bone and cartilage shape. To ensure
equal weighting of the three observers in the mean of the landmark projections, the
three landmark projections of observer 1 were averaged beforehand. Next, automated
landmark annotation of all subjects was initialized by propagating the mean landmark
positions to the corresponding vertices of the subjects. In a final step, the landmark
positions at extreme locations were optimized according to their definition (9.2.4
Landmark definitions) via a custom Python script (and VTK library [15]) to ensure their
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position was the most anterior/posterior, medial/lateral or proximal/distal point. The
complete workflow is summarized in Figure 9.1.

Figure 7.1: Workflow overview. Landmarks were annotated manually by three experts
(top left) and propagated to the mean bone and cartilage shape (top right), leaving
out the observations of the subject for automated landmarking. Next, mean landmark
coordinates were calculated from all propagated observations on the mean bone and
cartilage shape (bottom right). Finally, automated landmarking initialization was
performed by propagating the landmarks back to the subject’s bone and cartilage shapes,
using the previously established anatomical correspondences again (bottom left)

7.2.4 Observations

Landmark definitions

The landmark definitions were adopted from earlier reported landmark studies [3, 6, 5, 7].
The landmarks were manually annotated in 3D Slicer, first directly on the 3D model and
eventually finetuned on the relevant MRI view with projected 3D model contours. A
complete overview of the evaluated landmarks with their acronyms and definitions is
given in Table 9.1 and illustrated in Figure 9.2.
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Table 7.1: Landmark definitions

Acronym Landmark Definition

FME Femoral medial
epicondyle

The most anterior and distal osseous prominence over the medial
aspect of the 3D distal femur

FLE Femoral lateral
epicondyle

The most anterior and distal osseous prominence over the lateral
aspect of the 3D distal femur

FMCP Femoral medial
condyle posterior The most posterior point of the medial condyle on the 3D femur.

FLCP Femoral lateral
condyle posterior The most posterior point of the lateral condyle on the 3D femur.

FMCD Femoral medial
condyle distal The most distal point of the medial condyle on the 3D femur.

FLCD Femoral lateral
condyle distal The most distal point of the lateral condyle on the 3D femur.

FMTA Femoral medial
trochlea anterior The most anterior point of the medial trochlea on the 3D femur.

FLTA Femoral lateral
trochlea anterior The most anterior point of the lateral trochlea on the 3D femur.

FMCPP
Femoral medial

condyle posterior
proximal

The most proximal point of the cartilage at the posterior medial
condyle on the 3D femur. Verified on a sagittal MRI view.

FLCPP
Femoral lateral

condyle posterior
proximal

The most proximal point of the cartilage at the posterior lateral
condyle on the 3D femur. Verified on a sagittal MRI view.

Notch Femoral notch The most anterior point in the middle of the femoral notch on a
caudal to cranial view of the 3D femur.

FMCIP
Femoral medial
condyle internal

point

The most lateral point of the cartilage of the medial condyle on a
caudal to cranial view of the 3D femur, at the level of one third of
the notch depth anteroposteriorly. Verified on a coronal MRI view.

FMCEP
Femoral medial
condyle external

point

The most medial point of the cartilage of the medial condyle on a
caudal to cranial view of the 3D femur, at the level of one third of
the notch depth anteroposteriorly. Verified on a coronal MRI view.

FLCIP
Femoral lateral

condyle internal
point

The most medial point of the cartilage of the lateral condyle on a
caudal to cranial view of the 3D femur, at the level of one third of
the notch depth anteroposteriorly. Verified on a coronal MRI view.

FLCEP
Femoral lateral

condyle external
point

The most lateral point of the cartilage of the lateral condyle on a
caudal to cranial view of the 3D femur, at the level of one third of
the notch depth anteroposteriorly. Verified on a coronal MRI view.

TMIE
Tibial medial
intercondylar

eminence

The most proximal or highest point of the medial intercondylar
eminence.

TLIE
Tibial lateral
intercondylar

eminence

The most proximal or highest point of the lateral intercondylar
eminence.

TMCP Tibial medial condyle
posterior

The most posterior and lateral point of the medial compartment
on the 3D tibia. Verified on a sagittal MRI view.

TLCP Tibial lateral condyle
posterior

The most posterior and medial point of the lateral compartment
on the 3D tibia. Verified on a sagittal MRI view.

TMCM Tibial medial condyle
medial

The most medial point of the tibial plateau on the 3D tibia, axially
aligned following the posterior condylar line of the
corresponding femur.

TLCL Tibial lateral condyle
lateral

The most lateral point of the tibial plateau on the 3D tibia, axially
aligned following the posterior condylar line of the
corresponding femur.

TMCA Tibial medial condyle
anterior

The most anterior point on the cartilage of the medial tibial
plateau (on a sagittal MRI view).

TLCA Tibial lateral condyle
anterior

The most anterior point on the cartilage of the lateral tibial
plateau (on a sagittal MRI view).
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Figure 7.2: Landmark visualization on the template bone and cartilage shapes: (a) distal
femoral view, (b) posterior femoral view, (c) proximal tibial view, (d) posterior tibial view.
A complete overview of landmark definitions can be found in Table 9.1

Reference coordinate system definition

Clinical MRI scans are characterized by a certain field of view, limited to the distal
femur and proximal tibia. It is assumed that all knees were correctly positioned by the
MRI operators: horizontal and straight on the MRI patient table, leaving only one
degree of freedom for minor internal or external rotation of the hip during image
acquisition. Therefore, all 3D models of the femur and tibia were rotated in the axial
plane to make the femoral posterior condylar line parallel to the mediolateral x-axis.
The reference coordinate system is thus defined by the following axes:

• x-axis (mediolateral): parallel to the femoral posterior condylar line, defined by the
FMCP and FLCP landmarks (mean of 3 observers as ground truth)

• y-axis (anteroposterior): common perpendicular to the x- and z-axes

• z-axis (proximodistal): MRI patient table movement direction
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Morphometric measurement definitions

The morphometric measurements for validation were summarized in Table 9.2 and
visualized in Figure 9.3. They characterize the size of the medial and lateral
compartments of both the femur and tibia in all clinically relevant directions by
projecting the landmarks of interest to the relevant axis.

Table 7.2: Measurement definitions

Measurement
Abbreviation Measurement Definition Between Landmarks Measurement

Projection Axis

AP MFC Anteroposterior size of the medial
femoral condyle FMCP, FMTA y (AP)

AP LFC Anteroposterior size of the lateral
femoral condyle FLCP, FLTA y (AP)

AP Notch
Anteroposterior size of the femoral FMCP, Notch y (AP)

notch (FLCP, Notch)

fML Mediolateral size of the distal femur FME, FLE x (ML)

ML MFC Mediolateral size of the medial
femoral condyle FMCIP, FMCEP x (ML)

ML LFC Mediolateral size of the lateral
femoral condyle FLCIP, FLCEP x (ML)

ML Notch Mediolateral size of the femoral notch FMCIP, FLCIP x (ML)

PCL Posterior condylar line FMCP, FLCP x (ML)

PD MFC Proximodistal size of the medial
femoral condyle FMCPP, FMCD z (PD)

PD LFC Proximodistal size of the lateral
femoral condyle FLCPP, FLCD z (PD)

AP MTP Anteroposterior size of the medial
tibial plateau TMCP, TMCA y (AP)

AP LTP Anteroposterior size of the lateral
tibial plateau TLCP, TLCA y (AP)

tML Mediolateral size of the tibial plateau TMCM, TLCL x (ML)

ML MTP Mediolateral size of the medial tibial
plateau TMCM, TMIE x (ML)

ML LTP Mediolateral size of the lateral tibial
plateau TLCL, TLIE x (ML)
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Figure 7.3: Morphometric measurements visualized on the template bone and cartilage
shapes: (a) distal femoral view, (b) posterior femoral view, (c) proximal tibial view, (d)
posterior tibial view. A complete overview of morphometric measurement definitions
can be found in Table 9.2

7.2.5 Validation study for manual morphometric analysis

Landmark validation

Manual landmark annotations were considered the gold standard. For the
intra-observer error assessment, ground truth landmarks were defined as the average
landmark coordinates over three observations of observer 1 and were also used as final
landmark annotations for observer 1. For the inter-observer assessment, the ground
truth landmarks were defined as the average landmark coordinates over the three
observers and further referred to as the expert mean landmarks.

Measurement validation

Alignment to the reference coordinate system was performed using the expert mean
landmarks. All measurements were calculated according to their definition in the
previous section. For intra-observer variability assessment, the mean of three
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measurements by observer 1 served as the ground truth whereas for inter-observer
variability evaluation, the mean measurement from three different observers served as
the ground truth and is further referred to as the expert mean measurement. Absolute
differences with the ground truth were calculated as a measure of variability.

7.2.6 Validation study for automated morphometric analysis

Automated landmark validation

Expert mean landmarks served as ground truth landmark positions. Euclidean distances
between the automatically determined landmarks and the ground truth landmarks were
calculated as a measure of inter-method landmark variability.

Automated measurement validation

Expert mean measurements served as ground truth morphometric measurements.
Automated measurements were calculated from the automated landmark coordinates.
Absolute differences were used as a measure of inter-method measurement variability.

7.2.7 Time consumption

The required time to annotate all femoral and tibial landmarks was tracked for one
observer and five subject cases. The time needed for the surface registration, extraction
of the landmark positions and measurement calculations was derived from the
filesystem metadata.

7.2.8 Statistical analysis

All statistical analyses were performed in R 4.2.1, using the ‘irr’ package for ICC
calculations [16, 17].

Landmark postions

The first quartile (Q1), median (Q2), and third quartile (Q3) of the Euclidean distance
to the ground truth landmark position were calculated per landmark for intra-observer,
inter-observer, and inter-method variability. The interquartile range (IQR = Q3 − Q1) was
used to define outliers. Observations below Q1 − 1.5 x IQR or above Q3 + 1.5 x IQR were
considered outliers (represented as ’+’ in the box-and-whisker diagrams of Figure 9.4).
The mean and standard deviation of the difference between each observation and the
ground truth are calculated per landmark.
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Measurements

Similarly, quartiles and medians were calculated per measurement for intra-observer,
inter-observer, and inter-method variability. Outliers were again defined as
observations that fall below Q1 − 1.5 x IQR or above Q3 + 1.5 x IQR and visualized by
’+’ in the box-and-whisker diagrams of Figure 9.5. The mean and standard deviation of
the absolute differences between each measurement and the mean measurement
(intra-observer: three observations of observer 1; inter-observer: three observers) were
calculated. Measurement reliability analysis included intra- and inter-observer
reliability, reported as intraclass correlation coefficients (ICC) from two-way mixed
(intra-observer) or two-way random (inter-observer) effects, absolute agreement, and
single-rater models [18]. Values below 0.5, between 0.5 and 0.75, between 0.75 and 0.9,
and above 0.9 were, respectively, considered to have poor, moderate, good, and
excellent reliability. Inter-method (manual versus automated) agreement was also
assessed by the ICC (two-way random effects, absolute agreement, single
measurement). Finally, Bland–Altman plots visualized the inter-method (manual
versus automated) agreement for all measurements [19].

7.3 Results

7.3.1 Validation study for manual morphometric analysis

Manual Landmark Position Validation

The median landmark position intra-observer difference with the ground truth varied
between 0.35 mm (TLIE) and 1.49 mm (TMPA). Maximal intra-observer landmark
position differences were between 1.11 mm (TLIE) and 7.66 mm (FME). The median
inter-observer difference was between 0.52 mm (TLIE) and 2.28 mm (TLPP). Maximal
inter-observer landmark positions ranged between 1.24 mm (TLIE) and 9.7 mm (TLPP).
The mean (and standard deviation) of inter-observer landmark differences was 1.53
(±1.22) mm. A complete overview is plotted in a box-and-whiskers diagram in Figure
9.4 (intra-observer: red; inter-observer: green).
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Figure 7.4: Box-and-whisker diagrams for intra-observer, inter-observer and inter-
method landmark differences, calculated as Euclidean distances from the ground truth.
The boxes indicate the IQR, the line within stands for the median and the whiskers
indicate points < 1.5 IQR from the box.‘+’ represents outliers. IQR: interquartile range,
between first and third quartile. GT: ground truth.



84
CHAPTER 7. AUTOMATED LANDMARK ANNOTATION FOR MORPHOMETRIC

ANALYSIS OF DISTAL FEMUR AND PROXIMAL TIBIA

Manual Measurement Validation

The median intra-observer measurement differences with the ground truth varied
between 0.16 mm (fML) and 0.59 mm (AP LTP). Maximal intra-observer measurement
differences ranged between 0.78 mm (AP MFC) and 2.76 mm (AP LTP). The median
inter-observer differences ranged between 0.13 mm (AP MFC) and 1.06 mm (AP MTP),
whereas maximal differences ranged between 0.83 mm (AP MFC) and 3.02 mm (AP
LTP). The mean (and standard deviation) over all inter-observer differences was 0.56
(±0.55) mm. The spread of measurement intra-observer (red) and inter-observer (green)
differences is plotted in box-and-whisker plots in Figure 9.5. Intra-class correlation
coefficients for intra- and inter-observer errors were between 0.796 and 1. These are
summarized in Table 9.3.

Table 7.3: Intraclass correlation coefficients for
reliability analysis of the measurements.

Measurement ICCintra ICCinter

AP MFC 1 1
AP LFC 1 1

AP Notch 1 1
fML 0.991 0.969

ML MFC 0.937 0.796
ML LFC 0.985 0.922
PD MFC 0.983 0.947
PD LFC 0.976 0.958
AP MTP 1 0.999
AP LTP 0.999 0.998

tML 0.986 0.968
ML MTP 0.953 0.94
ML LTP 0.955 0.935

7.3.2 Validation study for automated morphometric analysis

Automated Landmark Position Validation

The median difference from the ground truth landmark position ranged between 0.77
mm (TMIE) and 3.13 mm (TLPA). The maximal inter-method difference varies between
2.02 mm (FLCIP) and 6.99 mm (TPM). For all landmarks, box-and-whisker diagrams are
plotted in Figure 9.4 (blue), and descriptive statistics are in Table 9.4. Success detection
rates at different accuracy thresholds are plotted in Figure 9.6. For all landmarks, at least
75% of the automated landmarks were placed within 4 mm of the expert mean landmark.
On average, 78% and 92% of the landmarks were placed automatically within 3 mm and
4 mm of the expert mean landmark, respectively.
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Figure 7.5: Box-and-whisker diagrams for intra-observer, inter-observer, and inter-
method (manual versus automated) measurement differences. The mean measurement
of three observations (intra-observer) or mean of three observers (inter-observer and
inter-method) served as ground truth. The boxes indicate the IQR, the line within stands
for the median and the whiskers indicate points < 1.5 IQR from the box. ‘+’ represents
outliers. IQR: interquartile range, between first and third quartile. GT: ground truth.
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Table 7.4: Descriptive statistics for intra-observer, inter-observer and inter-
method (manual versus automated) landmark position differences. Only for the
intra-observer differences the mean of three observations was used as reference
landmark position. Expert mean landmarks were used as reference landmark
positions to assess inter-observer and inter-method landmark differences. SD:
standard deviation.
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FME 1.43 (1.26) 2.21 (1.59) 2.59 (1.48)
FLE 1.52 (1.45) 1.47 (1.28) 2.31 (1.07)

FMCP 1.52 (0.91) 1.40 (0.77) 2.51 (1.23)
FLCP 1.59 (1.02) 1.33 (0.95) 2.54 (1.28)

FMCD 1.56 (1.33) 1.56 (1.02) 1.98 (1.26)
FLCD 1.14 (0.87) 1.85 (1.30) 2.06 (1.54)
FMTA 0.91 (0.65) 1.21 (0.83) 1.47 (0.91)
FLTA 1.23 (0.90) 1.44 (0.98) 2.25 (1.20)

FMCPP 0.85 (0.56) 1.55 (0.96) 2.25 (1.34)
FLCPP 0.78 (0.49) 1.16 (0.65) 2.14 (0.99)
Notch 0.69 (0.47) 0.82 (0.46) 1.51 (0.66)
FMCIP 0.69 (0.35) 1.26 (0.78) 1.56 (0.88)
FMCEP 1.05 (1.18) 1.74 (1.03) 1.70 (1.22)
FLCIP 0.54 (0.32) 1.13 (0.84) 1.08 (0.70)
FLCEP 0.70 (0.50) 2.08 (1.59) 1.93 (1.25)
TMIE 0.57 (0.49) 0.62 (0.30) 0.90 (0.53)
TLIE 0.41 (0.25) 0.58 (0.30) 1.05 (0.68)

TMCP 0.99 (0.60) 2.13 (1.67) 2.29 (1.33)
TLCP 1.38 (0.94) 2.58 (1.76) 2.86 (1.45)

TMCM 1.19 (1.01) 1.87 1.72) 2.75 1.88)
TLCL 1.12 (0.76) 1.23 (0.61) 2.13 (1.18)

TMCA 1.64 (0.98) 2.31 (1.34) 2.84 (1.39)
TLCA 1.21 (0.66) 1.63 (1.00) 2.41 (1.15)

All landmarks
(average) 1.07 (0.92) 1.53 (1.22) 2.05 (1.30)

Automated Measurement Validation

The median difference between the automated and manual methods was between 0.33
mm (AP MFC) and 1.72 mm (AP MTP). Maximal differences ranged between 0.74 mm
(AP MFC) and 2.85 mm (AP MTP). A detailed overview per measurement is visualized
as a box-and-whiskers diagram in Figure 9.5, and descriptive statistics are in Table 9.5.
Intraclass correlation coefficients varied between 0.938 and 0.999 and are reported in
Table 9.6. Success measurement rates are plotted in Figure 9.7 for different accuracy
thresholds. For all but two measurements (AP MTP and AP LTP), at least 90% of the
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Figure 7.6: Success detection rates in % per landmark within predefined tolerance [mm].
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automated measurements were less than 2 mm different from the expert mean
measurements. On average, over all measurements, 71% and 95% of all measurements
had a difference below 1 mm and 2 mm with the expert mean measurement,
respectively. Finally, Bland–Altman diagrams (Figure A.1 in the Appendix chapter)
showed similarly distributed errors over the full measurement range.

Table 7.5: Descriptive statistics for measurement differences intra-observer, inter-
observer, and intermethod (manual versus automated). Only for the intra-
observer differences the mean of three observations was used as reference
landmark measurement. Expert mean landmarks were used to calculate the
reference measurements to assess inter-observer and inter-method landmark
differences. SD: standard deviation.
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AP MFC 0.21 (0.16) 0.18 (0.17) 0.54 (0.21)
AP LFC 0.28 (0.22) 0.23 (0.22) 0.67 (0.36)

AP Notch 0.40 (0.31) 0.46 (0.31) 0.69 (0.53)
fML 0.30 (0.35) 0.63 (0.60) 0.51 (0.28)

ML MFC 0.33 (0.28) 0.61 (0.42) 0.66 (0.41)
ML LFC 0.24 (0.22) 0.62 (0.43) 0.69 (0.45)
PD MFC 0.29 (0.22) 0.45 (0.45) 0.80 (0.51)
PD LFC 0.33 (0.25) 0.43 (0.32) 0.85 (0.51)
AP MTP 0.50 (0.33) 1.19 (0.77) 1.39 (0.91)
AP LTP 0.74 (0.64) 1.11 (0.81) 1.46 (0.92)

tML 0.43 (0.38) 0.70 (0.47) 0.57 (0.45)
ML MTP 0.30 (0.27) 0.35 (0.30) 0.65 (0.41)
ML LTP 0.42 (0.40) 0.50 (0.42) 0.75 (0.57)

All measurements
(average) 0.36 (0.35) 0.56 (0.55) 0.78 (0.60)

Table 7.6: Intraclass correlation coefficients (manual versus automated) for
reliability analysis of the measurements.

Measurement ICC Measurement ICC

AP MFC 1 AP MTP 0.999
AP LFC 1 AP LTP 0.999

AP Notch 1
fML 0.995 tML 0.993

ML MFC 0.926 ML MTP 0.944
ML LFC 0.966 ML LTP 0.956
PD MFC 0.961
PD LFC 0.951
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Figure 7.7: Success measurement rates in % per morphometric measurement within
predefined tolerance [mm].
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7.3.3 Time consumption

The manual method takes 15–30 min per case for extracting all anatomical landmark
coordinates from 3D bone and cartilage shapes. The time varied based on observer
experience and image resolution. For one observer and five subject cases, the mean (and
standard deviation) of the required time for manual landmarking was 18.6 ± 1.8 min
per knee. The automated method needed ca. seven minutes of computing time per knee
on a desktop workstation (Intel i9-9900K with 32 GB of RAM). This can be split up into
the following steps: approx. six minutes for femur and tibia registration, less than one
second for initial landmark retrieval and a couple of seconds for landmark optimization.

7.4 Discussion

This study successfully validated our suggested approach for automated anatomical
landmarking in 3D morphometric analysis of the distal femur and proximal tibia bones.
On average, automated landmarks were placed 2.05 mm from the expert mean
landmarks, in comparison to a manual inter-observer variability of 1.53 mm. The
derived measurements showed a mean absolute difference of 0.78 mm with the expert
mean measurements, whereas the mean inter-observer difference was 0.56 mm.
Reliability was proven to be excellent for 3D morphometric measurement of the distal
femur and proximal tibia, with an ICC (manual versus automated) ranging between
0.926 and 1. Most importantly, the automated landmark extraction algorithm
significantly accelerates the process, decreasing manual labor from approximately half
an hour of manual work to a mere seven minutes of operator-independent computing
time. Our manual landmark annotations are in line with reported accuracies for the
same anatomy. Victor et al. [7] previously reported mean intra-observer differences
between 0.41 mm and 1.4 mm and mean inter-observer accuracies between 0.66 mm
and 3.5 mm for a highly overlapping set of anatomical landmarks. It should be noted
that their 3D bone models were CT-derived (1.25 mm axial slice thickness) and thus
potentially had a finer mesh resolution. Van der Merwe et al. [6] obtained mean intra-
and inter-observer accuracies in ranges between 0.34 mm and 1.7 mm (intra) and
between 0.08 mm and 1.91 mm (inter) on MRI-derived bone models (research scan
protocol, 1.5 mm slice thickness, average in-plane resolution of 0.4 mm) of distal femur
and proximal tibia. Recently, a method for the assessment of the full lower limb
alignment was proposed and validated on CT-derived 3D bone models of the femur
and tibia [20]. Based on a similar technology and applied to a largely overlapping set of
landmarks, the authors were able to extract all landmarks with a mean absolute
difference of 2.17 mm compared to the manual method. Primarily using identical
anatomical landmarks, our results are in line with their reported accuracies between
repeated manual annotations and inter-method (manual versus automated) accuracy.
Several factors may impact the accuracy and success rate of automated landmarking.
First and foremost, the quality of the expert landmarks plays a pivotal role in
establishing the ground truth. Given the limited number of experts and significant
inter-observer variability for certain landmarks, it can be argued if the expert mean
landmarks truly serve as a robust ground truth [10]. Interobserver dispersion of the
landmarks is likely influenced by the difficulty of manually locating the landmark [21]
and variations in training or background among observers [22]. Furthermore, keeping
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in mind the anatomical meaning of certain landmarks (e.g., FME or FLE) as origin or
insertion points of a ligament or tendon, multiple candidate landmark points can be
considered equally correct, as no ligament or tendon is only attached to the bone by one
single fiber. Thus, annotating landmarks is not a trivial task, as it is a simplification of a
more complex anatomical reality. To warrant an optimal quality of the expert mean
landmarks in the current study, the landmarks were annotated by three independent
experts instead of one single observer. Secondly, the automated landmarking accuracy
is related to the mesh resolution of the registered surfaces and the template mesh, as the
candidate landmark positions are limited to the vertices of the registered surfaces. A
higher resolution (more vertices) in the template mesh enhances accuracy but increases
computing time for 3D surface registration. In addition, the resolution and slice
thickness of the source imaging also play a role. Subtle ridges, such as the anterior
border of the medial and lateral tibial plateau cartilage, might be more or less
pronounced. Since our automated approach relies solely on the 3D models derived
from thick-slice MRI scans, the TMCA and TLCA landmarks were more challenging to
detect, resulting in larger AP TPM and AP TPL differences from the ground truth
measurements. Finally, the surface registration algorithm is prone to the introduction of
minor tangential translations of vertices over the 3D surface in nearly flat regions. This
is reflected in landmark positioning errors, which do not contribute directly to larger
measurement errors (as illustrated in Figure 9.8). A similar effect was also observed for
the manual landmarking: while, e.g., the posterior points on the tibia plateau showed
inter-observer differences up to 9.7 mm, the maximal anteroposterior size inter-observer
differences were maximally only ca. 3.5 mm. It was indeed verified that the largest part
of the TMCP and TLCP position differences is in the mediolateral and proximodistal
coordinates.

Figure 7.8: Exaggerated representation of a potential discrepancy between landmark
position difference and corresponding measurements difference. Both blue and grey
TMCM landmarks conform to the landmark definition, yet there is a 7.83 mm gap
between them. In contrast, the calculated medial tibial plateau width only differs by
0.49 mm.

The main strength of our automated landmark tool is the extensive standardization of
the complete process, thereby ruling out any intra- or inter-observer variation and
making the time-consuming human input obsolete. The marginal operator time was
reduced from up to 30 min per knee to zero after initialization of the landmarks of
interest on the template shape. Combining a template-based method with some
domain knowledge of the anatomy, a limited amount of training data were proven to be
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sufficient. Our method does not require huge datasets for training, as is the case with
deep learning approaches. While deep learning methods might be able to achieve
higher accuracy, the training of these neural networks is slower and requires much
more training data. Measuring distances and angles based on well-defined landmarks
is probably the most straightforward and understandable method to analyze simple
bone and cartilage shape variations. The clinical relevance of this type of bone shape
analysis already lies within implant design and patient-specific pre-operative planning
[23]. Using the 3D bone and cartilage models instead of the raw images is a potential
limitation to evaluating the real-world clinical applicability of this method. Indeed, the
focus of this study was on the landmarking process rather than the segmentation of the
raw images. Using pre-operative MRI scans of the knee from routine diagnostic
procedures for meniscus lesions from different clinical centers does ensure the
robustness and generalization abilities of our method. Additionally, considering the
data-driven nature of our method, a larger training dataset could be beneficial for
automatic landmarking accuracy. However, similar validation studies report acceptable
to excellent results based on similar sample sizes [20, 24, 25, 26]. The image quality of
the clinical MRI scans (large slice thickness) could be considered a challenge for 3D
bone and cartilage segmentation. Iterative verification and finetuning of the 3D models
over three mutually perpendicular views were required to result in a manual
segmentation accuracy of at least 1 mm [2]. Undoubtedly, ongoing advances in isotropic
high-resolution MRI protocols [27] will provide higher-quality 3D models with more
fine details (ridges and indents). This will facilitate both manual landmark annotation
(a smaller region to focus on while searching the landmark) and automated
landmarking (less prone to sliding surface errors during elastic deformation in the
registration process). Future potential improvements include automating the
segmentation process from raw images to reduce even further observer-related
variability and human processing time. Furthermore, the surface registration algorithm
could be accelerated by implementing multithread computing, but this was not the
scope of this study. Surface registration remains the main time-consuming factor in the
automated method and always entails a trade-off between accuracy and time
consumption. A further potential enhancement is the introduction of Mean Value
Coordinates [28], a generalization of barycentric coordinates. It overcomes the
limitation of the registered mesh vertices being the only candidate landmark positions,
allowing a lower template mesh resolution for a similar achievable landmarking
accuracy.

7.5 Conclusion

In conclusion, considering the substantial variability among observers in the manual
method, there is a clear need for an objective, operator-independent, and efficient
approach to identifying anatomical landmarks. Our automated method demonstrated
excellent accuracy and reliability for both landmark positioning and morphometric
measurements. Moreover, this high level of automation will lead to a faster, scalable
and human operator-independent morphometric analysis of the knee. Potential
applications include optimized orthopedic implant designs, patient-specific treatment
tailoring and large-scale morphometric risk factor analysis in different pathologies.
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Statistical shape analysis: technical

background

In this chapter, elementary concepts related to statistical shape analysis are provided.
Starting from the meshes as generated by the marching cubes algorithm from the
segmented image volumes, it covers the process of surface registration, Procrustes
analysis to realign all cases in the dataset rigidly to the mean bone shape and finally the
principal component analysis to extract the main modes of shape variation.

8.1 Introduction

Statistical Shape Modeling is a powerful tool used to capture, quantify, and analyze the
variability of shapes in a population [1]. It has applications in various fields such as
medical imaging [2], computer vision [3], and computational anatomy [4, 5, 6]. A
statistical shape model (SSM) enables the identification of patterns and differences in
shapes, facilitating tasks such as shape comparison, deformation analysis, and object
recognition. The process involves multiple steps, from preprocessing 3D mesh data to
dimensionality reduction techniques, such as Principal Component Analysis (PCA).
Recently, deep learning approaches have also emerged, offering some promising
innovations in shape analysis.

8.2 Dataset preparation

The first step in statistical shape modeling is preparing the 3D shapes (often
represented as triangular meshes) for analysis (see also 5. Image segmentation and 3D
meshing). These shapes can originate from medical imaging (e.g., MRI, CT scans) or
other 3D scanning techniques. Mesh preprocessing ensures that the source and target
shapes are clean and suitable for subsequent analysis.

• Mesh Cleaning: Raw meshes often contain noise, holes, or irregularities.
Smoothing filters (e.g., Laplacian smoothing) and mesh repair algorithms are
used to remove noise and fill gaps in the surface. [7, 8]
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• Resampling: To ensure consistency, the number of vertices and faces in the meshes
may be standardized across the dataset by resampling or remeshing techniques like
isotropic remeshing, ensuring uniform density and distribution of points [9].

• Alignment and Normalization: Before surface registration, the source and target
shapes can be aligned and normalized in terms of position, scale, and orientation.
Techniques like Procrustes analysis, translation, and scaling are used to bring the
meshes into a common frame of reference [10].

8.2.1 Procrustes analysis

The name of this statistical normalization technique originates from the bandit Procrustes
in Greek mythology. He would offer travelers a place to stay, but once they lay down in
his bed, he would either stretch their bodies or amputate limbs to ensure they fit the exact
dimensions of the bed. This macabre legend became a metaphor for forced conformity,
where something is altered to fit a rigid standard, sometimes at the expense of its natural
form. In the mathematical analogy, the Procrustes analysis further used in this work ”fits”
one configuration of data to another, transforming it as needed but without distorting its
intrinsic structure, by a combination of uniform scaling, translation and rotation.

For matters of completeness, an overview of several variants of Procrustes analysis is
given:

• Ordinary Procrustes Analysis (OPA):

– This is the most basic form of Procrustes analysis. It aligns two sets of
(surface) points by applying translation, uniform scaling, and rotation to one
set of points to match the other. The goal is to minimize the sum of squared
distances between corresponding points in the two sets.

– Applications: OPA is often used in shape analysis, particularly in biology,
where it helps to compare the shapes of organisms or anatomical features.

• Generalized Procrustes Analysis (GPA):

– GPA extends the concept to more than two sets of points. It simultaneously
aligns multiple configurations (e.g., the shapes of multiple specimens) to a
common average shape. This iterative process continues until the overall
variance between the shapes is minimized.

– Applications: GPA is widely used in anthropology, archaeology, and
morphometrics to compare shapes across multiple individuals or groups,
such as comparing skull shapes across different species.

• Partial Procrustes Analysis (PPA):

– PPA differs from OPA in that it does not allow for scaling. Only translation
and rotation are applied to one set of points to match another. The emphasis
here is on comparing shape similarity without altering the size.

– Applications: Useful in cases where size is an important feature that should
not be modified, such as comparing the growth patterns of different organisms
or a comparison of knee morphology between distinct patient subgroups.
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8.3 Surface registration

Surface registration is an essential step in statistical shape modeling, where the source
and target shapes are aligned and correspondences between points on the surfaces are
established. Accurate registration ensures that the shapes can be meaningfully
compared (e.g. in terms of anatomical position), enabling further analysis of general
shape variability. Multiple algorithms exist to perform surface registration, including
iterative closest point (ICP) [11, 12], coherent point drift (CPD) [13] and normal
distributions transform (NDT)[14, 15].
In this section, we focus on a variant of the iterative closest point algorithm, namely the
elastic surface registration with or without a shape model prior, as described by
Danckaers et al [16]. It builds further upon the work of Amberg et al. [17] for non-rigid
ICP algorithm with translation vertices (N-ICP-T). It aims to deform the source surface
to the target surface, while establishing a meaningful mapping between the vertices of
the 3D surfaces, to preserve the anatomical correspondences, as illustrated in Figure
11.1.

Figure 8.1: Visualisation of a subset of anatomical correspondences between source and
target mesh.

8.3.1 Initial alignment

A first rigid alignment step helps to find corresponding points in a more efficient and
accurate way. Multiple options exist to get the initial alignment roughly correct.
Depending on the shape at hand, good results can be obtained by matching the
centroids (points located at the mean coordinates of all surface points) and inertial axes
(or principal axes, as obtained by principal component analysis on the 3D coordinates of
the point cloud), eventually followed by an ICP rigid transformation step (with only a
few iterations). The matching of principal axes might give suboptimal or even inferior
results when the shape has two dimensions that are highly similar in terms of size.
Applying only the centroid matching with iterative closest point rigid transformation
might be a good alternative in that case. Usually, given a homogenous image (scan)
dataset from a highly standardize data source, this approximate initial alignment is
already obtained, when all instances were acquired in the same default reference
coordinate system.
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8.3.2 Corresponding point search

In this work, corresponding point search was performed by ray casting along the
surface normals =B from all vertices on the source mesh to the target mesh. Depending
on the search strategy, either the intersection point self (not necessarily a vertex of the
target mesh) or a set of closest points thereto are evaluated to match a number of
criteria, including surface normal direction, surface curvature and distance between the
source mesh vertex and candidate corresponding point.

Ray casting search strategy Surface normal direction is evaluated by calculating the
dot product as defined in Eq. 11.1. If this dot product 0 > 0min, then the intersection
point is considered as a corresponding point. 0min gets more loose towards the end of
the iterative process, going from 0.8 to 0.6, this is equivalent to a difference in normal
direction from 36,9° to 53,1°, as calculated by arccos(0).

0 = =B · =C (8.1)

Neighborhood search strategy In case a set of closest points to the intersection point
is evaluated, a normalized surface curvature criterion is in place. First the curvature
values (mean curvature is used, not Gaussian curvature) for all vertices on both shapes
are normalized by subtracting the mean curvature (over all vertices from that mesh)
and dividing by the standard deviation (again over all mesh vertices from that mesh) as
defined in Eq. 11.2. Finally, a cost function defined as a weighted sum of the difference
in normalized curvature and distance between source vertex and candidate
corresponding point is used to withold the target vertex with the lowest cost as final
corresponding point. An upper threshold to the absolute value of this cost function is in
place and gets more strict towards the end of the iterative process, so there is no
guarantuee that a corresponding point will be found for all vertices on the source mesh.

�norm =
� − ��

��
(8.2)

with �� the mean curvature over the source or target surface, and �� the standard
deviation of the curvature over that surface.

8.3.3 Rigid transformation

Following the previously defined corresponding point search, an optimal affine
transformation matrix is calculated. The distance between the source vertices with a
corresponding point on the target surface and those corresponding points on the target
surface is then minimized in a least-squares method. The resulting affine
transformation matrix includes a combination of translations in the three dimensions,
as well as rotations around the three axes of the reference coordinate system.
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8.3.4 Elasticity modulated registration

After this rigid registration step, a new corresponding point search is performed.
Assuming a more accurate rigid alignment, the corresponding point search is believed
to result in turn in preciser and more correspondences to be established. These
candidate corresponding points are then subject to an elastic deformation, where the
vertices are allowed to translate separately, under the restriction of a stiffness parameter
�. This stiffness parameter defines the strength of the connection between neighboring
vertices, ensuring similar translations in neighboring vertices. It iteratively decreases
towards a predefined lower bound in order to impose less constraint while evolving
towards convergence. A diagonal weight matrix W ∈ R=×= keeps track of the detected
correspondences. If no correspondences were detected for a source vertex, its respective
weight is set to zero, to make it simply move along with its neighboring vertices. If a
corresponding point was found the respective weight is set to be 1. Matrix S ∈ R=×3 and
matrix T ∈ R=×3 represent the coordinates of the corresponding source and target
vertices, respectively. The finally applied translation vectors, the matrix X) ∈ R=×3, are
then found by solving following linear system:[

�C
WI=

]
X) =

[
0

W(T − S)

]
, (8.3)

with C ∈ R4×= the connectivity matrix or the incidence matrix of the target surface that
indicates the start- and end vertex of each edge (connecting two vertices in the mesh). I=
is the = × = identity matrix. The rigid registration step and elastic registration steps are
iteratively repeated together until the predefined number of registration steps is reached
or until convergence, which is calculated by comparing the current distance between the
source and target surface 3C and the previous distance between the source and target
surface 3C−1. Convergence is then defined as follows when

|3C − 3C−1|
3C

< 0.001.

8.3.5 Shape model prior modulated registration

The use of a shape model prior allows to let the source vertices move more freely within
the constraints posed by the shape space as defined by the shape model prior. The final
construction of a statistical shape model (SSM) is discussed in the following Section 11.4
Constructing a statistical shape model (SSM). To avoid inception-related
misunderstandings: a shape model prior is not required to create a statistical shape
model, it is only an alternative and more efficient way to expand a dataset of registered
shapes or to redo the registration in order to achieve a higher registration accuracy
(minimize distance between source and target surfaces, better geometric fit) for complex
shapes.

Similarly to the rigid and elasticity modulated registration, the aim is to minimize the
distance between the corresponding points, by fitting the shape model to the target
surface in combination with a further elastic deformation. A predefined number of
shape modes < is used, based the amount of explained variance or clinically
meaningful modes of shape variation to incorporate. The idea behind this limitation is
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to avoid the introduction of meaningless noise or corresponding point drift along the
target surface, which is typically captured by the later modes, which correspond to a
lower amount of total shape variance. At last, if a deformation of the source mesh along
the largest and main modes of shape variation is already allowed, the remaining
registration error can be further minimized by the elasticity modulated deformation.
The iterative process now consists of three registration steps that are repeated: a rigid, a
shape model prior modulated and an elasticity modulated registration step. A
flowchart indicating the position of this shape model prior modulated registration step
in the complete iterative process is shown in Figure 11.2.

Figure 8.2: Schematic overview of the iterative process employing shape model prior
modulated registration.

8.4 Constructing a statistical shape model (SSM)

A first requirement for constructing a statistical shape model (SSM) is that the meshes
are in (anatomical) correspondence to each other and superimposed into the same
reference coordinate system. This superposition of registered shapes is obtained by a
partial procrustes analysis, which translates and rotates each shape instance to
superimpose the mean shape.
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8.4.1 Principal component analysis (PCA)

The model is then built by applying principal component analysis (PCA) on this dataset
of corresponding point coordinates [1]. At its core, PCA is a method for reducing the
dimensionality of a dataset while preserving the most important information. In the
context of medical data, this might mean simplifying a complex set of measurements
into a smaller number of meaningful components. The complex set of measurements in
this case encompasses then the coordinates (x,y and z) of the < corresponding points
over all shape instances. Indeed, the application of PCA in statistical shape analysis is
only meaningful on a set of registered surfaces. That is, when the vertices of the
surfaces are ordered in the same way from an anatomical point of view. Each shape is
then represented by its set of corresponding points (or pseudo-landmarks), and after
flattening of this < × 3 matrix, as a one-dimensional shape vector (with length 3=).

After registration, the mean shape is computed. The mean shape is simply the average of
the corresponding coordinates of all the shapes in the dataset. This acts as the baseline
shape for further analysis. If there are # shapes, each of them consisting out of < points,
the mean shape (̄ ∈ R3< is computed as:

(̄ =
1
#

#∑
8=1

(8 (8.4)

where (8 ∈ R3< is the vectorized (flattened) representation of the 8Cℎ shape. In order to
achieve a compact statistical shape model (see also 11.5: Model performance assessment)
all shape instances are rigidly aligned to the mean shape prior to the construction of the
covariance matrix.

Covariance matrix and singular value decomposition

First, a corresponding points matrix is constructed: - ∈ R#×3< is given by

- =


G0,0 H0,0 I0,0 . . . G0,< H0,< I0,<
G1,0 H1,0 I1,0 . . . G1,< H1,< I1,<

...
...

...
G#,0 H#,0 I#,0 . . . G#,< H#,< I#,<

 , (8.5)

with < the number of points and # the number of shapes. The 8-th row of this
corresponding points matrix represents the 8-th registered shape of the dataset and is
denoted by G8 ∈ R3< . In our practical example of knee bone shapes, the population of #
knee bone shapes could then be seen as a point cloud of # points in an 3<-dimensional
space. This point cloud can be represented by a linear combination of # − 1 eigenmode
vectors or principal components, where the first eigenmode refers to the direction of the
largest variance in the analyzed dataset, the second eigenmode to the second largest
variance perpendicular to the first, etc. Then, the normalized corresponding point
matrix -̂ ∈ R#×3< is obtained by subtracting the mean vectorized shape (̄ from each
row of the matrix, which finally will result in modeling of solely the surface deviations
from the mean shape. Next, the normalized covariance matrix � ∈ R#×# is calculated:

� =
1

# − 1 -̂-̂) , (8.6)
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with eigenvalues Λ ∈ R#×# and eigenvectors % ∈ R3<×# , as obtained from the SVD
diagonalization of this covariance matrix � by

� = &Λ&) , (8.7)

with Λ ∈ R#×# the diagonal matrix holding the eigenvalues of the covariance matrix.

Given that -̂ could also be diagonalized as follows:

-̂ = *Σ+) , (8.8)

it follows that:

� =
1

# − 1 -̂-̂) =
1

# − 1*Σ+)VΣ*) = U Σ2

# − 1*
) . (8.9)

Taking into account Eq. 11.7, the singular values of -̂ in Σ are closely related to the
singular values �8 on the diagonal of Λ via:

�8 =
�82

# − 1 (8.10)

Furthermore, from Eq. 11.9, it follows that:

-̂-̂) = *Σ2*) , (8.11)

and,
-̂-̂)* = *Σ2 (8.12)

Therefore the left singular vector * as calculated by SVD on the matrix -̂ is not only also
an eigenvector of the covariance matrix � (Eq. 11.11), it equals the left singular vector
& of the covariance matrix � (Eq. 11.9). Finally, the principal components are in the
columns of the matrix P, as calculated by:

% = -̂ · & (8.13)

Any knee bone mesh : ∈ R3= , that lies in the shape space of the input knee bone meshes
(e.g. either femur or tibia), can then be approximated by the sum of the average surface
(̄ and a linear combination of the principal components % as follows:

: = (̄ + % · 1, (8.14)

where 1 ∈ R#−1 holds the knee bone shape parameters. To conclude, new knee bone
shapes can be formed by varying in these shape model parameters 1.

Dimensionality reduction

By keeping only the first few eigenvectors (those corresponding to the largest
eigenvalues), we can reduce the dimensionality of the shape space. For example, if 10
principal components explain 95% of the variance, the shapes can be represented in a
10-dimensional space instead of a 3<-dimensional space with < the number of vertices.
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The new low-dimensional approximation (′
8
∈ of each shape (8 is then given by projecting

the shape onto the ; first principal components:

(′
8 = (̄ +

;∑
:=1

18:%: (8.15)

where 18: are the shape-specific weights (scores) for the 8th shape along the :th principal
component.

8.4.2 PPSA

For matter of completeness, the concept of PPSA is shortly introduced here, the reader
is referred to the work of Duquesne et al. for more technical details [18]. Traditional
shape analysis techniques employing PCA look for linear modes of variation in these
shapes. Essentially, it assumes that the changes in the landmarks follow straight-line
paths when one shape is deformed into another. PCA reduces the dimensionality of the
data by identifying these linear combinations of features that explain the most variance
in the shape. However, in many cases, the way shapes vary is not linear. For instance, the
biological growth of an organism, or dynamic movement patterns in human gait, may
result in more complex, curving deformations that linear methods cannot fully capture.

This is where Principal Polynomial Shape Analysis becomes useful. PPSA extends the
linear framework of PCA by introducing polynomial terms to describe more complex,
curvilinear relationships between the landmarks. Instead of assuming that landmarks
move in straight lines as a shape deforms, PPSA allows for the possibility that these
landmarks move along curved paths, following a polynomial function.

The core idea behind PPSA is to capture higher-order relationships between the
landmarks. A polynomial is a mathematical function that can model curves and more
complex patterns of movement. For example, a quadratic polynomial (which includes
squared terms) can model shapes that expand or contract in a way that forms a
parabolic curve. A cubic polynomial (which includes terms raised to the third power)
can capture even more complex deformations, such as twisting or bending motions.

Despite its power, there are some challenges associated with Principal Polynomial Shape
Analysis. One of the main challenges is selecting the right degree for the polynomial
terms. A low-degree polynomial might not capture enough of the variation, while a high-
degree polynomial might overfit the data, meaning it could model random noise rather
than true underlying patterns. Therefore, careful selection of the polynomial degree is
critical to ensure the analysis is accurate and meaningful.

Another potential challenge is the interpretability. While the results of PPSA can reveal
more complex modes of variation, the inclusion of polynomial terms can make it harder
to interpret those modes in simple, intuitive ways. In PCA, the principal components
correspond to easily understood linear transformations of the data. In PPSA, the modes of
variation involve more complex, curvilinear transformations, which might require more
effort to explain in terms of the underlying biological or geometric processes.

As the analyzed knee bone shapes in this work were only analyzed mainly in their own
reference coordinate system, and no actual kinematic analysis was performed, just
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simple PCA was used to extract the most meaningful modes of shape variation.
Furthermore, there were no indications of PCA failing to capture the shape variations in
terms of compactness (explained variance), generalizability or specificity.

8.5 Model performance assessment

To evaluate the effectiveness of an SSM, the following key metrics are typically
employed: compactness, generalization to unseen shapes and specificity. Naturally, all
of these metrics can be expressed in function of the number of modes of shape variation
taken into account.

Model compactness refers to the ability of the model to represent the underlying
variability of the shape with the fewest number of parameters. A compact model can
accurately represent the variation of shapes in the dataset using a reduced number of
modes or principal components. This is a result of the dimensionality reduction
performed by PCA, which captures the most significant variations in shape with fewer
dimensions. A more compact model is desirable because it reduces the computational
burden and avoids overfitting by preventing the model from becoming too complex or
sensitive to noise in the training data [1]. However, compactness needs to be balanced
with the ability of the model to capture sufficient variation in the dataset.

Next, model generalizability is another key criterion that measures how well the
statistical shape model can represent new, unseen instances of shapes from the same
class. In other words, a generalizable model should accurately capture shapes that were
not part of the training set, reflecting the true variability of the population [19]. A
well-constructed model must generalize beyond the training data, as it ensures
applicability to broader, real-world scenarios. This can be quantitatively assessed by
testing the model on a set of unseen data and observing how well it represents those
new instances. Generalizability is heavily influenced by the training set: a model
trained on insufficient or unrepresentative data may fail to generalize, leading to poor
performance in practical applications.

Finally, model specificity complements generalizability by focusing on how well the SSM
restricts itself to producing valid shapes from the learned class [19]. In an ideal scenario,
the model should not generate shapes that deviate significantly from the true anatomical
or object shape variability. A highly specific model will only represent shapes that are
plausible according to the dataset it was trained on, effectively ruling out unlikely or
biologically implausible shapes. This property can be evaluated by generating random
instances of shapes from the model and measuring how similar these are to real shapes
from the target population [20]. A lack of specificity indicates that the model is overly
flexible and might produce unrealistic shapes, which can undermine the utility of the
model in clinical or engineering applications.

While these three discussed performance metrics are a good first check of the model’s
ability to describe the complete shape space by a confined number of principal
components, these metrics might be misleading when assessing the quality of the
underlying correspondences in some cases [20, 21]. Optimization of the registration
parameters allows to minimize the surface distance between the deformed source mesh
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and the target mesh. Therefore, registration errors along the surface normal direction
are usually neglectable. However, correspondence errors in the tangential direction
across the surface, cannot be ruled out. As it is a truly impossible job to manually define
an anatomical correspondence ground truth for thousands of vertices, this validation
step could be reduced to evaluate a confined number of anatomical landmarks. Having
a similar vertex density (as imposed by the initial isotropic remeshing step and
maintained by the stiffness parameter of the elasticity modulated non-rigid
deformation) across all surface regions and instances, it is an acceptable hypothesis that
the potential tangential correspondence error for all points is in the same order of
magnitude as for this confined number of anatomical landmarks.

8.6 Deep learning: the future?

Deep learning offers substantial advancements over traditional methods, especially in
its ability to model complex shapes and handle large, high-dimensional data.
Traditional statistical shape analysis methods, such as Procrustes analysis or principal
component analysis (PCA) on (pseudo-)landmarks, rely on linear assumptions and
often require careful pre-processing steps like landmark placement, or surface
registration. These approaches are effective for simple or well-understood shape
distributions but struggle to capture intricate, non-linear variations in shape that are
common in real-world objects, particularly when dealing with complex biological
structures, 3D surfaces, or medical imaging data.

Deep learning methods, especially convolutional neural networks (CNNs),
autoencoders, and generative models, have demonstrated remarkable success in
overcoming these limitations by learning to represent and generate shapes directly from
point cloud data without the need for explicit landmarking or surface registration [22].
They can automatically extract and encode high-level features, capturing complex,
non-linear shape variations that traditional methods would overlook. This is
particularly useful for high-dimensional data such as 3D meshes or volumetric data,
where traditional statistical methods would face challenges in terms of computational
cost and scalability.

A significant development in this area is geometric deep learning, which extends deep
learning techniques to non-Euclidean domains such as graphs, manifolds, and point
clouds—structures that are central to many shape analysis tasks. Traditional deep
learning methods like CNNs are inherently designed for Euclidean grids, such as
pixel-based images. However, shapes, especially those represented by 3D surfaces or
anatomical structures, often lie on curved manifolds or are represented as graphs (e.g.,
skeletal structures or triangular meshes). Geometric deep learning employs specialized
architectures, such as graph convolutional networks (GCNs) and spectral methods, to
operate directly on these non-Euclidean structures. For instance, GCNs adapt the
convolutional operation to graph-structured data by aggregating information from a
node’s neighborhood, thereby allowing the network to capture local geometric
properties[23]. This has led to improved performance in tasks like shape
correspondence and classification.

Autoencoders and variational autoencoders (VAEs) are particularly effective in
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statistical shape analysis for learning compact, latent representations of shapes. These
neural network-based models automatically learn to compress shape data into a
low-dimensional latent space, capturing complex shape deformations or variations in a
manner that is inherently non-linear [24]. This contrasts with traditional PCA-based
methods, which can only capture linear modes of variation. This means they can only
represent a subject shape as a weighted sum of modes of shape variations. VAEs extend
autoencoders by introducing a probabilistic framework that enables the generation of
new shapes by sampling from the latent space [25], thus supporting tasks such as shape
generation, interpolation, and morphing [26]. These generative models furthermore
allow a more flexible and scalable approach to shape modeling, capable of learning
from large, unstructured datasets even without the need for explicit shape priors
[27, 28].

The computational cost, in combination with the explainability of the models and final
results are the main challenges in these approaches. However, the technique holds
promise for the future. Firstly, deep learning methods can handle large-scale datasets,
learning directly from raw data and requiring minimal manual feature engineering or
pre-processing. Furthermore, they are highly flexible and can model complex,
non-linear shape variations, which are often present in real-world shapes, making them
robust in applications such as medical imaging or biological structure analysis.
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Chapter 9999999999999999999999999999999999999999999999999999999999999999999999999
Elementary concepts of machine

learning

This chapter contains a very general introduction to some basic concepts in machine
learning. It covers the dataset cleaning and preprocessing, feature engineering, data
flow trough the model during training versus testing, hyperparameter optimization to
avoid overfitting and various (cross-validation) evaluation strategies.

9.1 Introduction

Machine learning (ML) is a subfield of artificial intelligence (AI) that empowers
computers to learn from data without explicit (rule) programming (Figure 13.1). By
identifying patterns and relationships within datasets, ML algorithms can make
predictions or decisions on new, unseen data. This capability has revolutionized
various industries, from healthcare to finance.

There are two primary approaches to ML [2]:

• Supervised Learning: In supervised learning, the algorithm is trained on a labeled
dataset, where each data point is paired with a corresponding target value or
label. The algorithm learns to map input data to output labels by identifying
patterns and relationships between the features and the target values. Common
supervised learning algorithms include linear regression, logistic regression,
decision trees, random forests, and support vector machines (SVMs). For instance,
a linear regression model can be used to predict house prices based on features
like square footage, number of bedrooms, and location.  

• Unsupervised Learning: In unsupervised learning, the algorithm is trained on an
unlabeled dataset, where the data points do not have corresponding target values.
The algorithm learns to identify patterns and structures within the data itself,
without any external guidance. A commonly used family of unsupervised
learning algorithms is clustering. K-means clustering, for example, can be used to
group customers into segments based on their purchasing behavior.
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Figure 9.1: Schematic overview of how machine learning relates to artificial intelligence
(AI) and deep learning. Adapted from [1].

Deep Learning: a subset of ML techniques
As earlier explained in Section ”6.2.1.Deep learning”, deep learning is a subset of ML

(Figure 13.1) that utilizes neural networks with multiple layers to learn complex
patterns from data. These neural networks are inspired by the structure and function of
the human brain, with interconnected nodes that process information in a hierarchical
manner [3]. Deep learning models can learn from large amounts of data and extract
high-level features automatically, making them particularly effective for tasks such as
image recognition, natural language processing, and speech recognition. They are
typically well-suited to process vast amounts of information as input, both in terms of
number of features as in terms of number of observations or cases.

Some considerations to take into account when choosing between traditional ML or deep
learning techniques [2]:

• Deep learning models are often more powerful than traditional ML models,
especially when dealing with complex patterns such as biomedical images and
natural language processing.

• Deep learning models can automatically learn high-level features from data,
reducing the need for manual feature engineering.

• Deep learning models are computationally more expensive to train and require
generally larger amounts of data than traditional ML approaches.

• Traditional ML models are often more interpretable than deep learning models,
making it easier to understand how they make decisions. After all, the
automatically learned high-level features by deep learning models are not
required to a have physical meaning.

• Traditional ML models usually require less computing power, thereby imposing
less requirements on the hardware. Depending on the used hardware and dataset
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size, both model training and inference tend to be faster with traditional machine
learning approaches.

In summary, both traditional ML and deep learning have their respective strengths and
weaknesses, and the choice of approach depends on the specific task at hand and the
available resources (hardware and training dataset characteristics). While deep learning
is often hyped and considered more performant these days, traditional ML algorithms
remain valuable for many applications, given their easier to fulfill hardware
requirements, their explainability and their lower tendency to overfit to the training
dataset.

9.2 Dataset preprocessing

Raw data, in a healthcare context typically originating from the patient file, is often
noisy, incomplete, inconsistent, or may even contain irrelevant features for the problem
at hand. Thus, before it can be used to train a predictive model, dataset preprocessing is
an essential step to clean, transform and prepare the dataset to extract its full potential
[4].

While the specific steps involved in preprocessing may vary depending on the nature of
the data and the machine learning task, there are some commonly adopted practices [5].
These steps ensure the data’s quality and help in optimizing the model’s performance.

9.2.1 Manual data checks and the role of domain expertise

While automated preprocessing techniques can manage much of the data preparation,
manual verification and exploratory data analysis remains crucial [6]. This process
involves the quality assessment of the data, examining outliers, data distributions, and
potential anomalies that could adversely affect model training. For example, an
unusually high or low value in a physiological measurement (e.g., cartilage thickness)
could reflect a genuine clinical abnormality or be the result of a data entry error.
Domain expertise is extremely helpful in differentiating between significant outliers
and mistakes in the data. In surgery outcome prediction, clinicians play a vital role in
validating the data, ensuring that the variables incorporated into the model are
clinically relevant and that preprocessing maintains the integrity of the medical
information.

Visualizing the dataset through tools such as histograms, box plots, and correlation
matrices is a highly effective method for understanding the data. It helps to reveal
patterns, identify outliers, skewed distributions and highlight relationships between
features, such as redundancies. These valuable insights allow for more informed
decisions during feature engineering and serve as one of the foundations for designing
an efficient predictive model.
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9.2.2 Data cleaning

In addition to manual dataset review, automated data cleaning methods are in place.
Data cleaning is the process of identifying and rectifying (human) errors in the dataset [7].
It also includes handling missing values, next to correcting erroneous data, and dealing
with noisy data. Methods for dealing with missing values include:

• remove instances or features with missing data if their absence is significant and
likely to distort the analysis

• imputation techniques, such as filling missing values with the mean or median.
Also more advanced methods such as k-nearest neighbors can be applied.

For noisy or erroneous data, methods like smoothing, binning or outlier detection
algorithms can help ensure that the data does not adversely affect the learning process.
The specific decision to clean or discard noisy data is context-specific, depending on the
task at hand.

9.2.3 Feature scaling

Many machine learning algorithms, especially those based on distance metrics (e.g.,
k-nearest neighbors, support vector machines,...) are sensitive to the range and scale of
the features [8, 9]. If the features have different ranges, the model may prioritize certain
features, distorting the learned relationships. Therefore, scaling features to a standard
range (e.g., between 0 and 1, or standardizing to z-scores with zero mean and unit
variance) is essential to ensure that no feature dominates the others due to its scale.
Furthermore, this might also help in reaching convergence faster, even in less sensitive
algorithms such as logistic regression.

9.2.4 Feature encoding

Analoguous to conventional statistical methods, categorical features need to be
transformed into a numerical format to become a suitable input for machine learning
algorithms [10]. Two common techniques for encoding are:

• one-hot encoding: where each category is represented by a binary vector, ensuring
no ordinal relationships are assumed

• label encoding: where each category is assigned a unique integer. This method is
suitable when the categorical variable is ordinal, meaning that the values have an
inherent order.

9.2.5 Feature selection

Feature selection involves identifying the most relevant features for the learning task
[11]. Irrelevant or redundant features may increase the dimensionality of the dataset,
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leading to slower training times, increased model complexity, and overfitting [12].
Non-informative features contribute mostly to the noise in the dataset and should be
therefore be avoided from the input of machine learning algorithms. Dimensionality
reduction techniques, such as principal component analysis (PCA) or linear
discriminant analysis (LDA), can be employed to reduce the feature space while
preserving as much variance or discriminative power as possible. Alternatively,
statistical methods like correlation analysis or mutual information can help to identify
which features are redundant.

9.2.6 Data transformation and augmentation

In many cases, data needs to be transformed to ensure it fits the assumptions of the
learning algorithm [8, 5]. For instance, certain algorithms assume normally distributed
input, making log transformations or power transformations useful for non-Gaussian
features. Additionally, in scenarios where the dataset is imbalanced, such as in rare
event detection, data augmentation techniques like oversampling the minority class or
undersampling the majority class can be employed to balance the dataset. This step
ensures that the model learns equally from all classes, preventing bias toward more
frequent outcomes.

9.3 Data splits: train, validation and test sets

After the data preprocessing, it must be split into three subsets [2]:

• Training set: used to train the model, this is usually the largest portion of the data
and is what the model learns from. The model uses this subset to learn patterns
and relationships between input features and the target variable.

• Validation set: a smaller portion of the data, used during the model training phase
for tuning hyperparameters (see also 13.4 and preventing overfitting. The model
does not ”see” the validation set during training, but only used it to measure
performance after each training iteration for a specific set of hyperparameters,
defining e.g. the amount of regularization. Based on these performance results,
the optimal set of hyperparameters is chosen.

• Test set: the final subset, unseen by the model during training and validation (and
hyperparameter selection), is used to evaluate the model’s generalization
performance. This set simulates new, real-world, unseen data and gives an
unbiased estimate of how well the model will perform on new data.

It is of crucial importance these specific datasets remain strictly separated and are only
used for what they are intended to. When other/more data than the training data is
used to create the model (typical example is during preprocessing, to scale features to a
certain range based on the full dataset instead of only the training dataset) this is called
data leakage. It causes overly optimistic models, that might become completely invalid
in production environments on unseen data. It is therefore common practice to use
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strictly separated data pipelines during model training, intermediate validation (and
hyperparameter optimization) and final model evaluation.

9.4 Hyperparameter optimization

Hyperparameters are the settings that control the learning process but are not learned
by the model during training [13]. These include things like number of principal
components to retain, number of hidden layers in a neural network, and the type of
penalty terms in regularization. Some frequently used techniques to find the best
combination of hyperparameters include [14]:

• Grid Search: One approach to finding the best hyperparameters is to manually
define a range of possible values for each hyperparameter and search through all
combinations. This is known as grid search, which is exhaustive but can be
computationally expensive for large parameter spaces (Figure 13.2).

• Random Search: Random search selects random combinations of hyperparameters
within a defined space, often leading to better results in less time compared to grid
search. (Figure 13.2).

• Bayesian Optimization: Without going too much into detail, this is a more
advanced technique that uses probabilistic models to predict the performance of
hyperparameter combinations and iteratively updates its search based on
previous results.

Figure 9.2: Comparison between (a) the grid search and (b) the random search strategy
for sampling the hyperparameter landscape. While the random search allows less control
of the multiple hyperparameter combinations to probe, it is clear from the figure that it
is presumed to probe more distinct values for each hyperparameter individually. The
curves (yellow and green) indicate the model’s performance in function of the assessed
hyperparameter. Figure from [15].
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9.5 Model training

Model training is the heart of the machine learning process, where the algorithm learns
from data by adjusting its internal parameters. During this phase, the model discovers
patterns in the training subset and learns to make predictions based on input features.
A loss function is used to calculate the error between the model prediction and the
actual target for cases in the validation subset. Next, the optimization algorithm (e.g.
stochastic gradient descent, ADAM,...) seeks new internal parameters of the model,
based on the result of this loss function result. This is a step which is often referred to as
backpropagation. It ensures that each internal parameter of the model is updated
correctly, based on how much it contributes to the error at the output (and the chosen
learning rate).
During model training, the algorithm typically passes multiple times over the entire
training dataset, often referred to as epochs. The training process continues for several
epochs until the model converges, meaning that the loss function reaches a minimum
and further training does not significantly improve performance.

9.5.1 Avoiding overfitting

While training, the model can become too good at fitting the training data, capturing
noise and spurious patterns that do not generalize well to unseen data [16, 17]. This is
known as overfitting. Techniques to avoid overfitting during training include:

• Regularization: Adding a penalty to the loss function that discourages overly
complex models.

• Early Stopping: Monitoring the model’s performance on the validation set and
stopping training when performance starts to degrade, indicating overfitting.

• Dropout: A technique used in neural networks where randomly selected neurons
are ”dropped” during training to prevent co-adaptation and promote
generalization.

9.6 Model evaluation

Model evaluation is a critical step in the machine learning pipeline that assesses how well
a model performs on unseen data. It involves analyzing the model’s predictive accuracy,
robustness, and generalization ability. Effective evaluation helps ensure that the model
not only performs well on training data but also generalizes effectively to new, real-world
data. This process involves using a variety of metrics and strategies tailored to the specific
type of problem being addressed—whether classification, regression, or another task.
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9.6.1 Evaluation Metrics

The choice of evaluation metrics depends on the nature of the problem. Here’s a
comprehensive overview of metrics commonly used for classification tasks [18]:

1. Accuracy:

• Measures the proportion of correctly predicted instances out of the total
instances.

• Formula:
Accuracy =

Number of Correct Predictions
Total Number of Predictions

• Suitable for balanced datasets but can be misleading in cases of class
imbalance.

2. Precision and Recall:

• Precision: The proportion of true positive predictions out of all positive
predictions made by the model.

Precision =
True Positives

True Positives + False Positives

• Recall: The proportion of true positive predictions out of all actual positive
instances.

Recall = True Positives
True Positives + False Negatives

• Precision is crucial when the cost of false positives is high, while recall is
important when missing a positive instance has severe consequences.

3. F1-Score:

• The harmonic mean of precision and recall, providing a single metric that
balances both aspects.

• Formula:
F1-Score = 2 × Precision × Recall

Precision + Recall
• Useful when the classes are imbalanced and there is a need to balance

precision and recall.

4. ROC-AUC (Receiver Operating Characteristic - Area Under Curve):

• Measures the model’s ability to discriminate between positive and negative
classes across different thresholds.

• The ROC curve plots the true positive rate (recall) against the false positive
rate.

• AUC represents the area under the ROC curve and ranges from 0 to 1, with
higher values indicating better model performance.

5. Confusion Matrix:
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• A table that summarizes the performance of a classification model by
displaying the counts of true positives, true negatives, false positives, and
false negatives.

• It provides a comprehensive view of model performance and helps in
calculating various metrics like precision, recall, and F1-score.

9.6.2 Evaluation Strategies

Effective model evaluation involves more than just calculating metrics. Just as important
as the metrics themselves, is the subset of data where they are calculated [19, 20]. Various
strategies are available to ensure the model’s performance is reliable and generalizes well
[16]:

1. Train-Test Split:
The simplest evaluation strategy involves splitting the dataset into training and
testing subsets. The model is trained on the training set and evaluated on the test
set to assess its performance on unseen data.

2. Bootstrapping:
Involves repeatedly sampling from the dataset with replacement to estimate the
variability of the model’s performance. This technique is useful for understanding
the stability and reliability of the model. It is a method to compute confidence
intervals (CI) for a models performance metrics.

3. Cross-Validation:

• K-Fold Cross-Validation: The dataset is divided into : subsets (folds). The
model is trained : times, each time using : − 1 folds for training and the
remaining fold for testing. The average performance across all folds provides
a robust estimate of model performance.

• Leave-One-Out Cross-Validation (LOOCV): A special case of k-fold
cross-validation where : equals the number of instances in the dataset. Each
instance is used as a test set once, and the remaining instances are used for
training. It is typically used when the training dataset is small and collecting
additional data is expensive. The downside of this method is the
computational cost, as the model needs to be trained and evaluated on a lot
of distinct subsets.

• Stratified Cross-Validation:
An extension of k-fold cross-validation that ensures each fold has a similar
proportion of each class, particularly useful for imbalanced datasets.

4. Nested Cross-Validation:
In order to get a grasp on the model’s generalizability to unseen data when the total
dataset is rather small, nested cross-validation makes full use of all available data.
Nested k-fold cross-validation employs two loops: an outer loop consisting of : data
folds and an inner loop of 9 folds. The inner loop is then used for hyperparameter
optimization (see 13.4: Hyperparameter optimization), model training and model
selection, while the outer loop only serves to assess the generalizability of the final
model to unseen data (Figure 13.3).
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Figure 9.3: Schematic overview nested cross-validation with 4 outer and 4 inner folds:
the validation subsets (yellow, inner loop) are used for hyperparameter optimization and
model selection, while the actual test subsets (orange, outer loop) are only used for the
assessment of the final model’s generalizability to unseen data.

9.7 Conclusion

In machine learning, the key to building a successful model lies in properly splitting the
data, training the model while carefully tuning its hyperparameters, and finally,
evaluating its performance on unseen data. By using robust techniques for model
evaluation, it can be assured the final model generalizes well and delivers accurate
predictions in real-world scenarios.
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Part III

Clinical applications

Application of the technologies described in part II on clinical data.
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Statistical parametric mapping for

segmentation evaluation

A comparison experiment for the segmentation accuracy of knee MRI is described in
this chapter. Four state-of-the-art neural network architectures are trained with
identical hyperparameters (such as patch size, batch size, augmentation techniques,
optimizers,..). Next, these four trained neural networks were tested on a separate test
set of MRI scans, that had not been previously seen by the model. Standard
segmentation accuracy performance metrics are compared, in addition to a statistical
parametric mapping of the eventual segmentation errors on the mean 3D surface of the
anatomy of interest. This allows for the visualization of the largest segmentation errors
by anatomical location and helps reveal overall trends in the over- or underestimation of
certain anatomical structure volumes. Ultimately, leveraging expert knowledge relevant
to the final anticipated application of the 3D models, the most appropriate model for
the task can be selected.

This chapter is adopted from a manuscript submitted at NEJM AI:
Grammens, J., Danckaers, F., Van Haver, A., Verdonk, P., Sijbers, J. From
Dice-scores to anatomical relevance: a comparative study of four
state-of-the-art neural networks for automated knee MRI segmentation.

10.1 Introduction

Personalized medicine is reshaping the way pathologies are diagnosed and treated. It
aims to provide tailored care based on an individual’s unique genotype and phenotype
[1, 2]. The integration of advanced 3D imaging into standard clinical practice, such as
magnetic resonance imaging (MRI) and computed tomography (CT) provides detailed
images of the human body and the patient’s disease state. Not only the visual aspect of
a lesion (signal intensity), but also the three-dimensional size of it and its relation to the
surrounding anatomical structures can be assessed [3]. By reconstructing 3D models
from scan data, healthcare professionals can visualize complex relationships between
organs, tissues, and pathologies. This is particularly valuable in surgical planning,
where surgeons can virtually simulate procedures and identify potential challenges
before entering the operating room.
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These 3D reconstructions only recently began to find entrance into the routine clinical
care. Thanks to advancements in computer vision and artificial intelligence, the process
of anatomy and/or lesion detection in scan data could be automated [4]. Prior to
automation, the manual segmentation of scan data was a laborious and massively
time-consuming process that significantly impacted operational efficiency and
cost-effectiveness [5]. This task involved manually annotating specific regions of interest
within the scan data, often requiring meticulous attention to detail and expert
knowledge. The repetitive nature of this process, coupled with the potential for human
error, made it a substantial bottleneck in the workflow.

Computer vision algorithms, accelerated by the parallel processing capabilities of
Graphics Processing Units (GPUs), have facilitated substantial advancements in
automated segmentation techniques. The next step before massive clinical integration is
a thorough validation of these innovations. While the commonly employed metrics
(such as the Dice or Jacquard index) provide valuable insights, they may not fully
capture the nuances of medical applications [6]. Moreover, their use can often lead to
misleading or obscure results when misapplied or misinterpreted, undermining their
intended purpose.

One issue arises when accuracy metrics are averaged over multiple anatomical
structures. While averaging can provide a general sense of an algorithm’s performance,
it often masks significant variations across different cases. For instance, an algorithm
that performs well on common, easily segmented tissues might perform poorly on rare
or complex structures. When these results are averaged, the overall accuracy may
appear reasonable, even though the algorithm fails for critical regions of interest. This
can lead to overly optimistic assessments that do not reflect the true utility of the
segmentation method for the application at hand. The use of distinct and often
incomparable metrics further complicates the evaluation landscape [7]. Even when the
same metric is used, differences in calculation methods (such as micro versus macro
aggregation) can lead to different interpretations. Micro-averaging gives equal weight
to each pixel or voxel, which can skew results if the classes are imbalanced. In contrast,
macro-averaging treats each class or anatomy equally, which might underemphasize
performance on larger objects. When comparing results across studies or datasets, these
differences in metric calculation can lead to confusion and misinterpretation.
Furthermore, the relationship between the size of the region of interest (ROI) and the
overall image size can distort performance metrics. In cases where the ROI is small
relative to the entire image, a high accuracy score might simply reflect the algorithm’s
ability to correctly label the majority background class, while failing to capture the ROI
with sufficient detail. This issue is particularly problematic when the structures of
interest, such as small lesions or anatomical boundaries, occupy only a tiny fraction of
the image. Additionally, the distribution of latent variables in the training, validation,
and test sets plays a crucial role in the generalizability of segmentation models [8]. If
these sets do not share a similar distribution of these variables—such as patient
demographics, scanner types, or anatomical variations—the performance metrics may
not accurately reflect how the algorithm will perform in real-world settings. This is
particularly problematic when the test set is not representative of the diversity
encountered in clinical practice, leading to an overestimation of the algorithm’s
robustness. A final critical shortcoming of traditional segmentation metrics is their lack
of spatial context. Metrics such as Dice coefficient, Jaccard index, Average Surface
Deviation or Hausdorff distance treat all segmentation errors equally [7], regardless of
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their anatomical or spatial location. However, errors in critical areas (e.g., the boundary
of a tumor) may be far more consequential than errors in less significant regions. The
absence of spatial weighting in these metrics means that potentially critical errors can
go unnoticed, leading to an overestimation of the segmentation algorithm’s clinical
applicability.

In this chapter, we implemented a method to bridge this significant gap by including
the spatial context during evaluation of segmentation accuracy. More precisely,
segmentation errors will be assessed in the 3D model domain, where the final clinical
application of the segmentation usually lies. A statistical parametric mapping enables
the visualization of point-wise (or anatomical landmark-wise) descriptive statistics for
eventual 3D surface deviations from the ground truth. This way, the clinical importance
of segmentation inaccuracies can be assessed. For example, a systematic over- or
underestimation of knee cartilage thickness might be more critical in the clinical
decision process than some inaccuracies in the non weight-bearing regions.

10.2 Materials and methods

All model training and validation experiments were performed in customly adapted
Python scripts, within the nnUNet framework (v2) [9]. Thereby, following python
packages were used during the complete workflow: pytorch [10], MONAI [11], VTK
[12], pyvista[13] and nnUNet [9]. All model training and inference was performed on a
desktop workstation (AMD® Ryzen™ 9 7900x, 128 GB RAM and a NVIDIA® GeForce®
RTX 4090 GPU).

10.2.1 Dataset description

The dataset for model training and evaluation was the Osteoarthritis Initiative Database
[14]: a large open-source database containing longitudinal follow-up data related to
knee osteoarthritis (clinical and radiological) from 4970 individuals. Three large cohorts
were present: the progression, the incidence and the control group. The progression
cohort was already diagnosed with knee OA (both radiographic signs and frequent
symptoms, n=1389) at baseline, while the incidence group was at risk of developing
knee OA (frequent knee symptoms without radiographic signs, risk factors present,
n=3285) and the control cohort had neither radiographic nor symptomatic knee OA
(n=122) over the complete 8 years of follow-up. 507 manual segmentations containing
annotated femoral bone, femoral cartilage, tibial bone and tibial cartilage served as
ground truth for training and model performance evaluation [15].

10.2.2 Image preprocessing

This dataset was split into a training (N=253) and a test set (N=254), respecting an equal
distribution of distinct OA grades (Kellgren-Lawrence [16]) in both splits. All image
preprocessing was handled by the nnunetv2 framework [9]. Only one configuration
was trained and tested, which resampled the images into an isotropic resolution
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(0.7mm × 0.7mm × 0.7mm) matching the largest voxel dimension of the original scan
volume (mediolaterally). Downsampling the finest voxel dimensions was preferred to
upsampling the most coarse dimension, due to GPU memory restrictions. Additionally,
the patch size of 128 × 128 × 128 was chosen in order to fit the following requirements:
equal three-dimensional size and a batch size of 2 feasible for training on a GPU with
24GB VRAM. Patches were eventually cut from a resampled 160 × 199 × 199 scan
volume, with an overlap of 75% or tile step size of 32.

10.2.3 Model training

Four state-of-the-art network architectures, each with their advantages and challenges,
were selected to apply on the task of knee MRI segmentation: nnU-Net (with residual
encoding) [9], MedNeXt [17], Swin-UNetR [18] and SegMamba [19]. The first two are
purely convolutional networks, while the last two are hybrid approaches combining
some elements from convolutional and Transformer networks. Model training for all
four networks was performed in the nnU-Net framework, to ensure identical or at least
comparable (hyper)parameters during training. All models were trained in a 5-fold
cross-validation experiment on the training set, ensuring identical data splits for all four
network setups. For all the networks that were assessed, training was performed for
1000 epochs or until the learning curve showed clear signs of overfitting (trend to
further decreasing training loss in the context of a status quo or even increasing
validation loss). Stochastic gradient descent (momentum=0.99) was used as optimizer.
The learning rate was scheduled by a cosine annealing scheme with warm restarts as
shown in Figure 7.1. The used loss function during training was the combo loss with an
equal contribution of the Dice and cross entropy loss function. A preliminary best
model checkpoint was saved when the exponential moving average of Dice-scores
(previous value ×0.9 + new score ×0.1) for the foreground classes in the validation set
exceeded the previous best exponential moving average. Use of GPU memory by the
training script was collected from the GPU driver System Management Interface.
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Figure 10.1: Learning rate as scheduled during the experiments. A linear warmup was
applied, followed by a cosine annealing schedule with warm restarts. The learning rate
for every next warm restart was reduced to 80% of the previous warm restart.

10.2.4 Model inference

Gaussian weighted aggregation of overlapping patches (75%) was employed for
validation and inference purposes. An ensemble of the 5-fold cross-validation models
was finally used to perform inference on all MRI scans in the test set (N=254).

10.2.5 Conventional segmentation accuracy metrics

Following metrics were used to assess differences between the model predictions and
the manual ground truth segmentations: Dice similarity coefficient (DSC), average
surface deviation (ASD, calculated in the image domain) and Hausdorff distance [7].
Inference time and GPU memory usage, as reported by the GPU driver’s System
Management Interface, were recorded to give some insights into practical feasibility on
other hardware configurations.
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10.2.6 3D post-processing

As the anatomy of interest only consist of coherent regions, small isolated particles (as a
result of noise) were removed, depending on the assessment per anatomy of interest by
the nnUNet-framework on the training dataset. The obtained segmentation masks from
both ground truth and network inference were processed through a marching cubes
algorithm to create 3D surface models in the following configurations: femoral bone,
femoral bone with femoral cartilage, tibial bone and tibial bone with tibial cartilage. No
separate cartilage 3D models were created, as this would pose an additional challenge
to the surface registration step. Osteoarthritis involves the degeneration and wear of
cartilage and could therefore require a change in topology in the 3D meshes, depending
on the amount of full-thickness cartilage defects (or simpler described: holes in the
shell-like 3D cartilage models). In that case, surface registration is nearly impossible for
that region, as no corresponding anatomical landmarks could be placed where the
cartilage is completely gone. The resulting 3D surface models showed some staircase
effects, originating from the original voxel geometry. A Taubin volume-preserving
smoothing step was therefore performed to create smooth, more realistic 3D surfaces.
Finally, to ensure a homogenous mesh resolution and level of detail over the complete
3D surface, an isotropic remeshing step was performed to ensure all 3D models consist
of 40,000 vertices.

10.2.7 Surface registration

The 3D models originating from the ground truth segmentations were in a next step
registered [20]. That is, for each point on the 3D surface of a template case (typically
randomly chosen or mean shape) the anatomically corresponding point on each 3D
surface is searched for (see ”section 11.3. Surface registration” for a detailed description
of this process). The goal is to obtain a dense set of anatomically corresponding
pseudo-landmarks from all cases in the dataset, so that the segmentation errors can be
aggregated per anatomical location of interest. The segmentation errors are assessed by
distance maps between the 3D surface models of the registered ground truth models
and the post-processed output of the neural networks. These distance maps are then
aggregated point-wise (in anatomical correspondence) over the test set cases to
visualize the descriptive statistics, including the maximal absolute surface deviation
(robustness) and mean absolute value surface deviation (general trends in accuracy).

10.2.8 Descriptive statistics of segmentation errors

Mean and maximal absolute values of surface deviations from ground truth
segmentations were computed across the entire test set to assess eventual general
segmentation errors and method robustness. The mean absolute error was chosen for
its simplicity and robustness against outliers [21, 22] in comparison with the also
commonly used root mean square error (RMSE).
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10.3 Results

10.3.1 Conventional segmentation accuracy metrics

The Dice Similarity Coefficient (DSC), used to evaluate spatial overlap, indicated that
the nnUNet achieved the highest performance for the femoral bone, femoral cartilage,
and tibial bone. For the tibial cartilage, however, SegMamba demonstrated superior
DSC values. Metrics based on spatial distance, specifically the Average Surface Distance
(ASD) and Hausdorff Distance (HD), consistently identified nnUNet as the
best-performing method across all anatomical structures examined (femoral bone,
femoral cartilage, tibial bone, and tibial cartilage). A comprehensive summary of the
conventional numeric accuracy metrics from this experiment is provided in Table 7.1.

Table 10.1: Conventional segmentation metric results from this experiment: mean +/-
standard deviation (SD).

DSC ASD [mm] HD [mm]
Network FB FC TB TC FB FC TB TC FB FC TB TCarchitecture

nnUNet 0.986 0.905 0.988 0.856 0.229 0.221 0.201 0.245 2.74 4.85 2.54 4.47
MedNeXt 0.986 0.898 0.987 0.855 0.239 0.241 0.214 0.251 2.94 4.96 2.73 4.56
SwinUNetR 0.985 0.898 0.987 0.859 0.244 0.240 0.210 0.245 3.15 5.10 2.74 4.65
SegMamba 0.986 0.901 0.987 0.860 0.242 0.233 0.207 0.246 3.21 5.03 2.70 4.64

DSC: Dice similarity coefficient, ASD: average surface deviation (calculated in voxel domain), HD: Hausdorff
distance, FB: femoral bone, FC: femoral cartilage, TB: tibial bone, TC: tibial cartilage

10.3.2 3D surface mapping

Femoral bone

All network architectures exhibited the highest mean absolute error in the anterior
region above the femoral trochlea (highlighted in red in Figure 7.2). Additionally, the
posteromedial region of the femoral notch also showed a higher tendency for surface
deviations from the ground truth.
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Figure 10.2: Distance map between manual and neural network segmentations of 3D
femoral bone surfaces, visualized as the pointwise mean absolute error plotted on the
mean 3D mesh of femoral bone. The columns from left to right contain the results from
the nnUNet, MedNeXt, SwinUNetR and Segmamba neural networks. The rows from top
to bottom contain anterior, posterior, distal, lateral and medial views of the femoral bone.

Figure 7.3 highlights the maximal absolute value errors. Unlike nnUNet and MedNeXt,
SwinUNetR and SegMamba exhibit additional red regions at the anteromedial trochlear
border, a common osteophyte location in patellofemoral osteoarthritis. Moreover, notable
maximal segmentation errors were observed posterior to the lateral femoral epicondyle
and around the medial epicondyle. The distal lateral condyle showed varying levels of
maximal absolute segmentation error across methods, with SegMamba exhibiting the
highest error across all test cases.
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Figure 10.3: Distance map between manual and neural network segmentations of 3D
femoral bone surfaces, visualized as the pointwise maximal absolute error plotted on the
mean 3D mesh of femoral bone. The columns from left to right contain the results from
the nnUNet, MedNeXt, SwinUNetR and Segmamba neural networks. The rows from top
to bottom contain anterior, posterior, distal, lateral and medial views of the femoral bone.

Femoral bone and cartilage

Unlike the conventional segmentation accuracy metrics described in subsection 7.3.1:
Conventional segmentation accuracy metrics, 3D segmentation error mapping was
performed on the combined 3D model femoral bone and cartilage, and not just the
cartilage. As bone surface segmentation errors were discussed previously, this analysis
focuses on the cartilage surface. The mean absolute segmentation error revealed that
cartilage border regions, especially in the anterior (patellofemoral) compartment, were
more susceptible to segmentation errors. nnUNet exhibited slightly better performance
at the anterior part of the distal facet in the lateral condyle, the posterior medial
condyle, and anteromedial border of the medial condyle (Figure 7.4).
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Figure 10.4: Distance map between manual and neural network segmentations of 3D
femoral bone and cartilage surfaces, visualized as the pointwise mean absolute error
plotted on the mean 3D mesh of femoral bone and cartilage. The columns from left to
right contain the results from the nnUNet, MedNeXt, SwinUNetR and Segmamba neural
networks. The rows from top to bottom contain anterior, posterior, distal, lateral and
medial views of the femoral bone and cartilage.

The maximal absolute segmentation error revealed no significant large errors within the
cartilage region. Only a minor red spot, representing a larger maximal segmentation
error, was observed at the posterior lateral condyle in the SwinUNetR results (Figure
7.5).



10.3. RESULTS 131

Figure 10.5: Distance map between manual and neural network segmentations of 3D
femoral bone and cartilage surfaces, visualized as the pointwise maximal absolute error
plotted on the mean 3D mesh of femoral bone and cartilage. The columns from left to
right contain the results from the nnUNet, MedNeXt, SwinUNetR and Segmamba neural
networks. The rows from top to bottom contain anterior, posterior, distal, lateral and
medial views of the femoral bone and cartilage.

Tibial bone

For the tibial bone, the tuberositas tibiae exhibited the highest mean absolute
segmentation error. Slightly elevated errors were observed at the tibial spines and the
anterior region. No remarkable differences were found between the four methods for
these anatomical regions (Figure 7.6).
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Figure 10.6: Distance map between manual and neural network segmentations of 3D
tibial bone surfaces, visualized as the pointwise mean absolute error plotted on the mean
3D mesh of tibial bone. The columns from left to right contain the results from the
nnUNet, MedNeXt, SwinUNetR and Segmamba neural networks. The rows from top
to bottom contain anterior, posterior, distal, lateral and medial views of the tibial bone.

The maximal absolute value error was again high at the region of the tuberositas tibiae
for all four network architectures (Figure 7.7. In addition, a red spot is observed anterior
of the tibial spines, at the approximate insertion region of the anterior cruciate
ligaments, this is the least pronounced for the output of the MedNeXt network. The
SegMamba network is the only method with a remarkable maximal absolute value error
at the medial side of the tibial plateau. A red spot is also observed at the posterolateral
ridge of the tibial plateau for all networks, in different grades: it was maximal in the
nnUNet and the MedNeXt and least in the SwinUNetR network output. All four
network architectures struggled with accuracy for at least one case at the tibial
tuberosity, demonstrating consistently high maximal absolute value errors. A common
error pattern emerged, with a red spot appearing anterior to the tibial spines, likely
corresponding to the anterior cruciate ligament insertion. This error was most
pronounced for nnUNet and MedNeXt, while MedNeXt showed the least remarkable
error in this region. The SegMamba network was the only model to exhibit a notable
maximal absolute value error at the medial side of the tibial plateau. Additionally, a red
spot was observed at the posterolateral tibial plateau ridge for all networks. While this
error was present across all models, its severity varied: nnUNet and MedNeXt
displayed the most prominent errors in this region (error magnitude and region size),
while SwinUNetR demonstrated the least.
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Figure 10.7: Distance map between manual and neural network segmentations of 3D
tibial bone surfaces, visualized as the pointwise maximal absolute error plotted on the
mean 3D mesh of tibial bone. The columns from left to right contain the results from the
nnUNet, MedNeXt, SwinUNetR and Segmamba neural networks. The rows from top to
bottom contain anterior, posterior, distal, lateral and medial views of the tibial bone.

Tibial bone and cartilage

As bone surface results were discussed previously, this analysis focuses solely on the
cartilage surface, visualized by the top view (middle row in Figure 7.8). Absolute value
errors were generally higher at cartilage borders and central tibiofemoral contact points.
Additionally, the tibial spines exhibited a tendency towards higher absolute value
segmentation errors.
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Figure 10.8: Distance map between manual and neural network segmentations of 3D
tibial bone and cartilage surfaces, visualized as the pointwise mean absolute error plotted
on the mean 3D mesh of tibial bone and cartilage. The columns from left to right contain
the results from the nnUNet, MedNeXt, SwinUNetR and Segmamba neural networks.
The rows from top to bottom contain anterior, posterior, distal, lateral and medial views
of the tibial bone and cartilage.

The maximal absolute segmentation errors, where slightly higher for the cartilage layer
(lighter blue) than for the tibial bone at the tibial plateau (7.3.2). Maximal absolute value
segmentation errors were in the same range for all four networks, with a tendency to be
smallest for the output of the nnUNet network (Figure 7.9).
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Figure 10.9: Distance map between manual and neural network segmentations of 3D
tibial bone and cartilage surfaces, visualized as the pointwise maximal absolute error
plotted on the mean 3D mesh of tibial bone and cartilage. The columns from left to
right contain the results from the nnUNet, MedNeXt, SwinUNetR and Segmamba neural
networks. The rows from top to bottom contain anterior, posterior, distal, lateral and
medial views of the tibial bone and cartilage.

10.3.3 Hardware requirements and inference time

The amount of GPU memory used during training and inference is summarized in Table
7.2, as well as the time needed to run inference on 1 resampled scan volume. For the same
patch and batch sizes, the nnUNet architecture requires the least amount of hardware
resources and computational time for inference.

Table 10.2: Conventional segmentation metrics for image segmentation.

Network GPU memory usage GPU memory usage Inference
architecture during training [MiB] during inference [MiB] time [s]
nnUNet 9 304 2 774 3.91
MedNeXt 16 378 4 898 9.10
SwinUNetR 19 198 5 978 8.58
SegMamba 23 026 3 720 10.73

GPU: graphics processing unit, MiB: mebibyte (equals 220 = 1048576 bytes), s: seconds
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10.4 Discussion

In this study, we evaluated the performance of four neural network
architectures—nnUNet, MedNeXt, SwinUNetR, and SegMamba—on the task of 3D
MRI knee scan segmentation. Our findings indicate only subtle differences across these
models, both in terms of conventional accuracy metrics as in terms of 3D mapped mean
and maximal absolute errors. This uniformity in performance indicates that, for
applications where this subtle variation in segmentation accuracy is acceptable, other
factors such as ease of use, customization, and easy to fulfill hardware requirements
should be prioritized when choosing a model. Our results notably favor nnUNet (with
residual encodings) in this regard, primarily due to its user-friendly configuration
pipeline, fast inference time and low GPU memory use during training and inference.
The basic U-Net architecture integrates seamlessly within the nnUNet framework, and
this combination has been proven advantageous due to its automated configuration
system, which reduces the burden of manual hyperparameter tuning, a common
challenge in deep learning implementations for medical imaging [9, 23].

Of note, the achieved segmentation accuracy was obtained without extensive
post-processing techniques. In the original experiment on the same dataset by
Ambellan et al. [15], similar segmentation accuracies where achieved by less optimized
convolutional neural networks, although through a multi-step approach including a
final postprocessing step involving regularization by a statistical shape model. They
obtained a DSC score of 0.986 for the FB, 0.899 for the FC, 0.986 for the TB and 0.856 for
the TC. A more recent study on the same dataset, employing a Swin-UNetR for
segmentation of femoral and tibial bone, reported a DSC score of 0.986 for the FB and
0.987 for the TB [24], which is comparable to our results. Our results also align with the
study of Isensee et al [8], comparing multiple state-of-the-art model architectures for
multiple segmentation tasks. None of the proposed novel model architectures resulted
in a remarkably improvement upon the nn-UNet baseline. They suggested a potential
validation bias in the articles introducing these new neural network architectures for
computer vision. A reliable and generalizable validation experiment requires several
factors, including an optimally configured (hyperparameters) baseline model, a
sufficiently large and diverse test dataset, and comparable train/validate/test splits
(both in terms of quantity and quality) in the comparative experiments. Unfortunately,
some of these crucial elements are sometimes overlooked, potentially resulting in overly
optimistic validation results [8].

Beyond demonstrating that none of the chosen neural network architectures are clearly
superior, this study also sheds light on anatomical regions most susceptible to
segmentation errors. Although the literature on manual knee MRI segmentation
accuracy is scarce [25, 26], the regions with higher observed segmentation errors align
with our experience (Figures 7.10, 7.11 and 7.12). Manual segmentation is prone to
intra- and interobserver errors, limiting its reproducibility to a certain extent. Despite
this limitation, manual segmentations are still considered ground truth. Our study
suggests that, within the constraints of a 24 GB GPU memory budget, it may be
challenging to significantly improve upon the achieved segmentation accuracies. As
accuracy gains by novel network architecture innovations become more and more
difficult to achieve, an attention shift towards quality control of images and ground
truth segmentations [27] is desirable. Intuitively, an upper limit for network
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performance is posed by both the size (and included variation) and quality of the
training dataset.

Figure 10.10: Screenshot from the 3D Slicer software package with the crosshair at
the anterior femoral bone shaft. The low tissue contrast between cortical bone and
surrounding soft tissue makes the manual delineation of the anterodistal aspect of the
femoral shaft challenging.
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Figure 10.11: Screenshot from the 3D Slicer software package with the crosshair at the
anteromedial border of the trochlea. The low tissue contrast between cortical bone and
surrounding soft tissue renders the manual delineation of the anteromedial border of the
femoral trochlea challenging.

Figure 10.12: Screenshot from the 3D Slicer software package with the crosshair at
the tuberositas tibiae. Remark the low tissue contrast between cortical bone and the
surrounding soft tissue, leading to uncertainty to delineate manually the tibial cortical
bone of the tuberositas tibiae. Both the insertion of the quadriceps tendon at the
tuberositas tibiae and the cortical bone have a low MRI signal in these 3D DESS images.
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While our training and test datasets were balanced with respect to the
Kellgren-Lawrence OA grades in train and test set, a potential limitation of our study is
the lack of quantitative osteophyte size and location description, which could introduce
potential latent distribution discrepancies between training and validation sets.
Additionally, to achieve isotropic input scan resolution while minimizing GPU memory
usage, images were downsampled during preprocessing, which could potentially
reduce resolution through aliasing effects. However, as this downsampling was limited
to the sagittal plane, reducing resolution from approximately 0.35 × 0.35 mm to 0.7 × 0.7
mm, it is unlikely that this change meaningfully impacted 3D model detail in the
context of our specific task. The smallest anatomical structures analyzed, such as
femoral and tibial cartilage layers, naturally exhibit time- and load-dependent thickness
variations [28], independent of measurement technique. Thus, a 3D model accuracy of
0.7 mm was deemed sufficient for most future clinical applications. It is also noteworthy
that these findings were derived from specific 3D DESS MRI scans, yielding
near-isotropic, high signal to noise ratio (SNR) images with a clear contrast between the
intra-articular synovial fluid and the cartilage [29]. However, these 3D MRI protocols
are not yet widely implemented in routine clinical knee imaging, but only begin to enter
clinical practice [30]. Finally, regarding GPU memory usage, the variation in GPU
requirements across the four network architectures was substantial. For example, the
least resource-intensive network, nnUNet, did not fully utilize the available GPU
memory. To isolate the effects of network architecture, all other parameters were held
constant. Consequently, neither larger patch sizes nor batch sizes were used during
training, potentially limiting maximal model performance.

The effectiveness of a segmentation algorithm is fundamentally influenced by two key
components: the algorithm itself and the dataset of images with corresponding ground
truth segmentations. While extensive research has focused on developing and refining
algorithms, it is crucial not to overlook the quality and volume of the data used. Recent
studies have demonstrated the potential to predict segmentation accuracy in real-time,
even in the absence of ground truth data, offering a possible method for evaluating image
quality and determining whether the proposed algorithm can effectively segment the
image [31, 32]. Interestingly, the emphasis on large training datasets may be overstated
[33], while greater attention to improving the accuracy of ground truth segmentations
could be an interesting future research direction [34, 35, 36].

10.5 Conclusion

In conclusion, our study underscores that the specific choice of neural network
architecture from a set of state-of-the-art networks (nnUNet, MedNeXt, SwinUNetR,
and SegMamba) has limited impact on segmentation accuracy in MRI knee scans .
Instead, practical considerations such as deployment and ease of use, favoring
architectures like nnUNet, should guide model selection in clinical and translational
research settings. Additionally, our findings align with other studies, suggesting a
critical role for the training dataset quality. Future improvements in segmentation
accuracy may therefore be more readily achieved by focusing on both image and label
quality than by experimenting with increasingly complex architectures. At last, the
adage ’garbage in, garbage out’ continues to hold true in the field of machine learning...
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Automated anatomical

landmark-based applications

In this chapter, two potential applications of automated landmarking are illustrated: the
search for a reliable measurement of femoral torsion and the estimation of meniscus
geometry from the bony anatomy. Registered surfaces (see Section 11.3. Surface
registration) or a dense set of anatomically corresponding landmarks are fundamental
prerequisites for both applications.

11.1 Application: Femoral anteversion measurement

This work was previously published in a more elaborated version
as: Van Fraeyenhove, B., Verhaegen, J. C. F., Grammens, J., Mestach, G.,
Audenaert, E., Van Haver, A., Verdonk, P. (2023). The quest for optimal
femoral torsion angle measurements: a comparative advanced 3D study
defining the femoral neck axis. Journal of experimental orthopaedics, 10(1),
141. https://doi.org/10.1186/s40634-023-00679-9

11.1.1 Introduction

The femoral torsion is measured by the angle between between the femoral neck axis
(FNA, proximal femur) and the posterior condyle line (PCL, distal femur) [1]. It is a key
factor in hip and knee biomechanics, influencing conditions like hip dysplasia,
patellofemoral instability, and anterior cruciate ligament injury [2, 3, 4]. Accurate
measurement is essential for both diagnostics and surgical planning [5, 6, 7, 8].
Traditional 2D methods, such as those described by Murphy [9] are widely used but can
be limited by the complex 3D structure of the femoral neck, leading to inconsistent
results [10, 11]. Recent advancements in 3D imaging techniques are promising to offer
improved accuracy. These new methods, however, vary in their approach to defining
the femoral neck axis (FNA) [10, 11], particularly when accounting for abnormalities
such as CAM deformities, which affect 34% of males and 20% of females [12, 13]. This
study aims to compare five 3D femoral torsion measurement methods against the
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standard 2D technique, assess the impact of CAM deformities, and raise awareness of
differences in measurement techniques .

11.1.2 Materials and methods

Study Design

This study used 3D models from CT scans of 102 dry femur specimens, previously
utilized in research by Audenaert et al. [14]. Femoral torsion was measured using one
2D CT method (Murphy’s method) and five different 3D methods. The femurs were
previously [14] categorized into CAM (31.37%) and non-CAM groups (68.63%) based
on a previously validated fully automated 3D detection method.

Measurement Techniques

Femoral torsion was calculated as the angle between the femoral neck axis (FNA) and
the posterior condyle line (PCL) of the distal femur. Murphy’s method (method 0) used
two 2D transverse CT slices. The 3D methods varied in their strategies for defining the
femoral neck center:

• Method 1: Elliptical least-square fitting on the femoral neck midsection [14].

• Method 2: Calculation of the center of mass for the entire femoral neck. (Figure
10.1(a))

• Method 3: Center of mass for the most cylindrical part of the femoral neck. (Figure
10.1(b))

• Method 4: Intersection of the femoral neck with a sphere enlarged by 25%. (Figure
10.2(a))

• Method 5: Intersection with a sphere enlarged by 40%.(Figure 10.2(b))
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Figure 11.1: Methods 2 and 3 to assess femoral neck using 3D technology.
(a) Method 2: Centre of mass of the complete femoral neck surface.
(b) Method 3: Centre of mass of the most cylindrical part of the femoral neck surface.

Figure 11.2: Methods 4 and 5 to assess femoral neck using 3D technology. A best
fit sphere of the femoral head was drawn. Next, a second sphere was generated by
increasing the radius with 25% ((a) method 4) and 40% (textbf(b) method 5).

While method 4 and 5 were performed rather manually in the Mimics software package
(Materialise NV, Leuven, Belgium) for this study, both methods are perfect candidates
for extensive automation based on automated landmark detection and anatomically
corresponding landmarks.

Statistical Analysis

Results were presented as mean ± standard deviation, with parametric testing conducted
after verifying normal distribution. ANOVA with Bonferroni post hoc testing was used
to evaluate differences between methods, and Pearson correlation analysis assessed the
strength of associations.
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11.1.3 Results

The study compared femoral torsion measurements from one 2D-CT method [9] and five
different 3D methods. Measurement statistics are summarized in the box-and-whisker
diagrams in Figure 10.3. Key findings include:

• Higher values for 3D methods: The 2D-CT method [9] measured femoral torsion
at 8.12° ± 7.30°. In contrast, the 3D methods showed higher mean values, ranging
from 8.21° to 13.21°.

• Differences among 3D methods: Method 2 had the highest torsion (13.21° ± 8.60°),
and method 3 had the lowest (8.21° ± 7.64°). Statistically significant differences were
found between most methods (p < 0.001), except between methods 0 and 3, and 1
and 5.

• CAM deformity effects: Hips with a CAM deformity showed a trend of higher
torsion measurements, but the differences were not statistically significant.
Method 4 might underestimate torsion in the presence of CAM, making method 5
a more reliable option.

Figure 11.3: Box-and-whisker diagram: Femoral torsion (°), measured with one 2D
method (Method 0) and 5 different 3D methods in the NO CAM and CAM group.
Independent-samples t-test showed no statistically significant difference between non-
CAM and CAM group (P>0.05).

11.1.4 Discussion

This study demonstrates that variations in femoral torsion values are more influenced
by the measurement technique than by patient characteristics. The traditional 2D
measurement (Murphy’s method) differs significantly from most 3D methods,
suggesting that 2D techniques may not be as reliable. Femoral torsion tends to be
underestimated with 2D methods, especially compared to 3D approaches, which offer
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higher accuracy and consistency by eliminating the projection variability inherent in 2D
methods.

Despite a general trend toward higher torsion values in femurs with CAM deformities,
this difference was not statistically significant. The study emphasizes that clinicians
should always interpret expected torsion values relative to the specific measurement
technique used and the presence or absence of CAM deformities. Given the significant
variation between 2D and 3D measurements (up to 5° on average with method 2), the
choice of technique can have critical implications in surgical decision-making,
particularly in femoral derotational osteotomy.

Further research involving larger, asymptomatic populations is desirable to validate these
findings and optimize the reliability of measurement techniques in clinical practice. Last
but not least, investigation of the interaction with other morphological hip parameters,
including the pelvic morphology could be of great importance in better understanding
the mechanisms behind the observed variability in the femoral torsion.

In conclusion, among the 3D methods, methods 4 and 5 stand out as the most reliable,
though method 4 may underestimate torsion in cases with a CAM deformity due to the
placement of the intersection point on the femoral neck. Method 5, which is less affected
by the presence of CAM deformities, is thus recommended for clinical use in assessing
femoral torsion.
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11.2 Application: Meniscal Anatomy Estimation

This work is summarized here for illustrative purposes, with a focus
on the meniscal anatomy. It was previously published in a more
elaborate version as: Van Oevelen, A., Duquesne, K., Peiffer, M.,
Grammens, J., Burssens, A., Chevalier, A., Steenackers, G., Victor, J.,
Audenaert, E. (2023). Personalized statistical modeling of soft tissue
structures in the knee. Frontiers in bioengineering and biotechnology, 11,
1055860. https://doi.org/10.3389/fbioe.2023.10558609

11.2.1 Introduction

Osteoarthritis (OA) affects nearly 25% of the global population and is one of the most
rapidly growing socio-economic burdens [15, 16]. Knee OA accounts for 83% of this
burden [17]. Despite its prevalence, understanding the interplay between
biomechanical and systemic factors in OA progression remains limited [18]. Current
methods for accurately measuring in vivo knee joint forces and analyzing soft tissue
function are insufficient, hindering research. Computational musculoskeletal modeling
offers a non-invasive way to estimate joint mechanics and anatomical variance, but it
heavily depends on accurate anatomical data, often obtained through labor-intensive
manual segmentation of CT or MRI scans [19, 20]. Manual methods are
time-consuming, prone to errors, and face limitations in accessibility and cost,
particularly with MRI [21, 22].

A promising alternative is combining musculoskeletal modeling with statistical shape
analysis to address these challenges. Audenaert et al. developed a validated pipeline
for semi-automated lower limb segmentation from CT data [23, 24]. Van Houcke et al.
advanced this by predicting cartilage geometry using MRI datasets, improving
efficiency and reducing manual segmentation errors [25]. These methods have been
applied successfully to the ankle joint [26], but comparable advances, without the need
for extensive image segmentation, are still limited for the knee.

This study aims to develop a scalable computational model for patient-specific knee
joint soft tissue anatomy, avoiding manual segmentation. The study’s objectives include
predicting the cartilage layers and static meniscal geometry, including the validation of
this algorithm.

11.2.2 Materials and methods

Data Collection

Two imaging datasets were used: a CT dataset for bone modeling and an MRI dataset for
soft tissue features. The CT dataset comprised 311 bilateral lower limb scans (n=622) from
181 males and 130 females, aged 67.8 ± 10.8 and 69 ± 13.3 years, respectively. The MRI
dataset involved 53 healthy Caucasian males (age 17–25) who underwent high-resolution
scans of the hip, knee, and ankle using a Siemens 3 Tesla MRI.
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MRI Segmentation and Feature Identification

MRI data were imported into Mimics software, and osseous and cartilage anatomy was
segmented from 53 cases. Osseous structures were modeled using a semi-automated
segmentation based on Statistical Shape Models (SSMs), achieving high accuracy for
femur and tibia segmentation [24]. Anatomical landmarks for meniscal anatomy
(multiple meniscal root attachment points) were identified in 10 cases.

Anatomical correspondence-based landmark transfer

The previously annotated anatomical landmarks were averaged to reduce the meniscal
root attachment sites to a single point. Non-rigid surface registration (see also Section
11.3. Surface registration) then enabled the transfer of these points towards the SSM,
taking advantage of the established anatomical correspondences. Finally, these
anatomical landmarks can now be inferred for any new patient case by fitting the SSM.

Meniscal anatomy prediction

The menisci were modeled following their general geometric characteristics: starting
from their tibial attachments and having a triangular radial cross-section (with height
and width derived from a polynomial fitting in function of the relative meniscus
length), thereby circumferentially wrapping around the space between the tibial
plateau and the femoral condyles (Fig. 10.4).

Figure 11.4: (A) A tube with the same diameter as the estimated meniscal height (external
rim) was wrapped in a circumferential way from the anterior to the posterior horn. A
varying distance (d) is employed for every cross-section. (B) Triangles are formed by
interconnecting the three points per radial cross-section. (C) Following correction for
local penetration, the edges of the meniscus adapt to fit in between cartilage layers.
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Validation

Validation was conducted through leave-one-out experiments, comparing model
inferred and manually segmented anatomy using Root Mean Square Error (RMSE),
Average Surface Distance (ASD), and Hausdorff Distance (HD). Validation covered
meniscal root attachment positions, and meniscal anatomy predictions (Fig. 10.5) for 10
previously unseen cases by the model.

Figure 11.5: Axial view on the tibial plateau (yellow). The manually segmented medial
and lateral menisci (grey) serve as ground truth to compare the superimposed inferred
medial and lateral menisci (pink).

11.2.3 Results

Validation of meniscal root attachment identification

Following RMSE were observed: for the medial meniscus anterior root 3.51 mm, for the
medial meniscus posterior root 2.71 mm, for the lateral meniscus anterior root 3.75 mm
and for the lateral meniscus posterior root 2.82 mm. Errors were in the range between 0
(lateral meniscus posterior root) and 5.29 mm (lateral meniscus anterior root).

Validation of meniscal geometry prediction

Accuracy was comparable for medial and lateral meniscus anatomy prediction, with a
median RMSE of 2.93 mm (medial, range 1.85 - 4.66 mm) and 2.04 mm (lateral, range
1.88 - 3.29 mm). An average point-dependent error between 0 and 5 mm was observed
(Figure 10.6). The largest errors were observed at the inner rim of the lateral meniscus
and the anterior root of the medial meniscus (red on the color map in Figure 10.6).
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Figure 11.6: Average point-dependent error between inferred and manually segmented
menisci, color mapped on the mean lateral (left) and mean medial (right) meniscus.

11.2.4 Discussion

In this study, meniscal anatomy was modeled as mobile and elastic, adapting to the
variable shapes of the femoral condyles and tibial positions. The prediction of meniscal
geometry was based on the underlying osseous structure. The validation study
(compared with manual segmentation) reported reasonable root mean square errors
(RMSE) for inter- and intra-observer reliability during manual segmentation, aligning
with findings from prior studies [27, 28, 29].

A significant challenge identified in the prediction of meniscal anatomy was the
variation in the anterior root morphology of the medial meniscus. Specifically, one case
displayed an extreme anterior insertion, contributing to a larger prediction error. This
observed anatomical variation was consistent with earlier studies [30], with a reported
prevalence of approximately 7% of the population. To improve future models,
probabilistic approaches could be incorporated to account for these distinct types of
anterior medial meniscal roots.

The overall errors in meniscal geometry prediction were comparable to those observed
in previous studies [27, 28], with the largest errors noted for the anterior root of the
medial meniscus and the inner rim of the lateral meniscus. The modeling method used
polynomial functions to describe meniscal geometry, enabling to vary the height and
width over the course of the meniscus, with local adjustments made to prevent
penetration into adjacent cartilage and bone structures.

In conclusion, this study validates a method to accurately estimate the meniscal anatomy
automatically, without the need for time-consuming manual segmentation. The model
showed a level of accuracy, comparable to manual soft tissue segmentation. It offered a
solid foundation for an extension towards dynamic meniscus modeling in weight-bearing
conditions and over the full range of motion of the knee [31].
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Small medial femoral condyle: a pilot

study

This pilot study originates from an empirical observation in clinics, which could not be
explained by the current scientific evidence. Multiple risk factors for early onset and
rapid progression of knee OA are already known (see 2.4.1: Epidemiology and
pathophysiology). Yet, for a subpopulation of medial compartment degeneration
patients at a young age, none of the known risk factors were present. On cross-sectional
views of the MRI scan however, a rather narrow medial femoral condyle was observed.
In this pilot study, the morphology of distal femur and proximal tibia was compared
between a group of suspected small medial femoral condyle morphotype patients and a
control group (imaging for minor acute trauma). Both a landmark-based method (see 9:
Automated Landmark Annotation for Morphometric Analysis of Distal Femur and
Proximal Tibia) and statistical parametric mapping (see chapter7: Statistical parametric
mapping for segmentation evaluation) were applied to characterize the small medial
femoral condyle morphotype and assess the link with early medial compartment
degeneration.

This work was previously published as: Grammens, J., Van Haver, A.,
Danckaers, F., Booth, B., Sijbers, J., Verdonk, P. (2021). Small medial
femoral condyle morphotype is associated with medial compartment
degeneration and distinct morphological characteristics: a comparative pilot
study. Knee Surgery, Sports Traumatology, Arthroscopy, 29(6),
1777–1789. https://doi.org/10.1007/s00167-020-06218-8

12.1 Introduction

The relationship between specific knee morphotypes and pathology has already been
investigated for several morphological variations [1, 2, 3, 4, 5, 6, 7]. Implications posed
by these distinct morphotypes are of great clinical importance since they may contribute
in prevention, lead to a better treatment choice (optimised for each specific patient) and
even to new personalised therapies. Based on several morphological studies, it can be
concluded that the standard treatment may not meet the needs of certain groups of
patients. Furthermore, the huge variability of the coronal alignment, reported in both

155



156 CHAPTER 12. SMALL MEDIAL FEMORAL CONDYLE: A PILOT STUDY

osteoarthritic and non-osteoarthritic knees suggests a more individualized treatment
approach in restoring the functionality of the knee [8, 9, 10]. In addition to the coronal
joint line alignment phenotype, the morphotype of the knee joint (shape of the distal
femur and proximal tibia) is a complementary concept to describe and investigate
anatomical variations in relation to early degeneration of the knee joint; smaller joint
contact surfaces may increase the contact stress and might lead to overload.

Though increased shape-related stresses are difficult to investigate in living patients,
specific knee morphotypes are already known to be related to certain pathologies.
Trochlear dysplasia is characterized by a reduced contact surface area in the
patellofemoral joint and is associated with patellar instability and early patellofemoral
osteoarthritis [11, 12, 13]. Lateral femoral condylar hypoplasia is associated with a
valgus alignment and lateral knee osteoarthritis [6]. In addition to the already
documented associations between shape and pathology, a specific knee morphotype,
characterized by a smaller medial femoral condyle (SMC), may also result in an
increased risk for degenerative changes in the medial compartment of the knee. This
morphotype has not been described before and this study might be the first step in
exploring the link between bone morphology and early degeneration in the medial
compartment. The aim of this study is to identify knee joint shape differences between
SMC knees and a control group and to assess the presence of medial compartment
degeneration in both groups. The study hypothesis is that the distal femur and
proximal tibia bone shapes of the SMC group differ from those of a control group and
that SMC knees demonstrate higher incidence of medial compartment degeneration. To
test this hypothesis two complementary approaches were applied; a landmark-based
shape analysis to evaluate a set of pre-defined parameters and a global shape analysis to
evaluate local differences. By describing the small medial femoral condyle as a new
knee morphotype, this concept can then play an important clinical role in the treatment
and the understanding of the multifactorial process of early-onset osteoarthritis (OA) in
post-meniscectomised knees.

12.2 Materials and methods

As this is a retrospective study, IRB approval was obtained from the local ethical
committee (AZ Monica OG106, study ID number 413) and all persons gave their
informed consent prior to their inclusion in the study. Similar to previous
three-dimensional (3D) morphometric studies, a validated landmark-based 3D analysis
was performed on the distal femur and proximal tibia to assess the knee joint geometry,
including the cartilage [14, 15]. A set of predefined landmarks was manually identified
and used to scale the knees isotropically to match the standard size. Additionally, a set
of reference planes was also constructed based on these landmarks. This method allows
quantification of a predefined set of parameters, which may reveal morphometric
differences between control group and SMC knees which have (to our knowledge) not
been reported before. Furthermore, a more innovative global shape analysis was
performed on the complete bone shape surfaces using statistical parametric mapping.
This method is not limited to a number of predefined validated landmarks but includes
all points of the bone surfaces and may reveal differences that were not captured in the
discrete landmark-based analysis. A flowchart of the study design is presented in
Figure 8.1.
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Figure 12.1: Methodology flowchart. A database of medical imaging was constructed
for two groups: the small medial condyle group and a control group. 3D models from
tibia and femur were constructed from the medical imaging data and post-processed in
a landmark-based analysis and a global shape analysis.
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12.2.1 Study population

The SMC group included 16 patients (8 females and 8 males; mean age 39 +/- 14 years)
characterized by a small medial compartment. These patients were selected from a
database which was built between 2015 and 2019 by the senior author, who included
patients with distinct knee joint anatomy. The selection of the 16 SMC patients was
primarily based on the presence of a small medial femoral condyle, observed on at least
one slice of the MRI. Secondly, patients with a short bone stock (caused by limited
region of interest) on the MRI and patients who underwent knee surgery prior to the
MRI were excluded from this study. As a control group, 16 patients without anatomic
knee abnormalities were selected (8 females and 8 males; mean age 30 +/- 9 years). The
control group consulted the orthopaedic surgeon for a minor acute trauma and served
already as control group in several other studies [14, 15, 16]. Imaging was performed by
means of a CT arthrography. After selecting the patients based on their morphology
and the quality of the MRI, the medical history and medical images of the SMC and the
control group were inspected in detail to assess medial compartment degeneration.

12.2.2 Generation and isotropic scaling of 3D computer models

The medical imaging (MRI or CT) was performed in supine position with 0° of knee
flexion and the toes pointing straight up. The images were loaded in a 3D image
processing software system (Mimics 22.0, Materialise, Haasrode, Belgium) to create 3D
models of the knee bones including the cartilage. Differences in knee size may
significantly affect the metric measurements. To avoid this, the 3D models were
isotropically resized before the analyses to exclude size differences. A generalized
Procrustes transformation of the surface models was applied, using a custom developed
code in MATLAB (Matlab 9.6.0, R2019a, Mathworks, Natick, MA), to minimize the pose
and size variance between the knees while preserving the shape and underlying
proportions of the knees [17]. The applied Procrustes transformation consists of a
combination of translation, rotation and isotropic (same amount in the three
dimensions) scaling. The standard size was determined by calculating the average
femoral shape of the control group. Twelve validated anatomical landmarks, covering
the extremes of the distal femur in the anteroposterior (AP), mediolateral (ML) and
proximodistal (PD) direction, were defined to calculate a rescaling factor for each knee.
This factor was considered as a measure of the femoral size and was also used to
isotropically resize the respective tibiae.

12.2.3 Definition of the landmarks

Anatomical landmarks on the femur and tibia were defined in Mimics (Fig. 8.1). Both the
3D models and medical images were used to ensure a precise location of the landmarks.
The landmarks are described in Appendix A and are identical to those described in our
previous studies [14, 15] Therefore, the ICC of 0.99 and mean error of 1.0 +/- 1.5 mm
previously reported for this landmarking technique are also applicable to the landmark
positions in this study. In addition to the twelve anatomical landmarks which were used
to rescale the bone models, eleven other landmarks on the femur and nine landmarks on
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the tibia were defined to create the reference planes and to measure the morphometric
characteristics [14, 15].

12.2.4 Definition of the reference planes

The reference planes are predefined by the authors in Mimics in the ML, AP and PD
direction. An overview table can be found in the “Appendix” of this article. By
identifying the landmarks, the reference planes are automatically fitted on the geometry
of the distal femur and proximal tibia. All planes but four are identical to the ones
previously described in our other studies [14, 15]. The newly introduced planes are
related to the ML width of the medial and lateral condyle.

12.2.5 Measurements

Based on this set of landmarks and reference planes, 19 morphometric measurements of
the 3D models were evaluated as described in the “Appendix” and as summarized in the
next paragraph. For the medial and lateral condyle of the femur, the overall AP size and
the AP size of the posterior parts were measured separately. In the ML direction, the total
width of the femur, the width of the medial condyle, the lateral condyle, and the notch
were measured. The tibia measurements were performed in a similar way. The AP size
of the total tibial plateau, the medial and lateral tibial plateau were measured. In the ML
direction, the width of the complete tibial plateau, the medial and lateral tibial plateaus
separately and the intercondylar eminence width were measured. Finally, the medial
and lateral tibial spine height was measured in the PD direction. The exact definition of
the 19 used sizes and distances can be found in the “Appendix” of this article and is the
same as described previously [14, 15].

12.2.6 Statistical analysis

All data analyses for the landmark based analysis and medial compartment
degeneration data were performed using IBM SPSS Statistics for Windows (Version
24.0, IBM Corp., Armonk, NY). To evaluate the presence of medial compartment
degeneration in the SMC versus the control group, a X2 goodness-of-fit test was
performed. The rescaling factor and the morphometric measurements of the control
group and the SMC group are reported as median and range. A Mann–Whitney U Test
was used to compare the morphological measurements in the SMC group with the data
in the control group. To facilitate interpretation of the parameters, the mean results of
the SMC group are also converted to a percentage with respect to the mean results of
the control group. For all statistical tests, a p-value of less than 0.05 was defined as
statistically significant. Sample size calculation for the Mann-Whitney-U test was
performed in G*Power (version 3.1.9.7, Universität Kiel, Germany) [18] based on an
effect size of 1.0, a significance level alpha of 0.05 and power of 0.85. The resulting
minimal sample size for equally sized groups was 16 subjects per group.
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12.2.7 Global shape analysis

The global shape analysis aims at finding local shape differences, based on the location
of each surface point on the femur and tibia. This analysis consisted of three steps: 1)
Find the corresponding points (for every surface, the coordinates that correspond with
the same anatomical location are determined) between the individual 3D bone models
and a reference 3D bone model of femur and tibia. This process is called surface
registration and was performed by implementing the iterative process described by
Danckaers et al [19] (see also Section 11.3. Surface registration). This process was
performed twice: first with an arbitrary chosen reference bone shape, the second time
with the mean bone shape (constructed by calculating the mean coordinates for all
corresponding points) as a reference. 2) Each registered femur and tibia were separately
mirrored (left knee shapes were mirrored to match right knee shapes), rotated, shifted
and isotropically rescaled to the reference femur or tibia shape, based on the
correspondences of all surface points that was found in step 1. This is done by a
generalized Procrustes analysis, which has the effect of minimizing the distance
between all corresponding surface points. 3) Compare each individual femur and tibia
3D model to the reference bone shape by calculating the pointwise distances between
them. The mean bone shape of the control group served as the reference bone shape.
The perpendicular distances from the reference shape were compared between the
groups and shown in a color map, plotted on the reference shape (Fig. 8.3 and 8.4,
upper part). If there are no local shape differences, the distances will be equal to zero
(indicated in green on the color map). If the SMC bone models are on average smaller at
that specific location, distances will be negative (indicated in blue on the color map).
Conversely, if the SMC bone model was on average larger, the distances will be positive
(and indicated in red on the color map). Statistical analysis of these distances was
performed to detect differences between the SMC group and the control group. A
permutation student t-test was done with correction for multiple comparisons (False
Discovery Rate, FDR) to avoid type I errors due to the multiple tests [20]. The statistical
significance level was defined at a q-value of less than 0.05. The significant FDR
q-values were then mapped in red on the reference bone shape (Fig. 8.3 and 8.4, lower
part).

12.3 Results

12.3.1 Medial compartment degeneration

All SMC patients and none of the control group patients showed medial compartment
degeneration. The association between knee type and the presence of medial
compartment degeneration was significant, "2 = 32 (p < 0.001). Hence, small medial
condyle knees are more likely to develop medial compartment degeneration.
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12.3.2 Landmark-based analysis

The knees in the control group (N = 16) were rescaled with a median rescaling factor of
0.98 (min. 0.86; max 1.08), and the knees in the SMC group (N = 16) with a median
rescaling factor of 0.94 (min. 0.80; max 1.06). This difference was statistically significant
(p = 0.039). The difference between the smallest (0.80) and largest (1.08) rescaling factor
in the total study population (N = 32) was 35%. The morphometric measurements for
both femur and tibia are summarized in Table 8.1 and Fig. 8.2. The main findings were
mediolaterally a smaller medial femoral condyle, a wider lateral femoral condyle, and a
wider total distal femur on a smaller tibial plateau. Additionally, both the medial and
lateral femoral condyle where anteroposteriorly smaller, as well as the medial tibial
plateau and total tibial plateau.

Figure 12.2: (a) and (c): Graph of the mean SMC group ML measurements in relation
to the mean control group measurements (dashed line) for femur (a) and tibia (c).
(b) and (d): Visualization the mean differences for femur (b) and tibia (d) on an axial
cross-section of a random subject MRI.
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Table 12.1: Summary of the morphometric measurements for the femur and the tibia
n.s.: not statistical significant with a P value higher than .05.

Femur morphometric parameters
[mm]

Median
control
(range)

Median SMC
(range)

p-value

AP depth medial condyle 64 (60–67) 62 (58–65) 0.001
AP depth medial posterior condyle 28 (23–30) 27 (20–33) n.s.
AP depth lateral condyle 66 (63–69) 65 (61–68) 0.023
AP depth lateral posterior condyle 25 (23–29) 24 (20–29) n.s.
ML width distal femur 78 (76–82) 82 (77–85) 0.003
ML width medial condyle 24 (21–29) 21 (18–23) <0.001
ML width lateral condyle 25 (23–29) 28 (21–35) 0.023
ML width intercondylar notch 21 (16–26) 21 (15–27) n.s.
Tibia morphometric parameters
[mm]

Median
control
(range)

Median SMC
(range)

p-value

AP depth tibial plateau 52 (49–58) 50 (44–53) 0.001
AP depth medial tibial plateau 46 (43–49) 43 (41–49) 0.026
AP position medial tibial spine 20 (15–26) 22 (18–26) n.s.
AP depth lateral tibial plateau 36 (31–43) 39 (34–42) n.s.
AP position lateral tibial spine 18 (15–23) 18 (14–24) n.s.
ML width tibial plateau 76 (71–80) 74 (70–78) 0.026
ML width medial tibial plateau 31 (28–34) 29 (27–36) 0.007
ML width lateral tibial plateau 33 (29–37) 31 (27–40) n.s.
ML width intercondylar eminence 11 (9–15) 12 (8–16) n.s.
PD height medial tibial spine 8 (6–10) 9 (7–13) 0.019
PD height lateral tibial spine 7 (4–9) 7 (4–9) n.s.
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12.3.3 Global shape analysis

The results of the global shape analysis of the femur are color-plotted in Fig. 8.3 and all
observed trends confirm the results from the landmark-based analysis. The most
important significant difference is situated at the inner side of the medial condyle,
where the SMC femur is on average 1.1 mm smaller (average FDR q= 0.05) with respect
to the mean control femur. The SMC knee showed no statistically significant larger or
protruding regions. For the tibia, no significant results were detected (Fig. 8.4). The
extreme case shown in fig. 8.5, shows that the combined difference of inner (1.7 mm
smaller) and outer side (2.3 mm smaller) of the medial condyle can go up to 4.0 mm
(-17% of the average medial condyle width in the control group). The tibia from that
same case (Fig. 8.6) showed a 2.1 mm higher lateral spine (+26% of average medial
spine height in control group) and 3.5 mm higher medial spine (+50% of average lateral
spine height in control group).

12.4 Discussion

The most important finding of this study is the evidence of distinct morphological
differences between the control group knee and the small medial condyle knee, which
was demonstrated by applying a validated semi-automated landmark-based analysis
and a complementary global shape analysis. In the medial compartment, there was a
smaller femoral condyle AP and ML, complemented with a smaller tibial plateau ML.
However, morphological differences were not limited to the medial compartment, but
were also observed at the lateral side. Another remarkable finding was that the overall
distal femur was on average wider, while the overall tibial plateau was smaller in the
SMC group, which could be an indication for a size and/or shape mismatch between
the femoral and tibial geometry. The subjects included in the SMC group were selected
by a senior orthopaedic surgeon, based on observations on the MRI images. The
patients were not selected based on their medical records, yet it was observed that all
patients consulted the surgeon for complaints related to the medial compartment
degenerative tearing. As a result of the "2-test, the SMC knees in this study have a
higher risk to develop OA. Though this study did not investigate a causal relation
between shape and pathology, nor the incidence of this shape variation, this study
might be the first step in exploring the link between bone morphology and early
degeneration in the medial compartment. The selection of the SMC cases was
performed based on a two-dimensional (2D) MRI slices, hence dependent on the knee
position during image acquisition. In fact, this dependence indicates the need for more
advanced 3D like those used in this paper. Although the experience based selection was
performed on 2D images, the 3D shape analysis results showed the expected shape
difference with respect to the ML width of the medial femoral condyle. As this is an
exploratory study, the findings can be used in the future to select knee shapes based on
a 3D reality rather than a subjective interpretation of the 2D reconstructions. The
underlying mechanism behind the relation between specific morphotypes and
pathology has already been investigated for other morphological variations, such as
trochlear dysplasia, small notch width and tibia slope. Disturbed biomechanics
[1, 2, 3, 4] induce supraphysiological peak stresses and strains [7], which promote early
degeneration [21]. A better understanding of the biomechanical implications posed by
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Figure 12.3: (Upper part) color map of the mean femoral shape differences between the
SMC and control group. The difference between the mean distances is plotted on the
reference femur 3D model (right knee). Blue regions indicate that the SMC femur is on
average smaller at that specific location. Conversely, if the SMC femur was on average
larger (e.g. caused by a bump or protrusion) the region is colored red. (Lower part) FDR
q-values for a permutation t-test on femoral shape differences. Distances to the reference
femur are compared between the two groups by means of a permutation t-test with 1000
permutations and corrected for false discoveries. Only q-values < 0.05 were plotted in
red on the reference femur (right knee). (a) distal view; (b) anterior view; (c) posterior
view
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Figure 12.4: (Upper part) Color map of the mean tibial shape differences between the
SMC and control group. The difference between the mean distances is plotted on
the reference tibia 3D model. Blue regions indicate that the SMC tibia is on average
smaller at that specific location. Conversely, if the SMC tibia was on average larger
(e.g. caused by a bump or protrusion) the region is colored red. (Lower part) FDR q-
values for a permutation t-test on tibial shape differences. Distances to the reference
tibia are compared between the two groups by means of a permutation t-test with 1000
permutations and corrected for false discoveries. Only q-values < 0.05 were plotted in
red on the reference tibia. (a) proximal view; (b) anterior view; (c) posterior view
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Figure 12.5: (Upper part) Color map of the differences between a right SMC femur and
the mean control femur. The distances are plotted on the reference femur 3D model. Blue
regions indicate that the SMC femur is smaller at that specific location. Conversely, if the
SMC femur was larger (e.g. caused by a bump or protrusion) the region is colored red.
(Lower part) Example of an SMC femur case. Visualisation of the case used to calculate
the distances from the reference femur in the upper part of this image. (a) proximal view;
(b) anterior view; (c) posterior view

Figure 12.6: (Upper part) Color map of the differences between a right SMC tibia and
the mean control tibia. The distances are plotted on the reference tibia 3D model. Blue
regions indicate that the SMC tibia is smaller at that specific location. Conversely, if the
SMC tibia was larger (e.g. caused by a bump or protrusion) the region is colored red.
(Lower part) Example of an SMC tibia case. Visualisation of the case used to calculate
the distances from the reference tibia in the upper part of this image. (a) proximal view;
(b) anterior view; (c) posterior view
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these distinct morphotypes may help to find the requirements of an optimal therapy
strategy for each subgroup of patients. Morphotype is an intrinsic non-modifiable
factor in a multifactorial pathogenesis. Especially in high-risk morphotypes modifiable
load-related risk factors such as body mass and certain activities could be addressed
first in a joint-preserving treatment approach of these pathologies. If the total load
reduction proves to be unsatisfactory, local supraphysiological contact stress can be
decreased further by unloader braces or a corrective osteotomy in a next stage [22].
Also, in end-stage OA patients with a distinctive morphotype, a morphotype-specific
total knee prosthesis might be required. For example, knees with trochlear dysplasia
(TD) are often more narrow in the ML direction [14, 15]. Therefore, a narrow variant of
a total knee prosthesis may be needed to avoid ML overhang. The current study, which
describes the small medial femoral condyle knee as a distinct morphotype, might be
related to meniscal pathology. Even when treated according to the gold standards, a
meniscal lesion is often associated with the early development of knee OA [23, 24].
Whereas the causal mechanism in the pathogenesis of traumatic tears is clear,
degenerative tearing is a multifactorial process. First, genetic predisposition can alter
the quality of the meniscal tissue and cartilage [25]. Second, overload due to obesity
[26, 27], a high activity level [28] or malalignment [29, 30] (varus or valgus knees) are
identified risk factors for early-onset and progression of the degenerative process. In
addition to these risk factors, the small medial femoral condyle knee might also be a risk
factor leading to overload because of smaller contact areas at the medial compartment.
There is evidence that an arthroscopic partial meniscectomy for meniscus lesions might
induce adverse biomechanical effects in a yet indefinite subgroup of patients [31, 32].
Based on personal clinical observation of the senior author (PV), the outcome of a
medial partial meniscectomy in an SMC knee is characterized by a higher incidence of
rapid progressive degeneration, subchondral insufficiency fractures and massive OA in
the medial compartment. The decrease in tibiofemoral contact area [32] caused by the
removal of meniscus tissue in an SMC knee is most likely associated with a higher
increase of contact stress than it would be in a control group knee. This elevated contact
stress is then a driving factor for further degeneration of the affected compartment
[21, 33, 34]. Further biomechanical and clinical observational studies are necessary to
elucidate this mechanism and confirm this hypothesis. Although the knee morphotype
may play an important role in the multifactorial degenerative process, it does not
explain the complete etiopathogenesis of knee degeneration. In this study two
complementary methodologies were applied to evaluate a set of predefined parameters
and to evaluate the global shape of the knee models. Where the landmark-based
analysis is successful in quantifying several clinically relevant parameters and is easy to
interpret, the global shape analysis may detect shape differences which were not
captured by the first method. Additionally, it allows for a high level of automation,
which makes it a suitable approach to analyse a large number of shapes. For the femur,
the results from the global shape analysis were confirmed by the already validated
landmark-based 3D analysis. The results of the tibia analysis showed the same trends .
However, in contrast with the landmark analysis, the global shape analysis failed to find
significantly different regions. This can be explained by the following mechanism,
inherent to the two methodologies. The landmark-based analysis looks for differences
in certain pre-defined dimensions of the bone. For example: the ML width of the distal
femur is the distance between the medial and lateral femoral epicondyle. If the medial
epicondyle in the SMC group tends to be located more medially and the lateral
epicondyle more laterally, this results in an additive effect for the ML width of the distal
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femur in the landmark-based analysis, but not so in the global shape analysis. The main
limitations of this study are the small sample size in both groups and the obvious case
selection bias, which are intrinsically linked to the very nature of an exploratory study.
Most studies of this exploratory design have a limited number of patients to avoid
spending too much time in case of a null effect, as the segmentation and analysis
process is time-consuming. As a consequence of the small sample size, the control
group might not be completely representative for a normal knee anatomy on
population level. As already shown for the coronal alignment phenotype concept, there
can be large variations on population level, even in healthy knees [35, 10]. It is highly
unlikely that all physiologic shape variance of the knee joint was captured in this small
control group. Therefore, future research should not only focus on how the pathology
deviates from the normal, but also in acquiring larger datasets that can more accurately
characterize normal knee morphology. Furthermore, the MRI datasets didn’t capture
the full lower limb. The addition of the coronal alignment phenotype concept (variation
in applied load direction) to the knee morphotype concept (variation in shape and
hence also surface area) would be highly interesting to estimate the contact stress (by
definition: perpendicular projection of the force divided by the surface area)
distribution in both compartments. A clear definition of ‘the small medial femoral
condyle knee’ is not yet fully established, as for the moment there is no evidence of a
threshold in terms of a knee shape at which the resulting joint contact stress is not
tolerated well anymore. However, this study demonstrated that the SMC knee can be
identified on a clinical MRI. The main value of this article for daily clinical practice lies
in creating awareness for this morphotype as a risk and prognostic factor in medial
compartment degeneration. Early identification of knees at risk might help to start
conservative treatment at an earlier stage by addressing modifiable risk factors such as
body mass and/or certain activities.

12.5 Conclusion

A new morphotype of the knee demonstrated medial compartment degeneration and
was differentiated from a healthy control group based on the following characteristics:
a smaller medial femoral condyle and medial tibial plateau; a wider lateral femoral
condyle and a wider distal femur on a smaller tibial plateau. This pilot study suggests a
role for the SMC knee morphotype in the multifactorial process of medial compartment
degeneration.
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Meniscus Size Differs Between Patient
and Donor Populations for Meniscus

Allograft Transplantation

Meniscal allograft transplantation is one of the options to treat symptomatic meniscus
deficient knees with good treatment response rates [1], even as a salvage procedure [2].
This chapter describes a study comparing the patient population (dysfunctional
meniscus) with the donor population (functional meniscus) in meniscus allograft
transplantation. It highlights one of the limitations for a widespread clinical
implementation: the matching of donor menisci from a restricted supply to patients
(acceptors). More importantly, there is a discrepancy in terms of meniscus size between
the meniscus deficient patients (smaller medial menisci) and the general donor
population (larger medial menisci). This finding is in line with the conclusion of the
previous chapter, where the small medial femoral condyle was linked to early onset
medial knee degeneration (including degenerative medial menisci) in knees with a
neutral alignment (no varus or valgus).

This work was previously published as: Tabbaa, S. M., Pace, J. L.,
Frank, R. M., Grammens, J., Verdonk, P. (2023). Meniscus Size Differs
Between Patient and Donor Populations for Meniscus Allograft
Transplantation. Arthroscopy, sports medicine, and rehabilitation, 5(3),
e569–e576. https://doi.org/10.1016/j.asmr.2023.02.009

13.1 Introduction

Meniscus allograft transplantation is one of the few treatments available and effective
for treating patients with the post-meniscectomy syndrome [3, 4]. Adequate size
matching of the donor meniscus allograft to the patient’s native meniscus is a critical
step that can impact a successful surgery and subsequent patient outcomes [5].
Meniscus-sizing methods that rely on imaging or anthropometric data [6] exist, with
the Pollard method via radiograph or magnetic resonance imaging (MRI) being the gold
standard [3]. Investigations that correlate anthropometric data, such as height, weight,
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and sex to meniscal measurements, also have been conducted and may serve as an
alternative lower-cost approach for preoperative meniscus size matching [7, 8]. Despite
these methods to accurately match meniscus donors to patients, and while as-yet
unpublished, there has been an observed phenomenon among meniscus transplant
surgeons and tissue banks that certain meniscus sizes are more difficult to procure. At
first glance, one would posit that with a large enough of a sample size (donors and
patients) that there would be roughly equal distribution of meniscus sizes available.
Thus, if there were difficulties in matching certain meniscus sizes, this suggests that
these 2 groups are not equal with regards to meniscus size. Size discrepancies between
patient and donor populations could explain the shorter supply and concordant longer
wait times for patients with specific meniscus sizes and a surplus of donor menisci at
other points along the spectrum. As a result, surgeons may also end up accepting a
less-than-ideal meniscus transplant that could compromise patient outcomes [5]. A
greater understanding of potential differences between meniscus transplant donor and
patient populations is necessary if this issue is to be properly addressed.

The purposes of this study are to determine the extent of variability in meniscus size
and anthropometric data between donors (supply) and patients (demand), to evaluate
potential factors that may contribute to size discrepancies, and to determine whether
the discrepancies lead to longer patient wait times. We hypothesized that variability in
meniscus size would exist between donors (supply) and patients (demand) and that these
discrepancies lead to longer patient wait times.

13.2 Materials and methods

13.2.1 Data collection and analysis

This study was considered exempt from institutional review board approval due to the
deidentified data that were analyzed. Meniscus length and width measurements as
well as anthropomorphic data were collected and extracted from a large U.S. tissue
bank database for both donor and patient pools from 2016 to 2019. Anthropomorphic
data included sex, height, weight, and anatomic side. Body mass index (BMI) was
calculated from height and weight data. Samples were included if meniscus size and
anthropometric data were recorded. Donor and patient samples were removed from
the dataset and analysis if the data were incomplete or incorrectly entered into the
system. Donor and patient data were further segmented by medial and lateral meniscus
to analyze whether distributions varied between patient and donors for lateral and
medial menisci.

With regards to donor menisci and per-company protocol, the donor meniscus size
(length and width) was measured directly using calipers in situ at the time of
processing before harvesting. Meniscus length was defined as the anterior to posterior
distance from the anterior most aspect of the anterior horn to the posterior most aspect
of the posterior horn. Meniscus width was defined as the distance between the
meniscus root and the medial or lateral most aspect of the body of the meniscus.

Patient meniscus size, height, weight, sex, and anatomic side were extracted and collected
from meniscus requests, which are standard aspects of the forms filled out by physician
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offices when a meniscus transplant request is made. Patient meniscus measurements
were determined using radiographs, MRI, or computed tomography scans and methods
established by Pollard et al[9]. In summary, the width was calculated by measuring the
distance from the peak of the medial or lateral tibial eminence to the medial or lateral
tibial epiphyseal margin for the medial and lateral meniscus, respectively. The length
was calculated using the lateral view by measuring 70% and 80% of the sagittal length of
the proximal tibia that references the tibial tuberosity anteriorly and the posterior aspect
of the lateral tibia plateau posteriorly for the lateral and medial meniscus, respectively.

The time to match a patient to a donor meniscus graft was extracted and calculated from
the tissue bank company’s database. The time to match was determined by the date of
the initial patient request and the date of the first allocation or date a donor was matched
to the request.

13.2.2 Distribution of meniscus size and area

To determine whether the meniscus sizes varied between patient and donor groups,
distribution plots were generated and analyzed. The meniscus size data for both length
and width measurements were categorized and segmented by ±0.2 cm, the
industry-allowable tolerance for matching meniscus sizes. The average length, width,
and area were measured and compared between donor and patient populations. The
meniscus area was estimated using the recorded length and width measurements for
patient and donors and using the following equation:

Estimated meniscus area (2<2) = � ∗ width
2 ∗

length
2 (13.1)

13.2.3 Body Mass to Meniscus Index (BMMI) and Height Over
Meniscus Size Index (HMI)

To determine factors that may influence meniscus size and area discrepancies between
donors and patients, anthropometric data including height, weight, BMI, sex, and
laterality were compared between patient and donor populations. The BMI was
calculated using the recorded weight and height in kilograms and meters, respectively.
To understand the relative meniscus size, the ratio of the weight to estimated meniscus
area (kg/cm2), or BMMI, was measured and compared between patient and donor
pools. Size discrepancies were further investigated by measuring the height to
meniscus size index (cm/cm2). The ratio of HMI was measured and compared between
donor and patient pools.

13.2.4 Time to Matching Evaluation

To determine the effect of patient meniscus size on the time to match a donor meniscus,
the average time to match was calculated for each segmented meniscus size range (±0.2
cm). Sizes were segmented by increments of 0.2 cm. The time to match a donor
meniscus to male and female patients were measured separately for both medial and
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lateral menisci. The time to match for each segmented size range was measured and
analyzed to identify if specific size ranges take longer to match. In addition, the effect of
laterality on time to match was measured and compared between medial and lateral
meniscus groups.

13.2.5 Statistical analysis

An a priori power analysis (power of 0.90 and 
 of 0.05) was performed to determine the
sample size needed to detect a statistically significant difference in meniscus size between
donor and patient populations. Using the observed means and standard deviations of
pilot data samples, we determined that 40 samples per group was sufficient to distinguish
differences in meniscus size between patient and donor populations.

All analyses were performed using JMP Pro 12 (SAS Institute, Cary, NC). Data are
presented as mean ± standard deviation with P < .05 considered significant. All
collected variables were analyzed using descriptive statistics including means, standard
deviations, ranges, and frequencies. Meniscus size ranges were categorized in intervals
of 0.2 cm and compared between donor and patient populations using "2 tests. The
average meniscus size (length, width, area) and relative weight and height to meniscus
size was calculated and compared between donor and patient populations using
independent 2-sample C-tests. Anthropometric data and laterality were compared
between donor and patient populations using Fisher exact tests for categorial variables
and 2-sample C-tests for continuous variables.

The effect of patient meniscus size on time to match a donor meniscus was determined
using one-way analysis of variance for continuous variables and Tukey post hoc tests. In
addition, the effect of patient sex, laterality, and medial versus lateral on time to match
was determined using a 2-sample C-test, comparing the mean time to match between
various factors (i.e., male vs female and left vs right).

13.3 Results

The database query identified 3,218 donor and 704 patient menisci. The final dataset
analyzed after the removal of samples with incomplete or incorrect data included 3,189
donor menisci and 576 patient menisci. Overall differences in sex, laterality, and
meniscus type were observed between donor and patient pools (Table 3.1). The
frequency of male and female sex varied significantly between donor and patient pools
(P < .001). The donor pool consisted of a significantly greater male frequency (72.1%)
compared with the patient pool, which consisted of 51.0% male patients. The frequency
of left and right meniscus and meniscus type (e.g., medial vs lateral) also significantly
differed between donor and patient pools. The donor pool consisted of a greater
available meniscus frequency from the left knee and the patient pool showed a higher
frequency of demand for a meniscus from the right knee.
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Table 13.1: Overall Differences Between Donor and Patient Populations.

Medial Meniscus Donor Patient P Value
Male, n(%) 2 296 (72.1%) 294 (51.0%) <.001*Female, n(%) 889 (27.9%) 282 (49.0%)
Left, n(%) 1 677 (52.7%) 271 (47.1%) .013*Right, n(%) 1 508 (47.4%) 305 (53.0%)
Lateral, n(%) 1 775 (55.7%) 285 (49.5%) .006*Medial, n(%) 1 410 (44.3%) 291 (50.5%)

*Defines statistical significant with a P value lower than .05.

13.3.1 Medial meniscus (donor versus patient populations)

The distribution of medial meniscus size (Fig 3.1) was significantly different between
patient and donor pools (P < .05). The patient population showed a significantly greater
frequency/need of smaller medial meniscus width (P < .001) and length (P < .001)
measurements compared with the donor population availability. In addition, the
average patient meniscus length (Table 2) was significantly smaller (ca. 0.3 cm
difference) in both the male (P < .001) and female patient population (P < .001)
compared with the donor population, which further supports the distribution profile
observed with a greater frequency of smaller patient meniscus sizes requested
compared with donor size availability.

Sex-specific data for the medial meniscus between donor and patient populations are
presented in Table 3.2. The most consistent and significant discrepancies seen were in
meniscus length (P < .001), area (P < . 001), and HMI (P < .001) for both male and female
populations. Observed differences varied by sex. The male patient population BMMI was
significantly greater compared with the donor BMMI (P < .001). The female population
showed no difference in BMI or BMMI between donor and patient pools. The frequency
of anatomic side (left vs right) was significantly different between the male patient and
donor groups (P = .012) with an increase in frequency of the need for a right meniscus for
the patient group and a reduction in right meniscus availability from the donor group.
No difference was observed in the female population (P = .435).

Figure 13.1: Distribution plots showing the mismatch between supply (donors) and
demand (patients) for both male and female patients, with the smaller sized medial
menisci being in greater demand and undersupplied. Plots show the frequency of donor
(blue) and patient (gray) medial meniscus (A) width and (B) length.
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Table 13.2: Medial Meniscus Comparison of Meniscus Size, Anthropometric Factors, and
Anatomic Side.

Medial meniscus Donor Patient P Value

Female medial meniscus

Meniscus width, cm, mean ± SD 3.04 ± 0.3 2.96 ± 0.2 .002*
Meniscus length, cm, mean ± SD 4.08 ± 0.4 3.83 ± 0.4 <.001*
Meniscus area, cm2, mean ± SD 9.8 ± 1.8 9.0 ± 1.3 <.001*
Anatomical side, left, n (%) 210 (54.8%) 71 (51.0%) .435
Anatomical side, right, n (%) 173 (45.2%) 74 (49.0%)
Height, m, mean ± SD 1.63 ± 0.1 1.66 ± 0.1 <.001*
Weight, kg, mean ± SD 73.5 ± 21.0 68.7 ± 20.5 <.017*
BMI, mean ± SD, kg/cm2 27.4 ± 7.4 24.8 ± 6.9 <.001*
BMMI, kg/cm2, mean ± SD 7.6 ± 2.1 7.8 ± 2.4 .474
HMI, cm/cm2, mean ± SD 17.2 ± 2.8 18.9 ± 2.6 <.001*
Male medial meniscus

Meniscus width, cm, mean ± SD 3.4 ± 0.3 3.3 ± 0.3 <.001*
Meniscus length, cm, mean ± SD 4.6 ± 0.5 4.3 ± 0.4 <.001*
Meniscus area, cm2, mean ± SD 12.3 ± 2.2 11.2 ± 1.7 <.001*
Anatomical side, left, n (%) 557 (54.2%) 63 (43.1%) <.012*
Anatomical side, right, n (%) 479 (45.8%) 83 (56.9%)
Height, m, mean ± SD 1.77 ± 0.1 1.79 ± 0.1 <.001*
Weight, kg, mean ± SD 83.9 ± 22.9 87.6 ± 19.8 .039*
BMI, mean ± SD, kg/cm2 26.7 ± 6.7 27.0 ± 5.6 .455
BMMI, kg/cm2, mean ± SD 6.9 ± 1.9 7.8 ± 1.8 <.001*
HMI, cm/cm2, mean ± SD 14.8 ± 2.5 16.2 ± 2.6 <.001*

BMI, body mass index; BMMI, body mass to meniscus index; HMI, height to meniscus index;
SD, standard deviation.
*Defines statistical significant with a P value lower than .05.
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13.3.2 Lateral meniscus (donor versus patient populations)

The distribution of lateral meniscus size was significantly different between patient and
donor populations for meniscus length (P < . 001). Although discrepancies were
observed between donor and patient populations for meniscus width, this
measurement was not significant (P = .084). A greater patient demand (Fig 3.2 A and B)
of larger lateral meniscus sizes were observed.

Figure 13.2: Distribution of donor (blue) and patient (gray) lateral meniscus sizes. Lateral
meniscus width (A) and length (B).

Sex-specific data for the lateral meniscus between donor and patient populations are
presented in Table 3.3. Although meniscus width and length were significantly larger
for female patients needing a meniscus (P = .002 , .001), it was not as dramatic as the
difference between male donors and patients (P < .001). Male patients were taller than
their donor counterparts (P < .001), whereas female patients had a lower BMI (P = .0002)
and BMMI (P < .001). The male patients had similar BMI to the donor males but lower
BMMI (P = .047). Both male and female patients showed significantly lower HMI
compared with the donor group. Consistent with the medial meniscus findings, the
frequency of anatomic side was significantly different for the male population (P = .034)
and similar for the female population (P = .705).

To further understand the conflicting HMI (greater average HMIs for patients needing a
medial meniscus compared with donors vs lower average HMIs for patients needing a
lateral meniscus compared to donors), findings between the medial and lateral meniscus,
a scatter plot of meniscus area vs patient or donor height was generated (Fig 3.3). The
medial meniscus plot (Fig 3.3A) demonstrated patients have a similar height distribution
to donors but a smaller medial meniscus size. The lateral meniscus plot depicted similar
height and meniscus size distributions for both donor and patient pools (Fig 3.3B).
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Table 13.3: Lateral Meniscus Comparison of Meniscus Size, Anthropometric Factors, and
Anatomic Side.

Lateral meniscus Donor Patient P Value

Female lateral meniscus

Meniscus width, cm, mean ± SD 3.0 ± 0.3 3.1 ± 0.3 .002*
Meniscus length, cm, mean ± SD 3.3 ± 0.3 3.4 ± 0.3 .001*
Meniscus area, cm2, mean ± SD 7.8 ± 1.1 8.2 ± 1.3 <.001*
Anatomical side, left, n (%) 253 (50.0%) 71 (51.8%) .705
Anatomical side, right, n (%) 253 (50.0%) 66 (48.2%)
Height, m, mean ± SD 1.6 ± 0.1 1.7 ± 0.1 .121
Weight, kg, mean ± SD 73.9 ± 22.4 67.9 ± 20.3 .003*
BMI, mean ± SD, kg/cm2 27.4 ± 7.8 24.8 ± 6.9 <.001*
BMMI, kg/cm2, mean ± SD 9.6 ± 3.0 8.4 ± 2.5 <.001*
HMI, cm/cm2, mean ± SD 21.5 ± 3.0 20.5 ± 2.8 <.001*
Male lateral meniscus

Meniscus width, cm, mean ± SD 3.4 ± 0.3 3.5 ± 0.3 <.001*
Meniscus length, cm, mean ± SD 3.6 ± 0.3 3.8 ± 0.4 <.001*
Meniscus area, cm2, mean ± SD 9.7 ± 1.5 10.5 ± 1.6 <.001*
Anatomical side, left, n (%) 657 (51.8%) 63 (42.6%) .034*
Anatomical side, right, n (%) 479 (45.8%) 83 (56.9%)
Height, m, mean ± SD 1.77 ± 0.1 1.80 ± 0.1 <.001*
Weight, kg, mean ± SD 83.3 ± 22.0 86.6 ± 25.2 .133
BMI, mean ± SD, kg/cm2 26.5 ± 6.4 26.6 ± 7.2 .865
BMMI, kg/cm2, mean ± SD 8.7 ± 2.3 8.3 ± 2.4 .047*
HMI, cm/cm2, mean ± SD 18.7 ± 2.5 17.4 ± 2.2 <.001*

BMI, body mass index; BMMI, body mass to meniscus index; HMI, height to meniscus index;
SD, standard deviation.
*Defines statistical significant with a P value lower than .05.
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Figure 13.3: Scatter plot of meniscus area vs patient or donor height for (A) medial and
(B) lateral meniscus.

13.3.3 Time to Match a Patient Request to Donor Graft

The effect of patient sex, and anatomic side on time to match a donor graft was analyzed
for medial and lateral meniscus (Table 3.4). The anatomical site influenced the time to
match for both medial and lateral meniscus. Sex had no effect on time to match.

The average time to match a patient lateral meniscus was influenced most greatly by the
patient length measurement for both medial (P < .05) and lateral (P < .05) meniscus (Fig
3.4). The average time to match a lateral meniscus was significantly increased for larger
meniscus lengths (>4.4 cm) (Fig 3.4B). The medial meniscus analysis showed a different
effect where the smaller meniscus length (<3.0 cm) increased the time needed to match a
donor graft (Fig 3.4A).

Figure 13.4: The effect of patient meniscus length on time to match a donor graft. (A)
Medial meniscus time to match for various meniscus lengths. (B) Lateral meniscus time
to match for various meniscus lengths. P < .05.

13.4 Discussion

The most important finding of this study is confirmation of the mismatch between
donor and patient meniscus sizes. Outcomes from the lateral meniscus analysis showed
a high patient demand for larger lateral meniscus sizes, which were not met by the
donor population. Interestingly, the mismatch was converse for medial meniscus where
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Table 13.4: Effect of Sex and Anatomical Site on the Average Time to Match a Donor
Graft.

Category Average Time to
Match

P Value

Medial meniscus
Sex, male, d, mean ± SD 40.0 ± 96.7 .230
Sex. female, d, mean ± SD 28.1 ± 54.9
Anatomical site, left, d, mean ± SD 25.1 ± 56.8 .073
Anatomical site, right, d, mean ±
SD

42.4 ± 94.0

Lateral meniscus

Sex, male, d, mean ± SD 35.9 ± 82.3 .208
Sex. female, d, mean ± SD 23.3 ± 71.2
Anatomical site, left, d, mean ± SD 17.1 ± 55.4 .013*
Anatomical site, right, d, mean ±
SD

41.2 ± 91.4

SD, standard deviation
*Defines statistical significant with a P value lower than .05.

greater patient demand for smaller meniscus sizes and a lower donor supply was
identified. These data were further corroborated by the time to match where larger
lateral meniscus and smaller medial meniscus sizes increased the patient wait time to
identify a donor match. Further, there is significant sex differences between donors and
patients and in laterality needs between sexes. Male patients compromised a dominant
majority of the donor menisci pool (72.1%) while being only 51% of the population of
patients who request a meniscus transplant. Male patients requested a significantly
greater percentage of meniscus grafts for the right knee while there was much more
availability of meniscus grafts from the left knee.

Adequate size matching of patient and donor meniscus before meniscal allograft
transplantation (MAT) is an important factor that can influence biomechanics and
patient outcomes [5, 10, 11]. Various sizing methods spanning models involving
demographic data to techniques using radiographic and MRI have been developed to
avoid size discrepancies and improve the matching of donor grafts to patients [8, 12].
Although a number of studies have evaluated mismatch attributed to various sizing
methods, there are no previous studies investigating how well the source donor
meniscus tissue meets the demands of the patients with meniscal deficiencies. The
mismatch in distribution between donors and patient meniscus sizes can impact the
availability of grafts for patient care. This study identified a lateral meniscus mismatch,
which could be attributed to a larger male patient subpopulation with meniscal
deficiency who requires a large-sized meniscus graft. This larger male patient
demographic is outside the normal distribution of typical donors leading to a lower
frequency of grafts available to serve this patient demographic. Similarly, a high
frequency of small medial meniscus grafts is in demand to meet the clinical needs for a
smaller patient population, which is also outside the normal distribution of medial
meniscus donors. This work identifies a clinical need for specific patient populations
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who have limited opportunity to obtain a donor match.

Anthropometric data (sex, laterality, height, weight) was analyzed to understand the
factors that may contribute to the meniscus size discrepancy identified between donors
and patients. Although this study did not investigate age differences between donor
and patient pools, it is unlikely that age would introduce any bias into this study as
prior literature reports that most patients who undergo MAT are between 18 and 50
years [13, 14, 15, 16]. Overall differences in sex, laterality, and meniscus type were
observed between donor and patient pools. The significantly greater male percentage
identified in the donor pool is likely attributed to a large percentage of male donors that
are more frequently trauma victims. Further investigation into the exact cause of death
in our donor pool could confirm this assertation. Studies investigating organ and tissue
donor characteristics have classified a number of deceased donors as trauma donors, or
donors with cause of death that was not designated as natural causes [17, 18].
Ackerman et al [17]. report the characteristics of trauma donors from 2007 to 2016 [13].
The majority of trauma donors identified in this study were male (74.3%) with a mean
age of 31.1 years. The trauma donors comprised a younger and healthier population of
donors compared with the nontrauma donor counterparts [17]. In addition, the tissue
bank providing the meniscus allograft data for this study defines specific donor criteria
that influence the donors that will be included or excluded for meniscus allograft tissue.
The tissue bank specifies donors between the ages of 12 and 45 years with healthy and
intact menisci. Because of the age and meniscus tissue health requirements, trauma
donors are likely the main source for meniscus allograft tissue. This was confirmed by
the significantly greater proportion of male donors, 72.1%, identified by this study. The
greater male proportion of donors may contribute to the mismatch observed for the
medial meniscus, where the demand for smaller meniscus sizes outstripped the supply
from the donor pool and in which the patient pool was nearly half female. The lower
frequency of small meniscus sizes may limit the availability of meniscus donor grafts
for female patients or skeletally immature patients [19].

The mismatch in frequency of smaller-sized medial menisci between donor and
patients was observed for both male and female populations. Sex-specific
anthropometric data analysis was conducted to further understand the size
discrepancy. Interestingly, the frequency of anatomic side played a role with the male
population, but the not the female population. There was an increased demand for
right meniscus grafts for the male patient group and a reduction in availability from the
donors. This suggests leg dominance influenced both the demand and supply of the
grafts. Male donors and patients both favor the right side creating a mismatch in
availability. Another important factor potentially influencing the medial meniscus
mismatch is the HMI. The HMI were significantly greater for both male and female
patients compared with the donor population. This suggests that patients and donors
have similar height distributions, but the patients have a smaller meniscus size leading
to significantly greater HMI. Based on these findings, we hypothesized that individuals
with a smaller medial compartment relative to their overall height or BMI are more
susceptible to being symptomatic in the face of medial meniscus deficiency. This
hypothesis was further supported by the scatter plot of meniscus area versus patient or
donor height, which demonstrates patients both have a similar height distribution to
donors but a smaller medial meniscus size.

The lateral meniscus size distribution findings differed from the medial meniscus. The
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mismatch between donors and patients was observed for larger meniscus sizes. The
clinical significance of this mismatch is the limited availability of donor lateral meniscus
allografts to meet the demands of larger patients. Anthropometric data were analyzed
to understand factors that may contribute to this size discrepancy. Similar to the medial
meniscus findings, the leg dominance factor was observed for only male patients. In
addition, donor height played an important role in the mismatch observed. Patients
were on average significantly taller than the donor pools. This is consistent with patient
demographics reported for MAT. The HMI hypothesis, however, was not observed for
the lateral meniscus. We believe the primary contributor to the lateral meniscus
discrepancy is the difference in height distributions between patients and donors.
Patients are skewed to taller heights, where donors have a normal distribution.

As evidenced in this study, the observed mismatches between patient and donor pools
led to delays in treatment or longer wait times to identify a donor match. Larger-sized
lateral meniscus and smaller-sized medial meniscus graft requests increased the time to
identify a donor match. Although there is no immediate clinical action that can be
taken to remedy this situation, this does provide treating physicians with information
that can be used when discussing MAT with patients. Although most patients will be
able to find a donor match in a reasonable amount of time, specific subsets of patients
are at risk of extended wait times for a graft. However, while this work highlights
shortages of certain meniscus sizes, there is a converse excess supply of other meniscus
graft sizes, specifically smaller lateral meniscus and larger medial meniscus grafts.
Given these observations, one strategy to overcome this limitation is to consider the use
of a medial meniscus allograft for a lateral meniscus application or vice versa. To the
extent of our knowledge, there are no published studies investigating the feasibility of
using a donor medial allograft for a lateral meniscus recipient. Laboratory, animal, and
clinical studies would be needed to justify the use of medial-to-lateral meniscus or
lateral-to-medial-meniscus transplantation. Another option would be to consider
segmental meniscus transplantation when the meniscus deficiency is not global. Early
animal work in this area has been mixed repair outcomes but highlights that such a
need exists[20].

We acknowledge several limitations of this study. First, this study did not analyze the
age of donor and patient pools due to restrictions obtaining this information
consistently from a database which could introduce potential bias. Another limitation
involved the methods for meniscus size measurement. The patient meniscal
measurements were determined by outside sources that used various imaging
modalities including radiographs, MRI, or computed tomography scans whereas donor
meniscus measurements were made directly with hand calipers. The various types of
scans and lack of standardization for how measurements were taken for patients may
lead to variability within the study. Lastly, it is possible that interobserver error may
affect the donor meniscus measurements recorded using calipers in situ at the time of
processing.

13.5 Conclusion

This analysis demonstrates variations in frequency of meniscus sizes between donor
and patient populations. This variation is attributed to differences in anthropometric
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data between patient and donor populations. This work identifies a mismatch between
demand and supply for certain patient sizes contributing to longer times to match.
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3D bone morphology is a risk factor for
medial post-meniscectomy syndrome: a

retrospective cohort study

This chapter describes the comparative study of the knee bone morphology between a
cohort of successful partial meniscectomy patients with a cohort of medial post
meniscectomy patients. Furthermore, some initial steps towards a morphotype-based
predictive model are explored.

This work was previously published as: Grammens, J., Van Haver, A.,
Danckaers, F., Vuylsteke, K., Sijbers, J., Mahluf, L., Angele, P., Kon, E.,
Verdonk, P., MEFISTO WP1 Group (2024). Three-dimensional bone
morphology is a risk factor for medial postmeniscectomy syndrome:
A retrospective cohort study. Journal of Experimental Orthopaedics,
11(3), e12090. https://doi.org/10.1002/jeo2.12090

14.1 Introduction

Amongst possible surgical treatment options for medial meniscal tears, arthroscopic
partial medial meniscectomy (APMM) is one of the most regularly performed knee
surgery worldwide [1, 2, 3, 4, 5]. Recent insights have resulted in an evolution of its
indications [6] and there is a paradigm shift towards preserving the meniscus to the
greatest extent possible [7]. Current guidelines [8, 9] do not recommend APMM as a
first-line treatment, but prefer meniscal repair or conservative treatment instead. It
might however serve as an alternative when the latter two treatment options are not
applicable (complex tears, tears with high degree of degeneration, flap tears or
nonreducible bucket handle tears) or when response to meniscal repair or conservative
treatment has been unsatisfactory. A significant subset (6-25%) of partial meniscectomy
patients experience persistent or recurrent pain within 1 to 2 years after APMM [10, 11],
also known as the post-meniscectomy syndrome. These patients typically suffer from a
dull and nagging pain in the operated knee compartment, often accompanied by
transient joint effusions [12]. Several studies have established common risk factors for
inferior APMM outcome [13], including age, obesity, cartilage status, coronal
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malalignment [14], and the extent of the meniscectomy [15]. These risk factors are all
related to a mismatch between the applied load (obesity, activity level, coronal
malalignment) and a reduced resilience to resist and endure that load (meniscus
dysfunction or cartilage loss). An often overlooked but potentially significant risk factor
for medial post-meniscectomy syndrome (MPMS) is 3D knee morphology. Previous
publications on medial knee compartment morphology indicated a potential link
between a small medial femoral condyle and early degeneration of the medial meniscus
[16, 17]. The relationship between specific bony knee morphology variations and
certain pathologies such as cruciate ligament lesions [18] and patellar instability [19]
has already been demonstrated. Although bony morphology is non-modifiable, it is of
great importance to detect and acknowledge this factor, as it may have an influence on
surgery outcome [20]. A commonly used method to analyze bone morphology is
measuring several anatomical landmark-based distances and angles, either on the 3D
bone models or directly on the medical images. While very straightforward and easy to
visualize, this approach suffers from some limitations. Firstly, it only captures
information at discrete, pre-defined anatomical landmarks, thereby neglecting the
complexity of shape variation patterns over the entire bone surface. Secondly, the
choice of morphological parameters or measurements is subjective and might be prone
to a selection bias, potentially overlooking essential morphological features. Statistical
shape modeling offers a powerful alternative that overcomes these limitations. By
analyzing large datasets of 3D bone models (e.g. from MRI scans), statistical shape
modeling involves the creation of a smart shape atlas, that captures the average bone
shape and its main modes of shape variation in a data-driven way. It eliminates the
need for subjectively chosen landmarks and instead analyzes the entire articular bone
surface at once. As a result, it will lead to a deeper understanding of the complex
interplay between distinct morphological features in the context of APMM outcome.
Statistical shape modeling has been around for several years [21], but only recently
found its way to the field of orthopedics [22, 23, 24, 25]. In the present study, it allows to
quantitatively compare the femoral and tibial bone shapes between two groups of
meniscectomy patients and to extract potential morphological predictors for clinical
response to APMM. The purpose of this study was to investigate if adult APMM
patients who develop pain symptoms (MPMS), demonstrate different bony knee
morphology, compared to APMM patients who don’t develop pain symptoms, within a
follow up of 2 years after APMM. Based on our previous findings [16, 17], related to a
small medial femoral condyle morphotype as a risk factor in the multifactorial process
of medial compartment knee pain, we hypothesize the MPMS knees to have a smaller
medial femoral condyle. Finally, this study aimed to evaluate a predictive model for
APMM outcome with bony morphology as predictor variables.

14.2 Materials and methods

This study is a multicenter, retrospective case-control study. Three high-volume
orthopedic centra specialized in knee pathology from Antwerp, Milan and Regensburg
participated in this study. IRB approval was obtained from all local ethical committees
(Comité voor medische ethiek AZ Monica and UZA: study B300201941743,
Ethikkommission an der Universität Regensburg: reference 19-1621-101, IRCCS
Instituto Clinico Humanitas: study authorization n. 2515) and informed consent was
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obtained from all patients prior to their inclusion.

14.2.1 Patient selection and study design

Patients were eligible for the study if they were between 18 and 70 years old, had a
primary medial meniscus lesion, for which meniscal repair or conservative treatment
was not applicable and hence an APMM was indicated and performed by an expert
surgeon (N=844). Predefined exclusion criteria were unavailable pre-operative MRI,
inability to communicate, an unstable knee (IKDC grade C or D), patellar instability or
trochlear dysplasia, limited knee range of motion (IKDC grade C or D), cartilage lesions
(grade IV and larger than 2cm, non-focal), coronal malalignment (as judged clinically),
concomitant discoid meniscus, morbid obesity (BMI > 35), a history of meniscus repair
or major lower limb surgery prior to the meniscectomy, septic or rheumatoid arthritis,
neurological disorders, posterior cruciate ligament repair or reconstruction,
insufficiency fractures or avascular necrosis, plica syndrome or less than 2mm intact
medial meniscal rim left intraoperatively. Finally, 443 patients were eligible after
screening of their hospital records, of which 42 had an MRI of insufficient quality
(movement artefacts or slice thickness > 4mm) and 161 did not consent study
participation or did not complete the KOOS questionnaire. As pain is the primary
symptom for diagnosis of the post-meniscectomy syndrome, the KOOS pain subscore
[26, 27] was used to split the APMM patients in two groups: a first group who showed a
good clinical response to APMM (further referred to as R group) and a second group
who developed medial post-meniscectomy syndrome (further referred to as MPMS
group). A power analysis defined the required sample size as 120 patients per group.
The KOOS pain score threshold for stratification of the subgroups was set at 75, based
on the patient acceptable symptom state, as calculated by Agarwalla et al [28]. The R
group included 120 patients with a KOOS pain score > 75 and the MPMS group
included 120 patients with a failed clinical outcome, defined as KOOS pain score < 75.
The predefined total study sample size (N=240) was considered adequate to build a
robust SSM covering population variance [29]. The patient selection procedure is
summarized in the CONSORT diagram in Figure 12.1. All patients were first
approached by phone. Documents (informed consent and KOOS questionnaire) were
sent following oral consent to participate into the study. Upon attaining the predefined
sample size in one group (n=120) no additional patients were included in that group
and attempts to contact patients with incomplete KOOS questionnaire or informed
consent were stopped when both groups were complete (n=240).
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Figure 14.1: Consolidated Standards of Reporting Trials flow diagram for subject
enrolment procedure. All subjects underwent an arthroscopic partial medial
meniscectomy (APMM). MRI, magnetic resonance imaging.

14.2.2 Data collection

Imaging, demographic and clinical data were collected. The imaging data consisted of
the pre-operative MRI scans used for diagnosis of the meniscal lesion and was extracted
from the hospital PACS. MRI scans were evaluated by one experienced researcher for
motion artefacts and slice thickness < 4 mm. A typical pre-operative MRI (1.5T or 3T)
protocol included the following sequences: coronal T1-weighted (3.5 mm slice
thickness, 0.7x0.7mm in-plane resolution), coronal proton density weighted (PD) (3.5
mm slice thickness, 0.5x0.5mm in-plane resolution), sagittal PD (3.5 mm slice thickness,
0.5x0.5mm in-plane resolution) and axial T2- or intermediate-weighted (3 mm slice
thickness, 0.5x0.5mm in-plane resolution) images. as e and clinical data included
patient sex, age, weight and height. BMI was calculated from patient weight and height
as follows: patient weight (kg) divided by the square patient height (m). Cartilage
status (modified Outerbridge classification [30]) was extracted from the surgery reports
and verified on the preoperative MRI scans. The KOOS questionnaire [27] at 2 years of
follow-up served as patient-reported outcome measure to evaluate response to
treatment (RTT).

14.2.3 Generation of patient-specific 3D bone models

Pre-operative MRI scans were extracted from the PACS system in DICOM format and
loaded into Mimics 23.0 (Materialise NV, Leuven, Belgium). Following the standard knee
scan protocols, sequences in the three perpendicular anatomical planes were available.
Using at least two MRI sequences with a perpendicular acquisition plane, distal femur
and proximal tibia were segmented into two separate 3D models, each of them consisting
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of bone and cartilage united. The projected contours of the resulting 3D models were
doublechecked on all available sequences and finetuned manually using the “Contour
edit” tool of the software package. 3D models of the distal femur and proximal tibia
were then saved as triangular meshes and further used to perform the morphological
analysis.

14.2.4 Statistical shape model: data-driven morphology description

In total, three statistical shape models (SSMs) were built from the 3D bone models: one
separate SSM for the isolated distal femur, one SSM for the isolated proximal tibia [31],
and a combined SSM of the tibiofemoral joint in full extension following the
methodology described by Audenaert et al [32]. The first step in building an SSM is the
establishment of anatomical correspondences between the patient-specific bone shapes.
This involves the automatic identification and matching of the same anatomical
landmarks and regions across the different bone shapes in the dataset. Practically, this
was achieved through an iterative process of rigid and elastic deformations as described
and validated by Danckaers et al. [31]. Briefly, a template triangular bone mesh of the
distal femur or proximal tibia was gradually deformed to the bone shape of the
patients, resulting in a mesh with a dense set of pseudo-landmarks that share a
consistent anatomical meaning across all patients. Next, all patient bone shapes were
rigidly aligned (rotations, translations) to the same position by minimizing the sum of
distances between all corresponding points. To reduce any variability induced by the
MRI scan field of view, only the distal portion of the femur and proximal portion of the
tibia was selected for further analysis (blue region in Figure 12.2).

Figure 14.2: Definition of the distal femur and proximal tibia to be included in the shape
analysis (blue region). The red surface region was neglected in the shape analysis. Left:
posterior view. Right: medial view.

The previously established anatomical correspondences ensure that the same
anatomical region is selected for all patients. A custom Python script was written to
construct the SSM. The mean bone shape was calculated and principal component
analysis (PCA) resulted in the main modes of shape variation [21]. PCA is a commonly
used mathematical method for dimensionality reduction, which transforms the original
variables (numerous 3D model point coordinates x,y and z for each bone shape) linearly
into a set of new variables (confined number of modes of shape variation), ordered by
decreasing magnitude (explained shape variance). Together, the mean bone shape and
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the modes of shape variation define the SSM and they can describe any shape of the
same nature as a weighted sum of those modes. The weight factors for each mode of
shape variation are then called principal component (PC) weights. Given the SSM, the
PC weights for each mode of shape variation are then used to characterize the
patient-specific bone morphology. The SSM construction is summarized and illustrated
in Fig. 12.3.

Figure 14.3: Starting from the medical images, three‐dimensional models were manually
created in the segmentation software. Next, anatomical correspondences are computed
by rigidly and elastically deforming a template mesh (visualised with checker pattern).
These deformed template meshes (=training set) are then further used to construct the
statistical shape model (SSM).

In the combined SSM, the adopted method of Audenaert et al. [32] realigned the
individual bones to an average (neutral) relative position before inclusion in the SSM,
thereby removing any potential relative positional information (e.g. induced by patient
positioning in the scanner). Without this realignment, any positional variation (e.g.
flexion/extension, varus/valgus, internal/external rotation) would also be captured in
the main modes of shape variation, thereby resulting in a less compact SSM. For all
three SSM’s in this study, the modes of shape variation were defined on the complete
dataset of 240 knees. Model compactness and generalization were evaluated as
performance metrics for all three SSM’s [29].

Model compactness

Compact shape models can describe any new shape instance with as little modes of shape
variation as possible [33]. SSM compactness is described as the cumulative explained
variance in function of the number of modes. The higher this value, the fewer modes are
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needed for the SSM to describe shape variation at population level and increase model
performance. A cumulative explained variance ratio of more than 98% was aimed for
when choosing the appropriate number of modes.

Model generalizability

For matters of future clinical applications, the SSM should generalize to unseen shapes of
the same nature [33]. That is, it should be able to describe unseen bone shapes to a certain
level of accuracy. Repeated leave-one-out cross-validation experiments were performed
in order to assess this capability for an increasing number of modes of shape variation.
The generalization metric was then defined as the average description error (RMSE) over
all experiments.

SSM in relation to clinical data and response to treatment

PC weights for the specific modes of shape variation were calculated for all patients in
both R and MPMS groups. The PC weights for the first three modes of shape variation
were then compared between the R and MPMS group and a physical meaning was
assigned to those modes (results section B. Knee morphology comparison between R
and MPMS group). In a next step, correlations between demographic, clinical and
morphology variables (PC weights) were assessed (section C. Correlation analysis
between demographic, clinical and morphology variables). Finally, a predictive
algorithm for RTT based on knee morphology was trained and evaluated (section D.
Prediction of response to treatment based on knee morphology).

14.2.5 Statistical analysis

All statistical analyses were performed in RStudio (Version 2022.07.0.1; R Studio, PBC)
and R (version 4.2.1; R Foundation). Training and cross-validation of the predictive
algorithm were performed in Python (open-source library scikit-learn v1.1.2) [34].
Statistical significance level was defined at p<0.05.

Study population

Descriptive statistics for the continuous variables patient age, weight, height and BMI
included mean and standard deviation (SD), while the categorical variable patient sex
was reported as count and percentage. Differences in distributions between the R and
MPMS group were tested by the two-sided student t-test for the continuous variables,
Fischer’s exact test for the variable sex and a Chi-square test-of-independence for cartilage
status.
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Knee morphology comparison between R and MPMS group

PC weights distributions for the first three modes of shape variation were compared
between the R and MPMS group using Welch’s unequal variances t-test.

Correlation analysis

Pearson correlation coefficients were calculated between the following variables: patient
sex (recoded as 0 for female and 1 for male), patient age, patient length, patient weight,
KOOS and the PC weights of the first three modes of shape variation for all three SSM.
Statistical significant Pearson correlation coefficients were reported in a correlation
matrix.

Prediction of response to treatment

The predictive value of PC weights for RTT (recoded as 1 for the R group and 0 for the
MPMS group) was assessed. Prediction of RTT was performed by means of logistic
regression on the PC weights in a leave-one-out cross-validation experiment. Sensitivity
and specificity were calculated for detection of both response to treatment and medial
post-meniscectomy syndrome [35]. In addition, the area under the curve for the
receiver operating characteristic curve [35] (AUC-ROC) was calculated. A bootstrapping
experiment with 1000 iterations was performed to calculate 95% confidence intervals
(CIs).

14.3 Results

14.3.1 Study population

There were no significant differences between the R and MPMS group in patient sex,
patient age, patient weight, patient height and body mass index (BMI) distributions
(Table 12.1). Cartilage status according to the modified Outerbridge scale
(intraoperative assessment) was not significantly different between the two groups for
all regions. The KOOS and all of its subscales were significantly different (p<0.001 for
all KOOS subscales, Fig. 12.4)
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Table 14.1: Count and percentage for patient sex and cartilage lesion classification
(modified Outerbridge), mean ± SD for variables patient age, patient weight, patient
height and BMI in both R and MPMS groups.

R group MPMS group p Value
Patient sex [number (%)]a 29 (24.2) females,

91 (75.8) males
36 (30.0) females,
84 (70.0) males

n.s.

Patient age (years)b 50.7 ± 12.1 52.7 ± 10.5 n.s.
Patient weight (kg)b 82.0 ± 15.1 82.2 ± 14.4 n.s.
Patient height (cm)b 177.2 ± 8.6 175.2 ± 9.6 n.s.
BMI (kg/m2)b 26.0 ± 3.8 26.7 ± 3.4 n.s.
Cartilage lesion classification [number (%)]c

Medial femoral condyle
Grade 0–I 47 (39.2) 37 (31.4) n.s.
Grade II 50 (41.7) 43 (36.4)
Grade III 17 (14.1) 32 (27.1)
Grade IV focal 6 (5.0) 6 (5.1)

Medial tibial plateau
Grade 0–I 56 (46.7) 57 (48.3) n.s.
Grade II 50 (41.6) 46 (39.0)
Grade III 11 (9.2) 13 (11.0)
Grade IV focal 3 (2.5) 2 (1.7)

Lateral femoral condyle
Grade 0–I 71 (59.2) 85 (72.0) n.s.
Grade II 47 (39.2) 29 (24.6)
Grade III 1 (0.8) 1 (0.9)
Grade IV focal 1 (0.8) 3 (2.5)

Lateral tibial plateau
Grade 0–I 70 (58.3) 85 (72.0) n.s.
Grade II 47 (39.2) 29 (24.6)
Grade III 1 (0.8) 2 (1.7)
Grade IV focal 2 (1.7) 2 (1.7)

a Fischer exact test.
b Two-sided student t test.
c "2test of independence.
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Figure 14.4: Mean ± standard deviation of all Knee injury and Osteoarthritis Outcome
Score (KOOS) subscales for both medial postmeniscectomy syndrome group (MPMS)
(red) and response to treatment group (R) (blue) groups. RTT, response to treatment.

14.3.2 Knee morphology comparison between R and MPMS group

Distal femur

Regarding compactness, the SSM of the distal femur captured 98.0% of the shape
variance in the first 36 modes of shape variation (model compactness). Generalization
error to unseen distal femur shapes in leave-one-out experiments was on average 0.30
mm (RMSE). More detailed performance metrics of the statistical shape models can be
found in the Supplementary Information. The first mode of shape variation is the
three-dimensional size of the distal femur (Fig. 12.5, left column). Distal femora of the
MPMS group were significantly smaller than those in the R group (p<0.001). The
second mode of shape variation (Fig. 12.5, middle column) captured the mediolateral
intercondylar notch width. The MPMS group had a significantly wider intercondylar
notch (p<0.001). The third mode of shape (Fig. 12.5, right column) variation
encompassed the mediolateral (ML) width of the medial femoral condyle and
anteroposterior (AP) length of both femoral condyles. MPMS knees had a significantly
smaller ML medial femoral condyle and larger AP femoral condyles (p<0.001).
Together, these three modes of shape variation accounted for 86.7% of the total femoral
shape variance.
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Figure 14.5: (a1–a3) First three modes of shape variation in distal femur: (top) inferior
view, (bottom) posterior view. (b1–b3) Histogram of principal component (PC) weights
distribution for the first three modes of shape variation in medial postmeniscectomy
syndrome group (red) and response to treatment group (R) (blue) group. A, anterior;
P, posterior; L, lateral; M, medial; MPMS, medial postmeniscectomy syndrome group; n,
number of cases; RTT, response to treatment; SD, standard deviations.

Proximal tibia

The SSM of the proximal tibia described 98.1% of the shape variance in the first 37
modes of shape variation that. Leave-one-out experiments resulted in an average
generalizability error of 0.25 mm RMSE. The first mode of shape variation (Fig. 12.6, left
column) in the proximal tibia was three-dimensional size. The MPMS group consisted
of significantly smaller tibial plateaus (p=0.005). The second mode of shape variation
(Fig. 12.6, middle column) included mediolateral width of the tibial plateau and
interspine distance, as well as tibial spine height variation. The MPMS group had a
significantly wider interspine distance and lower tibial spines (p<0.001). The third
mode of shape variation (Fig. 12.6, right column) included the AP length of the tibial
plateau and the sagittal concavity of the medial tibial plateau. A small difference was
observed between the R and MPMS groups for this mode of shape variation (p=0.01),
where tibial plateaus from the MPMS group had a more pronounced mediolateral
width relative to their anteroposterior depth and a less concave (sagittal plane) medial
tibial plateau. Together, these three modes of shape variation explained 83.7% of the
total tibial shape variance.
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Figure 14.6: (a1–a3) First three modes of shape variation in proximal tibia: (top) superior
view, (middle) posterior view, (bottom) crosssectional medial view of the medial tibial
plateau. (b1–b3) Histogram of principal component (PC) weights distribution for the first
three modes of shape variation in medial postmeniscectomy syndrome group (MPMS)
(red) and response to treatment group (R) (blue) group. A, anterior; L, lateral, M, medial;
n, number of cases, P, posterior; RTT, response to treatment; SD, standard deviations.

Tibiofemoral joint (combined shape model in neutral position)

The combined SSM of femur and tibia together captured 98.0% of the variance in 46
modes of shape variation as a measure of the model compactness. This corresponded to
a generalization error of 0.34 mm in the leave-one-out experiments. The main mode of
shape variation (Fig. 12.7, left column) in the tibiofemoral joint was size and accounted
for 83.4% of the total shape variance. The distribution of the PC weights was
significantly shifted towards smaller knees in the MPMS group (p<0.001). The second
mode of shape variation (Fig. 12.7, middle column) described the intercondylar
mediolateral notch width and tibial interspine distance. A wider femoral intercondylar
notch and larger tibial interspine distance was observed in the MPMS group (p<0.001).
The third mode of shape variation (Fig. 12.7, right column) included the mediolateral
width of the medial femoral condyle and the height of the tibial spines. A significantly
smaller medial femoral condyle and less pronounced tibial spines were observed in the
MPMS knees (p<0.001). Together, these three modes of shape variation described 88.2%
of the total tibiofemoral shape variance.
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Figure 14.7: (a1–a3) First three modes of shape variation in tibiofemoral joint: (top)
posterior view, (middle) inferior view cross‐sections of distal femur, (bottom) inferior
view cross‐sections of proximal tibia. (b1–b3) Histogram of principal component
(PC) weights distribution for the first three modes of shape variation in medial
postmeniscectomy syndrome group (MPMS) (red) and response to treatment group (R)
(blue) group. A, anterior; L, lateral, M, medial; n, number of cases; P, posterior; RTT,
response to treatment; SD, standard deviations.

14.3.3 Correlation analysis between demographic, clinical and knee
morphology variables

Statistical significant Pearson correlation coefficients (R²) were summarized in a
correlation matrix (Table 12.2) for the demographic, clinical and morphological
variables of the distal femur, proximal tibia and tibiofemoral joint. RTT was encoded as
0 for the MPMS group and 1 for the R group. RTT was strongly positively correlated
with all KOOS subscores (p<0.001). For all three SSM’s (femur, tibia and tibiofemoral
joint), the PC weights of the first three modes of shape variation were all very weakly to
weakly (R² between 0.16 and 0.37) correlated with RTT (p≤0.01). None of the
demographic or clinical variables were correlated with RTT. Patient sex, length and
weight were strongly positively correlated (R² between 0.62 and 0.80) with the first
mode of shape variation (three-dimensional size) for all three SSM’s (p<0.001). Patient
sex showed a very weak and weak negative correlation with the second mode of shape
variation (femoral notch width and tibial interspine distance) from respectively the SSM
of the proximal tibia (R2=-0.13, p=0.047) and the SSM of distal femur and tibiofemoral
joint (R2 between -0.21 and 0.20, p < 0.002).
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Table 14.2: Correlation matrix of demographic, clinical, PROM‐ and SSM‐derived
variables.

14.3.4 Prediction of response to treatment based on knee morphology

Distal femur morphology is an independent predictor for RTT. Solely based on the
distal femur PC weights, MPMS was predicted with a sensitivity of 74.8% (95% CI
74.3% to 75.3%) and a specificity of 80.3% (95% CI 79.8% to 80.8%) Area under the
receiver operating characteristic curve (AUC-ROC, Figure 12.8, yellow curve) for this
classifier was 0.827 (95% CI 0.824 to 0.830). The predictive logistic regression algorithm
with proximal tibia PC weights as input, identified MPMS in a leave-one-out
cross-validation experiment with a sensitivity of 74.7% (95% CI 74.2% to 75.2%) and a
specificity of 78.5% (95% CI 78.0% to 79.0%). AUC for the ROC curve (Figure 12.8, blue
curve) was 0.836 (95% CI 0.833 to 0.839) for this classifier based on proximal tibia
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morphology. Tibiofemoral joint morphology predicted MPMS with a sensitivity of
74.9% (95% CI 74.4% to 75.4%) and a specificity of 81.0% (95% CI 80.6% to 81.5%) in a
leave-one-out cross-validation experiment. AUC-ROC was 0.840 (95% CI 0.837 to 0.843)
for this tibiofemoral joint morphology based classifier. The receiver operating
characteristic curve for the classifier using a set of tibiofemoral joint shape features is
shown in Figure 12.8 (green curve).

Figure 14.8: Receiver operating characteristic curves for three distinct classifiers, using
a set of distal femur, proximal tibia or tibiofemoral joint shape features as predictor for
medial postmeniscectomy syndrome (MPMS). ROC, receiver operating characteristic.

14.4 Discussion

This study unveils for the first time bony knee morphological differences between
responders to APMM and medial post-meniscectomy syndrome patients: a smaller
overall size of the knee, a wider intercondylar notch and a smaller medial femoral
condyle were the main morphological variations identified in medial
post-meniscectomy syndrome knees. Moreover, as a second key finding in this study,
morphology-based predictive models demonstrated a sensitivity of more than 75% and
a specificity surpassing 80% in anticipating the outcome of APMM. Based on these
findings, a biomechanical mechanism is hypothesized to explain the main
differentiating mode of shape variation between responders to APMM and medial
post-meniscectomy syndrome. While often excluded or filtered out in statistical shape
analysis, a significant difference in knee size was observed between the R and MPMS
group knees for the three SSMs: isolated femur, isolated tibia and combined in the
tibiofemoral joint. The knees from the MPMS group patients were significantly smaller
than their counterparts in the R group, in contrast with no differences in patient length,
weight and BMI between both groups. A smaller knee implicates a smaller articular
contact surface area. In biomechanics, pressure is defined as force per unit area of
surface. Therefore, a smaller knee loaded with a similar body weight is subject to higher
pressure. Different studies already established increased contact pressure as a central
driver in progressive knee degeneration [36, 37].

To the authors’ knowledge, this is the largest 3D knee morphology database of



202
CHAPTER 14. 3D BONE MORPHOLOGY IS A RISK FACTOR FOR MEDIAL
POST-MENISCECTOMY SYNDROME: A RETROSPECTIVE COHORT STUDY

post-meniscectomized patients, consisting of imaging, demographic and clinical (incl.
PROM) data at 2 years post-operatively. Similar techniques based on statistical shape
modeling have already been applied on other pathologies, e.g. for automatic staging of
trochlear dysplasia [22] or identifying morphological bone variations linked to
scaphoid fractures [38]. Previously, our pilot study on medial compartment
degeneration already identified the small medial femoral condyle morphotype [16] and
its potential association with early medial compartment degeneration. Several in-silico
and in-vitro studies have confirmed the load- distributing function of the meniscus, as
well as the increase in cartilage peak stress after partial meniscectomy [39]. The smaller
contact surface area in the small medial femoral condyle morphotype could already
imply a higher peak stress compared to a wide medial femoral condyle knee. By further
reducing the contact surface area, meniscus functional loss by degeneration or APMM
might additionally increase that peak stress, leading to insufficiency of the cartilage and
subchondral bone to bear the load [40]. This is clinically reflected in the
post-meniscectomy syndrome. Several studies established the association between
coronal alignment of the knee and pathology [41, 42]. In our study, the influence of
alignment as a latent prognostic factor was minimized since all knees had a coronal
alignment within physiological range per clinical judgement. The combination of a full
lower-limb phenotype analysis with this confined knee morphology analysis might
even result in more robust algorithms to predict APMM outcome, irrespective of knee
malalignment. A clustering analysis by Hohlmann et al. [43] revealed no distinct
morphotypes in end-stage knee OA knees. In contrast to their conclusion, our current
study found that knee shape (including size and aspect ratio) is highly correlated with
patient demographics (sex, length, weight) and even APMM outcome. These
contradictory findings can be explained by the fact that unsupervised clustering
algorithms are typically less powerful for classification purposes. Importantly, the
previous authors corrected for both size and aspect ratio, while these parameters were
found to be significantly correlated to several clinical variables in the current study.
Based on statistical shape models, Bowes et al. created a score to quantify radiological
disease progression in cases from the Osteoarthritis Initiative (OAI) database [44, 45].
Tack et al. [46] extended this concept further to a set of osteoarthritis biomarkers by
adding traditional measurements (e.g. volume and surface area) and SSM-derived
features for femoral bone, tibial bone, medial and lateral meniscus. This set of
biomarkers proved superior performance for prediction of total knee replacement
within one year in comparison with the bony SSM-derived featur es alone. The
aforementioned studies support the hypothesis of bone shape as a biomarker and
predictor for wear-related pathology. Indeed, the post-meniscectomy syndrome also
lies in the spectrum of degenerative knee pathologies and this current study was able to
predict its onset solely based on the knee morphology.

The relevance of this work lies potentially in the health-economical aspect of medial
meniscus lesion treatment [47, 11]. This is a promising first step towards a better
identification of candidate patients for APMM [48]. Smarter risk definitions and patient
selection in the future will result in a more personalized health care [49]. Eventually,
forthcoming clinical decision support systems might serve as a tool for clinicians to help
achieving this aim.

The strengths of this study include the multi-center study design, the high volume of
manually segmented MRI scans, as well as the unbiased methodology to describe knee
morphology quantitatively. Instead of using predefined measurements, patterns of



14.5. CONCLUSION 203

morphological variation were extracted by a robust mathematical algorithm.
Furthermore, this high level of automated analysis starting from the 3D models of
femur and tibia allows the analysis of even larger databases at a low marginal time cost
(even zero human marginal time cost). Another strength of this unique dataset is the
highly homogenous group of patients, and the equal distribution of collected potential
latent demographic variables (patient sex, height and weight) influencing knee
morphology across both R and MPMS groups. Finally, the pre-operative imaging used
to create the 3D models is already available for this pathology, even in a standard
clinical setting.

This study shows promising results, despite some limitations. Firstly, because of the
multi-center retrospective study design, no precise data was available on possibly
confounding variables such as personalized medication and rehabilitation protocol.
However, the clinical centers (in Antwerp, Milan and Regensburg) have closely matched
patient demographics and healthcare systems. All patients received nearly identical
post-operative care, adhering to the latest clinical guidelines. Secondly, during the
follow-up period after APMM, no new MRI scans were performed unless clinically
necessary. As a result, quantitative standardized measurements of the resected
meniscal tissue could not be calculated, nor retrieved from the surgery report and no
subgroup analysis based on the presence of radiologic signs such as bone marrow
edema, osteonecrosis or meniscal retear could be performed. Finally, it should be noted
that only patients with a clinically normal coronal malalignment were included in this
study, per surgeon clinical assessment. In a real world clinical protocol for meniscus
lesion management, no full-leg standing radiographs, nor full-leg CT scans, are
indicated for these patients. Given the retrospective nature of this study, exact coronal
alignment measurements were therefore unavailable. Future research includes large
prospective validation studies, with additional follow-up imaging, to warrant the
generalizability of the findings in this study.

14.5 Conclusion

In conclusion, morphological variations determine the clinical outcome of APMM in a
patient population with comparable weight, height, alignment and cartilage status. More
specifically, a smaller total knee size, a wider intercondylar notch and a smaller medial
femoral condyle are strongly linked with post-meniscectomy syndrome. In addition, a
predictive model was able to anticipate the clinical outcome of APMM at two years of
follow-up with a sensitivity above 75% and a specificity exceeding 80%.
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Machine learning for APMM outcome
prediction: clinical and morphological

data from the MEFISTO project

This chapter describes the final aim of this research project: a predictive model to
stratify between responders to arthroscopic partial medial meniscectomy (APMM) and
medial post-meniscectomy syndrome (MPMS) patients, based on a combination of bony
morphological features (derived from pre-operative imaging) and a confined set of
clinical features.

This chapter is adopted from a manuscript submitted at Computer
Methods and Programs in Biomedicine:
Grammens, J., Danckaers, F., Van Haver, A., Verdonk, P., Sijbers, J. Shaping
predictive models for arthroscopic partial medial meniscectomy outcome: a
machine learning approach using clinical and bony morphological data from
the MEFISTO Project.

15.1 Introduction

Arthroscopic partial medial meniscectomy (APMM) is one of the most frequently
performed orthopedic procedures worldwide [1, 2, 3, 4, 5], particularly for treating
meniscal tears that lead to pain, mechanical symptoms, and functional limitations in the
knee joint [6]. Meniscal injuries can significantly disrupt the biomechanics of the knee
joint by altering load distribution, impacting stability, and contributing to degenerative
changes over time [7, 8]. APMM, which involves the partial resection of the damaged or
loose meniscal tissue, can alleviate symptoms and improve function in the short term
[6]. However, long-term outcomes after APMM vary widely, with a subgroup of
patients experiencing progressive osteoarthritic changes, pain recurrence, and
functional limitations [9]. As such, the prediction of post-operative outcomes has
gained interest to perform a better, data-driven, patient selection.

The variability in APMM outcomes is influenced by a range of patient-specific factors,
including age, body mass index (BMI), activity level, and the characteristics of the
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meniscal tear itself (e.g., tear location, pattern, and chronicity). Furthermore, the health
of the knee joint at the time of surgery, particularly the integrity of the cartilage, plays a
critical role in determining long-term recovery and function. Studies have shown that
patients with pre-existing cartilage damage or early signs of osteoarthritis tend to
experience less favorable outcomes after APMM, with an increased risk of subsequent
joint degeneration [10, 11]. MRI imaging, which provides detailed visualizations of
both soft tissue and cartilage, has become a valuable tool for assessing these risk factors
pre-operatively, as it allows for precise evaluation of the meniscus, cartilage, and
surrounding joint structures. However, while individual clinical and imaging variables
have been associated with APMM outcomes, integrating these variables into a cohesive,
accurate prognostic model remains a challenge [12].

At the severe end of the post-surgical degenerative spectrum is the medial
post-meniscectomy syndrome (MPMS), a debilitating condition characterized by a dull
and nagging knee pain after a short pain-free interval, affecting between 6 and 25% of
patients who undergo APMM [13]. The existing literature on risk factors for this
complication is largely based on generalized factors associated with knee degeneration
and osteoarthritis, which complicates the ability to predict whether a patient will
experience a rather slow to moderate progression of knee osteoarthritis or a really rapid
degeneration combined with severe inflammatory symptoms, such as seen in the
medial post-meniscectomy syndrome. Unfortunately, alternative treatments such as
meniscus preservation or substitution are associated with scarce supply or higher
failure rates in the short- to intermediate-term compared to partial medial
meniscectomy, thereby limiting their viability as first-line treatments [14].
Consequently, APMM remains the standard treatment for most patients.

Despite the currently high failure rates of meniscus substitution options [15, 16], further
and more extensive development of these alternative treatments to partial meniscectomy
may not be immediately perceived as a priority, given the already high (but short-term)
success rates of the meniscectomy as first-line treatment. Although post-meniscectomy
syndrome affects only approximately 10% of patients [13], the total number of individuals
impacted is significant, given that meniscectomy is one of the most frequently performed
orthopedic surgeries globally. The potential for long-term disability and the considerable
healthcare burden associated with a meniscus-deficient knee underscores the need for
more effective treatment strategies. The ability to predict the likelihood of developing
the medial post-meniscectomy syndrome preoperatively could suggest a more favorable
outcome for alternative treatments in a significant number of patients.

In recent years, machine learning (ML) has offered a promising research topic for
developing prognostic models that can incorporate and analyze complex,
multidimensional datasets. ML techniques have been successfully used to predict
complications in other orthopedic surgeries, such as total knee arthroplasty (TKA),
where models that account for patient demographics and clinical parameters have been
shown to achieve a high prognostic accuracy and support personalized treatment
decisions [17] However, similar prognostic tools specific to APMM are still lacking,
despite the variation in APMM outcomes and the potential value of a predictive tool to
guide surgical decisions. The purpose of this study is to develop a data-driven
prognostic model for APMM outcomes, using a combination of clinical, demographic,
and imaging data to estimate the risk of developing medial post-meniscectomy
syndrome.
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An additional factor that may influence APMM outcomes is the morphology of the
knee’s bony structures, which can impact knee kinematics and biomechanics and
potentially exacerbate the effects of meniscal injury [18, 19]. Bony morphology
characteristics, such as the tibial plateau slope, the shape of the femoral condyles, and
the alignment of the lower limb, have been linked to joint mechanics and load
distribution patterns that affect the meniscus and cartilage [20]. For instance, an
increased tibial slope has been associated with higher shear forces on the meniscus,
which may predispose individuals to meniscal tears and influence recovery
post-meniscectomy [21]. Similarly, varus or valgus knee alignment has been implicated
in altering the medial or lateral compartment loading, potentially affecting healing and
progression of joint degeneration [22]. By including bony morphology characteristics in
a prognostic model, it may be possible to gain a more comprehensive understanding of
the biomechanical environment of the knee [23], thereby improving predictive accuracy
for APMM outcomes and allowing for more personalized surgical recommendations.

This research is part of the MEFISTO project, where two alternative meniscus
substitution devices were developed: a bioactive resorbable meniscal scaffold [24, 25]
and a bioactive unloading prosthesis (artificial meniscus implant)[26] for meniscus
substitution. In the context of these innovations, an accurate predictive algorithm for
APMM was required, more specific to predict the onset of the MPMS. Thus, the
primary objective of this study is to estimate the risk of developing medial
post-meniscectomy syndrome pre-operatively. This will enable the identification of
optimal candidates for these alternative meniscus substitution therapies as opposed to
those who may already benefit from the standard APMM. In this paper, we describe the
development and validation of a prognostic model for APMM that integrates clinical,
demographic, and bony morphological data. It represents a first step toward a more
personalized approach to the treatment of meniscus injuries. By reducing the incidence
of MPMS through avoiding ineffective meniscectomy procedures in a select number of
patients, patient outcomes could be significantly improved, while also reducing the
long-term socioeconomic impact associated with the meniscus-deficient knee.

15.2 Materials and methods

15.2.1 Study design and data collection

A retrospective study was designed, using post-meniscectomy patient data from three
high-volume orthopaedic centers (Antwerp, Milan and Regensburg) [27]. It was
approved by each site’s Ethics Committee and was performed according to the
principles of the declaration of Helsinki. All patients provided informed consent prior
to their inclusion in the study. Outcome stratification for response to treatment (R
group) versus post-meniscectomy syndrome (MPMS group; treatment failure) was
done by means of the KOOS pain score (> 75: R group, < 75: MPMS group) or revision
surgery to the index knee within 6 months (MPMS group) after the primary APMM.
Following a priori power analysis, predefined sample sizes were set at 120 patients per
group. Patient inclusion to each group was ceased upon reaching the predefined
sample size for that group and attempts to contact patients with incomplete KOOS
questionnaire or informed consent were stopped when both groups were complete
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(n=240).

Inclusion/exclusion criteria

Patients were eligible for the study if they were between 18 and 70 years old, had a
primary medial meniscus lesion, for which meniscal repair or conservative treatment
was not applicable and hence an APMM was indicated and performed by an expert
surgeon. Predefined exclusion criteria were unavailable pre-operative MRI, inability to
communicate, an unstable knee (IKDC grade C or D), patellar instability or trochlear
dysplasia, limited knee range of motion (IKDC grade C or D), cartilage lesions (grade IV
and larger than 2cm, non-focal), coronal malalignment (as judged clinically),
concomitant discoid meniscus, morbid obesity (BMI > 35), a history of meniscus repair
or major lower limb surgery prior to the meniscectomy, septic or rheumatoid arthritis,
neurological disorders, posterior cruciate ligament repair or reconstruction,
insufficiency fractures or avascular necrosis, plica syndrome or less than 2mm intact
medial meniscal rim left intra-operatively.

Collected data

For all patients, the following data was collected: demographic and clinical data from
the patient file and the pre-operative MRI scan. The collected demographic data
included patient age and biological sex. In addition, the clinical data was comprised of
patient weight, length, and concomittant involvement of a lateral meniscus lesion. BMI
was calculated as measure of overweight from patient weight and length, using the
following formula:

BMI =
weight[kg]
(length[m])2 (15.1)

Consequently BMI categories were defined based on the following thresholds: lower than
25, between 25 and 27.5, between 27.5 and 30 and more than 30 kg/m2. Patient reported
outcome measures (PROM’s) were collected from the KOOS questionnaire at 2 years of
follow-up and served as measure to assess the response to treatment.

Pre-processing of imaging data

Pre-operative MRI scans were loaded as DICOM files into the segmentation software
(Mimics 23.0, Materialise NV, Leuven, Belgium) to create patient-specific 3D bone
models. Sequences in the three perpendicular anatomical planes were available,
following the standard knee scan protocols. Distal femur and proximal tibia were
segmented into two distinct 3D models, consisting of the bone and cartilage layer. The
resulting 3D models were projected on all available sequences and adjusted manually
using the “Contour edit” tool. Finally, the 3D models of distal femur and proximal tibia
were saved as triangular meshes and further used as input for the morphometric
characterization.
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15.2.2 Knee shape characterization: surface registration for statistical
shape analysis

Registration of the bone meshes was performed following the algorithm described by
Danckaers et al [28]. As a result, a set of dense anatomically corresponding bone
meshes is obtained. That is, all mesh surface points are ordered in a homologous way to
ensure anatomical correspondence. Next, following subtraction of the mean bone
shape, principal component analysis (PCA) extracted the principal components or main
modes of shape variation per bone shape. Each bone mesh can now be reconstructed by
the mean bone mesh plus a linearly weighted (by the principal component scores)
combination of these principal components. As these modes of shape variation were
highly correlated between femur and tibia (e.g. large femur on large tibia), an
additional PCA step was performed on the united shape modes of femur and tibia
(concatenated). That way, the modes of bony shape variation over the tibiofemoral joint
are calculated, not taking into account the relative position of femur with respect to
tibia. As PCA is a purely linear operation, all steps involving PCA can be inverted for
matters of explainability and visualizations. Of note, the construction of the statistical
shape model was embedded into the scikit-learn machine learning pipeline (as
described in the next section), ensuring consistent data transformation while
safeguarding the strict separation of training, validation and test data of the chosen
nested cross-validation approach. This way, feature engineering (knee shape
characterization) and model training could be performed in a fully automated way.

15.2.3 Predictive model

A custom python script was used to create an end-to-end machine learning pipeline in
scikit-learn. Prior to model training, the dataset was split into a balanced training
(n=180) and test (n=60) dataset, with equal proportions of responders and
post-meniscectomy syndrome patients, equal patient sex ratios and equal BMI category
ratios. A nested cross-validation approach was implemented, therefore the test set was
alternated over 4 non-overlapping test sets by the outer cross-validation loop (see
Figure 13.3 in section ”13.6.2. Evaluation Strategies”). The body mass index of every
patient was calculated as their weight (kg) divided by their square height (m). Next, the
body mass index was categorized into 4 categories: <25 kg/m2, between 25 and 27,5
kg/m2, between 27,5 and 30 kg/m2, and >30 kg/m2. The categorical data were one-hot
(patient sex and presence of lateral meniscus lesion) and ordinal (BMI category)
encoded and and all continuous clinical variables (patient age, weight and length) were
normalized into z-scores (subtracted by their means and divided by their standard
deviations). As there were no missing data, no imputation strategy was required. The
registered shape information was fed into the pipeline as a large matrix where the rows
are the specific cases and the columns the x,y and z coordinates of the surface points.
Surface point coordinates of the distal femur were transformed to their principal
component scores, based on the learned principal components in the training set.
Likewise, the surface point coordinates of the proximal tibia were also transformed to
their principal component scores. The number of modes of shape variation was
optimized during the hyperparameter optimization. These principal component scores
were then concatenated and an additional PCA transformation was applied to obtain
the principal component scores of distal femur and proximal tibia combined (again the
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principal components itself were only learned on the training set). Of note, as PCA was
applied on the PC weights of individual shape models no influence of relative position
of femur to tibia was introduced. A complete overview of the model pipeline is given in
Figure 14.1. An inner loop of cross-validation was applied during the randomized
search for hyperparameter optimization (500 iterations times 4 outer cross-validation
folds times 4 inner cross-validation folds = 8000 iterations per assessed classifier), as
part of the previously described nested cross-validation approach. Multiple classifier
algorithms were trained and evaluated in leave-one-out cross-validation experiments
on the training set. A complete overview of the assessed classifier algorithms, as well as
the search space for hyperparameter optimization is given in Table 14.3. Model
evaluation involves assessment of the receiver operating characteristic (ROC) curves
and their area under the curve (AUC-ROC), sensitivity, specificity and prediction
accuracy, as well as the respective learning curves to assess potential overfitting.
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Table 15.1: Summary of the sampled distributions during the randomized search for
hyperparameter optimization for every assessed classifier algorithm.

Classifier algorithm Hyperparameter search space
[min - max (sampled distribution)]

Logistic regression PCA Femur n components: 4 − 26 (u),
PCA Tibia n components: 4 − 26 (u),
Logistic regression C: 10−4 − 10−1(l)

Linear SVM PCA Femur n components: 4 − 26 (u),
PCA Tibia n components: 4 − 26 (u),
SVM C: 10−4 − 10−1(l)

Radial basis function kernel SVM PCA Femur n components: 4 − 26 (u),
PCA Tibia n components: 4 − 26 (u),
SVM C: 10−2 − 10(l),
SVM gamma: 10−4 − 10−1(l)

Gaussian Process Classifier PCA Femur n components: 4 − 26 (u),
PCA Tibia n components: 4 − 26 (u)

Decision Tree Classifier PCA Femur n components: 4 − 26 (u),
PCA Tibia n components: 4 − 26 (u)
Max tree depth: 2 − 5 (u)

Random Forest Classifier PCA Femur n components: 4 − 26 (u),
PCA Tibia n components: 4 − 26 (u)
n estimators: 500 − 400 (u),
max samples per tree: 0.5 − 0.9 (u),
max samples per leaf: 0.1 − 0.4 (u)

Adaboost Classifier PCA Femur n components: 4 − 26 (u),
PCA Tibia n components: 4 − 26 (u)
n estimators: 100 − 500 (u),
learning rate: 10−3 − 10−1(l)

Naive Bayes Classifier PCA Femur n components: 4 − 26 (u),
PCA Tibia n components: 4 − 26 (u)

LDA Classifier PCA Femur n components: 4 − 26 (u),
PCA Tibia n components: 4 − 26 (u)

QDA Classifier PCA Femur n components: 4 − 26 (u),
PCA tibia n components: 4 − 26 (u)
regularization parameter: 0.2 − 0.5 (u)

u: sampled from uniform distribution; l: sampled from a log-uniform or reciprocal distribution
PCA: principal component analysis; SVM: support vector machine; LDA: linear discriminant analysis
QDA: quadratic discriminant analysis
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Figure 15.1: The applied scikit-learn pipeline streamlines the machine learning workflow
by automating feature engineering and model training. By incorporating the feature
engineering steps (e.g. consequent PCA transformations for statistical shape analysis)
into one single pipeline, consistent data transformations and model evaluation are
ensured across different experiments.

15.2.4 Model explainability

For future evolution towards a clinical decision support tool, the reasoning of the
algorithm might be valuable to understand the algorithm’s recommendation. This extra
information is especially useful in the context of the shared decision making by the
patient and the physician. A probability estimate as measure for the model’s
confidence, as well as a measure of each predictor feature’s importance (model
interpretation), give insights how to deal with the model’s prediction. That way,
low-confidence predictions can be overruled by the physician based on clinical
expertise or by taking into account any exceptional patient characteristics not included
by the current model. Therefore, the SHAP framework [29] was implemented post-hoc
to calculate Shapley value approximations for each predictor feature. Similar to how the
coefficients for every input predictor feature in linear or logistic regression models
reflect their importance in simple regression problems/statistics, Shapley values assign
predictor feature importance in a variety of more complex machine learning algorithms.
In order to limit the complexity of our approach while still trying to avoid overfitting,
no repeated cross-validation will be performed but the existing data splits of the outer
cross-validation loop will be used to approximate the Shapley values. For every fold of
the outer cross-validation, and for the features with the 15 largest Shapley value ranges
(and thus influencing the final classification decision the most) the approximated
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Shapley values will be visualized in a swarm plot. Finally, the three most important
features to the classifier (see 14.2.3: Predictive model) were propagated backwards
through the machine learning pipeline (to the original input format of bone surface
point coordinates and clinical variables), allowing for the visualization of the most
informative modes of bone shape variation.

15.3 Results

15.3.1 Clinical features

Both patient populations were first compared at group level to ensure comparable
groups in terms of demographics and basic clinical factors such as patient sex, age,
length and weight. No significant differences were observed, except for the distribution
of BMI categories (Table 14.2).

Table 15.2: Descriptive statistics for patient age, sex, weight, length, BMI and BMI
category for the R and MPMS group. Continuous variables were reported as means
+/- standard deviation (SD), whereas categorical variables were reported as count
(percentage).

R group MPMS group ?-value

Sex* m 91 (75.8) 84 (70) n.s.f 29 (24.2) 36 (30)
Age [year] 50.6 (12.1) 53.1 (10.0) n.s.
Weight [kg] 82.0 (15.1) 82.3 (14.3) n.s.
Length [cm] 177.2 (8.6) 175.3 (9.3) n.s.
BMI [kg/cm2] 26.0 (3.8) 26.7 (3.3) n.s.

BMI category†

<25 54 (45.0) 34 (28.33)

0.049625-27.5 32 (26.7) 41 (34.2)
27.5-30 19 (15.8) 21 (17.5)
>30 15 (12.5) 24 (20)

*: Fisher’s Exact test, †: Pearson’s chi-squared test
R: response to treatment group; MPMS: medial post-meniscectomy syndrome group
n.s.: not significant

15.3.2 Predictive model

Sensitivity and specificity to predict the MPMS onset, as well as prediction accuracy
were summarized in Table 14.3. These metrics were calculated from the validation
subsets in the inner cross-validation splits (4-fold), as none of the test data from the
outer cross-validation loop could be used for final model selection, but only for final
model evaluation. These were further aggregated over the outer cross-validation loop
and reported as mean +/- standard deviation (SD). Eventual overfitting was visually
evaluated on the learning curves, which are shown for the finally selected model in
Figure 14.2. Overall, the logistic regression classifier performed most consistently over
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the four outer cross-validation folds for all assessed metrics (sensitivity, specificity,
accuracy and ROC-AUC), while showing no signs of overfitting. Therefore, in addition
to its simplicity, this classifier was selected as final classifier and evaluated further.

Table 15.3: Predictive model results: mean and SD over the 4 folds of the outer cross-
validation loop (and calculated in the inner 4-fold cross-validation).

Classifier algorithm MPMS sens. MPMS spec. Acc. ROC-AUC
Log regression 0.750 (0.019) 0.809 (0.027) 0.786 (0.014) 0.815 (0.017)
Linear SVM 0.736 (0.026) 0.818 (0.041) 0.785 (0.015) 0.820 (0.008)
RBF SVM* 0.744 (0.009) 0.793 (0.055) 0.774 (0.032) 0.825 (0.021)
GP Classifier 0.764 (0.033) 0.805 (0.026) 0.789 (0.022) 0.808 (0.017)
DT Classifier 0.592 (0.092) 0.691 (0.046) 0.660 (0.021) 0.680 (0.018)
RF Classifier 0.728 (0.049) 0.755 (0.055) 0.744 (0.044) 0.765 (0.044)
Adaboost Classifier* 0.697 (0.037) 0.758 (0.042) 0.736 (0.028) 0.775 (0.053)
NB Classifier 0.781 (0.021) 0.676 (0.033) 0.703 (0.032) 0.743 (0.037)
LDA 0.758 (0.019) 0.780 (0.045) 0.771 (0.023) 0.795 (0.017)
QDA* 0.731 (0.028) 0.756 (0.028) 0.747 (0.023) 0.785 (0.031)

MPMS: medial post-meniscectomy syndrome; sens.: sensitivity; spec.: specificity; acc.: accuracy;
ROC-AUC: receiver operating characteristic curve - area under the curve
Log regression: logistic regression; SVM: support vector machine; RBF: radial basis function kernel;
GP: Gaussian Process; DT: Decision Tree; RF: Random Forest; NB: Naive Bayes;
LDA: linear discriminant analysis; QDA: quadratic discriminant analyis
*learning curve suggests minor overfitting

To assess generalizability of prediction performance to unseen data by the model,
results of the outer 4-fold cross-validation are summarized in Table 14.4. Additionally,
the receiver operating characteristic (ROC) curves on the four test folds are plotted in
Figure 14.3.

Table 15.4: Predictive model results in the 4 test folds of the outer cross-validation loop.

Test fold MPMS sens. MPMS spec. Acc. ROC-AUC
1 0.700 0.808 0.767 0.790
2 0.800 0.750 0.767 0.850
3 0.667 0.833 0.767 0.820
4 0.800 0.800 0.800 0.780

MPMS: medial post-meniscectomy syndrome; sens.: sensitivity; spec.: specificity; acc.: accuracy;
ROC-AUC: receiver operating characteristic curve - area under the curve
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Figure 15.2: Learning curves for the logistic regression classifier (final model). Prediction
accuracy (score) increased on the test dataset (orange curves) with an increasing size
of the training dataset, while the performance on the training set cases (blue curves)
decreased a bit. The rising trend of the test learning curves suggests potential to improve
prediction accuracy by including more cases in the training dataset.
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Figure 15.3: ROC curves for the logistic regression classifier on the four non-overlapping
test folds (outer cross-validation loop).

15.3.3 Model explainability

The Shapley values in the four outer cross-validation folds were summarized in the
swarm plots in Figure 14.4. The findings reveal that all input variables contribute to the
final decision, with morphological features being the greatest impact assigned to by the
model. Remark the different number of input features to the classifier, as the number of
principal components for the femur and tibia were optimized during each
hyperparameter optimization and hence dependent on the different validation sets.
Over all outer cross-validation iterations, the principal component with index 0, 2 and 3
were attributed the largest influence to the final decision by the model. These principal
components or modes of shape variation are visualized in Figures 14.5, 14.6 and 14.7. It
comprises a smaller knee size (Figure 14.5), a wider mediolateral notch (femur) and
intercondylar eminence (tibia) width (Figure 14.6) and a smaller medial femoral
condyle size combined with some vague shape variations at the intercondylar tibial
eminence (Figure 14.7) as risk factors for MPMS.
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Figure 15.4: Shapley values for the 4-fold trained logistic regression models. The
principal components with index 0,2 and 3 showed the largest range in Shapley values
over the four folds of the outer cross-validation loop.
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Figure 15.5: Visualization of the first principal component (index 0), representing the
main mode of knee shape variation (= threedimensional size). The left column illustrates
a shape deviating three standard deviations from the mean, aligned with the trend
towards treatment response (R group, larger knee). The center column depicts the mean
shape, while the right column shows a shape three standard deviations from the mean,
associated with increased risk for MPMS (smaller knee).

Figure 15.6: Visualization of the third principal component (index 2), representing
a mode of knee shape variation (= notch width). The left column illustrates a
shape deviating three standard deviations from the mean, aligned with the trend
towards treatment response (R group, smaller intercondylar notch and tibial eminence).
The center column depicts the mean shape, while the right column shows a shape
three standard deviations from the mean, associated with increased risk for MPMS
(mediolaterally wider intercondylar notch and tibial eminence)
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Figure 15.7: Visualization of the fourth principal component (index 3), representing
a mode of knee shape variation (= medial femoral condyle width). The left column
illustrates a shape deviating three standard deviations from the mean, aligned with
the trend towards treatment response (R group, smaller medial femoral condyle,
anteroposterior deeper femoral notch). The center column depicts the mean shape, while
the right column shows a shape three standard deviations from the mean, associated
with increased risk for MPMS (wider medial femoral condyle, anterioposteriorly smaller
intercondylar notch). At the level of the tibia this mode of shape variation is concentrated
at the intercondylar region and slightly affects the relative position of the medial to the
lateral tibial plateau in the axial plane.

15.4 Discussion

To the author’s knowledge, the proposed method involves the first knee morphology
aware predictive model for arthroscopic partial medial meniscectomy. Multiple models,
each of them with its own advantages and disadvantages, were assessed in an extensive
nested cross-validation experiment. A high sensitivity (74.2%), specificity (79,8%),
accuracy (77.5%) and ROC-AUC (0.81) to predict the MPMS on previously unseen cases
was observed. Additionally, learning curves suggest further improvement of the
predictive performance by training the model on a larger dataset.

This study represents a pioneering integration of automated knee bone morphology
analysis with conventional clinical data into a unified machine learning pipeline. The
results are in line with our previous exploratory study on shape variations in the same
dataset [27]. Again, the same modes of shape variations were found to be associated
with the development of MPMS: a smaller knee size, a wider mediolateral femoral
notch and a smaller medial femoral condyle.

The achieved discriminative power of our model outperformed the study of Lu et al. on
graft failure and contralateral ACL injury prediction [30] in a dataset of 1497 patients.
Unfortunately, no results on prediction sensitivity, specificity or accuracy were reported,
and only the ROC-AUC was reported as being 0.67 for contralateral ACL injury and 0.70
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for graft failure. Another study employing machine learning for predictive models
related to knee arthroscopy attempted to predict opioid use following arthroscopy on a
dataset of 381 patients [31]. An ensemble model of a support vector machine, random
forest, extreme gradient boost and adaptive boosting classifier resulting in a ROC-AUC
of 0.74. An imaging-based study by Zhao et al. successfully predicted the recurrence of
hallux valgus based solely on radiographic measurements [32]. Their approach utilized
features extracted from both pre-operative weightbearing and post-operative
non-weightbearing images as inputs for a support vector machine classifier, achieving
an accuracy of 75.6% and an ROC-AUC of 0.88. A systematic review on predictive
models for clinical outcomes in hip arthroscopy highlighted considerable variability in
model performance [33], with reported ROC-AUC values ranging from 0.57 [34] to 0.94
[35], depending on the predictor variables used (radiographic indices alone or
combined with clinical data). In shoulder arthroplasty, machine learning models have
already achieved over 90% accuracy in predicting 30-day post-operative complications
[36, 37]. Notably, these studies benefited from a large dataset of 21,544 elective total
shoulder arthroplasty cases (80% for training, 20% for testing), enabling the use of more
complex artificial neural networks.

One notable strength of this study was the rigorous approach taken to ensure the
completeness of patient records during the inclusion process. By systematically
excluding records with incomplete data, the study eliminated the need for data
imputation, thus avoiding potential sources of noise or bias associated with such
methods [38]. Additionally, given the relatively small size of the dataset, the
implementation of a nested cross-validation approach enabled the utilization of all
available data throughout each stage of model development. This approach minimized
the risk of introducing optimistic bias, which can occur when tuning model
(hyper)parameters on the same dataset used for assessing model performance [39].
Particularly in smaller test datasets, the observed model performance can be affected by
the inherent randomness involved in partitioning data into training and test subsets. By
leveraging all non-overlapping test splits for model evaluation, this study reduced the
likelihood of unintentionally selecting subsets of data that might be inherently more
challenging or easier, ensuring each subject was used once in testing the model’s
performance [40].

A common challenge in this study, as with all machine learning approaches, is the need
for high-quality, sufficiently large training datasets. Moreover, it is essential that the
training data accurately reflect the patient population for which the model is intended.
Ideally, this requires the dataset to show feature distributions that align closely with
those of the target population, providing enough variability to support robust learning
and generalizability. Although our dataset of 240 post-meniscectomy patients may be
considered sufficiently large, the learning curves suggest that model performance could
improve with additional training samples. Additionally, external validation is crucial to
confirm the study’s findings. These independent validations are essential to strengthen
clinician confidence, supporting the model’s integration into clinical practice [33, 41].
Next, the implemented calculation of Shapley values provides a popular approach for
interpreting complex predictive models by attributing each predictor variable’s
contribution to the model’s output [42, 43, 44, 45, 46]. However, Shapley values face
limitations, particularly when predictor variables are correlated. As previously
reported [27], strong correlations between knee shape and clinical data are present, e.g.
linking knee size to patient length, or knee aspect ratio (mediolateral/anteroposterior)
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to biological sex [47]. Additionally, patient weight and length are also strongly
correlated. In those cases, Shapley values can misattribute importance across
predictors, as the method lacks a mechanism for disentangling shared influence among
correlated variables. This can lead to misleading interpretations, where correlated
variables either receive inflated or diluted importance scores depending on the
distribution of their interdependencies [48]. In contrast, causal inference models aim to
model relationships that more explicitly account for causal pathways and conditional
independence, often using assumptions or data-driven methods to control for
confounding [49]. Causal machine learning is an emerging subdiscipline of machine
learning, with still some challenges before translation to clinical practice [50].

Future research directions could focus on integrating biomechanical simulations (e.g.
finite element analysis) to further interpret these data-driven predictor values. Given
that many of the predictor features significantly influence knee biomechanics, such
simulations would offer a physically grounded rationale for the observed data-driven
outcomes. Moreover, reverse engineering approaches could potentially define
patient-specific targets for weight management or adjustments in activity patterns.
Additionally, incorporating kinematic and kinetic data from gait analysis as
preoperative predictor variables may further strengthen the model’s predictive
capability [51]. Currently, the model relies on static analysis alone, despite evidence
indicating the crucial role of the knee’s soft tissue envelope for stability purposes—an
aspect not yet represented in the existing model.

15.5 Conclusion

In conclusion, this study represents a promising initial step toward developing a clinical
decision support system for the treatment of medial meniscus lesions. On average, the
proposed machine learning model achieved an accuracy of 77.5% in the prediction of
the medial post-meniscectomy syndrome. Following analysis of the Shapley values,
following shape variations affected the predicted risk for medial post-meniscectomy the
most: a smaller knee size, a wider femoral intercondylar notch, and a smaller medial
femoral condyle. All of these shape variations are related to the medial compartment
contact surface. A stronger evidence-based patient selection for arthroscopic partial
medial meniscectomy has the potential to enhance surgical success rates while reducing
the risk of medial post-meniscectomy syndrome and, consequently, delaying or
preventing the early onset of medial knee osteoarthritis.
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Conclusions

16.1 Technological findings

16.1.1 Automated image segmentation

During the collection of multi-center pre-operative MRI imaging of meniscus patients,
image quality presented the first major challenge of this research. This was addressed
through an exploration of currently available MRI knee scan protocols, and extended
towards the main imaging modalities for diagnostic purposes in the field of
orthopaedics (CT and MRI). Both imaging modalities are commonly used to create 3D
models for any anatomy of interest. As previously discussed, the accuracy of machine
learning outputs in any application is fundamentally limited by the quality (e.g.
resolution) of its input data. Achieving optimal image quality in MRI requires careful
balancing of parameters affecting image field of view and resolution, signal-to-noise
ratio, and scan time. Conventionally used clinical 2D MRI protocols, which typically
involve multiple sequences acquired in different planes (e.g. sagittal, axial,...) with
thicker slices, were examined in conjunction with recent advancements in 3D MRI
protocols for the assessment of knee morphology and thinner anatomical structures
such as cartilage layers. Near-isotropic 3D MRI protocols, which provide
high-resolution images with minimal slice thickness, were identified as particularly
well-suited for the automated segmentation of knee bone and cartilage. A second
challenge addressed in this study was the labor-intensive and time-consuming nature
of manual image segmentation, a bottleneck for scaling up knee morphology analysis
towards routine clinical applications. Since the introduction of the U-Net architecture in
2015, which resulted in a revolution in the field image segmentation, a wide range of
neural network architectures has been proposed to automate segmentation tasks across
diverse datasets. Four state-of-the-art neural networks were carefully selected for
comparison in the context of MRI knee segmentation.

16.1.2 Automated anatomical landmarking

Based on 3D models derived from pre-operative MRI scans of meniscus patients, a tool
for automated landmarking was developed and validated. First, the manual method for
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landmark-based morphometric measurements was validated, and consequently the
difference between the automated method and the mean of three observers as
consensus was assessed. The intermethod variability was in the same range as the
interobserver variability and 71% and 95% of all automated morphometric
measurements measurements were within 1 mm and 2 mm agreement with the manual
consensus measurements. This landmarking tool has several potential applications,
including donor-recipient matching for meniscal allograft transplantation (MAT) and
morphometric analyses to select optimal component sizes in total knee arthroplasty
(TKA).

16.1.3 Automated statistical shape analysis

Following the establishment of anatomical correspondences across 3D bone surfaces,
statistical shape models can be constructed, allowing quantification of shape variations
without the need for predefined landmarks. This data-driven approach enables the
extraction of principal components (or main modes of shape variation) within a dataset
of 3D bone surfaces, where each shape instance can be represented by a vector of
principal component weights.

16.1.4 Automated prediction of response to treatment versus failure

Elementary concepts of machine learning were explored and summarized, to serve as
background information for the final knee morphology-aware predictive model for
arthroscopic partial medial meniscectomy outcome (= clinical finding, cf. next section).

16.2 Clinical findings

16.2.1 Clinical applications of 3D image analysis

Four state-of-the-art neural networks for image segmentation were compared, both
from a computer science point of view using conventional segmentation metrics such as
the Dice score, and from an anatomical point of view by means of statistical parametric
mapping, in order to assess the anatomical location of erronous trends and maximal
errors in the 3D model domain. This comparative analysis did not reveal remarkable
insights with respect to segmentation accuracy, thereby shifting the focus towards
practical implemenation and ease of use when choosing an automated MRI knee
segmentation algorithm for bone and cartilage. Following 3D surface registration,
several clinical applications can be considered, going from landmark-based
measurements such as the femoral anteversion, to the reconstruction of missing
anatomies.
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16.2.2 3D knee morphology as risk factor for symptomatic knee
degeneration in the meniscus deficient knee

A pilot study was performed to investigate an empirical observation from clinics: a
subpopulation of medial compartment degeneration patients at a young age, presenting
with none of the known risk factors, but a rather narrow medial femoral condyle on
cross-sectional views of the MRI scan. In this pilot study, both a landmark-based
method and statistical parametric mapping were applied to characterize the small
medial femoral condyle morphotype as follows: an effectively smaller medial femoral
condyle and medial tibial plateau; a wider lateral femoral condyle and a wider distal
femur on a smaller tibial plateau. This finding was further backed by a next study,
comparing the characteristics of donor (functional meniscus) and acceptor
(dysfunctional meniscus) meniscal allografts in MAT. A discrepancy in terms of size
was found for the medial meniscus allografts: meniscus deficient patients had smaller
medial menisci than the general donor population. This again associates a smaller
medial tibiofemoral compartment to early meniscal failure in neutrally aligned knees
(cf. indications for MAT). Next, a large retrospective cohort study of 240
post-meniscectomy patients was conducted in the context of the MEFISTO project, with
an equal proportion of responders to arthroscopic partial medial meniscectomy and
patients who developed the medial post-meniscectomy syndrome. The two groups
were comparable in terms of patient sex, weight and length, but showed significant
morphological differences. Following statistical shape analysis, the first three principal
components (or main modes of shape variation) were significantly different between the
responders and the MPMS patients. A smaller three-dimensional knee size, a wider
femoral notch (and intercondylar eminence with for the tibia) and a smaller medial
femoral condyle were significant characteristics of the MPMS group patients.

16.2.3 Optimal patient selection for arthroscopic partial medial
meniscectomy

To predict the onset of MPMS on a patient-specific level, our morphotype-based
predictive model was able to discriminate between responders and MPMS patients with
a mean accuracy of 77,5% , a mean sensitivity for MPMS of 74.2% and a mean specificity
for MPMS of 79.8% in a nested cross-validation experiment. To conclude, this first
attempt to predict the outcome of APMM already paves the way for a
morphotype-based clinical decision support tool for APMM, aiding the clinician by
means of a data-driven patient selection, potentially resulting in higher surgery success
rates and less failures caused by meniscal deficiency as observed in the
post-meniscectomy syndrome.
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16.3 Closing remark

To quote Ronald S. Weinstein (1938-2021), an academic pathologist:

”A fool with a tool is still a fool.”

This statement can be interpreted in two ways:

1. ”No tool can surpass the intelligence of the person using it.”

2. ”Using the wrong tool, or using the tool wrongly, offers no advantage.”

While we are still some steps away from achieving artificial general intelligence (AGI),
the relevance of the first interpretation is already open to debate. The second
interpretation, however, is more pertinent than ever. Now, after the initial excitement
for artificial intelligence, and particularly generative deep learning models such as GPT,
some of the first related challenges have begun to emerge. Generative AI models as an
example can sometimes be unreliable, prone to hallucination, or exhibit biases due to
the data they were trained on. One should realize that AI and machine learning
algorithms can only be applied effectively within the scope for which they were trained.
If the target population has a significantly skewed distribution of a latent variable
compared to the training dataset, the model’s performance could degrade to little more
than random guessing, based on basic probability theory. Therefore, it is essential to
know and to keep in mind the final goal of the applied algorithm at all distinct phases
of the development: from data collection and preprocessing to error analysis and final
implementation into (clinical) practice. Some technical background knowledge of the
end user might help in early detection of the model’s limitations, and, more
importantly, how to overcome them in the most efficient way. This PhD dissertation
aims to be a first step into the implementation of data-driven predictive algorithms into
orthopedic clinical practice. Just as medicine continuously evolves, both in terms of
diagnosis and treatment options, these clinical decision support systems should evolve
too, by adding more (recent) data to the training dataset to keep up with the current
medical advances. Lifelong learning is not solely essential for healthcare professionals;
it is equally vital for these data-driven systems, which must adapt and evolve alongside
the ever-changing landscape of clinical practice.
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Future perspectives

17.1 Technological perspectives

The field of imaging is undergoing rapid advancements that extend beyond improving
image quality, such as signal-to-noise ratio and resolution, in established modalities like
CT and MRI. Innovations are emerging related to imaging hardware, acquisition
protocols, software for image processing, and even patient positioning boundary
conditions. One promising trend is low-field magnetic resonance imaging (MRI), which
could make MRI more accessible in resource-limited settings [1]. With lower hardware
demands, such as smaller and more affordable magnetic coils, and reduced
requirements for superconducting conditions, low-field MRI may lower costs and
expand availability. This approach not only offers logistical benefits but may also
mitigate artifacts from metallic implants [2]. While low-field MRI is unlikely to directly
improve the performance of imaging-based predictive models, the attention to lower
magnetic fields in MRI is an important driver for the transition of innovations that were
originally developed for high-field MRI towards regular clinical MRI scanners [3].

Another key area of innovation is the development of weight-bearing MRI protocols for
the lower limb. Similar to recent advancements in computed tomography,
weight-bearing MRI holds potential for assessing cartilage, menisci, and ligaments
under load, thereby offering insight into the mechanical properties and structural
response of knee tissues under compression [4]. Though still a simplification of
real-world dynamic loading, weight-bearing MRI provides valuable data on joint
behavior in a stance-like condition [5]. As both upright scanning in a standing position,
as well as simulating load in supine position (by applying a predefined ground reaction
force on the feet) are both challenging in MRI, weight-bearing CT is a highly valuable
alternative for orthopaedic applications like weight-bearing lower limb alignment
analysis under weight-bearing conditions [6].

Next, quantitative MRI (qMRI) holds significant promise as an advanced imaging
modality for knee cartilage assessment, providing detailed insights into tissue
composition and microstructural integrity that go beyond conventional MRI. By
measuring specific biomarkers such as T1ρ, T2, T2*, and T1 relaxation times, qMRI
enables the quantification of cartilage health, subchondral bone quality, and meniscal
integrity—essential factors in understanding osteoarthritis (OA) progression and other
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degenerative joint diseases [7, 8]. This quantitative approach allows for early detection
of biochemical changes in cartilage and other knee joint tissues before morphological
deterioration becomes visible, thus facilitating earlier diagnosis and intervention. As
qMRI techniques continue to improve in speed and accuracy, including developments
in deep learning [9] to enhance image reconstruction and interpretation, their clinical
relevance is expanding, with applications in both patient stratification for treatment and
monitoring therapy efficacy.

Phase-contrast X-ray imaging and phase-contrast computed tomography are other
promising image modalities with potential future use cases in orthopaedics [10]. It
makes use of the phase shift distribution, caused by X-ray refraction, and is therefore
superior in weakly absorbing tissues, enabling microscopic images with spatial
resolutions up to 0.2 nm [11]. It would therefore offer a non-invasive alternative to
histological examination.

In the subsequent stage of image processing, deep learning is leading transformative
changes. Deep learning algorithms have demonstrated remarkable efficacy in image
reconstruction, allowing for reduced scan times while maintaining resolution and
signal-to-noise ratios or superresolution [12]. Generative AI models further supports
image interpretation by translating intricate visual details into interpretable formats,
such as generating detailed text descriptions [13, 14] or flagging regions of clinical
interest within images.

The domain of statistical shape analysis is also evolving with advancements in
geometric deep learning, which leverages graph theory to extract anatomically
meaningful features from complex shapes or point clouds [15, 16]. Geometric deep
learning facilitates anatomical correspondence mapping on 3D surfaces and enables
non-linear statistical shape analyisis, fostering a more comprehensive understanding of
anatomical variations [17].

17.2 Clinical perspectives

Advancements in surgical techniques and breakthroughs in implant materials will
continue to drive innovation in meniscus substitution therapy. Recently, the use of
tendon autograft was investigated as an alternative for the scarce meniscal allografts.
Promising results were already obtained in a rabbit model, showing chrondroprotective
effects compared to the control group [18]. They accommodate for a wide range in size
[19], thereby addressing the observed discrepancy in terms of meniscal size between
acceptor demand and donor supply in MAT [20]. Surgical technique is also of crucial
importance when replacing the non-functional native meniscus by an artificial
meniscus implant, as it ensures the fixation of the implant to the tibial bone [21].
Additionally, research on 3D bioprinting and tissue engineering continues to fine-tune
implant and scaffold materials, allowing for biomimetic implant designs aiming to
restore the native joint homeostasis [22, 23, 24].

Healthcare applications are likely to see exponential growth in predictive and
prognostic models as data availability increases, both in terms of feature count and
patient volume. This expansion is anticipated to yield models with enhanced accuracy,
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potentially evolving into clinical decision support systems (CDSS). These tools can
provide clinicians with data-driven treatment recommendations, improving
decision-making for individual patients [25, 26]. However, it will remain the clinician’s
responsibility to interpret model outputs, understanding the limits of predictive
accuracy within the specific context of the model’s training data and usage parameters.
As healthcare systems integrate these advancements, they must be implemented with a
strong emphasis on clinical applicability, safety, and interpretability, ensuring that
predictive models support rather than replace the clinician’s expertise.

A next step towards clinical implementation of the proposed methodology includes
external validation by means of a large, prospective study. Extensive automation of
image segmentation and statistical shape analysis makes the proposed workflow
already scalable to massive datasets. The addition of other treatment options in a
longitudinal follow-up study could even enable to extend the model from simply
predicting the medial post-meniscectomy syndrome to a true clinical decision support
system, directly suggesting the treatment option with the highest patient-specific
chance of a successful outcome.
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proximal tibia.
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