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Abstract9

Purpose: Adjoint image warping is an important tool to solve image reconstruction10

problems that warp the unknown image in the forward model. This includes 4D-CT11

models in which images are compared against recorded projection images of various12

time frames using image warping as a model of the motion. The inversion of these13

models require the adjoint of image warping, which up to now has been substituted14

by approximations. We introduce an efficient implementation of the exact adjoints15

of multivariate spline based image warping, and compare it against previously used16

alternatives.17

Methods: Using symbolic computer algebra, we computed a list of 64 polynomials18

that allow us to compute a matrix representation of trivariate cubic image warping. By19

combining an on-the-fly computation of this matrix with a parallelized implementation20

of columnwise matrix multiplication, we obtained an efficient, low memory implemen-21

tation of the adjoint action of 3D cubic image warping. We used this operator in the22

solution of a previously proposed 4D-CT reconstruction model in which the image of a23

single subscan was compared against projection data of multiple subscans by warping24

and then projecting the image. We compared the properties of our exact adjoint with25

those of approximate adjoints by warping along inverted motion.26

Results: Our method requires halve the memory to store motion between subscans,27

compared to methods that need to compute and store an approximate inverse of the28

motion. It also avoids the computation time to invert the motion and the tunable29

parameter of the number of iterations used to preform this inversion. Yet, a similar30

and often better reconstruction quality was obtained in comparison with these more31

expensive methods, especially when the motion is large. When compared against a sim-32

pler method that is similar to ours in computational demands, our method achieves a33

higher reconstruction quality in general.34

Conclusions: Our implementation of the exact adjoint of cubic image warping im-35

proves efficiency and provides accurate reconstructions.36
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I. Introduction62

A 4D-CT scan is a series of n consecutive, regular CT scans, called subscans. These subscans63

are used to capture different 3D images of a deforming object. It is generally assumed that64

the scanned object is motionless during each subscan, such that the scan can be modeled65

by the equation Wixi = pi. Here, xi ∈ RN is a column vector representing an image66

with N voxels, pi ∈ RK is a column vector representing the projection data of the i-th67

subscan, with K the number of detector pixels times the number of projections, and Wi is a68

K ×N matrix representing the projection operator of the i-th subscan. If the object is not69

motionless, the extent to which this static model is accurate depends on the time that passed70

during the subscan. For this reason, subscans are usually fast scans with few projections.71

Reconstructing a 4D image from a 4D-CT scan with n subscans then corresponds to solving72

n linear systems73

Wixi = pi, i = 1, · · · , n , (1)

which are often highly underdetermined due to the low number of projections. Equivalently,74

the problem can be represented as a single underdetermined system of the form75 
W1 0 0 0
0 W2 0 0

0 0
. . . 0

0 0 0 Wn



x1

x2
...
xn

 =


p1

p2
...
pn

 . (2)

One way to alleviate this underdetermination is to link the time frames using image76

registration or optical flow techniques1,2,3,4 and image warping5. Each specific image can77

then be reconstructed with a motion compensated reconstruction technique that combines78

the projection data of all subscans. Such techniques can be roughly classified as follows:79

1. The motion compensated reconstruction techniques employed in6,7,8,9 first make a re-80

construction of each subscan separately. The resulting reconstructions are then warped81

to a single point in time where they are averaged. This average reconstruction then82

depends on the projection data of all subscans. This type of method is very fast and83

it does not require the adjoint or the inverse of the warping operators.84

2. In the MoVIT algorithm10 and in11, the images are warped along the flow between85

frames before they are projected using a standard projection geometry. This entire86
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forward model is then iteratively inverted. Such an iterative procedure requires the87

adjoint of all operators present in the forward model. The adjoint of the projection88

operator is (non-filtered) backprojection and has been well studied. The adjoint of89

the image warping operator was substituted by an approximation of the inverse warp.90

It was shown in10, that this iterative approach outperforms the averaging of separate91

reconstructions in terms of reconstruction quality.92

3. In12,13, Eq. (2) is regularized with terms that constrain the change of the object between93

frames, i.e. with constraints on the optical flow. In13, warping operators are involved in94

these regularization terms of the objective function, and the adjoints of these operators95

are needed to use convex optimization techniques for minimizing it.96

4. In14,15, the optical flow between frames is accounted for in the projection operators, by97

using a curved ray projection geometry instead of explicitly involving image warping.98

Solving the resulting system requires the adjoint of this specialized projection operator.99

Since the projection operator can be seen as the composition of a regular projection100

operator and image warps, adjoint image warping can also be employed here.101

Next to motion compensated reconstruction, there are other inverse problems that involve102

warping operators in their forward model, such as the direct inversion of a warping operator103

as used in17.104

The above mentioned methods implement the adjoint image warping operators by warp-105

ing along an approximated inverse of the flow, or they are restricted to very small examples106

where they can work with matrix representations of the operators and their transpose. Com-107

puting the inverse of the flow requires computation time and memory. On top of that, since108

the flow is generally not exactly invertible and the adjoint of a warp is not exactly the warp109

along the inverse flow, it introduces inaccuracies. Few papers have investigated how these110

approximations compare with the exact adjoints. In16, a pair of adjoint warping operators111

with a custom linear interpolation method is used for respiratory and cardiac motion cor-112

rection in 4D PET. It is shown that using inverse warps as an approximation for the adjoint113

warp leads to image degradation compared to using the exact adjoint warps.114

In this work, an efficient, GPU based algorithm that exactly computes the adjoint action115

of generic multivariate spline based image warping is introduced. This algorithm avoids the116
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memory overhead of storing an inverted flow. We specifically focus on 3D cubic warping, but117

our methods are applicable in general to multivariate spline based warping of any degree.118

II. Materials and Methods119

II.A. Image warping operators120

While the scanned object can change during a 4D-CT scan, a standard assumption of optical121

flow based methods is that the attenuation values of the materials that make up the object122

do not change, but only get repositioned. This assumption is only approximately valid,123

which puts a limit on the number of time frames we will be able to combine. Under this124

assumption, we can deform an image xi ∈ RN into the image xj ∈ RN of a different time125

frame, by moving its voxel values without changing them. For each voxel, a vector in R3
126

describes its displacement. Together, these displacement vectors form a displacement vector127

field or deformation vector field (DVF) representing the optical flow between the images.128

Repositioning the voxel values according to the DVF results in non-grid data, because129

the voxels are allowed to move to non-integer coordinates. To turn the result back into130

an image in RN , resampling is required. General image warping is the combined action131

of repositioning the voxels and resampling. A standard choice of resampling method is132

multivariate spline interpolation (usually linear or cubic splines), used in for example5,10,11.133

With this choice, each voxel in the warped image is a linear combination of voxels in the134

original image, so such warping operators are linear maps. We will write Mij to denote an135

N ×N warping operator that transforms xi into xj.136

There are two different approaches to implement image warping operators, referred to137

as forward and backward warping5 (see Fig. 1). Assume we have two images, xa and xb and138

a DVF describing the flow from xa to xb. With forward image warping, the voxels of xa are139

first repositioned along the DVF to obtain non-grid data representing the warped version of140

xa, and this non-grid data is then resampled at grid points to get an image similar to xb.141

Backward image warping is another approach, in which the DVF is followed in the opposite142

direction. For each voxel, we look at the position it is sent to by the DVF and interpolate143

the regular grid data of xb at that point. The result is an image similar to xa.144
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DVF

original warped

(a) Forward warping with holes

DVF

original warped

(b) Backward warping

Figure 1: Forward and backward image warping.

In this work, we derive the adjoint operators of backward image warping operators that145

use multivariate spline interpolation to interpolate the regular grid data of the image that146

is warped. The methods are described for tricubic interpolation, which is 3D or trivariate147

spline interpolation using cubic splines. It is also the warping method that is used by10
148

and11. Adjoint warping operators for the less complicated trilinear, bicubic and bilinear149

interpolation methods were also implemented.150

II.B. Tricubic interpolation151

Let f : Z3 → R be a function with values at only integer coordinates. Tricubic interpolation152

extends such a function to a piecewise polynomial function f̂ : R3 → R which agrees with f153

on integer coordinates and is differentiable in every point. In each cube of the grid Z3, the154

interpolant f̂ is given by a multivariate polynomial of the form155

f̂(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

almnx
lymzn . (3)

We assume to be working on the cube that has (0, 0, 0) as its lowest coordinate value.156

All other cubes can be interpolated by shifting. The 64 coefficients almn can be obtained by157

demanding that f̂ agrees with f , and by putting constraints on the differentiability of f̂ . Once158

64 independent linear constraints have been made, the coefficients are determined18. Another159

common way of computing f̂ is via a composition of successive cubic 1D interpolations, using160

for example Catmull-Rom splines (see e.g.19,20). By computing the composition numerically,161

the coefficients almn are never explicitly needed, but they can be determined by performing162

the composition symbolically. In both cases, the coefficients almn are linear combinations of163

II.B. Tricubic interpolation
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the 64 values of f on the 4 × 4 × 4 cube surrounding the cube that is being interpolated.164

More explicitly, every coefficient almn is of the form165

almn =
2∑

i=−1

2∑
j=−1

2∑
k=−1

αijk
lmnf(i, j, k) (4)

with ∀i, j, k : αijk
lmn ∈ R. Equivalently, f̂ is given by an expression of the form166

f̂(x, y, z) =
2∑

i=−1

2∑
j=−1

2∑
k=−1

bijk(x, y, z)f(i, j, k) (5)

where each coefficient bijk(x, y, z) is a multivariate polynomial of the form167

bijk(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

βlmn
ijk x

lymzn (6)

with ∀l, n,m : βlnm
ijk ∈ R. The second representation of f̂ is obtained, simply by rearranging168

the terms in Eq. (3). This rearrangement is a straightforward but tedious computation to do169

by hand. Instead, it was performed using the open source computer algebra package Sage-170

Math21 (the code is available here22). The benefit of Eq. (5) is that the 64 polynomials bijk171

express explicitly how the interpolated value f̂(x, y, z) depends linearly on the surrounding172

values of f .173

II.C. Adjoint image warping with tricubic interpolation174

A 3D image can be represented by a function f : Z3 → R which is zero outside the image175

bounds, or it can be represented by a column vector f ∈ RN , N = width× height× depth,176

which lists all voxel values in a predetermined order. The first representation allows to177

use tricubic interpolation on the image, while the second representation describes an image178

warping operator as a linear map M : RN → RN , which can be represented as an N × N179

matrix. The equation g = Mf expresses the warping of image f with resulting image g.180

Each voxel value of g is obtained by taking a linear combination of 64 voxel values of f ,181

with weights given by the coefficients bijk of Eq. (5). These weights make up the 64 non-zero182

entries of one row of matrix M , and M has one such row for each voxel of f . Now that a183

rowwise representation of M is known, a columnwise representation of MT can be obtained184

by transposing: MT = (mT
1 , · · · ,mT

N), where mi is the i-th row of M . An adjoint image185

II.C. Adjoint image warping with tricubic interpolation
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warping operator can then be implemented as a columnwise matrix multiplication with MT :186

187

MTg =
N∑
i=1

gim
T
i (7)

The matrix M or MT does not need to be stored. Instead, the matrix multiplication188

can be performed by computing the rows of M or the columns of MT on the fly, leading to189

the following algorithm:190

Algorithm 1: Adjoint tricubic image warping

input : Image g, DVF
output: Adjoint warped image f

1 f = 0
2 foreach voxel position (p1, p2, p3) do
3 (q1, q2, q3) = (p1, p2, p3) + DVF(p1, p2, p3)
4 (i′, j′, k′) = (bq1c, bq2c, bq3c)
5 for (i, j, k) ∈ {−1, 0, 1, 2}3 do
6 f(i′ + i, j′ + j, k′ + k) += bijk(i′ − q1, j′ − q2, k′ − q3)g(p1, p2, p3)
7 end

8 end

191

When working with large 3D volumes, it is important to leverage the performance gains192

of parallelization. The outer for loop of algorithm 1 can be computed in parallel, but special193

care needs to be taken because of the addition on line 6. The position to which we are adding194

is dictated by the DVF, and it is possible that multiple threads would write to the same195

position, leading to a race condition. By implementing the addition as an atomic addition,196

race conditions can be avoided and additions are performed sequentially if needed. Because197

the amount of overlap caused by the DVF pointing multiple times to the same area is in198

most cases relatively small, the achieved parallelization is almost indistinguishable from a199

complete parallelization. A GPU accelerated implementation is available here22.200

II.D. Dynamic tomographic model201

We will now describe the dynamic tomographic model used in the MoVIT algorithm10.202

This model was used in our experiments to validate our algorithm of adjoint image warping.203

Suppose that we want to reconstruct a certain time frame of interest, xi. In an ideal situation,204

any time frame xj can be produced from xi by using a suitable warping operator Mij, such205

II.D. Dynamic tomographic model
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that xj = Mijxi holds for all j. This can be written as:206 
Mi1

Mi2
...

Min

xi =


x1

x2
...
xn

 . (8)

Substituting Eq. (8) into Eq. (2) yields the dynamic tomographic model:207 
W1 0 0 0
0 W2 0 0

0 0
. . . 0

0 0 0 Wn



Mi1

Mi2
...

Min

xi =


p1

p2
...
pn

 , (9)

or more concisely:208

WMixi = p . (10)

In practice, Eq. (8) can not be achieved exactly, but by estimating the DVFs between209

initial reconstructions, a good approximation can be obtained. There are many image reg-210

istration and optical flow algorithms available to estimate the DVFs, such as1,2,3,4. We used211

the TV-L1 optical flow algorithm of3 implemented along the lines of23. System Eq. (10) is212

the one that is solved by MoVIT, and it can be interpreted as a factorization of the model213

presented in14 and15, in which the DVFs are used to directly modify the projection matrix214

W instead of adding the extra factor Mi. The new system has the same number of equa-215

tions as Eq. (2), but the number of unknowns is reduced to only the number of voxels of the216

chosen time frame.217

II.E. Solver218

There are many choices of Solvers for the system Eq. (10). These different choices can enforce219

different types of constraints on the solution. In11,13, the Primal Dual Hybrid Gradient220

method of24 is used to enforce sparsity of the gradient of the solution. MoVIT uses a221

modified version of SIRT with an intuitive interpretation. This can be seen as a gradient222

descent based algorithm, as SIRT is a slightly altered version of gradient descent25. We223

chose to use a basic (projected) gradient descent to minimize the objective function224

Fi(xi) = ‖WMixi − p‖22 . (11)

II.E. Solver
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The gradient descent update step for Eq. (11) is225

xk+1 = xk + γkM
T
i W

T (p−WMix
k) (12)

= xk + γk

n∑
j=1

MT
ijW

T
j (pj −WjMijx

k
i ) . (13)

Eq. (13) shows explicitly how the adjoint image warping operators MT
ij are used.226

II.F. Experiments227

To evaluate the validity of the proposed algorithm for computing adjoint image warps, three228

experiments were performed involving the solution of system Eq. (10).229

1. The first experiment is a simulation experiment that investigates the influence of the230

magnitude of the DVF, in the case that the DVF is known.231

2. The second experiment is a simulation experiment with unknown DVF. This experi-232

ment investigated the influence of noise in a realistic setting, including the estimation233

of the DVF.234

3. The last experiment is an application the experimental data obtained at a synchrotron235

facility. This experiments evaluates the the influence of the time step between subscans,236

by selecting subscans which are further and further apart.237

In these experiments, our method was compared against two alternative methods to compute238

(approximate) adjoint image warps.239

1. The first method substitutes the adjoint warp by a regular image warp along an inverted240

DVF computed by the fixed point algorithm of26. This is the approach taken in the241

MoVIT algorithm and in14. For this method, a convergence criterion for the inversion242

algorithm needs to be chosen, and twice the amount of DVFs need to be stored (for243

each DVF also its inverse).244

2. A simpler and computationally less expensive approach is to substitute the adjoint245

warp by a regular warp along the negative DVF. A simple sign change is inexpensive246

to compute and no extra storage is required because we can compute it on the fly. This247

II.F. Experiments
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method is valid when the DVF is interpreted as the derivative of the voxel position248

with respect to time. Changing the sign of this derivative is equivalent to an inversion249

of the motion with respect to time. In practice, this is only an approximation because250

the DVFs are not exactly derivatives. Instead, they contain the change of a voxel251

position with respect to a discrete time step. This method is thus reliant on small time252

steps.253

The quality of the reconstructions was evaluated using the Mean Squared Error (MSE)254

and the Structural Similarity Index Measure (SSIM)27. All forward and backward CT pro-255

jections were performed with the GPU routines of the ASTRA toolbox, which use Joseph’s256

method28,29,30.257

II.F.1. Simulation experiment with known DVF258

To investigate the effect of the magnitude of the DVF on the adjoint warping techniques,259

a simulation experiment was performed using a 2D phantom of a lung at time 0, and a 2D260

DVF to simulate motion on it (Fig. 2). The moved phantom is then regarded as ground261

truth at time 1. This phantom is one of the reconstructions presented in31, which we use262

as ground truth. The DVF was obtained by estimating the optical flow between the ground263

truth and the next time frame presented in31, and is also used as ground truth. To simulate264

the motion we used a bilinear warp, in contrast to the bicubic warp used in reconstruction,265

to not use the same model in the synthesization as in the inversion. At both time frames, a266

parallel beam CT scan was simulated with 128 projections at golden ratio angles. Gaussian267

noise with a standard deviation of 0.002 was added to the projection data, after rescaling it268

to the interval [0, 1]. The image of time 0 was then reconstructed using the projection data of269

time 0 and time 1, by solving system Eq. (10). This experiment was repeated several times,270

each time with a different scalar multiplier applied to the DVF. We used 16 scalar multipliers271

from the range [0.5, 3] and each experiment was performed with 10 noise realizations.272

II.F.2. Simulation experiment with unknown DVF273

A numerical study was performed on a cylindrical phantom containing growing spheres,274

mimicking the formation process of foam32. A 2D+time phantom (Fig. 3) with two materials275

II.F. Experiments
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(a) Ground truth image. (b) Ground truth DVF at scale 1.

Figure 2: The ground truth image and DVF for the simulation exper-
iment with known DVF.

was obtained by extracting a single slice of the 4D phantom, and pixelating it on a 1024×1024276

grid. The width and height of the phantom is 1 cm. The first material is liquid with a277

constant attenuation coefficient of 0.8069 cm−1. The second material is air with a constant278

attenuation coefficient of 0.9529× 10−3 cm−1. A dynamic (2D+time) CT scan was simulated279

with three subscans recording a part of the foam formation process. Each subscan consists280

of 512 parallel beam projections with golden ratio angles. These projections where simulated281

with various noise levels using the on a detector with 1024 detector elements. The noise is282

simulated Poisson noise corresponding to 7 beam intensities in the range 103 to 105 (photon283

count). Each noise level was evaluated with 10 different realizations. To evaluate the quality284

of the reconstructions, they were compared against the ground truth in the middle of the285

subscan.286

For each of the generated datasets, we reconstructed subscan 2, combining its data with287

the data of subscan 1 and 3 using system Eq. (10). The estimated DVFs used in this system288

are shown in Fig. 4.289

II.F. Experiments
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(a) Subscan 1 (b) Subscan 2 (c) Subscan 3

Figure 3: The ground truth at the middle time point in each of the
subscans.

(a) DVF between sub-
scan 1 and subscan 2

(b) DVF between sub-
scan 2 and subscan 3

Figure 4: The ground truth at the middle time point of subscan 2,
with the DVFs mapping it to the other subscans overlayed on top of it.
For a clearer visualization, we only display each 10-th vector in both
the horizontal and vertical direction.

II.F.3. Liquid foam dataset290

To evaluate our method on real experimental data, an experiment was performed with a291

4D-CT scan of a liquid foam that is pushed through a funnel, available from Tomobank33.292

This 4D-CT scan was recorded at the TOMCAT beamline of the Swiss Light Source. The293

data consists of 180 subscans. Each of the subscans has 300 parallel beam projections taken294

uniformly over a 0 to 180 degree range with a rotational speed of 840 deg/s. The projections295

were recorded at an energy level of 16 keV, with an exposure time of 0.7 ms. The detector296

consists of 1800×2016 detector pixels of size 3 µm. For our experiments, the projections were297

vertically cropped and downsampled by a factor of 4, resulting in 128×504 pixel projections298

with a virtual pixel size of 12 µm.299

II.F. Experiments
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The experiment was focussed on the reconstruction of subscan 98 since around this sub-300

scan, some challenging motion happens. The subscan was first reconstructed using its 300301

projections and with a smoothed TV1 regularization term34 added to the objective function302

of Eq. (11), to get a high quality reconstruction to be used as a reference. The reconstruction303

is shown in Fig. 5. Next, we evaluated our adjoint image warping method by reconstruct-304

ing subscan 98, using only the 150 projections with even index, but combining it with 150305

projections of a second subscan with odd index, using system Eq. (10). We repeated this306

experiment several times with different choices for the second subscan ranging from 89 to307

107, to investigate how far away in time we can go, and still benefit from the added data.308

We paid special attention to a small region of interest shown in Fig. 6. Inside this region of309

interest, a lot of complex motion occurs, while the rest of the volume hardly moves.310

311

Figure 5: Three orthogonal slices of the reference reconstruction of
subscan 98. The region of interest with large complex motion is marked
by the red rectangles. (see Fig. 6)

Figure 6: A visualization of the norm of the optical flow between
frame 95 and frame 98. Three orthogonal slices are shown, one for
each dimension. The red rectangle marks a region of interest where
the flow is large and complex, which complicates the inversion of the
DVF.

II.F. Experiments
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III. Results312

III.A. Simulation experiment with known DVF313

The MSE and SSIM of the reconstructions from this simulation experiment, averaged over314

10 noise realizations, are displayed in Fig. 7a and 7b, respectively. The horizontal axis shows315

the scalar multiplier applied to the DVF. In Fig. 9 the reconstructions are shown for three of316

those scalar multipliers (1, 2 and 3). In Fig. 8, the convergence rates of the different methods317

are visualized, at DVF scale 3.318

III.B. Simulation experiment with unknown DVF319

The MSE and SSIM of the reconstructions from this second simulation experiment, averaged320

over 10 noise realizations, are displayed in Fig. 10a and 10b, respectively. The reconstructions321

at noise level 105 are shown in Fig. 12, next to the ground truth. In that same figure, a zoomed322

in version of the reconstructions is shown that highlights a bubble with artifacts. In Fig. 11,323

the convergence rates of the different methods are visualized, at photon count 105.324

III.C. Liquid foam dataset325

The MSE and SSIM, with respect to the reference reconstruction, of all reconstructions of326

subscan 98 is shown in Fig. 13. The black line indicates the MSE and SSIM of a recon-327

struction using only 150 projections of subscan 98, in contrast to the other reconstructions328

that also include 150 projections of a second subscan. Obtaining an MSE lower than the329

black line, or an SSIM higher than the black line, indicates that the information of the extra330

subscan was exploited to improve the reconstruction quality.331

Fig. 14 shows the MSE and SSIM of our reconstructions in the region of interest shown332

in Fig. 6, using the data of subscans 89 to 97. This region is of interest because during333

the recording of subscan 89 to 97, the motion is concentrated in this region. A slice of the334

reconstructions of subscan 98 using the data of subscan 95 is shown in Fig. 15. The region335

of interest is marked and magnified in this figure.336
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Figure 7: MSE (7a) and SSIM (7b) of the reconstructions of the lung
phantom with differently scaled DVFs (see II.F.1.)
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Figure 8: Convergence plots comparing the different methods at scale
3.
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Figure 10: MSE (10a) and SSIM (10b) of the reconstructions of sub-
scan 2 of the simulated scan, using the data of subscan 1 and 3, at
different noise levels. (see II.F.2.)
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Figure 11: Convergence plots comparing the different methods at pho-
ton count 105.
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Figure 12: Reconstructions of subscan 2 of the simulated scan, using
the data of subscan 1 and 3, with a photon count of 105, and different
methods for the adjoint warps. The second row shows a zoomed in
image of a bubble with artifacts.
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Figure 13: MSE (13a) and SSIM (13b) of the reconstruction of sub-
scan 98, using 150 projections + 150 projections of one extra subscan.
The black line shows the MSE and SSIM of a reconstruction with 150
projections, without extra projections from an other subscan. It can be
used as a reference to evaluate whether the information of the extra
subscan was able to provide an improved reconstruction quality.
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Figure 14: MSE (14a) and SSIM (14b) of the region of interest (Fig. 6)
of subscan 98, using 150 projections + 150 projections of one extra
subscan. The black line shows the MSE and SSIM of a reconstruction
with 150 projections, without extra projections from an other subscan.
It can be used as a reference to evaluate whether the information of the
extra subscan was able to provide an improved reconstruction quality.
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(a) Negative DVF (b) Inverse DVF (c) Exact adjoint (d) Reference

Figure 15: A horizontal slice of the reconstruction of subscan 98 using
data of subscan 95 with 3 different methods, with the region of interest
(Fig. 6) magnified. The bottom row shows absolute difference images
of the magnified region, with respect to the reference.
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IV. Discussion337

When comparing the three methods, it is important to keep in mind that using the exact338

adjoint and using the negative DVF have almost equal computational demands, while using339

the inverse DVF requires an iterative inversion of the DVFs, and the storage of these inverted340

DVFs. For instance, if a 500×500×500 volume is used, then a DVF stored in single precision341

floating point numbers requires 1.5 GB of memory. Having to store twice the amount of DVFs342

can easily lead to a lack of RAM of GPU memory. The inversion algorithm also requires the343

choice of a convergence criterion, which further complicates the 4D-CT algorithm.344

Our experiments show how our method compares to two alternatives when used in a345

basic 4D-CT reconstruction algorithm. However, our method is applicable to various other346

motion compensated reconstruction techniques that make use of adjoint image warping,347

including the methods of classes 2, 3 and 4 discussed in the introduction, which leaves much348

room for further exploration.349

IV.A. Simulation experiment with known DVF350

The measurments in Fig. 7 show that using the exact adjoint robust to the scale of the DVF,351

while the approximation methods lead to a degrades quality if the DVF gets too large. The352

quality decays the fastest in the case of the negative DVF, which is to be expected as this353

method is derived under the assumption that all changes are infinitesimal. The fixpoint354

inverted DVF provides a much better approximation and only shows a small degradation in355

quality for large DVFs. When the DVF is scaled to a small magnitude, the three methods356

come very close together, and the fixpoint inverted DVF sometimes gives better results that357

the exact adjoint. This can possibly be explained by the fact that an accurate inversion can358

be found in the case of a very small DVF, combined with the fact that the incorrect error359

redistribution in the update of the image has a smoothing effect, which can remove noise360

and other artifacts. The convergence plot in Fig. 8 shows that, in the case of a large DVF,361

the method using the negative DVF is not capable of minimizing the residue after a certain362

point. The other methods keep lowering the residue, and the lowest residue is obtained using363

the exact DVF.364

The reconstructions in Fig. 9 show what kind of artifacts are caused by the different365
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approximations. At scale 2, the negative DVF method shows distortions in wide regions366

around interfaces between different materials. The fixpoint inverted DVF method causes tiny367

speckles in similar locations. These distortions remain present at smaller scales, although to368

a lesser extent. The exact adjoint avoids both of these artifacts, at a cheaper computational369

cost than the fixpoint inverted DVF method. However, in practice, there will be other370

artifacts present due to the fact that the DVF is not exactly known. This is further discussed371

in the following experiments.372

IV.B. Simulation experiment with unknown DVF373

Fig. 10 shows that, in terms of MSE, using the exact adjoint provides the best results, followed374

by using the negative DVF as an approximation, and then the inverse DVF. This holds for375

all considered noise levels. In terms of SSIM, the method with exact adjoints provides the376

best results for noise levels with photon count 104 and above. Below this photon count, the377

quality drops faster than the other methods, indicating that the method is more sensitive378

to noise. Similar to the previous experiment, this might be explained by the fact that the379

approximating methods cause a smoothing effect which suppresses noise. If that is the case, a380

possible improvement to our method would be to include some kind of explicit regularization381

in the method. It was observed that the method using the exact adjoint is capable of lowering382

the residue faster then the other methods (Fig. 11), however, this seems to depend on the383

situation as it was not observed in the previous experiment. Fig. 11c shows the evolution of384

the MSE with respect to the iteration number. It shows that overfitting to the noise and385

the DVF estimation errors occurs around iteration 200. At this iteration, the method using386

the exact adjoint provides the lowest MSE and residual error of the three methods.387

In Fig. 12, the effects of the different methods on the reconstruction can be seen visually.388

The reconstruction with exact adjoints is more sharp and granular, while the two approxi-389

mating methods are smooth. The approximations do cause an artifact around a fast growing390

bubble. This is due to the fact that the DVF is not invertible in this area, so methods relying391

on an approximate inversion of the DVF fail in such locations. Our proposed algorithm for392

exact adjoint does not require an approximate inverse of the DVF. Still, the reconstruction393

with the exact adjoints shows some artifacts which can not be seen in the reconstructions394

with the other methods. This might be caused by the inaccuracies present in the estimated395

IV.B. Simulation experiment with unknown DVF
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DVF. Using the exact adjoint likely results in a reconstruction which is more faithful to the396

inaccurate DVF. Therefore, the decision of which method to use in practice must be made397

with the accuracy of the estimated DVF in mind. Possible improved methods could be made398

by combining the different methods based on the DVF accuracy.399

IV.C. Liquid foam dataset400

The results in Fig. 13 show that we can successfully exploit the data of many other subscans401

to improve the reconstruction quality of subscan 98. It can be observed that the improvement402

in reconstruction quality gets smaller when using subscans that are further away in time.403

This holds for all three methods. There are some outliers that do not follow this pattern:404

subscan 94 and subscan 99 give a substantially lower reconstruction quality. This can be405

attributed to the fact that there is a substantial amount of motion during these subscans,406

so there is a substantial amount of inconsistency in their data.407

As shown in Fig. 13, the difference between the MSE and SSIM of the three methods is408

small. Using the negative DVF yields the lowest reconstruction quality overall. In terms of409

SSIM, the method using the inverse DVF is almost indistinguishable from the method using410

the exact adjoints. For select subscans (99, 105, 106, 107) there is a very small advantage411

to the exact adjoints. In terms of MSE, using the inverse DVF often gives a slightly higher412

quality than using the exact adjoint. It should be noted that these errors were measured413

over a large volume of which only a small part shows complex motion, as shown in Fig. 6.414

The lower MSE for the approximation using the inverse DVF might be explained as follows:415

in most of the volume, the DVF is very small, so an accurate inversion can be found. This416

explains why there is no substantial loss of quality using this method. On top of that, the417

approximation introduces a smoothing effect, which can remove detail, but it also removes418

noise and reduces some artifacts. In this experiment, no notable difference in convergence419

speed was observed between the different methods.420

The error measurements in Fig. 14 show how the methods compare in the region with421

the largest motion. This paints a different picture than the error measurements of the full422

volume. A first observation is that only the two closest subscans can be used to give an423

improved reconstruction quality in this region. A second observation is that the difference424

between the three methods becomes more apparent. In this region, using the exact adjoints425

IV.C. Liquid foam dataset



Adjoint image warping in 4D-CT: Printed August 25, 2021 page 25

yields the highest MSE and SSIM overall, and the difference is more pronounced for larger426

time steps.427

Fig. 15 shows a slice of the reconstructions of subscan 98 with subscan 95 as the extra428

subscan. When zooming in on the region of interest, some double edge artifacts become429

apparent. These artifacts are present in all three methods, but they are most prominent430

when using the negative DVF approximation. They are less prominent in the reconstructions431

of the exact adjoint method and the method with the inverse DVF approximation. of these432

two methods, the exact adjoint method is computationally the cheapest.433

V. Conclusions434

In this work, a GPU accelerated algorithm that computes the exact adjoint action of multi-435

variate spline based image warping was introduced. It was shown how this adjoint operator436

can be applied to reconstruction problems in 4D-CT that rely on optical flow techniques.437

Our method was experimentally compared against two alternative methods that approxi-438

mate the adjoint image warp by a regular warp along an approximate inverse of the optical439

flow. The experiments showed that our method can improve reconstruction quality when440

the flow is difficult to invert. Moreover, an accurate inversion of a flow field requires an441

iterative algorithm with a stopping criterion, as well as the storage of the resulting inverse442

flow. Because our method does not require the inversion of the flow, we avoid this tunable443

parameter and the memory costs of storing the inverted flow.444
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