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and Jocelyn Chanussot, Fellow Member, IEEE

Abstract—© 2022 IEEE. Personal use of this material is per-
mitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in other
works. In this paper, we propose minimum simplex convolutional
network for deep hyperspectral unmixing (MiSiCNet). Unlike
all the deep learning-based unmixing methods proposed in the
literature, the proposed convolutional encoder-decoder architec-
ture incorporates spatial and geometrical information of the
hyperspectral data, in addition to the spectral information. The
spatial information is incorporated using convolutional filters and
implicitly applying a prior on the abundances. The geometrical
information is exploited by incorporating a minimum simplex
volume penalty term in the loss function for the endmember
extraction. This term is beneficial when there are no pure
material pixels in the data, which is often the case in real-
world applications. We generated simulated datasets, where
we consider two different no-pure pixel scenarios. In the first
scenario, there are no pure pixels but at least two pixels
on each facet of the data simplex (i.e., mixtures of 2 pure
materials). The second scenario is a complex case with no pure
pixels and only one pixel on each facet of the data simplex.
Additionally, we evaluate the performance of MiSiCNet in three
real datasets. The experimental results confirm the robustness of
the proposed method to both noise and absence of pure pixels.
Additionally, MiSiCNet considerably outperforms the state-of-
the-art unmixing approaches. The results are given in terms of
spectral angle distance in degree for the endmember estimation,
and root mean square error in percentage for the abundance
estimation. MiSiCNet was implemented in Python (3.8) using
PyTorch as the platform for the deep network and is available
online: https://github.com/BehnoodRasti/MiSiCNet.

Index Terms—Hyperspectral image, unmixing, convolutional
neural network, deep learning, deep prior, endmember extrac-
tion, minimum simplex volume, blind unmixing

I. INTRODUCTION

A
spectral pixel is generally a mixture of the pure spectra

of the materials within the pixel, called endmembers [1],

[2]. Estimating the fractional abundances of the endmembers

within spectral pixels is called spectral unmixing. If the
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materials are intimately mixed, and multiple reflections are

received at the sensor, then nonlinear unmixing is utilized.

On the other hand, linear unmixing is found helpful in remote

sensing applications, where hyperspectral images often consist

of homogeneous regions of single materials [3], [4].

If there exist pure pixels for each material within the

scene, then the endmembers can be easily extracted using a

geometrical approach relying on the simplex of the data. After

extracting the endmembers, the abundances can be estimated

by minimizing the least squared errors between the actual

spectra and reconstructed spectra from the endmembers, sub-

jected to the physical constraints on the abundances, i.e., the

abundance non-negativity constraint (ANC) and the abundance

sum-to-one constraint (ASC) [5].

The endmembers are assumed to be located at the vertices

of the data simplex. Therefore, they can be extracted by maxi-

mizing the data simplex e.g, by simplex volume maximization

(SiVM) [6]. In [7], convex optimizations were used to solve

the maximum volume inscribed simplex (MVIS) problem.

MVIS searches for the data points whose simplex convex hull

is inscribed in the data convex hull while the simplex volume

is maximized. Alternatively, the vertices can be selected as

the extreme points after iteratively projecting the data onto a

particular direction. For instance, Vertex Component Analysis

(VCA) [8] selects endmembers iteratively by projecting the

data into an orthogonal direction to the subspace spanned by

the already selected endmember. Pixel Purity Index (PPI) [9]

scores the spectral vectors by projecting them onto a large set

of random vectors (called skewers) and counting the number

of times that each vector is an extreme point. N-FINDR [10]

searches for pure pixels that form the largest simplex by

gradually inflating a simplex inside the data.

In the absence of pure pixels, the geometrical approaches

can still be successful when enough data points are available

on the facets of the data simplex. Then, virtual endmembers

located at the vertices can be estimated. For instance, the

minimum volume enclosing simplex (MVES) problem seeks

the minimum simplex which encloses the data points [11], [12]

and therefore does not rely on the pure pixel assumption. In

[13], a Maximum Volume Inscribed Ellipsoid (MVIE) method

was proposed. MVIE seeks the maximum volume ellipsoid

contained within the convex hull of the data points. This

volume is maximal when touching the facets of the data

simplex. The contact points provides clues on how to estimate

the virtual endmembers.

In no pure pixel-scenarios, estimating the endmembers and

the abundances simultaneously is called blind unmixing. A
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common procedure is to use constrained (penalized) least

squared error minimization (also referred to as non-negative

matrix factorization in literature [14]) to form an optimization

problem with respect to both endmembers and abundances

[15], [16]. In those problems, the geometrical information can

be induced by using a minimum volume-based penalty term.

In [17], the square of the simplex volume was selected as

the penalty term in a fully constrained penalized least squares

estimation. The Euclidean distances between the endmembers

and the center of the data points are considered in [14]

as a geometrical penalty. In [18], the authors proposed a

geometrical penalty defined by the Euclidean distance between

the endmembers and the extremes of the data simplex extracted

by a geometrical approach (i.e., VCA). In [19], the total

variation (TV) of all the endmembers is proposed as a penalty

term. In these optimization problems, the selection of the

regularization parameter, which is the trade off between the

fidelity term and the penalty term, is often a complex problem.

In [20], a parameter selection technique is proposed for the

fully constrained penalized least squares method with the three

different geometrical penalties proposed in [14], [18] and [19].

Alternatively, the unmixing problem can be reformulated

into a non-convex minimization (or a non-concave maximiza-

tion) problem, which seeks the minimum volume data simplex,

subjected to the ASC and ANC [21], [22]. Note that the

initialization can considerably affect the performance of the

aforementioned non-convex approaches.

Sparse unmixing is another group of unmixing techniques

that estimate the fractional abundances using sparse regression

techniques, relying on a rich and well-designed library of

pure spectra. Each spectrum is assumed to be a sparse linear

combination of the dictionary elements, i.e., the library. The

optimization problem is often defined in the form of penalized

least squares with a sparsity promoting penalty applied on

the abundances [23], [24]. Recently, in [25], a deep learning

approach was proposed for sparse unmixing, using a convo-

lutional neural network (SUnCNN). The major disadvantage

of sparse unmixing techniques is their dependency on the

spectral library, which can considerably affect the abundance

estimation performance. On the other hand, a specific group of

sparse unmixing approaches considers the endmembers’ spec-

tral variability by using a dictionary of endmember bundles

generated from the data itself. An example of such approach

is the Collaborative LASSO (Least Absolute Shrinkage and

Selection Operator [26]) [27] [28].

In recent years, deep learning techniques attracted increas-

ing attention in remote sensing, including hyperspectral image

analysis. A variety of architectures has been developed and

proposed for different applications, such as hyperspectral

image classification [29]. For deep hyperspectral unmixing, the

most widely used architecture is based on autoencoders. The

abundances are often generated by enforcing the constraints

(i.e., ANC and ASC) in the final layer of the encoder. The

decoder has one layer that reconstructs the signal, and its

weights are the endmembers. In [30], a stack of nonnegative

sparse autoencoders (SNSA) was proposed in which the last

autoencoder is utilized for unmixing, and the rest of the

network improves the robustness with respect to outliers. The

Deep AutoEncoder Network (DAEN) [31] exploits a stacked

autoencoder to initialize a variational autoencoder to estimate

the endmembers and the abundances. In [32], a deep network

was proposed that uses a variational autoencoder to generate

the endmembers. An untied Denoising Autoencoder with

Sparsity (uDAS) was proposed in [33] for spectral unmixing.

uDAS benefits from an additional denoising constraint applied

to the decoder and an ℓ2,1 sparsity constraint applied to the

decoder. A sparse autoencoder was proposed in [34] which

uses a loss function with a Kullback-Leibler divergence term,

a SAD similarity, and a sparsity term. We should note that

in all the above mentioned autoencoder-based techniques, the

spatial information is ignored, as for training the network, the

autoencoder receives a spectral pixel at a time [35]. In [36], an

unmixing technique based on an autoencoder network is pro-

posed that incorporates the spatial correlation between pixels

by utilizing an adaptive abundance smoothing method. In [37],

patch-wise or cube-wise convolutional autoencoders were pro-

posed to incorporate the spatial information. In [38], parallel

autoencoders were applied to spectral patches to exploit the

spatial information. Recently, a 3D convolutional autoencoder

was proposed for supervised hyperspectral unmixing (i.e., the

endmembers are assumed to be known) in [39]. The patchwise

and cubewise approaches that exploit the convolutional filters

are beneficial for endmember estimation since they capture

the variability of the spectra. On the other hand, they may

blur the abundance maps [40]. Unmixing using deep image

prior (UnDIP) [41] utilizes a convolutional encoder-decoder

architecture and a deep image prior [42], [43]. UnDIP is

robust to noise and provides sharp abundances. However,

it relies on a geometrical approach (i.e., SiVM) to extract

the endmembers, i.e., it only considers pure pixel-scenarios.

The cycle-consistency unmixing network (CyCUNet) [44]

utilizes two convolutional autoencoders, which are cascaded

and performed cyclically. The proposed loss function contains

two terms for spectral reconstruction and one for abundance

reconstruction to incorporate high-level semantic information.

A major problem of the DL-based approaches is the absence

of geometrical information. Therefore, as we will show in

the experimental section, most of them fail to accurately

estimate the endmembers when there are no pure pixels in

the dataset. On the other hand, the advantage of simplex

volume minimization for blind unmixing in no pure pixel-

scenarios has been proven [45]. In this paper, we propose a

convolutional encoder-decoder architecture for blind spectral

unmixing called MiSiCNet (minimum simplex convolutional

network). MiSiCNet utilizes a deep encoder-decoder network

that incorporates both spatial and geometrical information.

The spatial information is incorporated by using the con-

volutional operator and by implicitly applying a regularizer

on the abundances. The geometrical information is exploited

using a simplex volume penalized loss function. We show

that MiSiCNet is superior in unmixing datasets which do not

contain pure pixels. MiSiCNet was implemented in Python

(3.8) using PyTorch as the platform for the deep network and is

available online: https://github.com/BehnoodRasti/MiSiCNet.
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A. Contributions and Novelties

The contribution of the proposed method is threefold.

1) MiSiCNet is the first deep blind unmixing network

which considers the geometry of the data points by

employing a simplex volume penalized loss function to

incorporate the geometrical information, while the DL-

based unmixing techniques from the literature directly

optimize either reconstruction errors or spectral angle

distance. Some conventional techniques, such as [17]

and [20] incorporate the geometrical information using

a simplex volume penalized least squares optimization.

However, they do not incorporate spatial information,

mostly because the optimization problem becomes too

complex and the selection of the tuning parameter is

complicated. In the experiments, we show that incor-

porating the geometrical information is crucial for the

endmember estimation when there are no pure pixels

available.

2) We propose a deep unsupervised convolutional network

that solves blind unmixing problems with regularizers on

both abundances and endmembers. In other words, we

demonstrate how to turn a blind unmixing problem into

the optimization of a deep unsupervised convolutional

network. Additionally, we show how to implement all

the physical constraints via applying constraints on the

network parameters.

3) We propose a convolutional encoder-decoder with a

skip connection that incorporates the spatial information

using both convolutional filters and an implicitly induced

regularizer on the abundances. Additionally, the skip

connection augments the low-level features to high-level

features, which sharpens the abundance maps.

The remaining of this paper is organized as follows. The

proposed unmixing methodology is explained in detail in

Section II. The experimental results are shown and discussed

in Section IV. Section V concludes the paper.

II. METHODOLOGY

A. Hyperspectral Image Modeling

We assume that the mixing model for the observed HSI is

given by:

Y = EA+N, s.t. A ≥ 0,1T
r A = 1

T
n , 0 ≤ E ≤ 1 (1)

where Y∈ R
p×n is the observed HSI, with n pixels and p

bands, N ∈ R
p×n is noise, E ∈ R

p×r, and A ∈ R
r×n, r ≪ p,

contain the r endmembers and their fractional abundances,

respectively. 1n indicates an n-component column vector of

ones. In blind unmixing scenarios, the task is to estimate both

E and A simultaneously.

A general optimization problem for estimating both E and

A is given by:

(Â, Ê) = argmin
A,E

1

2
||Y −EA||2F + λφ(E) + βR(A)

s.t.A ≥ 0,1T
r A = 1

T
n , 0 ≤ E ≤ 1 (2)

where the first term is the fidelity term, φ and R are penalty

terms on endmembers and abundances respectively, and λ and

β control the trade-off between the penalty terms and the

fidelity term. ‖.‖F denotes the Frobenius norm. The problem

is solved, subjected to the non-negativity and sum to one

constraint. The penalty functions are often chosen based on

the prior knowledge of the abundances and endmembers. The

function R is often selected to capture the spatial correlation in

the dataset. For instance, a total variation penalty or a sparsity

enforcing penalty is often a common choice for R, since it

induces piecewise smoothness on the abundance maps. The

function φ is often chosen to minimize the volume of the data

simplex. A reasonable choice is to enforce the endmembers

towards the center of the data simplex [14]:

φ(E) =
∥

∥E−m1
T

r

∥

∥

2

F
(3)

where m is a vector that contains the mean values of the

spectral pixels. A geometrical interpretation of this term is

given in Fig. 1. As can be seen, by minimizing φ(E), the

endmembers are pulled towards the vertices of the true data

simplex from their initial values, i.e., the vertices of the initial

data simplex.

Fig. 1. A geometrical illustration of the minimum volume constraint, pulling
the endmembers towards the center of the data simplex.

Therefore, the problem to solve becomes:

(Â, Ê) = argmin
A,E

1

2
||Y −EA||2F + λ

∥

∥E−m1
T

r

∥

∥

2

F

+ βR(A) s.t. A ≥ 0,1T
r A = 1

T
n , 0 ≤ E ≤ 1

(4)

For more discussion on the selection of φ, we refer to [17].

In [14], function R is selected to promote sparsity on A. It is

worth mentioning that selecting λ and β is not a trivial task.

This is partially addressed in [17] by neglecting the spatial

dependency of the abundance maps, i.e., β = 0.

B. Deep Unmixing Using MiSiCNet

A general inverse image reconstruction task can be formu-

lated as an optimization problem:

X̂ = argmin
X

1

2
‖Y −X‖

2
F + λR(X) (5)

where λ is the tuning parameter that acts as a trade-off between

the fidelity term and the regularizer (R). The regularizer

selection depends on the application and the available prior

knowledge. On the other hand, deep image prior (DIP) [42],
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[43] shows that the selection of a suitable regularizer can be

substituted by optimizing a deep network’s parameters (i.e.,

weights and biases):

θ̂ = argmin
θ

1

2
||Y − fθ(Z)||

2
F s.t. X̂ = f

θ̂
(Z) (6)

where Z is the network input that is fixed throughout the

optimization, and is often selected as a random input image.

Here, we explain how we solve equation (4) using a deep

neural network and (6).

Deep unmixing techniques utilize deep encoder-decoder

architectures to estimate abundances and endmembers. The

encoder part often contains several layers to estimate the

abundances at the bottleneck and the decoder contains only

one linear layer. The reconstruction loss is often minimized to

train the network. Let us denote the encoder network with fθ1
with network parameters (i.e., weights and biases) denoted by

θ1. The decoder part is only a linear layer which we simply

show by a set of weights i.e., θ2. Momentarily, neglecting all

the constraints, using (6) we can turn the optimization problem

(4) into an optimization of the network parameters:

(θ̂1, Ê) = argmin
θ1,E

1

2
||Y −Efθ1(Z)||

2
F + λ

∥

∥E−m1
T

r

∥

∥

2

F

s.t. Â = f
θ̂1
(Z) (7)

As E contains the weights of the final linear layer (i.e., the

decoder), we rewrite (7) as:

(θ̂1, θ̂2) = arg min
θ1,θ2

1

2
||Y − θ2fθ1(Z)||

2
F + λ

∥

∥θ2 −m1
T
r

∥

∥

2

F

s.t. ÊÂ = θ̂2fθ̂1(Z) (8)

where Ŷ = ÊÂ. Hence, the optimization problem (4) can be

solved using a deep network with a loss function given by:

L(Y, Ŷ, θ̂2,m) =
1

2
||Y − Ŷ||2F + λ

∥

∥

∥
θ̂2 −m1

T
r

∥

∥

∥

2

F
(9)

To enforce both the ASC and the ANC we use a softmax

function in the final layer of the encoder:

softmax(A) =
eAij

∑r

i=1 e
Aij

∀i, j (10)

and the weights of the decoder (i.e., θ2) are constrained

between 0 and 1 in every step of the optimization to enforce

the endmember constraint i.e., 0 ≤ E ≤ 1.

III. THE ARCHITECTURE OF MISICNET

The architecture of MiSiCNet is visualized in Fig. 2. The

main architecture is based on the convolutional encoder-

decoder with a skip connection. The skip connection is able

to learn the identity function when the parameters become

zero and avoids vanishing gradients in a deep network. Ad-

ditionally, via the skip connection, the information is shifted

from low level features to high level (deep) features, which

considerably helps to keep details such as the structures in the

deep feature representation. We use four convolutional layers

(Conv), excluding the skip connection (ConvSkip). To preserve

the abundances’ spatial resolution, we do not apply any down-

sampling and use reflection padding in each layer. The number

of filters for each convolutional layer is given in Table I. Each

convolutional layer is followed by a batch normalization (BN)

layer which speeds up the learning process and provides more

robustness for selecting the hyperparameters. To promote the

nonlinearity, we use Leaky ReLU (rectified linear unit [46])

as the nonlinear activation function for all the convolutional

layers, except for the last one where we use the softmax to

enforce the ASC and ANC. We select random noise with the

same size as the dataset as the input (Z) and train the network

iteratively to map the input to the dataset.

A. Hyperparameter Selection

The selection of hyperparameters is always challenging in

a deep network. In this work, we fix all the hyperparameters

used in the experiments, except the tuning parameter (λ). We

set the negative slope of Leaky ReLU to 0.1. The convolutional

layers use kernels of size 3×3, except for ConvSkip, which

uses a kernel of size 1×1. We use four filters in the skip

connection, 256 filters for Conv1, Conv2, and Conv3, and r

(the number of pure materials) filters for Conv4. We should

note that MiSiCNet is an unsupervised network, and we train

the network over the entire dataset iteratively. Therefore, the

number of iterations is a hyperparameter for the proposed

network. We set the number of iterations to 8000. We also

use exponentially weighted averaging over the outputs to make

the technique robust to a possible jump in the loss function at

the final iteration. Finally, we use the Adam optimizer and set

the learning rate to 0.001. We use the PyTorch deep learning

platform for the network implementation. Table I lists the

hyperparameters used in the experiments.

TABLE I
HYPERPARAMETERS OF MISICNET USED IN THE EXPERIMENTS.

Hyperparameters

Input Ch. Ouput Ch. Filter Size Stride
Conv1 p 256 3x3 1
Conv2 256 256 3x3 1
Conv3 260 256 3x3 1
Conv4 256 r 3x3 1

ConvSkip p 4 1x1 1

Negative Slope
Leaky ReLU 0.1

Type Learning Rate Iterations
Optimizer Adam 0.001 8000

IV. EXPERIMENTAL RESULTS

We performed experiments on two simulated datasets and

three real datasets. The description of the datasets is given

below.

A. Hyperspectral Data Description

1) Simulated Dataset 1: A dataset of 105×105 pixels (see

Fig. 3(a)) is simulated by generating linear mixtures of six

endmembers. These endmembers are shown in Fig. 3(b) and

contain 224 reflection values in the wavelength range [400-

2500] nm. A PCA reduced data manifold is shown in Fig. 4(a).

As can be observed, no pure pixels (red circles) are available

in the dataset, but at least two mixed data points are available

on each facet to geometrically reconstruct virtual endmembers.
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Fig. 2. The architecture of MiSiCNet. The proposed convolutional network architecture uses a skip connection and five convolutional layers. The softmax
layer is used as the final activation function, followed by a linear layer that generates the abundances and endmembers, respectively.

(a) (b)

Fig. 3. Simulated Dataset 1: a) Band number 70 (1050 nm) b) Endmembers.

(a) (b)

Fig. 4. PCA reduced data manifolds: a) Simulated dataset 1 b) Simulated
dataset 2.

2) Simulated Dataset 2: The second simulated dataset

contains 105×105 pixels which are simulated by the linear

combination of six endmembers (see Fig. 3(b) for endmem-

bers). The main difference with the simulated dataset 1 is

that each facet of the data manifold contains only one mixed

data point (see Fig. 4(b)), making it challenging to reconstruct

virtual endmembers geometrically.

3) Samson: The Samson hyperspectral dataset ([47]) (Fig.

5(a)) contains 95×95 pixels, having 156 bands in the wave-

length range from 401 to 889 nm. There are three main materi-

als (i.e., Soil, Tree, and Water). The ground truth endmembers

shown in Fig. 5(b) were manually selected from the hyperspec-

tral image, and the ground truth fractional abundances were

generated using FCLSU.

4) Apex: Fig. 6(a) shows a cropped image of the Apex

dataset ([48]), as used in this paper. It contains 111×122 pixels

and 285 bands covering the wavelength range from 413 to

2420 nm. Four ground truth endmembers (i.e., Water, Tree,

400 500 600 700 800 900

Wavelength in nm

0

0.2

0.4

0.6

0.8

1

R
e
fl
e
c
ta

n
c
e

Soil

Tree

Water

(a) (b)

Fig. 5. Samson image: (a) True-color image (Red: 571.01 nm, Green: 539.53
nm, and Blue: 432.48 nm) (b) Endmembers.

Road, and Roof), shown in Fig. 6(b) were manually selected

from the hyperspectral image, and the ground truth fractional

abundances were generated using FCLSU.

(a) (b)

Fig. 6. Apex image: (a) True-color image (Red: 572.2 nm, Green: 532.3 nm,
Blue: 426.5 nm); (b) Endmembers.

5) Washington DC Mall: Washington DC Mall is an air-

borne hyperspectral dataset captured over the Washington

DC Mall using the Hyperspectral Digital Imagery Collection

Experiment (HYDICE) sensor 1. Fig. 7(a) shows the cropped

data used in this paper that contains 319 × 292 pixels in

191 bands over the spectral range from 400 to 2400 nm. The

ground truth endmembers for six classes, i.e., Grass, Tree,

Roof, Road, Water, and Trail, were manually selected from

the hyperspectral image ( Fig. 7(b)), and FCLSU was used to

estimate the ground truth fractional abundances.

1https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html
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Fig. 7. Washington DC Mall image: (a) True-color image (Red: 572.7 nm,
Green: 530.1 nm, Blue: 425.0 nm); (b) Endmembers.

B. Experimental Setup

Six unmixing techniques from different unmixing categories

were used as competing methods in the experiments:

• Geometrical unmixing: FCLSU [5] using VCA [8] for

endmember extraction.

• Geometrical and blind unmixing: NMF-QMV [20].

• Sparse unmixing: Collaborative LASSO (Collab) [28]

• Deep unmixing methods: uDAS [33], UnDIP [41], and

CyCUNet [44].

For MiSiCNet, we select all the hyperparameters as discussed

in subsection III-A, and we set λ to 0.1, 0.3, and 100 for the

simulated dataset 1, the simulated dataset 2, and real datasets,

respectively. We choose all the parameters for the competing

methods according to the reported default values. Note that for

NMF-QMV, we choose the ”center” as the optional penalty

term to have a fair comparison with MiSiCNet.

Quantitative results are provided by the root mean squared

error (RMSE) in percentage between the estimated and ground

truth abundance fractions:

RMSE(Â,A) = 100×

√

√

√

√

1

rn

r
∑

i=1

n
∑

j=1

(

Âij −Aij

)2

, (11)

and the spectral angle distance (SAD) in degree between the

estimated and ground truth endmembers:

SAD(E, Ê) =
1

r

r
∑

i=1

arccos

(

〈

e(i), ê(i)
〉

∥

∥e(i)

∥

∥

2

∥

∥ê(i)

∥

∥

2

)

180

π
, (12)

where 〈.〉 denotes the inner product and e(i) indicates the ith

column of E.

C. Unmixing Experiments

1) Experiments on Simulated Datasets: To evaluate the

robustness of the methods to noise, Gaussian white noise with

varying noise power is added to both simulated datasets to

obtain data with SNR of 20, 30, 40 and 50 dB. Table II shows

the results in terms of RMSE (in percentage) for the simulated

dataset 1. CyCUNet produced the worst results. FCLSU and

Collab both show poor performances. UnDIP outperforms

uDAS, but its results are not competitive with NMF-QMV

and MiSiCNet. Both NMF-QMV and MiSiCNet considerably

outperform the other techniques in terms of RMSE. With

higher amounts of of noise however, MiSiCNet gradually

improves over NMF-QMV.

Table III reports the RMSE results for the Simulated Dataset

2. The trends are similar, however, all the competing methods

perform poorly. MiSiCNet shows considerable improvements

even compared to NMF-QMV. Additionally, the very low stan-

dard deviations reported in the tables confirm the robustness

of MiSiCNet for different noise levels. That is a valuable

advantage revealed from the experiments. For instance, the

small (0.09%) performance improvement of NMF-QMV over

MiSiCNet for the simulated dataset 1 with 20dB of noise is

statistically insignificant, due to the high standard deviation

of 0.2% for NMF-QMV compared to the very low standard

deviation of 0.07% for MiSiCNet. Overall, NMF-QMV and

MiSiCNet outperform the other techniques in terms of RMSE.

However, MiSiCNet outperforms NMF-QMV for high SNRs.

This could be attributed to the proposed parameter selection

technique for the geometrical penalty (β) in NMF-QMV.

Additionally, the search interval (β ∈ 10−5, 10−4, ..., 104, 105)

might not be suitable for all datasets with varying SNRs.

Tables IV and V report SAD for simulated data sets 1 and 2,

respectively. The results follow the trend of RMSE. MiSiCNet

considerably outperforms the other techniques for all SNRs

for Simulated dataset 2. For simulated dataset 1, NMF-QMV

slightly outperforms MiSiCNet for 20 and 30 dB. As we

already discussed, this could be attributed to the parameter

selection technique in NMF-QMV. The search interval is too

large to pick the optimum parameter.

Both simulated experiments reveal the importance of the

minimum volume term in the absence of pure pixels. Both

NMF-QMV and MisiCNet consider the geometry of the data

simplex by minimizing the volume term while all the other

techniques either ignore that or rely on the presence of pure

pixels, for instance, by using VCA (in FCLSU) and SiVM (in

UnDIP).

Figs. 8 and 9 depict the abundances and endmembers esti-

mated by the different unmixing techniques on the simulated

dataset 2 (40 dB). Visual comparisons confirm the advantage

of MiSiCNet compared to the other methods. MiSiCNet pro-

vides excellent abundance estimations for Endmember 1 and

6 and good estimations for the other ones. NMF-QMV also

outperforms the rest of the methods, but fails to estimate satis-

factory abundances for this challenging mixing scenario. From

Fig. 9, we can see that MiSiCNet estimates all endmembers

successfully, except for a slight mismatch in Endmember 5.

On the other hand, all the other techniques perform poorly for

all the cases.

2) Experiments on Real Datasets: Table VI shows the

abundance RMSE obtained by the different unmixing tech-

niques to the Samson data. MiSiCNet significantly improved

the abundance estimation for this dataset compared to the other

methods. Additionally, MiSiCNet considerably outperformed

the other techniques for all three individual abundances. MiS-

iCNet performed 12.3%, 3.63%, and 9.74% better on the Soil,

Tree, and Water abundances, respectively, compared with the

second-best results, given by Collab. Figs.10 and 11 depict the

estimated abundances and endmembers, respectively, obtained

by the different techniques. This again confirms that MiSiCNet
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TABLE II
RMSE (SIMULATED 1). THE BEST PERFORMANCES ARE SHOWN IN BOLD.

FCLSU UnDIP uDAS CyCUNet Collab. NMF-QMV MiSiCNet

20dB 11.13±1.93 8.75±0.56 9.40±1.73 17.97±2.93 10.69±1.53 3.81±0.20 3.90±0.08
30dB 12.28±3.44 7.19±0.87 9.40±1.91 17.83±4.73 11.22±2.29 1.81±0.42 1.80±0.04

40dB 12.29±2.49 7.73±0.87 9.36±2.03 17.97±7.02 10.07±1.68 1.70±0.90 1.23±0.05

50dB 11.15±2.72 7.36±0.88 8.46±2.04 16.07±0.76 10.35±2.02 3.71±0.74 1.21±0.08

TABLE III
RMSE (SIMULATED 2). THE BEST PERFORMANCES ARE SHOWN IN BOLD.

FCLSU UnDIP uDAS CyCUNet Collab. NMF-QMV MiSiCNet

20dB 12.55±1.89 12.15±1.04 11.43±2.69 19.51±5.89 12.05±0.61 4.03±0.54 3.96±0.04

30dB 21.45±2.49 10.49±0.21 12.57±5.11 15.87±2.71 13.83±1.94 3.79±2.33 2.45±0.02

40dB 21.6±4.11 10.52±0.22 10.84±4.29 14.57±1.3 14.11±1.93 7.37±1.13 2.15±0.03

50dB 22.89±2.71 10.37±0.17 10.76±4.24 15.96±2.02 14.14±1.18 6.91±1.17 2.12±0.03

TABLE IV
SAD (SIMULATED 1). THE BEST PERFORMANCES ARE SHOWN IN BOLD.

VCA SiVM uDAS CyCUNet Collab. NMF-QMV MiSiCNet

20dB 4.64±0.85 6.55±0.6 7.72±4.43 8.37±0.89 6.37±0.81 2.06±0.25 2.53±0.64
30dB 4.53±0.96 6.76±0.07 7.33±5.17 8.59±1.03 6.21±1.26 0.56±0.22 0.95±0.1
40dB 4.26±0.57 6.84±0.06 7.75±3.74 9.32±0.63 5.67±0.82 0.83±0.51 0.63±0.09

50dB 4.66±0.86 6.85±0.07 6.68±3.62 9.83±0.52 5.73±1.31 1.84±0.5 0.69±0.11

TABLE V
SAD (SIMULATED 2). THE BEST PERFORMANCES ARE SHOWN IN BOLD.

VCA SiVM uDAS CyCUNet Collab. NMF-QMV MiSiCNet

20dB 7.83±0.88 8.03±0.08 11.77±3.62 9.41±0.63 8.36±0.63 2.47±0.48 1.76±0.03

30dB 7.72±1.29 7.83±0.02 14.68±4.42 9.73±0.5 7.21±0.57 8.45±7.73 0.83±0.02

40dB 8.24±1.02 7.85±0.01 13.95±5.97 9.96±0.6 7.82±1.2 22.95±2.75 0.64±0.02

50dB 7.73±1.23 7.86±0.01 14.47±5.77 10.57±0.23 7.65±0.28 24.13±1.26 0.62±0.02

Fig. 8. Simulated dataset 2 (40dB) - The visual comparison of the abundance maps obtained by applying different unmixing techniques.
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Fig. 9. Simulated dataset 2 (40dB) - The visual comparison of the endmembers obtained by applying different unmixing techniques. Red: the ground truth
endmembers; Black: the estimated endmembers.

outperforms the other techniques. Table VII reports SAD

values of the endmembers for Samson. MiSiCNet outperforms

the other techniques in terms of SAD for the Soil and the Tree

abundances, but not for the Water abundances. Overall, Collab

shows 3.61 degree SAD improvement over MiSiCNet. SAD

does not follow the trend of the abundance RMSE in real

datasets, an effect which is caused by spectral variability. As

SAD removes the norm of the endmember spectra, it ignores

endmember scaling factors (caused by multiple reflections

of the light and variable illumination conditions). However,

such scaling factors may considerably affect the abundance

estimation. Tables VIII and IX compare the abundance and

TABLE VI
RMSE (SAMSON DATASET). THE BEST PERFORMANCES ARE SHOWN IN

BOLD.

FCLSU UnDIP uDAS CyCUNet Collab. NMF-QMV MiSiCNet

Soil 17.66 17.78 17.99 24.17 15.06 52.35 2.76

Tree 6.53 13.30 13.83 13.86 6.07 39.90 2.44

Water 14.92 20.96 23.03 26.54 11.81 45.98 2.07

Overall 13.87 17.63 18.67 22.21 11.59 46.36 2.44

endmember estimation on the Apex data of the different

unmixing techniques in terms of RMSE and SAD. Figs. 12

and 13 show the estimated abundances and endmembers,

respectively. From Table VIII, we can see that MiSiCNet

slightly outperforms FCLSU, and they both improve the abun-

TABLE VII
SAD (SAMSON DATASET). THE BEST PERFORMANCES ARE SHOWN IN

BOLD.

VCA SiVM uDAS CyCUNet Collab. NMF-QMV MiSiCNet

Soil 1.49 1.49 2.05 6.55 0.89 2.24 0.64

Tree 5.51 4.28 5.50 8.69 4.77 7.10 2.60

Water 8.91 8.91 8.75 11.92 8.03 87.10 21.27

Overall 5.30 4.89 5.43 9.06 4.56 32.14 8.17

dance estimation of Apex with 5% RMSE over the next best

results. SiVM obtained the best results in terms of SAD. The

effect of neglecting the endmember scaling factor by SAD is

much clearer in the results of Apex. Comparing the estimated

endmembers by SiVM and MiSiCNet in Fig. 13 reveals the

difference between the two estimations. However, the reported

results for SAD in Table IX show that SiVM obtained the

best results on the Road endmember, again because SAD

neglects scaling factors. On the other hand, Fig.12 confirms

that MiSiCNet provided the best Road abundance estimation.

Overall, the results confirm the advantage of the MiSiCNet

over the other unmixing techniques.

Tables X and XI show the abundance RMSE and SAD,

respectively for the Washington DC Mall dataset. On this

dataset, MiSiCNet improved the overall abundance RMSE

and SAD by 5.69% and 1.3 degrees over the second-best

results provided by NMF-QMV and Collab, respectively. Ad-
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Fig. 10. Samson dataset - The visual comparison of the abundance maps obtained by the different unmixing techniques.

Fig. 11. Samson dataset - The visual comparison of the endmembers obtained by the different unmixing techniques. Red: the ground truth endmembers;
Black: the estimated endmembers.

Fig. 12. Apex dataset - The visual comparison of the abundance maps obtained by the different unmixing techniques.
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Fig. 13. Apex dataset - The visual comparison of the endmembers obtained by the different unmixing techniques. Red: the ground truth endmembers; Black:
the estimated endmembers.

TABLE VIII
RMSE (APEX DATASET). THE BEST PERFORMANCES ARE SHOWN IN

BOLD.

FCLSU UnDIP uDAS CyCUNet Collab. NMF-QMV MiSiCNet

Road 23.28 17.42 19.81 29.38 30.83 18.14 13.67

Tree 9.46 21.54 14.28 20.15 18.92 24.69 14.92
Roof 12.06 26.78 24.27 16.78 15.54 24.87 11.38

Water 13.10 42.64 30.01 12.01 7.90 38.41 19.84

Overall 15.40 28.74 22.84 20.58 20.08 27.54 15.27

TABLE IX
SAD (APEX DATASET). THE BEST PERFORMANCES ARE SHOWN IN BOLD.

VCA SiVM uDAS CyCUNet Collab. NMF-QMV MiSiCNet

Road 39.62 5.20 26.07 26.03 38.80 22.94 14.70
Tree 15.15 7.67 8.05 4.87 11.82 15.53 7.91
Roof 8.43 3.94 4.92 7.43 5.74 10.04 10.05
Water 29.66 28.88 12.90 35.66 29.43 74.48 43.43

Overall 23.21 11.42 12.99 18.50 21.45 30.75 19.02

ditionally, MiSiCNet improved the abundance estimation of

Grass, Tree, Road and Water by 6%, 17.51%, 2.11% and

4.53%, respectively, over the second-best results. MiSiCNet

did not improve the abundance estimations for Trail and

Roof for which NMF-QMV and FCLSU, respectively obtained

better abundance estimations. The estimated abundances and

endmembers on the Washington DC Mall dataset are shown in

Figs. 14 and 15, respectively. The visual comparison confirms

the reported results for the abundance RMSE.

D. Sensitivity Analysis to Hyperparameters

In this subsection, we discuss the sensitivity of MiSiCNet to

the selection of the hyperparameters. We selected the four most

important hyperparameters that can affect the performance of

MiSiCNet: the regularization parameter, the learning rate, the

TABLE X
RMSE (WASHINGTON DC MALL DATASET). THE BEST PERFORMANCES

ARE SHOWN IN BOLD.

FCLSU UnDIP uDAS CyCUNet Collab. NMF-QMV MiSiCNet

Grass 30.18 29.09 37.34 40.20 28.38 35.81 22.38

Tree 39.73 34.93 33.11 28.04 41.26 27.30 9.79

Road 17.55 24.24 24.80 25.28 22.58 23.51 15.44

Roof 3.82 4.88 4.65 40.89 4.48 8.40 16.76
Water 29.07 38.02 51.36 39.86 30.91 20.97 16.44

Trail 12.49 23.72 18.26 21.32 19.34 10.30 20.67

Overall 25.21 27.95 31.88 33.56 26.98 23.08 17.39

TABLE XI
SAD (WASHINGTON DC MALL DATASET). THE BEST PERFORMANCES

ARE SHOWN IN BOLD.

VCA SiVM uDAS CyCUNet Collab. NMF-QMV MiSiCNet

Grass 18.16 10.60 10.87 5.13 18.17 11.18 16.68
Tree 16.52 41.58 24.35 15.49 19.11 25.83 9.48

Road 13.27 49.32 37.73 26.60 19.71 12.85 3.37

Roof 1.97 16.19 11.41 54.43 1.90 11.91 19.11
Water 44.50 54.40 13.34 24.09 1.75 38.60 3.80
Trail 37.08 10.05 5.39 45.30 19.74 3.52 20.14

Overall 21.92 30.36 17.18 28.51 13.40 17.31 12.10

number of filters and the kernel size. Mean values of RMSE

and SAD are shown, along with the standard deviations as

error bars.

1) Regularization Parameter: Fig. 16 (a) shows SAD and

RMSE values from the estimated endmembers and abun-

dances, respectively, when varying the tuning parameter λ

from {10−3, 10−2, ..., 103}. The best results were obtained

for λ = 10−1. Note that SAD by itself (applied on the

endmembers) is not sufficient to evaluate the performance.

However, when combined with a quality metric such as the

abundances RMSE, the performance of the proposed technique

is revealed. Therefore, the low value of SAD at 103 along with
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Fig. 14. Washington DC Mall dataset - The visual comparison of the abundance maps obtained by the different unmixing techniques.

Fig. 15. Washington DC Mall - The visual comparison of the endmembers obtained by applying the different unmixing techniques. Red: the ground truth
endmembers; Black: the estimated endmembers.
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a high abundance RMSE does not show a good performance.

We should note that λ is the only parameter that needs to be

set for different datasets.

2) Learning Rate: Fig.16 (b) shows the loss function values

for different learning rates (LR), i.e., 0.1, 0.01, 0.001, and

0.0001. For LR=0.1, the loss function value shows large vari-

ations. LR=0.0001 shows less variation, but the loss function

converges to a higher minimum value. Both LR=0.01 and

0.001 perform similarly, but LR=0.001 shows fewer variations,

and the minimum loss is slightly lower than for LR=0.01.

Therefore, we suggest to use LR=0.001 for the proposed

method.

3) Number of Filters: Fig.16 (c) shows the abundance

RMSE and SAD with respect to the number of filters used

for the convolutional layers. It can be observed that both

abundance RMSE and SAD suggest the selection of 256 filters.

4) Kernel Size: Fig.16 (d) shows the abundance RMSE

and SAD with respect to the size of the kernels used in the

convolutional layers. Both SAD and Abundance RMSE give

the lowest values for filters of size 3 × 3, confirming our

selection.

E. Robustness w.r.t. the Endmember Initialization

A significant challenge in blind unmixing techniques is the

initialization of the endmembers. Problem (2) is a non-convex

optimization problem due to the non-convex fidelity term, and

therefore the initialization plays a significant role in the per-

formance of the final algorithm. In blind unmixing techniques,

this is often tackled by using geometrical approaches such as

VCA and SiVM. However, those approaches cannot tackle

datasets without pure pixels or even more difficult scenarios

like those considered in this paper. As a result, the performance

of blind unmixing techniques is often not satisfactory due to

poor initialization.

On the other hand, deep learning-based methods can cope

with the initialization challenge since they search for optimum

weights in high dimensional space. Often, the minimum be-

comes a settled point in that space, which can be reached by

optimization algorithms such as gradient descent. We should

note that the endmembers are the weights of the decoder

and can also be initialized randomly, like the other weights.

Fig. 17 shows the performance of MiSiCNet in terms of

RMSE and SAD applied to the simulated dataset 2 (50dB)

using three different initialization strategies of the weights of

the decoder; 1- Random Vectors: initializing randomly in the

same way as the other layers 2- Random Pixels: initializing

using a random selection of spectral pixels 3- initializing

using the endmembers extracted by SiVM. All the results are

mean values over five experiments. The best result is given

by Random Pixels with around 1% improvement in terms

of abundance RMSE and 1.8-degree improvement in terms

of SAD compared to the SiVM initialization. However, the

standard deviation for the abundance RMSE is much higher

(0.71% compared to 0.02%) because of the random selection

of the pixels.

On the other hand, SiVM shows robustness to the ran-

dom noise, and hence we selected it for the initialization of

MiSiCNet. Additionally, the results confirm the robustness of

MiSiCNet w.r.t. that initialization, and thus the performance of

MiSiCNet does not rely on an endmember extraction technique

and therefore is successful in the absence of pure pixels. We

should note that for Random Vectors, we used LR=0.01 to

have a faster convergence.

F. Processing Time

Table XII gives the processing times for the different

unmixing techniques applied to the three real datasets. FCLSU,

uDAS, Collab, and NMF-QMV were implemented in Matlab

(2020b). UnDIP, CyCUNet, and MiSiCNet were implemented

in Python (3.8). The reported processing times are mean values

over five experiments and were obtained using a computer

with an Intel(R) Core(TM) i9-10980 HK processor (2.4 GHz),

32GB of memory, a 64-bit Operating System, and an NVIDIA

GEFORCE RTX (2080 Super) graphical processing unit.

The table shows that conventional approaches are generally

faster than DL-based ones, and FCLSU is the most rapid

unmixing technique. However, due to the efficiency of GPU

programming, the processing time of MiSiCNet is acceptable

and its use can be justified by the significant performance

improvements. It is worth mentioning that MiSiCNet is less

affected by the increase of the spatial size from Samson to

WDC than the other techniques.

TABLE XII
PROCESSING TIME (IN SECONDS) OF THE UNMIXING TECHNIQUES

APPLIED TO THE REAL DATASETS.

FCLSU UnDIP uDAS CyCUNet Collab. NMF-QMV MiSiCNet

Samson 1.05 48.19 19.57 69.21 11.45 9.65 90.11

Apex 1.56 87.33 262.49 128.86 25.35 16.45 135.72

WDC 12.9 431.95 1.05e+03 854.73 221.6 491.26 727.04

G. Discussion

FCLSU and UnDIP estimate abundances using endmember

extraction techniques, i.e., VCA and SiVM. Therefore, their

performances depend on the performance of the endmember

extraction techniques, which are often designed to assume

pure pixels. Thus, in the absence of pure pixels, such methods

provide poor performances. uDAS is a deep autoencoder net-

work which neither incorporates the spatial information nor the

geometrical information, and therefore its overall performance

is not satisfactory. CyCUNet includes the spatial information

by using convolutional autoencoders but it ignores the geo-

metrical information. Additionally, its poor performance can

be attributed to the absence of ASC during the optimization

process. CyCUNet applies the Clamp function instead of

Softmax on the abundances for the optimization, and ASC

needs to be enforced after estimating the abundances. Collab

uses a sparse regression to estimate the abundances using a

library of endmembers created from the dataset. Hence, Collab

cannot perform successfully in the absence of pure pixels.

NMF-QMV incorporates geometrical information, but it does

not include spatial information. Additionally, the searching
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(a) (b) (c) (d)

Fig. 16. Sensitivity of MiSiCNet to the hyperparameters of the network. The experiments were performed on the simulated dataset 2 (50 dB).

Fig. 17. Comparison of different strategies for initializing the decoder weights
in MiSiCNet. The performance is given in terms of RMSE in percentage.

range for the parameter selection is too extensive such that an

automatic selection technique may miss the optimal parameter

values. We should note that NMF-QMV solves the unmixing

problem in a subspace, i.e., it assumes that the endmembers

live in an r − 1 dimensional affine set, which best represents

the data using an orthogonal projection. Such an assumption

helps to remove the outliers and noise. However, the constraint

on the endmembers cannot be enforced throughout the opti-

mization, and therefore the endmembers cannot be bounded

between zero and one. Accordingly, negative values for the

endmembers may be estimated and should be set to zero at

the end of the optimization.

On the other hand, MiSiCNet applies all the constraints in

(1) throughout the optimization. More importantly, MiSiCNet

incorporates spatial information by both using convolutional

filters and implicitly applying a regularizer on the abundances.

Additionally, geometrical information is incorporated using a

penalty term. We should note that the tuning parameter λ was

not optimally tuned but fixed to 100 for all the real datasets,

for a fair comparison with the other techniques.

V. CONCLUSION

We proposed the minimum simplex convolutional network

for deep hyperspectral unmixing. We have shown that a deep

convolutional network can solve a blind unmixing problem

defined as a constrained penalized least-squares optimization.

Indeed, we show that such an optimization can be shifted

towards an optimization on the deep network’s parameters.

We evaluated the performance of the proposed approach using

two simulated and three real datasets. The simulated datasets

consider realistic and challenging scenarios when there are

no pure pixels and only one or two data points on the facets

of the data simplex. The results on both the simulated and

real datasets show considerable improvements over the state-

of-the-art. Additionally, the experimental results reveal the

importance of the simplex volume penalty term for unmixing

when no pure pixels are available.
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