
Extended imaging volume in cone-beam X-ray 1 

tomography using the weighted Simultaneous Iterative 2 

Reconstruction Technique 3 
 4 

 5 

Joaquim G. Sanctorum1, Sam Van Wassenbergh2, Van Nguyen3, Jan De Beenhouwer3, Jan 6 

Sijbers3, Joris J.J. Dirckx1 7 

1. Laboratory of Biophysics and Biomedical Physics (BIMEF), University of Antwerp, Antwerp, 8 

Belgium 9 

2. Laboratory of Functional Morphology (FunMorph), University of Antwerp, Antwerp, 10 

Belgium 11 

3. Imec – Vision lab, University of Antwerp, Antwerp, Belgium 12 

Key-words: x-ray tomography, detector-offset, field-of-view, image intensifier, cone-beam 13 

Abstract 14 

An issue in computerized X-ray tomography is the limited size of available detectors relative 15 

to objects of interest. A solution was provided in the past two decades by positioning the 16 

detector in a lateral offset position, increasing the effective field of view (FOV) and thus the 17 

diameter of the reconstructed volume. However, this introduced artifacts in the obtained 18 

reconstructions, caused by projection truncation and data redundancy. These issues can be 19 

addressed by incorporating an additional data weighting step in the reconstruction algorithms, 20 

known as redundancy weighting. In this work, we present an implementation of redundancy 21 

weighting in the widely-used Simultaneous Iterative Reconstruction Technique (SIRT), 22 

yielding the W-SIRT method. The new technique is validated using geometric phantoms and a 23 

rabbit specimen, by performing both simulation studies as well as physical experiments.  The 24 

experiments are carried out in a highly flexible stereoscopic X-ray system equipped with X-ray 25 



image intensifiers (XRIIs). The simulations showed that higher values of CNR could be 26 

obtained using the W-SIRT approach as compared to a weighted implementation of SART. The 27 

convergence rate of the W-SIRT was accelerated by including a relaxation parameter in the W-28 

SIRT algorithm, creating the aW-SIRT algorithm. This allowed to obtain the same results as 29 

the W-SIRT algorithm, but at half the number of iterations, yielding a much shorter computation 30 

time. The aW-SIRT algorithm has proven to perform well for both large as well as small regions 31 

of overlap, outperforming the pre-convolutional Feldkamp-David-Kress (FDK) algorithm for 32 

small overlap regions (or large detector offsets). The experiments confirmed the results of the 33 

simulations. Using the aW-SIRT algorithm, the effective FOV was increased by >75%, only 34 

limited by experimental constraints. Although an XRII is used in this work, the method readily 35 

applies to flat-panel detectors as well. 36 

1. Introduction 37 

An issue concerning digital x-ray detectors is their limited size, therefore limiting the size of 38 

objects that can be imaged in radiography or for tomographic reconstruction. For radiography 39 

purposes, solutions were provided in the form of semi-automatic (Dewaele et al 1999) or 40 

automatic (Wang et al 2018) x-ray image stitching methods, allowing for an enlargement of the 41 

field of view (FOV). This solution is generally not applied to tomographic reconstruction as a 42 

more adequate solution was found and developed during the past two decades. It was already 43 

shown early on that the diameter of the reconstructed volume could be increased by positioning 44 

the detector in a laterally shifted, non-centered position relative to the beam axis and 45 

tomographic rotation axis (Cho et al 1996). In this way, each recorded projection contains data 46 

of at least half the width of the object under consideration, and the effective imaging width is 47 

enlarged to a maximum of twice the physical width of the detector, depending on the amount 48 

of detector offset (Wang 2002). Yet, adjustments to convenient reconstruction algorithms are 49 

necessary to remove the artifacts that are inherent to this detector offset method.  50 



Positioning the detector in a laterally shifted position causes truncation of the image data, which 51 

leads to high-frequency components in Fourier space and is one of the sources contributing to 52 

artifacts in the reconstruction. This issue was identified and a solution was proposed by 53 

introducing an overlap region in the scanning geometry (Cho et al 1996), as the overlap region 54 

allows for the smoothing of the projection data near the truncated edge. This smoothing turns 55 

the edge gradient into a non-singular profile, eliminating the corresponding high-frequency 56 

components in Fourier space. However, the overlap region also introduces data redundancy, 57 

since parts of the object which lie in this region are imaged over the full 360°, whereas the other 58 

parts are imaged over only 180°. Parker introduced a redundant data weighting scheme for 59 

short-scan fan-beam CT (Parker 1982) and this concept was adopted to detector-offset 60 

tomography to simultaneously correct for data redundancy and truncation edge smoothing. In 61 

cone-beam CT, with horizontal rotation stages, data redundancy only occurs in the horizontal 62 

midplane, and data redundancy in non-midplanes is assumed as an approximation. 63 

Drawing from the results of Parker, redundancy artifacts have been addressed by introducing a 64 

weighting function in the reconstruction algorithms. The redundancy weighting function 𝑤(𝑡) 65 

generally depends on the horizontal detector coordinate 𝑡 and provides a smooth transition over 66 

the redundancy region between the truncated edge and the uniquely imaged data. In general, 67 

the functions have a goniometric form and a zero-gradient on the redundancy region boundary.  68 

First, the redundancy weighting scheme was implemented in analytic methods, such as filtered 69 

backprojection (FBP) and FDK (Feldkamp et al 1984). Cho et al. (Cho et al 1996) implemented 70 

a weighting scheme in the FDK algorithm in two different ways, before or after the convolution 71 

step, referred to as pre-convolutional and post-convolutional weighting. It was shown through 72 

simulation studies that a larger overlap region is required for pre-convolutional weighting, thus 73 

limiting the obtainable diameter of the reconstructed volume. However, the post-convolutional 74 

weighting method is more complex as it needs more preprocessing steps and it introduces more 75 



severe shading artifacts for small overlap regions. It was therefore advised to use a moderate 76 

overlap region and pre-convolutional weighing, which was later also used by Wang in 77 

simulation studies in the field of micro CT (Wang 2002). The results were in agreement with 78 

those of Cho et al, and the method performed well for different overlap sizes, yielding a flexible 79 

way of resizing the detector FOV. Using the weighting function proposed by Wang, Yu et al. 80 

(Yu et al 2004)improved the numerical properties of the reconstruction using a large detector 81 

offset (and thus a small overlap region) by converting the weighted cone-beam projection data 82 

to equispaced parallel beam data (Yu et al 2004). Then, FBP was used to obtain the 83 

reconstruction, yielding a suppression of the shading artifacts as opposed to the FDK algorithm. 84 

Vedantham et al. (Vedantham et al 2020)  examined the quantitative properties of three 85 

different weighting functions (Cho et al 1996, Wang 2002, Schäfer et al 2011) in a pre-86 

convolutional FDK scheme for cone-beam breast CT. It was found that the results obtained 87 

using the different weighting functions were equivalent, which was to be expected as the 88 

weighing functions, though having a different formulation, were nearly identical. A 89 

comparative study between the use of redundancy weighting in FBP-type and backprojection-90 

filtration-(BPF)-type methods was conducted by Schäfer et al. (Schäfer et al 2011), which 91 

showed that BPF-type methods have the potential of providing better image quality for small 92 

redundancy regions, while FBP-type methods were superior in the case of larger overlap 93 

regions. 94 

Besides analytical reconstruction methods, redundancy weighting schemes have also been 95 

implemented in iterative algorithms. Hansis et al. reported the use of redundancy weighting in 96 

two different iterative reconstruction schemes: Ordered Subset Simultaneous Algebraic 97 

Reconstruction Technique (OS-SART) and Maximum Likelihood Ordered Subset Separable 98 

Paraboloidal Surrogates (ML OS-SPS) (Hansis et al 2010). Instead of applying the sinusoidal 99 

weighting directly to the raw projections, it was applied to subsets of opposite correction 100 



projection pairs that contribute to the update of the same voxel, where the correction term is 101 

normalized on a voxel level. This way, the  unit sum criterion of the weights (𝑤(𝑡) + 𝑤(−𝑡) =102 

1) as stated by Parker was circumvented, granting more freedom in the choice of 𝑤(𝑡). It was 103 

shown that, for a small redundancy region, their approach (both SART and ML) yielded better 104 

results in terms of image uniformity (less shading artifacts) as compared to FDK. Bian et al. 105 

implemented the redundancy weighting scheme in two optimization methods (ASD-WPOCS 106 

and EM) for sparse data tomography (Bian et al 2012). They found that their ASD-WPOCS 107 

method produced superior results in terms of streak artifact mitigation and low-contrast details 108 

as opposed to EM or FDK, opening up possibilities for dose reduction in detector-offset CBCT. 109 

In the field of micro CT, Sharma et al. implemented the redundancy weighting in a hybrid 110 

reconstruction scheme to merge the benefits of post-convolutional weighted FDK and weighted 111 

SART in terms of low- and high-frequency contributions, suppressing shading artifacts in the 112 

reconstruction (Sharma et al 2014). 113 

The standard reconstruction technique used in medical cone-beam systems is the FDK 114 

algorithm, due to its speed and ease of use. However, the FDK algorithm only provides reliable 115 

results for perfectly circular projection tracks, and can therefore not be used in highly modular 116 

imaging systems (unless a specific modification to the FDK algorithm is implemented for each 117 

change of geometry). Therefore, we propose the first implementation of the redundancy 118 

weighting scheme in the Simultaneous Iterative Reconstruction Technique (SIRT), as it can 119 

handle more complex geometries easily and is thus widely applicable. The performance of the 120 

weighted SIRT (W-SIRT) algorithm is compared to the pre-convolutional weighted FDK 121 

algorithm and a weighted SART (W-SART) implementation. We will consider the practical 122 

implications of using the detector offset method in a highly modular set-up to estimate the 123 

maximum gain in effective detector width. The proposed algorithm will be experimentally 124 

validated using physical geometric phantoms and a rabbit specimen.   125 



2. Methods 126 

2.1 Redundancy weighting 127 

Positioning the detector in a lateral offset position causes the projections to be width-truncated 128 

and to contain redundant data in the vicinity of the projected position of the rotation axis, which 129 

is schematically visualized in figure 1. Both of these issues can be solved by introducing a 130 

redundancy weighting function 𝑤(𝑡) in the reconstruction algorithm. Such a function should 131 

assume a value of one within the range of the detector outside of the redundancy region and a 132 

value of zero out of the range of the detector. Within the redundancy region, the function should 133 

provide a smooth transition from zero to one, where the unit sum of the weights is to be 134 

respected (𝑤(𝑡) + 𝑤(−𝑡) = 1). At the edges of the redundancy region, the  135 

 
Figure 1: (a) Schematic representation (top view) of a detector surface (D) being placed in a lateral offset 
position with respect to the line connecting the position of the rotation axis (thick black dot) and the source (S), 
which is represented by a dashed line. The center of the detector is depicted using a dotted line, and the offset 
value is denoted as Δ. The thick line represents the part of the cone in which redundant data is recorded, 
corresponding to the horizontal detector coordinate 𝑡 ∈ [−𝑇, 𝑇]. The distance between the source and the 
detector surface equals 𝑅. (b) Front view of the detector surface introducing verticle detector coordinate 𝑣. The 
same symbols as in (a) apply. The thick gray line shows the typical shape of the redundancy weighting function, 
varying smoothly from 0 to 1 from – 𝑇 to 𝑇. 

 136 



derivative should be zero. A function that meets these demands was proposed by Wang et al. 137 

and will be used further on in this manuscript (Wang 2002): 138 
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In the former expression, 𝑡 is the horizontal detector coordinate. The value 𝑇 marks the 140 

redundancy region as depicted in figure 1 and 𝑅 represents the distance between the source and 141 

the detector surface. The typical shape of the weighting function is shown in figure 1(b).  142 

2.2 W-SIRT implementation 143 

In general, algebraic reconstruction methods are based on solving the following linear system 144 

of equations: 145 

 𝑨𝒙 = 𝒑, (2) 

where 𝒙 ∈ ℝ௡ is a voxelized model of the volume of attenuation coefficients to be 146 

reconstructed, which is transformed in a set of log-corrected projections 𝒑 ∈ ℝ௠ by the 147 

projection matrix 𝑨 ∈ ℝ௠×௡ that represents the relative contributions of the rays to each pixel 148 

of the projections. A trivial way of solving this equation is by inversion of the matrix 𝑨. 149 

However, the matrix 𝑨 is generally not a square matrix, implying the non-existence of its 150 

inverse. Moreover, the huge size and sparsity of the matrix 𝑨 do not allow for matrix inversion, 151 

and therefore, iterative methods are used to estimate the volume 𝒙 by minimizing the difference 152 

between the recorded projections 𝒑  and the estimated projections 𝑨𝒙.  One of such iterative 153 

methods, which solves a weighted least-squares problem, is the Simultaneous Iterative 154 

Reconstruction Technique (SIRT) (Kak and Slaney 1988): 155 
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The factor 𝛼 is a relaxation parameter that equals 1 in the regular SIRT algorithm. This update 156 

scheme is often presented in its matrix notation by defining 𝒙 = ൣ𝑥௝൧, 𝒑 = [𝑝௜], 𝑨 = ൣ𝑎௜௝൧, 𝑹 =157 

ൣ𝑟௜௝൧, and 𝑪 = ൣ𝑐௜௝൧: 158 

 𝒙(௞ାଵ) = 𝒙(௞) + 𝑪𝑨்𝑹൫𝒑 − 𝑨𝒙(௞)൯, (4) 

where 𝑹 and 𝑪 are diagonal matrices containing the inverted row and column sums, 𝑟௜௜ =159 

1/ ∑ 𝑎௜௝
ே
௝ୀଵ  and 𝑐௝௝ = 1/ ∑ 𝑎௜௝

ெ
௜ୀଵ , respectively. It can be proven that in this form, the 160 

convergence of the SIRT algorithm is guaranteed (Gregor and Benson 2008). In this iterative 161 

scheme, the redundancy weighting can be implemented prior to the backprojection step 162 

(multiplication by 𝑨்) by introducing the diagonal weighting matrix 𝑾, of which the diagonal 163 

elements correspond to the correct weighting factors calculated using equation (1). 164 

 𝒙(௞ାଵ) = 𝒙(௞) + 𝑪𝑨்𝑹𝑾൫𝒑 − 𝑨𝒙(௞)൯. (5) 

We thus obtain the weighted SIRT, or W-SIRT, update scheme, which shall be evaluated using 165 

different study objects. As the matrix 𝑾 only contains values from zero to one on its diagonal 166 

(which are thus its eigenvalues), convergence is still guaranteed. Reconstructions are carried 167 

out using the 1.9.0.dev11 version of the ASTRA toolbox (Aarle et al 2016) in a Matlab 168 

(Mathworks, Massachusetts, USA) environment (version 2019b). To assess the convergence 169 

rate of the proposed method, the weighted residual norm (RN) is calculated after each iteration. 170 

The norm is calculated as ‖𝑨𝒙 − 𝒑‖ோ with ‖𝑨𝒙 − 𝒑‖ோ
ଶ = (𝑨𝒙 − 𝒑)்𝑅 (𝑨𝒙 − 𝒑). The method 171 

will be evaluated using some quantitative measures, such as root-mean-square contrast (or RMS 172 

contrast, 𝐶ோெௌ), contrast-to-noise ratio (CNR), root-mean-squared error (RMSE), and total 173 

computation time.  174 



The contrast in the reconstructed volumes will be assessed using the RMS contrast 𝐶ோெௌ, 175 

calculated as 176 

 𝐶ோெௌ = ඩ
1

𝑁
෍൫𝑥௝ − 𝒙൯

ଶ
ே

௝ୀଵ

 , (6) 

where 𝑁 is the number of voxels in the reconstructed volume and 𝒙 is the mean value of the 177 

reconstructed volume. The CNR is calculated as the difference between mean gray values in 178 

equally-sized, homogeneous regions in the signal and the noise divided by the standard 179 

deviation of that noise region: 180 
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wherein 𝜇 stands for mean and 𝜎 stands for standard deviation.  In the simulations, RMSE 181 

between the reconstructed volume and the original phantom is calculated as   182 
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with 𝑁 the total number of voxels in the reconstructed volume. The superscripts ‘rec’ and ‘pha’ 183 

stand for ‘reconstructed volume’ and ‘phantom’, respectively. Reconstruction times are 184 

measured by Matlab. 185 

2.3 Simulations 186 

Prior to physical experiments, the W-SIRT algorithm is compared to the pre-convolutional 187 

weighted FDK algorithm and the weighted SART-TV (W-SART-TV) method presented earlier 188 

by Sharma et al., referred to as ‘WIR’ in their work. (Sharma et al 2014). Following the work 189 



of Sharma et al, the TV denoising is performed using gradient descent. The phantom used in 190 

the simulations is a slightly elongated version of the 3D Shepp-Logan phantom (Shepp and 191 

Logan 1974) of size 1341 voxels × 678 voxels × 283 voxels with a voxel size of ≈ 0.143 mm.  192 

The goal of the simulations is to compare the methods in terms of convergence rate, 193 

reconstruction time, and the CNR and RMSE of the reconstructed slices for both a large and a 194 

small overlap region. Furthermore, we assess the performance of the WIR method without 195 

applying TV denoising to the reconstructed volume, referred to as weighted SART or W-SART. 196 

Finally, the possibility of speeding up the W-SIRT method is investigated. 197 

Using the ASTRA toolbox, 450 forward projections of the voxel model were obtained over 198 

360° by applying the forward projection operators. In the projection geometry, a conical x-ray 199 

beam was used of which the angle is automatically set by ASTRA to cover the full extent of 200 

the detector. The detector was chosen to have 2048 pixels in the 𝑡-dimension and 700 pixels in 201 

the 𝑣-dimension. Gaussian noise and blur were added to the projections, as it was shown in our 202 

previous work that this is in good agreement with the noise and blur characteristics of our real 203 

detectors (Sanctorum et al 2020a). The geometry parameters in the simulations, found in table 204 

1, were chosen to correspond to the physical parameters of the set-up. To simulate the detector 205 

offset, the projection data was truncated in the 𝑡-dimension. First, 800 pixels were truncated to 206 

simulate an overlap region of 448 pixels (or 63.9 mm). Then, 1000 pixels were truncated, 207 

resulting in an overlap region of 48 pixels (or 6.8 mm). The overlap region is different in size, 208 

but the size of the FOV remains the same (292 mm). To examine the difference between the 209 

convergence rate using a centered detector and an offset-positioned detector, reconstructions 210 

are also made using the full, non-truncated projection data. For the assessment of the methods, 211 

only the central slice was reconstructed.  212 

 213 



Table 1: Simulation parameters 
phantom SRD (mm) DRD (mm) 2𝑇 (mm) 𝑁௣ 𝑁௧ 𝑁௩ 

Shepp-Logan 1770 230 63.9 450 2048 700 
Shepp-Logan 1770 230 6.8 450 2048 700 
The distances from the source to the rotation axis and from the detector to the rotation axis are denoted as SRD 
and DRD, respectively. The width of the overlap region is defined as 2𝑇 (see figure 2). For each set dataset, 450 
projections (𝑁௣) were sampled over 360°. The number of detector pixels in both dimensions is given by 𝑁௧ and 
𝑁௩, respectively.  

 214 

2.4 Image acquisition  215 

The radiographs were recorded using the stereoscopic 3D²YMOX (3D DYnamic MOrphology 216 

using X-rays) imaging system (Sanctorum et al 2019) (figure 2). The recorded images consist of 217 

2048 pixels × 2048 pixels covering a FOV of 292 mm × 292 mm (pixel size ≈ 0.143 mm). To 218 

rotate the samples, a custom-made rotation stage was used. A frequency-controlled 219 

asynchronous motor, equipped with a factor 40 gearbox, allows the top platform to make a 220 

complete revolution in ~2 s, during which the projection data is continuously recorded with a 221 

shutter time of 0.5 ms. As the 3D²YMOX system is highly modular (all components can be 222 

translated and rotated independently), there is a continuous range of possible detector offset, 223 

but every modification of the set-up requires a calibration of the system’s geometry, for which 224 

a method developed by Nguyen et al. was applied (Nguyen et al 2021).  Since the images are 225 

recorded using XRIIs, geometric distortion is present in every frame, deteriorating the accuracy 226 

of the geometry calibration and the quality of the tomographic reconstruction. A method 227 

developed earlier by Sanctorum et al. was used to remove the distortion from the images prior 228 

to geometry calibration and subsequent reconstruction (Sanctorum et al 2020a, 2020b). 229 



 
Figure 2: The stereoscopic 3D²YMOX system. The X-ray sources are attached to ceiling gantries, whereas the 
XRIIs are mounted on hydraulic trolleys. In the middle, the rotation stage is shown. The height of the rotation 
stage is provided to indicate the dimensions of the set-up. 

 230 

2.5 Experiments 231 

2.5.1 LEGO phantom  232 

The first experiments were carried out using a test phantom built of LEGO bricks (figure 3(a)), 233 

with dimensions of 183 mm × 128 mm × 76 mm. The phantom was built to fit within the FOV 234 

of a centered detector. This way, the reconstructions obtained with an offset-detector and the 235 

W-SIRT algorithm can be compared to those of a regular SIRT reconstruction (centered 236 

detector). To validate our proposed method for different sizes of overlap regions, the detector 237 

was manually set in four different offset positions, varying between 0 mm and 100 mm in steps 238 

of approximately 25 mm.  239 

Figure 3: Used study objects. (a) LEGO phantom. (b) PMMA phantom containing PVC tubes. (c) Frozen rabbit 
specimen. 



After each manipulation of the geometry, it is indispensable to record a dataset to calibrate the 240 

geometry of the set-up. For geometry calibration, a method developed by Nguyen et al. is used 241 

(Nguyen et al 2020, 2021). The amount of detector shift can be extracted from the calibration 242 

results, which will be used to calculate the resulting effective FOV. 243 

The purpose of the LEGO phantom is mainly to examine the difference in convergence rate, 244 

reconstruction quality, and computation time for a centered reconstruction and reconstructions 245 

obtained with different detector offset values. The phantom contains three gear-shaped objects 246 

at different heights and different distances from the center of the phantom that have 247 

homogeneous regions suitable for CNR calculations. Besides the quantitative analysis using the 248 

CNR and the 𝐶ோெௌ, the reconstructed volumes will be compared visually. In these analyses, the 249 

W-SIRT algorithm is compared to the W-SART algorithm. Table 2 shows the conditions under 250 

which the radiographs of the phantom were recorded. The phantom was positioned on the 251 

rotation stage resting on its largest surface with the studs of the LEGO bricks pointing upwards, 252 

as in figure 3(a). 253 

2.5.2 PVC tube phantom 254 

To validate the method on a sample of which the size exceeds the width of the detector, a 255 

phantom containing PVC tubes was built, which is shown in figure 3(b). The PVC tubes are 256 

mounted in a case of PMMA (thickness of 5 mm) of which the outer dimensions are 380 mm 257 

× 150 mm × 150 mm. The long PVC tubes have lengths of 370 mm, whereas the short tubes 258 

have lengths of 140 mm. All tubes have an outer diameter of 31.7 mm, but the gray tubes are 259 

hollow whereas the red tubes are solid. The PMMA case has a removable lid, so the phantom 260 

can be filled with, for example, water.  To record the projections, the phantom was placed on 261 

the rotation stage with the three short horizontal tubes parallel to the floor. First, the phantom 262 



was imaged in an empty state (filled with air), then it was imaged again filled with water. The 263 

imaging conditions can be found in table 2.  264 

2.5.3 Rabbit  265 

To validate our proposed method on a biological sample of which the dimensions are too large 266 

to be imaged with a centered detector, we recorded data of a rabbit specimen. The specimen 267 

was borrowed from the veterinary sciences department of the University of Antwerp, where it 268 

was sacrificed earlier for other research purposes unrelated to this work and was delivered to 269 

us in a frozen state. As shown in figure 3(c), the rabbit had a horizontal span of more than 40 270 

cm. The effective span of the rabbit as projected on the detector was larger than 45 cm due to 271 

the magnification factor of 1.13 (see table 2 for scanning information), vastly exceeding the 272 

physical size of our detector (292 mm). During the acquisition, the rabbit was positioned on the 273 

rotation stage on its side, as viewed from above in figure 3(c) (rotation axis through its flanks). 274 

The imaging parameters are found in table 2.  275 

Table 2: Experimental scanning information 
 LEGO phantom Tube phantom (air) Tube phantom (water) Rabbit 

SRD (mm) 1248 
237 
40 
60 

450 
0.4 
0.5 

1762 1762 1762 
DRD (mm) 230 230 230 

I (mA) 40 10 44 
V (kV) 70 86 70 

𝑁௣ 450 450 450 
Δ𝜃 (°) 0.4 0.4 0.4 

Δ𝑡 (ms) 0.5 0.5 0.5 
For each of the conducted experiments, the data acquisition parameters are presented. The 
distance from the source to the rotation axis (SRD), as well as the distance from the detector to 
the rotation axis (DRD) are given. The tube current (I) and voltage (V) are also shown. The 
number of recorded projections, the angular interval between the projections, and the shutter time 
are denoted as 𝑁௣, Δ𝜃, and Δ𝑡, respectively.  

 276 

3. Results 277 

Prior to showing the results, it needs to be mentioned that when reconstructed slices or gray 278 

value profiles are shown, the gray values originate from the raw reconstructed volume, without 279 

any postprocessing. This means that the gray values in the reconstructed volumes are not 280 



converted to integers or Hounsfield units. This implies that the gray values of a slice of a line 281 

profile windowed between two values do not only assume the integer values in between, but 282 

also decimal values.  283 

3.1 Simulation results 284 

In the simulations, the reconstructed slice had a size of 1440 voxels × 780 voxels with a voxel 285 

size of 0.143 mm. First, the convergence rate of the proposed W-SIRT method was examined 286 

by calculating the residual norm after each iteration. This was also done for the W-SART and 287 

W-SART-TV methods. In figure 4, the convergence curves are shown for 350 iterations of each 288 

method (panel (a)) for a centered detector and for an overlap region of 2𝑇 = 63.9 mm.  Panel 289 

(b) shows the residual norm of the last 150 iterations to increase visibility.  290 

 
Figure 4: (a) Convergence curves for the iterative methods under consideration for a detector overlap of 2𝑇 =
 63.9 mm and for a centered detector (indicated by the word ‘center’ in the legend). On the curves, the number 
of iterations for which convergence can be claimed are marked a ‘o’ and a ‘*’ symbols for the SIRT and SART 
methods, respectively. (𝒃) Final 150 iterations of the curves in (a) to illustrate the differences invisible in (a). 

 291 

It is shown in panel (a) that for a centered detector, the SIRT and SART algorithms (both not 292 

weighted) converge at roughly the same rate during the early iterations. However, during the 293 

later iterations, it is seen that the SIRT algorithm converges faster and that the convergence 294 

curve is more stable. When a laterally shifted detector is used, it is apparent that the W-SIRT 295 

algorithm converges slower than in the case of a centered detector, and the same is true for the 296 

W-SART method in comparison to the centered SART method. By including TV denoising in 297 



the W-SART method, the convergence curve of centered SART is approximated in the later 298 

iterations. The W-SIRT algorithm catches up with the centered SART algorithm after 299 

approximately 50 iterations and it is shown in panel (b) that the W-SIRT method converges 300 

faster than de SART variants.  301 

It is undesirable for the SIRT algorithm to converge slower in case the detector is put in an 302 

offset position, as this implies that more iterations are necessary to reach convergence, which 303 

is time-consuming. We therefore aim to accelerate the convergence rate of the W-SIRT 304 

algorithm by incorporating the relaxation parameter 𝑎 of equation (3) in equation (5): 305 

 𝒙(௞ାଵ) = 𝒙(௞) + 𝛼𝑪𝑨்𝑹𝑾൫𝒑 − 𝑨𝒙(௞)൯. (9) 

It was previously shown (Gregor and Benson 2008) that the convergence rate of the SIRT 306 

algorithm could be increased by choosing the value of 𝛼 to lie between 1 and 2. In the work of 307 

Gregor and Benson it is stated that a value of 𝛼 =
ଶ

ଵାఢ
 with 𝜖 ≤ 0.005 could double the rate of 308 

convergence, given it would lead to a correct bound on the minimum eigenvalue of the matrix 309 

𝑪𝑨்𝑹𝑨. Therefore, we have chosen the value of 𝜖 = 0.005, resulting in 𝛼 = 1.99 in equation 310 

(9). The weighted SIRT method corresponding to equation (9) with the given 𝛼 will be referred 311 

to as accelerated W-SIRT, or aW-SIRT, from now on. On both panels of figure 4, it is shown 312 

that the aW-SIRT algorithm indeed converges faster than the regular W-SIRT algorithm and 313 

that its convergence curve approximates the one of the centered, not-weighted SIRT algorithm. 314 

 Based on our data, a suitable criterion to claim convergence would be to state that the RN drops 315 

below 10% of its original value while the relative difference between two subsequent RNs, 316 

calculated as Δ𝑅𝑁௜ =  
ோே೔షభିோே೔

ோே೔షభ
 with 𝑖 the iteration number, drops below 0.1%. These 317 

convergence points are indicated in figure 4 using ‘o’ and ‘*’ symbols for the SIRT and SART 318 

methods, respectively. In table 3, the exact number of iterations 𝑁௜௧ for which convergence is 319 



reached is shown for each of the methods, along with the average time per iteration Δ𝑡௜௧, for the 320 

curves in figure 4.  321 

Table 3: Convergence overview 
Method 𝑁௜௧ Δ𝑡௜௧ 

Centered SART 164 0.102 
W-SART 125 0.102 

W-SART-TV 112 0.266 
Centered SIRT 203 0.128 

W-SIRT 316 0.129 
aW-SIRT 201 0.130 

Number of iterations 𝑁௜௧ and average time per 
iteration Δ𝑡௜௧ for the curves shown in figure 4. 

  322 

From table 3, it would seem that the SART methods converge at a faster rate than the SIRT 323 

methods. However, figure 4 shows that on the points where convergence could be claimed 324 

based on the criterion, the SART methods actually have not converged yet. In the SART 325 

methods, it is possible that a single iteration does not bring much new information, and therefore 326 

the RN barely alters, resulting in a small Δ𝑅𝑁௜. This does not occur for the SIRT methods, and 327 

the convergence claim is more reliable. Therefore, we have chosen to run the same number of 328 

iterations in the SART methods as in the W-SIRT method, as these curves are the most alike. 329 

Table 3 additionally shows that the time per iteration is generally smaller when using SART or 330 

W-SART, but the additional TV denoising tremendously increases the computation time.  331 

In figure 5, central slice reconstructions of the 3D Shepp-Logan phantom are shown for the 332 

different reconstruction methods, being pre-convolutional FDK and the SIRT and SART 333 

variants described earlier. The number of iterations for each method was chosen based on the 334 

convergence criterion (table 3). In the first column, the typical artifacts related to an off-335 

centered detector are shown. These have the form of bright circular artifacts, marking the 336 

overlap region. However, as is shown in the ROI images below the full slices, these artifacts  337 



 
Figure 5: Central slice reconstructions using the different reconstruction methods under consideration (different 
columns) for a centered detecter (first row), an overlap region of 2𝑇 = 63.9 mm (second row), and an overlap 
region of 2𝑇 = 6.8 mm (bottom row). The first column shows the phantom and typical artifacts that occur when 
no weighting is applied in an offset geometry. On the original phantom, two white squares of equal size indicate 
the regions used for CNR calculations. On each panel, the CNR, RMSE with the original phantom slice, total 
reconstruction time and number of iterations are indicated. Below each panel, an ROI if the three elliptic shapes 
in the bottom of the slice are shown to highlight details. The white arrow in the bottom row indicates remaining 
artifacts when using pre-convolutional FDK for small overlap sizes. The grayscale in the top left applies to all 
panels.  



may also introduce streak artifacts outside of the overlap region. It is shown that all of the 338 

proposed weighted reconstruction methods successfully remove the artifacts. The only 339 

exception is the pre-convolutional FDK method in case of a small detector overlap, where an 340 

artifact remains in the center (white arrow in bottom row). This was expected, as it was already 341 

shown in early literature that pre-convolutional FDK introduces artifacts in the case of a small 342 

redundancy region (Cho et al 1996).  343 

It is shown that, in the case of a centered detector, the FDK algorithm provides the best 344 

reconstruction in terms of RMSE and speed, but the SIRT algorithm provides the best CNR. 345 

The SART reconstruction displays some non-uniformity (mostly in the background) and has a 346 

CNR comparable to the FDK reconstruction, but it is faster than the SIRT algorithm for the 347 

same number of iterations.  When the detector is laterally shifted, the CNR drops and the RMSE 348 

rises for the W-FDK method. The rise of RMSE is due to the fact that the raw output of the 349 

FDK algorithm is globally darker than the original phantom, which is not the case for the 350 

iterative methods. The SART methods provide a higher CNR and a lower RMSE than FDK, 351 

showing that the SART methods can deliver better reconstructions at the cost of a longer 352 

computation time, which is most apparent using the W-SART-TV method. The TV denoising 353 

step results in a better CNR, but a slightly lower RMSE at the cost of a steep increase of the 354 

computation time. The W–SIRT method is slightly slower than the W-SART method, but the 355 

CNR is vastly increased and the RMSE is slightly lower. The aW-SIRT method is the fastest 356 

of the proposed weighting schemes and provides an RMSE which approximates the RMSE of 357 

a centered SIRT reconstruction, at the cost of a slightly lower CNR as compared to the W-SIRT 358 

algorithm. For the iterative methods, the CNR and RMSE seem to be unaffected by the amount 359 

of detector overlap. 360 



 
Figure 6: Vertical cross-sections at the center of the reconstructed central slice for (a) the SIRT methods, (b) 
the SART methods, and (c) the FDK methods. Panels (d)-(f) show horizontal cross-sections through the center 
of the three elliptical shapes at the bottom of the slice in the same order. The black arrow in panel (c) highlights 
the redundancy artifact that remained using FDK for a small redundancy region. The legends in the top panels 
also apply to the corresponding panels below.  

 361 

Visually, both the SIRT and SART methods provide decent reconstructions, but the SIRT 362 

methods seem to suffer less from noise, as is also shown in figure 6. This figure shows line 363 

profiles of vertical cross-sections at the center of the reconstructed slices (panels (a)-(c)) and 364 

horizontal cross-sections through the center of the three elliptic shapes at the bottom of the 365 

slices (panels (d)-(f)). For the weighted reconstructions, only the line profiles of the 366 

reconstructions for which 2𝑇 = 6.8 mm are shown, as the curves are nearly identical to those 367 

of 2𝑇 = 63.9 mm. By comparing panels (a) to (c), it is clear that the SIRT reconstructions are 368 

superior in terms of noise suppression, followed by the SART reconstructions. For the weighted 369 

FDK method, it is shown that the gray values lie substantially lower than those of the original 370 

phantom and centered reconstruction. From the line profiles, it seems that the gray values are 371 

roughly half of what they ought to be. Also, the dip in the gray values caused by the 372 

unsuccessful removal of the central artifact is visible, as indicated using a black arrow. In panels 373 

(a) and (b) it is hard to discriminate between the line profiles of the different methods, but 374 



differences are more noticeable in panels (d) and (e), although the line profiles for the three 375 

SIRT methods show no considerable differences. The line profiles in panel (e) show that the 376 

W-SIRT-TV method indeed reduces the noise, resulting in an increase of CNR. In panel (f) it 377 

is again shown that the weighted FDK results in overall lower gray values, and the three peaks 378 

of the elliptical shapes are nearly unidentifiable due to the noise.  379 

3.2 LEGO test phantom  380 

As formerly described, the detector was manually shifted over distances of approximately 25 381 

mm. Subsequent to each lateral shift, a calibration dataset, as well as a dataset of the LEGO 382 

phantom, was recorded. After calibration, the different detector shifts were found to be Δ =383 

{26.6, 45.5, 63.5, 89.7} mm. For each of the lateral shift values, the datasets were 384 

reconstructed using W-SART, W-SIRT, and aW-SIRT in a reconstruction volume of 650 voxels 385 

× 500 voxels × 800 voxels with a voxel size of 285 mm. The convergence rates of the different 386 

methods were examined first.  387 

 
Figure 7: Convergence curves for each of the values for the lateral detector shifts Δ = {26.6, 45.5, 63.5, 89.7} 
mm and the different reconstruction methods. In each panel, the inset shows the RN values for the last 100 
iterations to increase the visibility of the difference between the curves. The legend applies to all panels. 

 388 



Figure 7 shows that, as predicted by the simulations, the aW-SIRT algorithm has a faster 389 

convergence rate as compared to W-SIRT due to the relaxation parameter. The convergence 390 

curves of W-SIRT and W-SART are quite similar during the first few iterations, but it is clear 391 

that later on, the W-SIRT algorithm converges more stably. While the W-SIRT algorithm 392 

converges to the same value for the RN as aW-SIRT (only slower) after about 200 iterations, 393 

the same is not true for the W-SART algorithm, as seen in the insets. The similarity of the 394 

curves in the different panels indicates that the convergence rates of the methods are not affected 395 

by the amount of lateral detector shift.   396 

Next, figure 8 shows horizontal reconstructed slices of the LEGO phantom of different heights 397 

(ℎଵ = - 9.98 mm, ℎଶ = 8.85 mm, and ℎଷ = 27.95 mm relative to the center of the reconstructed 398 

volume) for a centered reconstruction using 200 iterations of SIRT and for reconstructions 399 

obtained using a shifted detector (Δ =89.7 mm) using 200 iterations of W-SART, W-SIRT and 400 

aW-SIRT. Slices for other values of the detector shift are not shown as they appear nearly 401 

identical. It is observed through visual inspection that for the shifted reconstructions, no circular 402 

artifact is present coaxial to the rotation axis, which implies that the weighting scheme indeed 403 

corrects for data redundancy and edge truncation in the reconstruction algorithms under 404 

consideration. By comparing the edges of the LEGO bricks close to the center of the volume to 405 

those closer to the edge of the object, it is seen that the edges away from the center become 406 

more blurry. This is rotation blur caused by recording projections under continuous rotation and 407 

is unrelated to the proposed reconstruction algorithm or weighting scheme. The ROI’s shown 408 

below each panel indicate that in general, the reconstruction obtained with W-SIRT is slightly 409 

more blurry than the one obtained with W-SART, but it is also less noisy. The reconstruction 410 

obtained with aW-SIRT seems sharper than those obtained with W-SART and W-SIRT, but 411 

appears to be noisier than the W-SIRT reconstruction. To quantitatively assess the contrast in 412 

the different reconstructed volumes, the CNR was calculated in the three gear-shaped objects  413 



 
Figure 8: Horizontal reconstructed slices of the LEGO phantom at heights ℎଵ = -9.98 mm (left column), ℎଶ =
 8.85 mm (middle column), and ℎଷ = 27.95 mm (right column) relative to the center of the reconstructed volume 
for each of the reconstruction algorithms under consideration (centered SIRT, W-SART, W-SIRT, and aW-
SIRT).  Below each full panel, ROI’s are shown that are indicated in the top row using white rectangles and 
numbers 1 to 3. ROIs 1 and 2 contain white rectangles of 10 pixels × 50 pixels to indicate the image regions 
used for CNR calculations. The gray values in all panels are windowed between 0 and 40. 

 414 

 415 



that are located on the three different heights (ℎଵ, ℎଶ, and ℎଷ). In ROI 1 and ROI 2 of the first 416 

row, white rectangles of 10 voxels × 50 voxels indicate the regions that were used for CNR 417 

calculations. The calculations were performed for each of the reconstruction algorithms and 418 

each value for detector shift, as well for the centered reconstruction (using 200 iterations of 419 

regular SIRT). In table 4, the results of the CNR calculations are shown, along with information 420 

on the computation times of the algorithms and the total effective FOV obtained by applying 421 

the lateral detector shift, which is calculated as the sum of the true width of the detector 𝑑 and 422 

twice the shift value Δ. Apart from the CNR, also the RMS contrast, calculated over the full 423 

reconstructed volume using equation (6), is shown. In the table, the same results are shown for 424 

100 iterations. 425 

Table 4: Experimental results using the LEGO phantom 
𝑁௜௧ Δ (mm) FOV (mm) method 𝐶𝑁𝑅ଵ 𝐶𝑁𝑅ଶ 𝐶𝑁𝑅ଷ 〈𝐶𝑁𝑅〉 𝐶ோெௌ Δ𝑡 (s) 

200 

0 292.0 SIRT 17.88 16.76 12.56 15.74 8.35 1814.7 

26.6 345.2 
W-SART 12.11 13.33 6.44 10.63 7.48 1437.7 
W-SIRT 19.82 15.92 15.37 17.04 7.12 2260.1 
aW-SIRT 13.56 13.42 9.77 12.25 7.94 2075.6 

45.5 383.0 
W-SART 12.94 18.91 8.85 13.57 7.27 1658.5 
W-SIRT 21.53 25.41 14.88 20.61 6.98 1990.2 
aW-SIRT 13.71 20.30 10.21 14.74 7.78 1990.6 

63.5 419.0 
W-SART 14.24 15.38 10.14 13.25 7.32 1730.7 
W-SIRT 21.48 19.39 20.90 20.59 7.09 1967.6 
aW-SIRT 14.01 15.43 13.08 14.17 7.87 1974.3 

89.7 471.4 
W-SART 9.96 14.30 9.30 11.18 7.32 1883.8 
W-SIRT 15.29 19.83 19.25 18.13 7.20 1923.8 
aW-SIRT 10.77 14.77 12.26 12.60 7.93 1956.0 

100 

0 292.0 SIRT 27.20 21.11 19.17 22.49 7.55 1493.0 

26.6 345.2 
W-SART 13.40 16.52 9.47 13.13 6.63 1196.0 
W-SIRT 24.82 20.18 22.88 22.62 6.27 1658.9 
aW-SIRT 19.86 15.93 15.41 17.07 7.12 1661.1 

45.5 383.0 
W-SART 15.26 25.72 10.21 17.06 6.43 1209.7 
W-SIRT 34.37 33.83 20.96 29.72 6.14 1620.8 
aW-SIRT 21.59 25.43 14.92 20.65 6.98 1621.4 

63.5 419.0 
W-SART 16.87 18.62 13.21 16.23 6.49 1218.6 
W-SIRT 35.27 25.83 33.92 31.67 6.25 1583.4 
aW-SIRT 21.54 19.41 20.97 20.64 7.09 1583.5 

89.7 471.4 
W-SART 12.49 17.44 13.33 14.41 6.51 1247.7 
W-SIRT 22.59 27.57 29.67 26.61 6.37 1523.7 
aW-SIRT 15.31 19.86 19.31 18.16 7.19 1548.7 

For each value of lateral detector shift Δ (and corresponding effective detector width 𝑑௘௙௙), the value of the 
CNRs is shown along with the total reconstruction time. 𝐶𝑁𝑅௜ corresponds to the CNR calculated in the slice 
at ℎ௜, and the average CNR over the different heights is given as 〈𝐶𝑁𝑅〉. The value of 𝐶ோெௌ is calculated over 
the full reconstructed volume. The number of iterations is given by 𝑁௜௧. 

 426 



Table 4 shows that, in general, the average CNR is decreased when an offset geometry is used. 427 

This is probably caused by the detector recording less rays that pass through the object and 428 

more background rays (in the case of the LEGO phantom), resulting in less recorded signal, 429 

which would increase the noise. However, this does not hold for the W-SIRT method, as the 430 

CNR appears to be higher as compared to the centered reconstruction for the same number of 431 

iterations. This is understood by considering that the W-SIRT algorithm converges slower than 432 

the centered SIRT algorithm and thus the fine details, such as noise, are only reconstructed in 433 

later iterations. Therefore, the W-SIRT is expected to produce more homogeneous regions in 434 

the signal and the background, resulting in a higher CNR. This does not mean that the contrast 435 

itself is better (see figure 9). By comparing the average CNR values of W-SART, W-SIRT, and 436 

aW-SIRT, those of W-SART are found to be lower than those of W-SIRT and aW-SIRT, 437 

probably because SART is inherently more sensitive to noise (see convergence curves). Based 438 

on the obtained values for the 𝐶ோெௌ, there is a loss of contrast when the detector is shifted 439 

laterally for the same number of iterations, regardless of the reconstruction method used. 440 

However, the contrast in the aW-SIRT reconstructions is the greatest, followed by W-SART 441 

and W-SIRT for the same number of iterations. It is also noticed that the CNR and 𝐶ோெௌ values 442 

for the W-SIRT reconstructions using 200 iterations are very similar to those of the aW-SIRT 443 

reconstructions using only 100 iterations, regardless of the detector shift. This may imply that 444 

the application of the relaxation parameter approximately doubles the convergence rate. The 445 

reconstruction times of W-SART are generally shorter than those of W-SIRT and aW-SIRT, 446 

but seem to increase with increasing detector shift. This is understood by the fact that W-SART, 447 

in contrast to W-SIRT and aW-SIRT, requires the projection data to be padded with zeros 448 

outside the redundancy region where data is non-existent. This implies that the size of the 449 

projection data grows in size as the detector shift is increased, resulting in the rise of memory 450 

usage. The W-SART method was also applied without padding the projection data, but this 451 



resulted in uncorrected redundancy artifacts (not shown in this work), while W-SIRT and aW-452 

SIRT also produce redundancy-artifact-free reconstruction without data padding. The 453 

reconstruction times of W-SIRT and aW-SIRT are similar, but seem to slightly decrease by 454 

increasing the detector shift. This is quite remarkable, as the only difference between the 455 

datasets are the gray values of the projection data and the values in the matrix 𝑾. A possible 456 

explanation for this is the fact that, for a larger detector offset, the projection data contains more 457 

background pixels, which can assume the value of zero, and the matrix 𝑾 contains more values 458 

that are equal to one instead of decimal numbers between zero and one. This might be more 459 

efficient in the calculations involved, although we do not claim this is the reason why. 460 

 
Figure 9: Central regions of slices at ℎଵ and Δ = 26.6 mm using 100 and 200 iterations of centered SIRT, W-
SART, W-SIRT, and aW-SIRT. The gray values are windowed between 0 and 30.   



Figure 9 shows central regions of the reconstructed slice at ℎଵ with Δ = 26.6 mm for a centered 461 

reconstruction using 100 or 200 iterations of SIRT and shifted reconstructions using 100 or 200 462 

iterations of W-SART, W-SIRT, and aW-SIRT. Comparing the regions for the same number of 463 

iterations shows that, visually, the W-SART and W-SIRT algorithms produce slices with 464 

decreased contrast (mostly W-SIRT), but the W-SART reconstruction seems noisier. The slices 465 

reconstructed using aW-SIRT visually resemble the slices of the centered detector the most and 466 

therefore may be more favorable. The visual quality of the centered reconstruction for 100 467 

iterations is very similar to the W-SIRT and aW-SIRT iterations using 200 and 100 iterations, 468 

respectively. These visual observations are in agreement with the 𝐶𝑁𝑅 and 𝐶ோெௌ values 469 

reported in table 4. 470 

3.3 Large objects 471 

After validation of the proposed method on the LEGO phantom (which was sufficiently small 472 

to be imaged with a centered detector), the method was tested on two samples for which the 473 

detector offset method is required. The first large sample is the PMMA container with PVC 474 

tubes, the second is the frozen rabbit specimen (see figures 3(b) and 3(c)). The phantom 475 

containing PVC tubes in a PMMA case was imaged twice: the first time it was empty (or filled 476 

with air) and the second time it was filled with water. The lateral shift of the detector was equal 477 

to 111.9 mm according to the calibration, yielding an effective FOV of 515.8 mm, which is a 478 

gain of 76.6% compared to the FOV of the centered detector (292 mm). The phantom was 479 

reconstructed in a volume of 800 voxels × 800 voxels × 1450 voxels with a voxel size of 0.285 480 

mm. Figure 10(a) shows the convergence curves for the reconstruction of the PMMA phantom 481 

in an empty state. The curves for the water-filled PMMa phantom are not shown as they are 482 

very similar. As is the case for the LEGO phantom, the aW-SIRT algorithm has the fastest 483 

convergence rate, and the curve of the W-SART algorithm is more unstable.  484 



 
Figure 10: Convergence curves of (a) the empty PMMA phantom and (b) the rabbit specimen for 200 iterations. 
The convergence curves of the water-filled PMMA phantom are not shown as the curves are very similar. In 
both panels, the inset shows the curves for the last 100 iterations to highlight differences between the methods.  

 485 

Horizontal (view along the rotation axis) and vertical (view perpendicular to the rotation axis) 486 

slices of the reconstructed phantom are shown in figure 11. As the LEGO phantom experiments 487 

showed that the reconstructions using 200 iterations of W-SIRT and 100 iterations of aW-SIRT 488 

were nearly identical, only slices of 100 iterations of aW-SIRT are shown. The number of 489 

iterations of the W-SART reconstruction was 200. In the left column, artifacts related to 490 

positioning the detector in an offset position can be clearly seen, as no redundancy weighting 491 

was applied. These artifacts are observed in the form of a bright circular artifact coaxial to the 492 

rotation axis, causing additional shading artifacts as well (mostly observed in the lower two 493 

panels of the left column). Using W-SART or aW-SIRT, these artifacts are successfully 494 

removed. Visual inspection of the slices suggests that the slices obtained using aW-SIRT are 495 

slightly less noisy. Quantitative measures such as CNR and 𝐶ோெௌ can be found in table 5. 496 

In figure 11, it is important to notice that in the bottom row, when the phantom is filled with 497 

water, the contrast for the long tube disappears near the center of the volume. This is not the 498 

case when the phantom is filled with air (second row). The disappearance of this contrast is thus 499 

not related to positioning the detector in an offset position but is due to the limited dynamic 500 

range of the XRII. The shorter tubes suffer less from this contrast loss, showing that shapes of 501 

large aspect ratio are more sensitive to this artifact. As animals, for example, usually have such 502 

aspect ratio, these artifacts are important to consider. Nevertheless, this experiment proves the 503 



possibility of reconstructing an object of which the width exceeds the width of the detector by 504 

positioning the detector in an offset position and by using the aW-SIRT algorithm. 505 

 506 

 
Figure 11:  Reconstructed slices of the PVC tube phantom filled with air (top two rows) and filled with water 
(bottom two rows) obtained using 100 iterations regular SIRT without applying redundancy weighting (first 
column), using 200 iterations W-SART (second column), and using 100 iterations aW-SIRT (last column). The 
first and third row shows horizontal slices, whereas the second and fourth row shows vertical slices. White 
arrows on the slices in the left column indicate artifacts and the white squares of 50 voxels × 50 voxels indicate 
the regions that were used for CNR calculations (the regions in the signal are labeled using the number 1 to 3). 
The scale bar in the top middle panel and the grayscale below apply to all panels.  

 507 

Table 5 shows that, in case the phantom is empty, the aW-SIRT provides a reconstruction with 508 

higher CNR as compared to W-SART. When the phantom is filled with water, the differences 509 

are smaller. The differences in 𝐶ோெௌ are not in favor of one method. It is, however, important 510 

to notice that the results obtained using aW-SIRT only required 100 iterations at a time of 511 

~ 4800 s, while W-SART required 200 iterations and a total computation time of ~8400 𝑠. As 512 

the CNR and 𝐶ோெௌ do not differ much, the best choice would in this case be the aW-SIRT 513 

algorithm due to the (much) shorter computation time. 514 



Table 5: Experimental results using the PMMA phantom 
Δ (mm) FOV (mm)  Method 𝑁௜௧ 𝐶𝑁𝑅ଵ 𝐶𝑁𝑅ଶ 𝐶𝑁𝑅ଷ 〈𝐶𝑁𝑅〉 𝐶ோெௌ Δ𝑡 (s) 

111.9 515.8 
E 

W-SART 200 29.78 22.27 23.82 25.29 3.54 8371.9 
aW-SIRT 100 30.32 26.53 27.84 28.23 3.57 4761.6 

W 
W-SART 200 8.17 13.63 16.31 12.70 3.76 8357.3 
aW-SIRT 100 9.44 12.88 15.36 12.56 3.85 4734.3 

In this table, the letters E and W indicate whether the PMMA phantom is empty (or air-filled) or water-filled, 
respectively. The different CNR values correspond to the labeled regions in figure 11. Same symbols as in table 
4 apply. 

 515 

Finally, to demonstrate our proposed method on a biological sample, a rabbit specimen was 516 

scanned with parameters that can be found in table 2. During this experiment, the detector was 517 

shifted over Δ = 110 mm, yielding a redundancy region of 2𝑇 = 72 mm and an effective FOV 518 

of 512 mm. The reconstructed volume had a size of 1200 voxels × 500 voxels × 1450 voxels 519 

with a voxel size of 285 mm. Convergence curves of the different algorithms can be found in 520 

figure 10(b). Again, the aW-SIRT algorithm is found to converge at the fastest rate, while the 521 

convergence curve of the W-SART algorithm displays instability. In figure 12, ROI’s of vertical 522 

slices (parallel to the rotation axis) of the rabbit are shown, displaying the pelvis, the spine and 523 

ribs, and the head and teeth. The slices were obtained using 200 iterations of W-SART and 100 524 

iterations of aW-SIRT. As the experiments with the PMMA phantom already showed that both 525 

methods would remove the redundancy artifacts, slices of a non-weighted reconstruction are 526 

not shown. Visual inspection of the slices suggests that the slices of the aW-SIRT reconstruction 527 

are slightly less noisy (mostly visible in the slice containing the pelvis). The slice containing 528 

the spine and ribs displays a slightly better contrast in the aW-SIRT reconstruction. The teeth 529 

seem to be more distinguishable in the aW-reconstruction, and the edge at the mouth of the 530 

rabbit seems sharper. Some ring artifacts are still visible when using the W-SART or aW-SIRT 531 

method, which are visible as subtle black vertical streak in the slice showing the pelvis. These 532 

originated from remaining dark-field artifacts and are unrelated to the proposed method. For 533 

these reconstructions, three values for the CNR were calculated in the soft tissue (see white 534 



squares in the top row of figure 12) and the 𝐶ோெௌ values for the total volumes were calculated 535 

and reported in table 6: 536 

Table 6: Experimental results obtained using the rabbit specimen 
Δ (mm) FOV (mm) Method 𝑁௜௧ 𝐶𝑁𝑅ଵ 𝐶𝑁𝑅ଶ 𝐶𝑁𝑅ଷ 〈𝐶𝑁𝑅〉 𝐶ோெௌ Δ𝑡 (s) 

110 512 
W-SART 200 23.40 27.25 27.32 29.79 4.14 7621.2 
aW-SIRT 100 29.97 29.24 30.14 25.99 4.17 4414.8 

The index of the CNRs reported in this table corresponds to the number of the column in figure 12. Same 
symbols as in table 5 apply. 

 537 

Table 6 shows that in general, the CNR values for the aW-SIRT reconstruction are higher, 538 

which is in agreement with the visual inspection. However, the difference in 𝐶ோெௌ is negligible. 539 

Again, only 100 iterations of the aW-SIRT algorithm were used to obtain these results, yielding 540 

a shorter total computation time as compared toW-SART. 541 

 

Figure 12: Vertical slices showing different anatomical structures of the rabbit specimen, namely the pelvis (left 
column), the spine and the ribs (middle column), and the head and the teeth (right column). The top row shows 
the slices obtained with 200 iterations of W-SART, whereas the bottom row shows those obtained using 100 
iteration aW-SIRT. In the top row, the white squares (20 voxels × 20 voxels) indicate regions in the tissue and 
the background that were used for CNR calculations. The grayscale and 50 mm scales apply to their 
corresponding column.  

 542 



As one of the goals of this work is to propose a method to increase the field of view for 543 

tomographic reconstruction, we demonstrate the field-of-view gain in the extended 544 

reconstructed volumes, by providing images of 3D renderings of the rabbit and the PMMA 545 

phantom (empty and water-filled) using maximum intensity projection. The images can be 546 

found in figure 13. 547 

 548 

 
Figure 13: Side and top views (top and bottom row) of 3D-renderings using maximum intensity projection. (a) 
Rabbit specimen. (b) Empty PVC tube phantom. (c) Water-filled PVC tube phantom. 

 549 

4. Discussion 550 

The proposed redundancy weighting scheme implemented in the SIRT algorithm (W-SIRT) 551 

was first tested in simulations using central slice reconstructions of 3D Shepp-Logan phantom. 552 

It was compared to the pre-convolutional FDK method and the W-SART(-TV) method. The 553 

convergence curves (figure 4) readily showed that, by positioning the detector off center and 554 

by applying the redundancy weighting scheme, the convergence rate decreased. This was both 555 

true for SIRT and SART. A decrease of convergence rate is an undesirable side-effect of the 556 

method, and would imply that more iterations are needed to obtain a converged reconstruction.  557 

To this end, we introduced a relaxation parameter 𝛼 in the W-SIRT scheme, resulting in the 558 



aW-SIRT algorithm. Following the work of Gregor and Benson, the relaxation parameter 𝛼 was 559 

chosen as 1.99. This turned out to be a reasonable choice, as indeed the convergence rate was 560 

increased and the convergence curve of a centered detector was approximated.  Whether the 561 

convergence rate of the aW-SIRT algorithm can be accelerated even further is yet to be studied. 562 

Presumably, higher convergence rates can be achieved by using other SIRT-like methods, such 563 

as the Conjugate Gradient Least Squares (CGLS) method or a Barzilai-Borwein approach. 564 

However, this is beyond the scope of the current work.  565 

Another important result obtained from the simulations is that the weighted SIRT and SART 566 

algorithms perform well for both small and large detector shifts (Hansis et al 2010, Bian et al 567 

2012), which is not the case for pre-convolutional FDK. However, the W-SIRT and aW-SIRT 568 

algorithm seem to provide reconstructions with a higher CNR and lower RMSE as compared 569 

to SART and SART-TV. Due to the high convergence rate of the aW-SIRT algorithm, less 570 

iterations are necessary to reach convergence, resulting in a lower total computation time than 571 

W-SART, although the average computation time per iteration is shorter for W-SART. The 572 

benefits of incorporating TV denoising in the W-SART algorithm are limited, and the vast 573 

increase in computation time deteriorates its usefulness for reconstructing large 3D volumes. 574 

Finally, we highlight the fact that, in the simulations, the detector used was of the flat-panel 575 

type. This indicates that the proposed method applies to flat-panel detectors as well, requiring 576 

no alterations, demonstrating the generality of the method.  577 

After conducting simulations, we have tested our proposed method using experimentally using 578 

different study objects, each with their own purpose. Using the LEGO phantom, the 579 

convergence rate, image quality (in terms of CNR and 𝐶ோெௌ), and computation time were 580 

assessed for the different reconstruction algorithms and for the different values of detector 581 

offset. It was shown that the aW-SIRT algorithm indeed has the fastest convergence rate due to 582 

the relaxation parameter, and that the convergence of W-SIRT and aW-SIRT is more stable as 583 



compared to W-SART. This implies, as shown in table 4, that desired levels of CNR and 𝐶ோெௌ 584 

can be reached faster using aW-SIRT as opposed to W-SIRT or W-SART. Given the larger 585 

values for the CNR and the 𝐶ோெௌ of the aW-SIRT algorithm as compared to the W-SART 586 

algorithm, it might be possible to obtain reconstructions with the aW-SIRT algorithm of the 587 

same image quality as those obtained with W-SART, but with a lower dose. The methods were 588 

not compared to FDK in the experiments due to the complex imaging geometry, but the 589 

simulations also pointed out that higher CNRs could be obtained using iterative methods instead 590 

of FDK. The data in table 4 and the ROIs shown in figure 9 are in favor of the aW-SIRT 591 

algorithm, provided that the number of iterations is limited. For example, 100 iterations of the 592 

aW-SIRT algorithm were sufficient to obtain a reconstruction of similar quality using 200 593 

reconstructions of W-SIRT, while the visual quality was similar to that of a centered 594 

reconstruction using 100 iterations of SIRT.  595 

The general loss of CNR in the reconstructed slices using detector offset geometry was reported 596 

earlier by Mettivier et al. in a phantom study in the field of breast CBCT (Mettivier et al 2012). 597 

However, it was also shown in their work that by blocking the fraction of the beam that would 598 

irradiate the sample but would not be seen by the detector (due to the offset position) before it 599 

reaches the sample, the amount of scatter and the dose would decrease. This resulted in a larger 600 

contrast-to-noise ratio per unit dose (CNRD) as compared to a centered detector. Collimation 601 

of the ‘unuseful’ part of the beam was not applied in this work, but the combination of this half-602 

beam collimation in combination with aW-SIRT reconstruction yields interesting opportunities 603 

for dose reduction at fixed image quality. This is, however, beyond the scope of the current 604 

work.  605 

As seen in figure 9, the reconstructed slices of the LEGO phantom exhibited blurring artifacts 606 

near the periphery of the reconstructed volume. These artifacts are unrelated to the detector 607 

offset method as these were also present in the case of a centered detector. Presumably, these 608 



artifacts are caused by continuously rotating the sample while recording. In other experiments 609 

(not described in this manuscript) we have enlarged the rotation period while decreasing the 610 

shutter time to eliminate the angular integration, as described by Krebs et al. (Krebs et al 2018), 611 

but the artifacts remain. We therefore believe that the blurring artifacts might be due to 612 

scintillator lag, as XRIIs are known to have lag times of the order of milliseconds (Wang and 613 

Blackburn 2000). As larger objects (which are the aim of FOV enlargement techniques) will 614 

suffer more from these blurring artifacts, it is an important aspect to consider in offset detector 615 

applications. 616 

Using the PMMA phantom, the W-SART and aW-SIRT algorithms proved to be able to 617 

reconstruct large objects free of artifacts related to positing the detector in an offset position. 618 

When the phantom was filled with water, it was observed that the contrast between the long 619 

PVC tube and the water completely disappeared in the center region of the volume. This did 620 

not occur in the shorter tubes, so it is clear that larger, more elongated (high aspect ratio) 621 

structures will suffer more from contrast loss. The quantitative results shown in table 5 were 622 

slightly more in favor of the aW-SIRT algorithm for the empty phantom, but the differences 623 

were less pronounced when the phantom was filled. However, the shorter computation time of 624 

the aW-SIRT is a great advantage.  625 

The reconstructed slices of the rabbit using W-SART and aW-SIRT were free of redundancy-626 

related artifacts. However, by inspecting the grayscales of figure 12, it can be noticed that the 627 

grayscale in the middle column has the smallest window. This implies that there is less overall 628 

contrast in that region as compared to the slice of the head (much larger window). This loss of 629 

contrast is again due to the limited dynamic range of the system, as was also the cause for the 630 

loss of contrast in the long PVC tube. The reported values of CNR and computation time, as 631 

well as the visual quality, are in favor of the aW-SIRT method. Nearly identical results were 632 

obtained using 200 iterations of W-SIRT, but the computation time would then nearly double 633 



and exceed the computation time of W-SART. It is therefore strongly advised to build in a 634 

relaxation parameter when using a weighted SIRT approach. 635 

Using the aW-SIRT (or W-SIRT) algorithm, we have shown that the effective FOV of the 636 

detector could be increased by 75% (see results of PMMA and rabbit sample), which is a 637 

considerable gain. In theory, the effective detector width could be increased even further, but 638 

since our system is highly modular and depends on phantom-based calibration (Nguyen et al 639 

2021), the extension of the field-of-view is experimentally limited. The beads in the calibration 640 

phantom should be visible in each frame, so the size of the overlap region should be large 641 

enough to contain the full phantom. Furthermore, such a flexible set-up with large components 642 

placed on trolleys and ceiling gantries is modified by hand and can, therefore, only be aligned 643 

and repositioned with limited accuracy.  644 

The work presented in this paper can, for example, be of interest to researchers in the field of 645 

small animal biomechanics using stereoscopic x-ray systems. These systems provide 646 

information on animal movement, but morphological data of the specimen (such as bone 647 

segmentation) needs to be gathered in a separate CT-system, which is rarely available in the 648 

same facility. In this work, not only do we prove that such systems can be extended to 649 

tomographic systems by introducing a rotation stage, but the size of the reconstruction volume 650 

can be also enlarged to measure the size of the animal to be imaged. This, for example, paves 651 

the way for longitudinal studies of young animal development, because locomotion data, as 652 

well as morphological data, can be gathered in the same set-up, circumventing the issue of 653 

animal transportation between facilities. The effective FOV (and thus the diameter of the 654 

reconstruction volume) can be enlarged to a certain extent during the growth period of the 655 

animal under consideration. However, we pointed out that continuous rotation of the sample 656 

and the limited dynamic range might pose issues while imaging larger animals of high aspect 657 



ratio in such a system. This is of course one of the fields that could benefit from this work, as 658 

the implementation of the W-SIRT and aW-SIRT algorithms are not field-specific.  659 

It leaves us to mention that the proposed W-SIRT and aW-SIRT methods are convenient to 660 

implement using the ASTRA toolbox, given the fact that both methods are nearly purely matrix 661 

multiplications, except for the creation of matrices 𝑨, 𝑹, 𝑪, and 𝑾. For large-scale datasets, the 662 

matrix 𝑨 is too large to store explicitly, and therefore, implementations based on explicit matrix 663 

computations (as in MATLAB) cannot be used for (for example) the SIRT algorithm. However, 664 

an interface was developed in the ASTRA toolbox (Bleichrodt et al 2016) that makes use of the 665 

Spot toolbox, which allows wrapping external, GPU-based codes for linear operations in 666 

MATLAB objects that can be treated as matrices (van den Bergh and Friedlander 2013). This 667 

implies that the linear operations of the forward and backward projection can be defined and 668 

treated as matrices in the MATLAB interface, allowing for an intuitive implementation of the 669 

SIRT algorithm. Instructions on how to implement the SIRT algorithm using the ASTRA 670 

opTomo operator can be found in the work of Bleichrodt et al. and can be extended to the W-671 

SIRT or aW-SIRT algorithm by incorporating the redundancy weighting matrix 𝑊 and 672 

relaxation parameter 𝛼.  673 

5. Conclusion 674 

In this work, we have presented the implementation of redundancy weighting in the well-known 675 

SIRT algorithm for detector offset tomography. The proposed algorithms were validated in both 676 

simulations and experiments, where it was shown that artifacts in the reconstructions related to 677 

placing the detector in a non-centered position were successfully removed. To use the algorithm 678 

in a useful way, we have proven that the inclusion of an additional relaxation parameter will 679 

accelerate the convergence. Using a relaxation parameter, higher CNR values could be obtained 680 

as compared to a weighted SART approach, at a much shorter computation time. As opposed 681 



to pre-convolutional FDK, the aW-SIRT algorithm performs well for both small and large 682 

detector shifts, resulting in a maximum increase of the width of the reconstructed volume of 683 

>75%. The aW-SIRT algorithm has proven to be a valuable technique, which is applicable in 684 

reconstruction problems with flexible and complex geometry. Although the results in this work 685 

are obtained using XRIIs, the method readily applies to flat-panel detectors as well. 686 
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