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Abstract—The ever-growing developments in technology to
capture different types of image data (e.g., hyperspectral imaging
and Light Detection and Ranging (LiDAR)-derived digital surface
model (DSM)), along with new processing techniques, have led
to a rising interest in imaging applications for Earth observa-
tion. However, analyzing such datasets in parallel, remains a
challenging task. In this paper, we propose a multi-sensor deep
clustering (MDC) algorithm for the joint processing of multi-
source imaging data. The architecture of MDC is inspired by
autoencoder (AE)-based networks. The MDC paradigm includes
three parallel networks, a spectral network using an autoencoder
structure, a spatial network using a convolutional autoencoder
structure, and lastly, a fusion network that reconstructs the
concatenated image information from the concatenated latent
features from the spatial and spectral network. The proposed
algorithm combines the reconstruction losses obtained by the
aforementioned networks to optimize the parameters (i.e., weights
and bias) of all three networks simultaneously. To validate the
performance of the proposed algorithm, we use two multi-
sensor datasets from different applications (i.e., geological and
rural sites) as benchmarks. The experimental results confirm the
superiority of our proposed deep clustering algorithm compared
to a number of state-of-the-art clustering algorithms. The code
will be available at: https://github.com/Kasra2020/MDC.

Index Terms—Multi-sensor Data Fusion; Deep Learning; Au-
toencoder; Convolutional Autoencoder; Remote Sensing

I. INTRODUCTION

In recent years, we witnessed revolutionary advancements
in imaging technologies (e.g., multi-spectral and hyperspectral
imaging) [1]. Also, the number of platforms that can carry
different sensors (e.g., unmanned aerial vehicles (UAVs) and
satellites) grew fast [2]. These advancements allow users to ac-
quire high-quality information of various aspects (i.e., spectral,
spatial, and elevation) of on-ground materials and objects at
various spatial scales (from close-range to space) [3]. Among
the advanced imaging techniques, hyperspectral imaging is
considered as the main source of high spectral resolution
information. A hyperspectral image (HSI) contains hundreds
of narrow spectral bands (channels), covering the visible and
near-infrared (VNR, 0.4 − 1 µm) and shortwave infrared
(SWIR, 1 − 2.5 µm) electromagnetic spectrum [4]. In this
way, by employing an HSI, users can distinguish, identify, and
track different materials and organisms. As a result, in the last
decades, many studies in Earth science were devoted to the
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use of HSIs, e.g., in plant science [5], [6], urban-planning [7],
[8], and geology [9], [10].

Despite the valuable information that an HSI provides on
surface materials and objects, processing such data can be
challenging [4]. In particular, HSIs suffer from (1) a high
intrinsic dimensionality, which implies the existence of re-
dundant features in an HSI, (2) the curse of dimensionality
(also known as Hughes phenomenon), due to the imbalance
between the number of dimensions and available training
samples [11], and (3) highly mixed pixels [12]. In order to
tackle the aforementioned challenges, several machine learning
algorithms were extensively designed and proposed [4], [13],
[14], in general such algorithms split up in two general
categories: 1) conventional/shallow learning (CSL) algorithms
and 2) deep learning (DL) algorithms [15].

In supervised CSL algorithms, hand-crafted features are
initially extracted in an unsupervised manner, and subse-
quently fed into a supervised model to perform a specific
task (i.e., classification, regression) [7], [8]. DL algorithms
on the other hand, offer an end-to-end framework to process
datasets [14], usually initialized via unsupervised learning and
followed by fine-tuning in a supervised manner [16]. There has
been an immense number of contributions on supervised DL
algorithms in the recent years [13], [14], [17].

Both supervised CSL and DL techniques, despite their great
performance, require a considerable number of training sample
labels in the learning process, which is hard to acquire in
most fields, specifically environmental applications [13]. This
shortcoming led researchers to develop unsupervised learning
algorithms [18], [19]. The most widely used unsupervised
CSL algorithms (also known as clustering algorithm) are K-
means [20] and Fuzzy C-means [21] that employ a distance
measure (e.g., euclidean distance) to assign each data point to
its closest cluster centroid [20]. These algorithms are iterative
and rely on a random initialization of the centroids [22].
During the years, various enhanced clustering approaches have
been proposed. Interested readers can find an extensive state
of the art on CSL clustering algorithms for HSI analysis
in [18]. These methods can be subdivided in four categories:
1) probability-based approaches [23] assume that data points
from the same cluster follow a similar probability distribution;
2) density-based approaches [24] group data points into dif-
ferent clusters according to their local density and distance
to each cluster centroid; 3) graph-based approaches [25]
represent the data as a similarity graph (which represents the
relations between pairs of points), on which spectral clustering
is applied to generate the final clustering map; 4) subspace-
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based approaches [26] assume that data points are drawn from
several low-dimensional subspaces.

Since the latter assumption is realistic in real world datasets,
subspace-based approaches received great attention [27]. One
well-known subspace-based approach is the sparse subspace-
based clustering (SSC) algorithm, which utilizes the self-
expressiveness property that implies each data point can be
written as a linear combination of other data points from the
same subspace. The superiority of SSC in terms of accuracy,
is counterbalanced with being computationally expensive and
time-consuming compared to traditional approaches. There-
fore, different studies have been devoted to address SSC’s
shortcomings [28], [29]. In [28], authors proposed a scalable
exemplar-based subspace clustering (ESC) algorithm, in which
a subset of representative samples (also known as exemplars)
is used to construct the sparse representation, resulting in
a drastic decline of the computational expenses. In [29],
Rafiezadeh Shahi et al. recently proposed a hierarchical sparse
subspace-based clustering algorithm (HESSC), which uses
the sparse representation of an HSI to extract the lower
dimensional subspaces information and to cluster the HSI
into meaningful groups. In [30], authors proposed graph-
based convolutional subspace clustering, in which a graph
representation is combined with subspace clustering on (linear
or non-linear) subspaces.

In addition, co-clustering approaches have been proposed
to improve the performance of graph-based clustering ap-
proaches. Co-clustering approaches hence aim to cluster pix-
els and spectral features/bands simultaneously. For instance
in [31], authors proposed a novel co-clustering approach based
on bipartite graph partitioning with joint sparsity to analyze
HSIs. Similarly, authors in [32] proposed a graph convolu-
tional sparse subspace co-clustering that utilizes non-negative
matrix factorization to reduce the computational power, and
thus to allow analyzing large-scale HSIs.

All the above-mentioned CSL clustering approaches were
applied on single sensor-based datasets. Most of them are
pixel-wise, which implies that they do not consider spatial
information from adjacent pixels. In [33], Rafiezadeh Shahi
et al. proposed a multi-sensor sparse-based clustering (Multi-
SSC) algorithm that exploits the spatial information derived
from a complementary source of information, e.g., a high
spatial resolution, multi-spectral image.

The main disadvantage of unsupervised CSL algorithms is
that hand-crafted features need to be extracted first. Unsuper-
vised DL algorithms on the other hand, offer an end-to-end
framework to process datasets. In the last decade, there has
been a remarkable number of contributions in computer vision
regarding DL clustering architectures [34]–[36]. Autoencoders
(AE) are regarded as the most prominent unsupervised DL
architectures [19]. AE-based networks are capable to learn
informative features without any need for supervision, which
makes them highly suitable for clustering. A well-known AE-
based clustering algorithms is the deep clustering network
(DCN) [35]. DCN minimizes a loss function, which consists
of the network reconstruction loss and a clustering loss. DL
clustering algorithms have been proposed for the specific
task of hyperspectral image clustering. In [37], a Lapla-

cian regularized deep subspace clustering was proposed, that
contains a Laplacian regularization to incorporate geometric
information within the subspace clustering concept and a self-
expressiveness layer in the architecture of a 3D deep con-
volutional autoecoder. Similarly, in [38], a 3D convolutional
autoencoder architecture was presented in which the network
is optimized according to two separate loss functions (i.e.,
network loss and clustering loss). In [39], authors proposed
a deep spectral-spatial subspace-based clustering algorithm,
in which various patches of an HSI are processed by par-
allel convolutional autoencoders (CAE), and in which the
network parameters are simultaneously optimized. In [40],
a deep clustering algorithm, utilizing an intraclass distance
constraint within its network objective function was proposed.
The authors in [41] proposed an automatic clustering approach
using a two-branch convolutional neural network, one branch
extracting spatial information, and the other branch extracting
spectral information.

In all aforementioned studies using remote sensing datasets,
DL clustering algorithms have been employed to analyze
single sensor data (e.g., HSIs). Recently, in [42], authors
proposed a multi-sensor CAE-based network to cluster urban
areas. In their proposed framework, handcrafted features along
with the products of normalized digital model, normalized
difference vegetation index, and excess green are extracted,
and fed to a boosted CAE network to produce a set of
latent features that are passed through a mini-batch K-means
algorithm.

In this work, we propose a novel multi-sensor deep clus-
tering (MDC) algorithm for multi-source datasets. MDC is a
multi-stream autoencoder-based framework for the clustering
of multi-sensor data. More specifically, MDC uses AE and
CAE networks to extract spectral information from the HSI
and spatial information from an auxiliary image, e.g., a high
spatial resolution image or LiDAR data, which contains a
LiDAR-derived digital surface model (DSM), and thus consists
of elevation information, respectively. Then, the computed
latent features are concatenated and fed to a fusion network
that reconstructs the concatenated images. A cost function is
designed which optimizes the network parameters of all three
networks simultaneously.

The main contributions of this study can be summarized as
follows:
• We propose a novel multi-sensor deep clustering work-

flow to integrate multi-sensor remote sensing datasets
(e.g., HSI, LiDAR-derived DSM) in a robust and effective
manner. Furthermore, MDC can be regarded as a pioneer
mechanism which offers an end-to-end framework to
cluster multi-sensor remote sensing datasets.

• MDC benefits from (1) an AE-based network to pro-
cess the spectral information of HSIs, (2) a CAE-based
network to process the spatial information of auxiliary
images, and (3) a fusion network to integrate different
data modalities.

• We design a total loss deployed in MDC, where the
spectral, spatial, and fusion network parameters (i.e.,
weights and bias) are optimized simultaneously, and in
accordance with the proposed total loss. The total loss
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consists of three reconstruction losses that are computed
using the aforementioned networks. In addition, MDC
has a control on the impact of the spectral and spatial
networks, in which a contributing weight is assigned to
their corresponding losses.

The rest of the paper is structured as follows: in section II,
we explain the proposed methodology. In section III, the
datasets and the experimental setup are described. Section IV
gives a quantitative and qualitative assessments of the obtained
experimental results, and a discussion follows in section V.
Conclusions are provided in section VI.

II. METHODOLOGY

In this section, we initially describe the notations uti-
lized throughout this paper. Subsequently, to comprehend the
MDC’s architecture, prior to introduce its structure, we provide
an elaboration on the deployed AE and CAE networks in
MDC’s paradigm. Following, we present the proposed loss
function which is utilized to optimize the parameters (i.e.,
weights and bias) in MDC.

A. Notation

Throughout the paper X ∈ RN×D expresses an input
image (e.g., an HSI) where N and D represent the number
of pixels and the spectral dimension of the image. A column
vector in X is presented as xi, i = {1, 2, · · · , N}. The
concatenation of images acquired from different sources is
further presented as Fused = Sensor1 + Sensor2 (e.g.,
Fused = HSI +LiDAR). Let H ∈ RN×M denote the gen-
erated latent features, with M the number of latent features.
The reconstructed image of X is represented as R ∈ RN×D.
Furthermore, we use the following notations throughout the
manuscript: X1 as a high spectral resolution image, X2 as a
high spatial resolution image, and X3 as the concatenation of
both. We extend this notation for the reconstructed images.

B. Autoencoder (AE)-based network

An AE consists of three main sections, an encoder, a
bottleneck and a decoder (Fig. 1). The encoder is a multi-
layer perceptron with the original image as the input and
latent features as the output. These features are stored in
the bottleneck section. In this study, we use an AE-based
network as the spectral network with an encoder section which
consists of three fully-connected layers and a rectified linear
unit (ReLU) as its activation function. The decoder has the
mirror architecture of the encoder and reconstructs the original
image from the latent features. The reconstruction loss can
be computed as the mean squared difference between the
reconstructed and original image.

Formally, let us formulate an AE-based network as follows.
The encoder generates H from X using a nonlinear mapping
process. The encoder function can be formulated as:

H = fθ(X), (1)

where fθ(.) expresses an encoder nonlinear mapping function
and θ represents the set of parameters (i.e., weights and

biases), to be optimized during the encoding process. The
decoder uses the latent features to reconstruct the input X
by a reverse mapping:

R = fφ(H), (2)

where fφ(.) denotes a decoder nonlinear mapping function
with φ the set of parameters to be optimized during the
decoding procedure. The reconstruction loss Lrec is defined as
the mean squared error (MSE) between X and R. The network
is constrained to minimize the reconstruction loss:

arg min
θ, φ

Lrec = arg min
θ, φ

1

N

N∑
i = 1

||xi − fφ(fθ(xi))||22, (3)
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Fig. 1. A fully connected autoencoder network for HSI analysis.

C. Convolutional autoencoder (CAE)-based network

Convolutional autoencoder (CAE)-based networks (see
Fig. 2) inherit the general architecture (i.e., encoder, bot-
tleneck, and decoder) of an AE-based network. In the en-
coder and decoder parts of a CAE network, each fully con-
nected layer is replaced with a (de)convolutional layer. Each
(de)convolutional layer contains convolutional filters, batch
normalization steps, and an activation function (Fig. 3). In a
CAE-based network, the main objective is the minimization
of the reconstruction loss, similar as in an AE. The main
difference is that a CAE can exploit spatial information from
neighbouring pixels. In this regard, a CAE-based network
has become the desired architecture to inject spatial and
contextual information in the processing workflow, and the
(de)convolutional layers play an important role to extract
distinct features which conserve the spatial continuity between
neighboring pixels [34].
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Fig. 2. A convolutional autoencoder network for HSI analysis.
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Fig. 3. The architecture of a CAE. Each (de)convolutional layer includes
Conv2d, BatchNorm2d, and ReLU, which represent 2-dimensional convolu-
tion operations, 2-dimensional batch normalization, and a rectified linear unit
as the activation function, respectively.

D. Multi-sensor deep clustering (MDC)

The proposed multi-sensor deep clustering (MDC) algo-
rithm offers a workflow to simultaneously extract spectral
and spatial features by fusing information derived from high
spectral and spatial resolution data sources. Such a workflow
mitigates the absence of spatial information in spectral-based
deep clustering algorithms, and at the same time, allows the
network to maintain the balance between spectral and spatial
features.

To be more precise, an AE-based network is employed to
extract spectral information from the high spectral resolution
image (e.g., HSIs), while a CAE-based network is imple-
mented to extract spatial information from high spatial resolu-
tion data (e.g., LiDAR-derived DSM). In the original AE-based
and CAE-based networks, the corresponding reconstruction
losses are optimized to find a set of optimal parameters (i.e.,
weights and bias), after which the produced latent features
are passed through K-means clustering to generate a final
clustering map. We employ K-means on the lower dimensional
but informative latent features due to its fast process and to
preserve the geometric correlations between data points from
the same cluster.

In MDC, we propose to use AE-based and CAE-based
networks and their corresponding loss functions. A straight-
forward approach that might be effective for data fusion is
to train each network individually, and generate the clustering
map by concatenating the extracted latent features and feed
them into the K-means clustering algorithm. We propose a
more sophisticated scheme for the fusion process.

A third network can be regarded as a decoder phase which
aims to minimize the reconstruction error between recon-

structed and original concatenation image inputs to AE and
CAE (see Fig. 4). Moreover, all three networks are trained
simultaneously, by minimizing a loss function that is the
weighted sum of the loss functions of the three networks. This
allows to control the contribution of the spectral and spatial
networks on the fusion process.

Formally, the loss function of the spectral AE is given by:

LSpectral =
1

N

N∑
i = 1

||x1i − fφ1(fθ1(x1i))||22, (4)

where x1i represents the i-th column vector of the HSI X1; θ1
and φ1 denote the set of network parameters for the encoding
and decoding parts of the spectral network, respectively.

The loss function of the spatial CAE is given by:

LSpatial =
1

N

N∑
i = 1

||x2i − fφ2(fθ2(x2i))||22, (5)

where x2i denotes the i-th column vector of the high spatial
resolution image (X2) and θ2 and φ2 express the set of
network parameters in the spatial network.

For the fusion purpose, the latent features extracted from
the spectral and spatial networks are fused (concatenated) and
presented as H3 at the input to a decoder of a AE-based
network, which will be referred to as the fusion network. That
network is trained to reconstruct X3 ∈ RN×(D+B), which is
the concatenation of the images X1 and X2. The loss function
of that network is given by:

LFusion =
1

N

N∑
i = 1

||x3i − fφ3
(h3i))||22, (6)

where x3i and h3i are the i-th column vectors of X3 and
H3, respectively. φ3 represents the network parameters of the
decoding phase of the fusion network.

Rather than training each network individually, we propose
to train them simultaneously, by minimizing the following loss
function:

arg min
θ{1,2,3}, φ{1,2,3}

{LTotal = λ1LSpectral + λ2LSpatial + LFusion} (7)

where λ1 and λ2 are the weights of the spectral and spatial
networks, ranging between 0 and 1, respectively.

When the networks are trained, the obtained latent features
H3 are fed to a K-means clustering algorithm to provide
the final clustering map. Furthermore, for the optimization,
we employ the adaptive moment estimation (Adam) in the
back-propagation step as a stochastic optimization approach
to optimize all parameters [43].

III. DATA DESCRIPTION AND EXPERIMENTAL SETUP

We evaluate the performance of our proposed algorithm in
two different application domains (i.e, geological and rural
sites), for which already co-registered multi-source datasets
are available (i.e., HSI, RGB and LiDAR-derived DSM).
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Fig. 4. The scheme of our proposed multi-sensor deep clustering algorithm. In the figure, X1, X2, X3, R1, R2, and R3 represent the original images of
HSI, LiDAR-derived DSM, and the concatenation of HSI and LiDAR-derived DSM data and their reconstructed ones, respectively. The connection operation
⊕ denotes the concatenation process of extracted features from the AE and CAE networks.

A. The Trento dataset

The dataset is acquired over a rural area in the south of the
city of Trento, Italy. The dataset includes HSI and LiDAR-
derived DSM data, composed of 166×600 pixels with a spatial
resolution of 1 m. The AISA Eagle sensor was employed to
capture the HSI with 63 spectral bands ranging between 0.40
and 0.98 µm. The Optech ALTM 3100EA sensor was utilized
to capture the LiDAR-derived DSM data. The acquired HSI
and LiDAR-derived DSM data are presented in Fig. 5. In
the Trento dataset, there are 6 classes: (1) Apple trees, (2)
Buildings, (3) Ground, (4) Wood, (5) Vineyard, and (6) Roads.

B. The geological Finland dataset

The geological Finland dataset was captured over an outcrop
of the Archean Siilinjärvi glimmerite-carbonatite complex in
Finland [44]. A hyperspectral frame-based camera (0.6 Mp
Rikola Hyperspectral Imager), which was mounted on a hex-
acopter unmanned aerial vehicle (UAV; Aibotix Aibot X6v2)
is utilized to capture the HSI, containing 50 spectral bands
in the range between 0.5 and 0.9 µm. A senseFly S.O.D.A.
RGB camera, mounted on a fixed-wing UAV is engaged to
acquire the RGB image. In the geological Finland dataset, the
high spatial resolution RGB image with a spatial resolution of
1.5 cm, was downsampled to the HSI with a spatial resolution
of 3.3 cm. After co-registration and resampling, the HSI and
RGB images are composed of 300×900 pixels. The geological
Finland dataset contains 5 classes: (1) Clay, (2) Glimmerite,
(3) Dark-rocks (which is a mixture of soil and Glimmerite),
(4) Dust, and (5) Water. The captured RGB image and its
corresponding reference map are shown in Fig. 6. More

elaborated and detailed information on the geological Finland
dataset can be found in [45].

Fig. 5. Trento dataset. From top to bottom: LiDAR-derived DSM rasterized
dataset; false color-composite image of the HSI using bands R:40, G:20, B:10;
ground truth along with the class legends.
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Fig. 6. Geological Finland dataset, captured over Siilinjärvi in Finland. Top:
RGB image; bottom: ground truth along with the class legends.

C. Experimental setup

To validate the generality of our proposed approach, we
tested the MDC’s performance on the aforementioned datasets.
We additionally investigated the effect of different hyperpa-
rameters (e.g., λ1, λ2) in the performance of MDC.

Adam optimizer with default parameters is used for opti-
mizing each of the networks (i.e., spectral, spatial, fusion).
The parameters of Adam are set as follows: β1 = 0.9,
β2 = 0.999, ε = 10−8, and weight decay is equal to 0.
We choose {64, 128, 40} as the number of nodes for each
of the layers of both spectral and spatial networks. The pro-
posed algorithm is implemented in Python 3.8 using PyTorch
library. The implementation of MDC will be available online
at: https://github.com/Kasra2020/MDC. For all experiments,
we run the algorithm 5 times, and the average results are
presented.

D. Evaluation metrics

For the validation, three commonly used evaluation met-
rics are employed: overall accuracy (OA), average accu-
racy (AA), and Kappa. The reference map is denoted
as Y = [y1, y2, ..., yN ] and the clustering map as
C = [c1, c2, ..., cN ], where ci = {1, ..., k}, with k the
number of clusters. To validate the performance of a clustering
approach, a matching function c′i = bestMap(yi, ci), is
required to match the cluster labels ci and reference labels yi.
The employed matching function is based on the Hungarian
algorithm, and c′i is the clustering map for which the best
match between yi and ci is produced by bestMap(.) [46].
OA is then calculated as ΣNi=1Γ(c′i, yi)/N , where Γ(c′i, yi) is
1 if yi = c′i and 0 otherwise.

We additionally report two commonly applied unsupervised
evaluation metrics, namely, the adjusted rand index (ARI) and
the normalized mutual information (NMI). NMI is based on
the common/mutual information between two clusters and is

defined by: ∑
ij nij log

ninij

ni+n+j√
(
∑
i ni+ log ni+

n )(
∑
j n+j log

n+j

n )
(8)

where nij = |c′i ∩ yj |, ni+ and n+j are defined as
∑N
j=1 nij

and
∑N
i=1 nij , respectively. In order to compare different

approaches, the mutual information is normalized between 0
and 1 [47].

ARI computes the similarity (or dissimilarity) between two
clusters and is a adopted from the original rand index [48]. It
is defined a:∑

ij

(
nij

2

)
−
∑
i

(
ni+

2

)∑
j

(
n+j

2

)
/
(
n
2

)
1
2 [
∑
i

(
ni+

2

)
+
∑
j

(
n+j

2

)
]−
∑
i

(
ni+

2

)∑
j

(
n+j

2

)
/
(
n
2

) (9)

The value of ARI is smaller than 1 and can be negative, which
implies that 2 clusters have even less similarity than what can
be expected from a random result.

E. Comparison with the state-of-the-art approaches

We will compare the performance of the proposed approach
with a number of state of the art clustering approaches. Since
these approaches are all single-sensor approaches, we will
apply each of these approaches twice; once on the HSI alone,
and once on the concatenation of the multi-sensor images.

The following clustering approaches have been applied:
• K-means clustering algorithm [20].
• AE [15], applied on the HSI and the concatenated images

respectively. The same architecture is applied as in the
spectral network of the proposed method.

• CAE [15], applied on the HSI and the concatenated
images respectively. The same architecture is applied as
in the spatial network of the proposed method.

• Variational AE (VAE) [49] can be regarded as a vari-
ant of AE and is a deep generative learning approach,
aiming to force the latent features to follow a predefined
distribution.

• DCN [35], combining an AE reconstruction loss and a
clustering loss.

• the multi-sensor sparse-based clustering (Multi-SSC) al-
gorithm [33], another multi-sensor clustering approach,
which takes the same multi-sensor image data as input as
the proposed approach.

We use K-means to generate the final clustering maps in AE,
CAE, and VAE. It also should be brought to attention that all
the samples in the ground-truth dataset are used in the test
phase, and none is used to train the unsupervised networks.

IV. EXPERIMENTS

A. Hyperparameters evaluation of MDC

Here, we investigate the effect of the hyperparameters
deployed in MDC and the evaluation is carried out on the
Trento dataset, because of its availability of rich ground truth
data. The hyperparameter values that will be selected as the
optimal values are applied in all consecutive experiments, on
both datasets.

https://github.com/Kasra2020/MDC
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Fig. 7. Sensitivity of MDC to, (a) various learning rates (LR) and (b) different
kernel sizes.

1) Sensitivity of MDC to learning rate (LR): We conducted
an experiment to identify the optimal value for the LR with
respect to the model’s loss value. Fig. 7(a) illustrates the
effect of different LR values on MDC’s performance. It can
be observed that in general, a higher LR value leads to a
lower loss value and a lower number of required iterations
before convergence. Remark that the plotted loss values in
Fig. 7(a) are smooth, due to the fact that the entire scene is
fed to the network. If the employed LR is too high, it might
cause trapping of the model in local minima. On the other
hand, deploying too low values for the LR can cause a slow
convergence. In this respect and based on empirical results,
we employ 0.001 as the optimal LR value. With LR = 0.001,
the algorithm converges after a few hundreds of iterations. To
accelerate the procedure, we fix the number of iterations to
500.

2) The influence of the kernel sizes on the performance of
MDC: We evaluated the effect of different kernel sizes of the
convolutional filters applied in the CAE of the MDC approach
by performing MDC with 1 × 1, 3 × 3 and 5 × 5 kernels
respectively. Fig. 7(b) displays the obtained OAs as a function
of the different kernel sizes. The 5 × 5 kernel achieved the
highest OA, and will be applied in all consecutive experiments.

3) The contribution of the spectral and spatial networks: To
investigate the contribution of the individual losses LSepctral
and LSpatial in MDC, we varied the values of λ1 and λ2 to be
{10−5, 10−4, 10−3, 10−2, 10−1}. Fig. 8 shows the obtained

Fig. 8. The contribution of each network in MDC.

OAs. The best overall result was obtained with λ1 = 0.0001
and λ2 = 0.0001. Therefore, these values were applied as
the default values for the consecutive experiments, for both
datasets. Remark that the relative contribution of the spectral
and spatial information may vary depending on the application
at hand, resulting in different optimal values of λ1 and λ2.

4) The influence of the number of latent features on the
MDC performance: We have evaluated the performance of
MDC as a function of the number of latent features (i.e., the
number of nodes in the bottleneck of the networks), varying
to be {10, 20, 30, 40, 50, 60, 70, 80, 90}, of which
half are extracted from the spectral network, and the other
half from the spatial network. Fig. 9 shows the results in
terms of OA. When the number of latent features is too
low, information is lost during the encoding, while a high
number of latent features generates redundancy. Based on
the obtained quantitative result, 40 is selected as the optimal
number of latent features for MDC. In addition, the number of
parameters in each network (i.e., spectral, spatial, and fusion)
are reported in Table I. For both datasets, the number of
required parameters in the spatial network is higher than in
the spectral and fusion networks. This implies that the spatial
network requires more time to be optimized compared to the
other employed networks.
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Fig. 9. The impact of different number of latent features on the performance
of MDC.
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TABLE I
NUMBER OF NETWORK PARAMETERS REQUIRING OPTIMIZATION IN MDC.

Dataset
Different streams designed in MDC

Spectral Network Spatial Network Fusion Network

Trento 30035 542015 17664

Finland 28358 548421 16949

A1 A2 A3 Our method
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Fig. 10. Comparing the performance of MDC using different fusion
scenarios.

5) The performance of MDC by employing different fusion
scenarios: The performance of the proposed fusion strategy is
validated by comparing it to three alternative fusion strategies:
• Alternative 1 (A1): the AE and CAE networks are trained

individually, and their corresponding latent features are
concatenated and fed into the K-means clustering algo-
rithm.

• Alternative 2 (A2): the AE and CAE networks are
trained simultaneously, and the loss function is given by
LTotal = LSpectral + LSpatial. No fusion network is
applied.

• Alternative 3 (A3): only the fusion loss (LTotal =
LFusion) is employed to optimize all three networks of
MDC.

Fig. 10 compares the performance of the MDC fusion
approach with these alternative fusion scenarios. The proposed
fusion scenario surpasses the alternative scenarios, which
confirms the effectiveness of the proposed fusion technique.
Both alternatives A1 and A2 show a large variance in their
results. A2 is superior to A1, showing that the inclusion of
spatial information from the CAE in the training phase of
the AE boosts the final performance, and vice versa. The
performance of A3 is close to the performance of the proposed
fusion strategy, showing that the fusion loss (LFusion) plays
an important role in the performance of MDC.

B. Comparison to state of the art

1) Experimental results on Trento dataset: The perfor-
mance of the different clustering approaches applied on the
Trento dataset are quantitatively compared in Table II. Overall,

the inclusion of the LiDAR-derived DSM data along with the
HSI data in the single-source clustering approaches, led to
improving the results. For instance, in terms of OA, when
CAE was applied on HSI+LiDAR, a 10% increase can be
observed in comparison to when CAE applied on the HSI
alone. Such observations confirm the importance of amalga-
mating the information derived from different sensors as well
as incorporating the information of adjacent pixels. In VAE
however, the fusion of HSI and LiDAR-derived DSM data did
not improve the result; in addition, VAE poorly performs in
the clustering task compared to all studied approaches. MDC
outperformed the single-source approaches and the Multi-SSC.
In particular, the Apple Trees and Wood classes have been
much better clustered by MDC.

For a visual comparison, the obtained clustering maps are
shown in Fig. 11. Noisy clustering maps are generated, except
for the CAE-based clustering approaches, including MDC, and
Multi-SSC. These clustering approaches (Fig. 11 (e), (f), (k),
(l)) employ both spatial and spectral information. Only in
MDC (Fig. II (l)), the Apple Trees class is clearly visible.
The smooth clustering result generated by MDC is due to
employing convolutional operators. To even more smooth out
the clustering results in MDC, the size of the kernel size needs
to be increased; however, such a strategy might result in losing
local pixels’ details.

The total required processing time of all studied clustering
approaches are reported in Table II. K-means is the fastest al-
gorithm, as it merely requires the computation of the Euclidean
distances between the centroids and the remaining pixels in the
dataset. MDC (79.76 seconds) has a multi-stream structure, but
is able to compete with the single-sensor approaches. Despite
its good performance, the most expensive approach is DCN, as
it needs to optimize both reconstruction and clustering losses.

2) Experimental results on geological Finland dataset: The
quantitative assessment of the geological Finland dataset is
reported in Table III. In terms of OA, MDC attained the high-
est performance. This observation supports the generalization
capability of MDC to different types of datasets. Similar to
the Trento dataset, VAE attained the lowest performance. Re-
markably, AE and CAE performed reasonably well on HSI, but
worse on HSI+RGB, indicating that the mere concatenation of
features of multi-sensor datasets is not the best strategy. On
the contrary, DCN on HSI+RGB outperforms DCN on HSI.

For a visual comparison, the obtained clustering maps of the
geological Finland dataset are presented in Fig. 12. Similar
as in the Trento dataset, the CAE-based networks, Multi-
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TABLE II
QUANTITATIVE ASSESSMENT OF ALL CONSIDERED CLUSTERING APPROACHES ON THE TRENTO DATASET. IN THE TABLE, FUSED INDICATES THE

CONCATENATION OF HSI AND LIDAR-DERIVED DSM DATA.

Clusters Test
Different clustering approaches

K-means AE CAE VAE DCN
Multi-SSC MDC

HSI Fused HSI Fused HSI Fused HSI Fused HSI Fused

Apple Trees 4034 27.49 54.45 16.63 54.95 0.00 0.00 32.56 33.24 33.81 44.01 0.00 76.14
Buildings 2903 58.63 50.43 54.85 56.07 70.54 92.21 52.05 52.79 57.60 69.91 57.68 90.88
Ground 479 0.00 0.16 43.33 0.17 14.87 0.19 0.00 0.00 0.00 0.21 9.22 1.94
Wood 9123 61.14 62.88 55.05 64.64 41.45 47.41 73.20 72.84 68.29 62.09 90.95 79.77

Vineyard 10,501 98.21 88.91 97.81 87.45 66.78 85.80 81.04 80.50 97.57 86.80 68.89 94.23
Roads 3174 72.88 98.36 83.63 98.17 70.85 75.19 99.21 99.82 69.68 97.95 75.37 89.83

OA (%) 57.95 61.62 50.87 64.23 59.54 68.25 50.12 50.56 60.89 63.79 71.90 82.79
AA (%) 53.06 59.20 58.55 60.24 44.08 50.13 56.34 56.53 54.49 60.16 50.35 72.13
Kappa 0.46 0.50 0.38 0.53 0.43 0.56 0.39 0.39 0.50 0.53 0.61 0.77

NMI 0.43 0.48 0.45 0.49 0.55 0.61 0.47 0.47 0.47 0.48 0.60 0.69
ARI 0.28 0.37 0.28 0.39 0.39 0.48 0.28 0.28 0.34 0.37 0.60 0.63

A full iteration (t seconds) 3.90 6.65 15.16 15.19 87.71 87.13 1054.82 1146.71 3053.10 3093.29 518.63 79.76

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)
Fig. 11. Clustering maps of Trento dataset obtained by: (a) K-means on HSI, (b) K-means on HSI+LiDAR; (c) AE on HSI, (d) AE on HSI+LiDAR; (e)
CAE on HSI, (f) CAE on HSI+LiDAR; (g) VAE on HSI, (h) VAE on HSI+LiDAR; (i) DCN on HSI, (j) DCN on HSI+LiDAR; (k) Multi-SSC; (l) MDC.

SSC, and MDC (Fig. 12(e), (f), (k), and (i)) yield smoother
clustering maps compared to the others. VAE produced noisy
clustering maps and was not able to separate relevant clusters.
While MDC was able to distinguish Water and Clay, Multi-
SSC could not. Despite the noisy clustering maps produced by

DCN in both scenarios, it has the capability of distinguishing
different clusters well.

The total required processing time of all studied clustering
approaches on the geological dataset are reported in Table III.
Similar to the Trento dataset, among all applied approaches, K-
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TABLE III
QUANTITATIVE ASSESSMENT OF ALL CONSIDERED CLUSTERING APPROACHES ON THE GEOLOGICAL FINLAND DATASET. IN THE TABLE, FUSED

INDICATES THE CONCATENATION OF HSI AND RGB DATA.

Clusters Test
Different clustering approaches

K-means AE CAE VAE DCN
Multi-SSC MDC

HSI Fused HSI Fused HSI Fused HSI Fused HSI Fused

Clay 767 89.05 89.34 85.10 81.09 84.40 92.13 89.35 79.64 89.98 90.92 78.18 92.95
Glimmerite 381 72.43 76.36 91.37 100.00 69.00 78.90 48.26 52.92 66.50 67.34 99.74 93.97
Dark-rocks 659 79.09 79.33 73.12 58.30 80.53 84.45 61.38 82.68 78.80 86.93 67.27 71.67

Dust 282 39.44 37.37 49.20 59.30 42.62 48.87 38.19 39.82 36.19 43.75 31.95 40.81
Water 135 45.84 32.30 67.63 100.00 68.32 17.77 4.51 8.73 27.03 21.91 0.00 100.00

OA (%) 64.52 61.67 70.76 68.89 68.37 60.83 56.43 59.94 60.80 68.12 62.14 79.69
AA (%) 65.17 62.94 73.28 79.74 68.89 64.42 48.34 52.76 59.07 62.17 55.43 79.88
Kappa 0.55 0.52 0.61 0.58 0.59 0.51 0.42 0.47 0.49 0.59 0.50 0.72

NMI 0.51 0.49 0.58 0.52 0.58 0.53 0.47 0.52 0.51 0.59 0.44 0.68
ARI 0.44 0.39 0.53 0.42 0.49 0.41 0.38 0.43 0.42 0.56 0.40 0.67

A full iteration (t seconds) 8.34 9.08 25.36 26.62 112.85 134.42 2880.62 2911.11 8216.10 8592.59 2112.90 136.13

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)
Fig. 12. Clustering maps of geological Finland dataset obtained by: (a) K-means on HSI, (b) K-means on HSI+RGB; (c) AE on HSI, (d) AE on HSI+RGB;
(e) CAE on HSI, (f) CAE on HSI+RGB; (g) VAE on HSI, (h) VAE on HSI+RGB; (i) DCN on HSI, (j) DCN on HSI+RGB; (k) Multi-SSC; (l) MDC.
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means is the fastest. MDC processed the multi-sensor dataset
in 136.13 seconds, which is reasonably fast, considering the
number of parameters that needs to be trained. Similar to the
Trento data, DCN is the slowest approach, it analyzed the HSI
and the HSI+LiDAR-derived DSM in 3053.10 and 3093.29
seconds, respectively.

V. DISCUSSION

We evaluated and compared the performance of MDC with
a conventional multi-sensor clustering approach (i.e., Multi-
SSC) and some single source-based deep learning clustering
approaches on two different types of datasets (i.e., geological
and rural areas). Experimental results confirm the superiority
of MDC over the Multi-SSC and the state-of-the-art deep
learning-based clustering algorithms. From these observa-
tions, we can conclude that the proposed fusion strategy is
more reliable and effective than a mere concatenation of
the multi-sensor datasets, initial to the clustering procedure.
In addition, it was shown that clustering approaches, which
incorporate spatial information of neighboring pixels, produce
less noisy clustering maps. Among the state-of-the-art deep
learning-based approaches without including the information
of adjacent pixels, AE and DCN performed relatively strong,
in particular DCN, which indicates its effective architecture
design to extract clustering friendly features as well as its
great potential for clustering of remote sensing datasets. The
poor performance of VAE can be explained by its pixel-wise
framework that generates non-spatial and non-contextual latent
features in the encoding phase.

We conducted experiments to select the optimal learning
rate (LR), which highly influences the pace of the training
phase. According to obtained results. LR = 0.001 is selected as
the optimal value. Furthermore, in this study, we investigated
the impact of the hyperparameters in MDC’s architecture.
Regarding the convolutional kernel sizes of MDC, we propose
5 × 5 as the optimal kernel size. The lower kernel sizes
degraded the performance of MDC, because the spatial and
spectral information is not efficiently exploited. A kernel size
of 1 × 1 achieved weak results, since MDC performs as a
pixel-wise approach.

The impact of the fusion strategy was investigated, by
comparing the proposed strategy with a number of alternatives
(explained in section IV-A5). From this comparison, it was
clear that the simultaneous training of the spectral and spatial
networks was advantageous over training them separately. The
fusion network has the highest impact on the performance. The
combination of all three networks, with a minor contribution
of the spatial and spectral networks, provided the best results.
Depending on the application at hand, the optimal relative
contribution of the spectral and spatial networks may vary.

In this study, we proposed to use a baseline clustering
approach (i.e., K-means) to produce the final clustering map.
As future work, we will investigate the performance of MDC
when combined with more sophisticated clustering approaches
(e.g., spectral clustering).

With respect to the geological Finland dataset, we should
note that the theory remains the same, however, a more effec-
tive approach is to upsample the dataset with a lower spatial

resolution; nonetheless, due to the availability of the ground
truth dataset at the lower spatial resolution, we downsampled
the RGB image.

VI. CONCLUSIONS

In this paper, we proposed a multi-sensor deep clustering
algorithm that exploits spectral and spatial information from
multi-sensor datasets (i.e., HSI, LiDAR-derived DSM, RGB).
MDC includes three architectures; an AE-based network
which extracts the spectral information from a HSI, a CAE-
based network that extracts spatial information from a high
spatial resolution image, and a fusion network that takes the
concatenated features from the former networks as input to
reconstruct the concatenated image data. Subsequently, MDC
computes three different losses (i.e., spectral, spatial, fusion
losses) to find the optimal network parameters (i.e., weights,
bias). The fusion loss was observed as the main contributor,
but MDC additionally benefits from the spectral and spatial
losses in the training phase. In future work, we will combine
this strategy with more sophisticated clustering approaches.
Among all applied DL-based clustering approaches, AE, CAE,
and DCN performed well, and have high potential to be further
explored for application in multi-sensor deep clustering frame-
works. This work may lead to an enhanced effort to further
explore DL-based unsupervised multi-sensor approaches for
remote sensing applications.
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