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ABSTRACT

This paper proposes a deep blind hyperspectral unmixing
network for datasets without pure pixels called minimum
simplex convolutional network (MiSiCNet). MiSiCNet is the
first deep learning-based blind unmixing method proposed in
the literature which incorporates both spatial and geometri-
cal information of the hyperspectral data, in addition to the
spectral information. The proposed convolutional encoder-
decoder architecture incorporates the spatial information
using convolutional filters and implicitly applying a prior
on the abundances. We added a minimum simplex volume
penalty term to the loss function to exploit the geometrical
information. We evaluate the performance of MiSiCNet on
simulated and real datasets. The experimental results confirm
the robustness of the proposed method to both noise and ab-
sence of pure pixels. Additionally, MiSiCNet considerably
outperforms the state-of-the-art unmixing approaches. The
results are given in terms of spectral angle distance in de-
gree for the endmember estimation, and root mean square
error in percentage for the abundance estimation. MiS-
iCNet was implemented in Python (3.8) using PyTorch as
the platform for the deep network and is available online:
https://github.com/BehnoodRasti/MiSiCNet.

Index Terms— Hyperspectral image, unmixing, convolu-
tional neural network, deep learning, deep prior, endmember
extraction

1. INTRODUCTION

In spectral unmixing, if there exist pure pixels for each mate-
rial within the scene, then the endmembers can be easily ex-
tracted using a geometrical approach relying on the simplex
of the data, and the abundances can be estimated by minimiz-
ing the least squared errors between the actual spectra and
reconstructed spectra from the endmembers, subjected to the
physical constraints on the abundances, i.e., the abundance
non-negativity constraint (ANC) and the abundance sum-to-
one constraint (ASC) [1].
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The endmembers are assumed to be located at the vertices
of the data simplex. Therefore, they can be extracted by maxi-
mizing the data simplex e.g, by simplex volume maximization
(SiVM) [2]. Alternatively, the vertices can be selected as the
extreme points after iteratively projecting the data onto a par-
ticular direction such as Vertex Component Analysis (VCA)
[3]. When the endmembers are extracted prior to the unmix-
ing problem or assumed to be known, then the unmixing prob-
lem is referred to as supervised unmixing. On the other hand,
when both endmembers and abundances are estimated simul-
taneously, the problem is referred to as blind unmixing.

Sparse unmixing is relying on a rich and well-designed
library of pure spectra and therefore it is referred to as semi-
supervised unmixing. Each spectrum is assumed to be a
sparse linear combination of the dictionary elements, i.e.,
the library. The optimization problem is often defined in the
form of penalized least squares with a sparsity promoting
penalty applied on the abundances [4]. On the other hand, a
dictionary of endmember bundles can be generated from the
data itself. An example of such approach is the Collaborative
LASSO (Least Absolute Shrinkage and Selection Operator)
[5]. Recently, a sparse unmixing approach was proposed
using a convolutional neural network (SUnCNN) [6].

For deep hyperspectral unmixing, the most widely used
architecture is based on autoencoders. The abundances are
often generated by enforcing the constraints (i.e., ANC and
ASC) in the final layer of the encoder. The decoder has one
layer that reconstructs the signal, and its weights are the end-
members. An untied Denoising Autoencoder with Sparsity
(uDAS) was proposed in [7] for spectral unmixing. uDAS
benefits from an additional denoising constraint applied to
the decoder and an ℓ2,1 sparsity constraint applied to the de-
coder. Unmixing using deep image prior (UnDIP) [8] utilizes
a convolutional encoder-decoder architecture and a deep im-
age prior [9]. The cycle-consistency unmixing network (Cy-
CUNet) [10] utilizes two convolutional autoencoders, which
are cascaded and performed cyclically. A major problem of
the DL-based approaches is the absence of geometrical infor-
mation. In this paper, we propose a convolutional encoder-
decoder architecture for blind spectral unmixing called MiS-
iCNet (minimum simplex convolutional network). MiSiC-
Net utilizes a deep encoder-decoder network that incorporates



both spatial and geometrical information for blind unmixing.
The spatial information is incorporated by using the convolu-
tional operator and by implicitly applying a regularizer on the
abundances. The geometrical information is exploited using a
simplex volume penalized loss function. We show that MiS-
iCNet is superior in unmixing datasets which do not contain
pure pixels.

2. METHODOLOGY

We assume that the mixing model for the observed HSI is
given by:

Y = EA+N, s.t. A ≥ 0,1T
r A = 1T

n , 0 ≤ E ≤ 1 (1)

where Y∈ Rp×n is the observed HSI, with n pixels and p
bands, N ∈ Rp×n is noise, E ∈ Rp×r, and A ∈ Rr×n, r ≪ p,
contain the r endmembers and their fractional abundances,
respectively. 1n indicates an n-component column vector of
ones. In blind unmixing scenarios, the task is to estimate both
E and A simultaneously.

We propose the following optimization problem for esti-
mating both E and A:

argmin
A,E

1

2
||Y −EA||2F + λ

∥∥E−m1T
r

∥∥2
F
+ βR(A)

s.t.A ≥ 0,1T
r A = 1T

n , 0 ≤ E ≤ 1 (2)

where the first term is the fidelity term, the second term is the
geometrical penalty term enforcing the endmembers towards
the center of the data simplex, and R is the spatial penalty
term applied on the abundances. λ and β control the trade-off
between the penalty terms and the fidelity term. The prob-
lem is solved, subjected to the non-negativity and sum to one
constraint.

Neglecting all the constraints and inspired by deep im-
age prior (DIP) [9], the selection of a suitable regularizer for
R can be substituted by optimizing the parameters of a deep
network, and therefore we can turn the optimization problem
(2) into an optimization of the network parameters:

(θ̂1, Ê) = argmin
θ1,E

1

2
||Y −Efθ1(Z)||2F + λ

∥∥E−m1T
r

∥∥2
F

s.t. Â = fθ̂1(Z) (3)

As E contains the weights of the final linear layer (i.e., the
decoder), we rewrite (3) as:

(θ̂1, θ̂2) = arg min
θ1,θ2

1

2
||Y − θ2fθ1(Z)||2F + λ

∥∥θ2 −m1T
r

∥∥2
F

s.t. ÊÂ = θ̂2fθ̂1(Z) (4)

where Ŷ = ÊÂ. Hence, the optimization problem (2) can be
solved using a deep network with a loss function given by:

L(Y, Ŷ, θ̂2,m) =
1

2
||Y − Ŷ||2F + λ

∥∥∥θ̂2 −m1T
r

∥∥∥2
F

(5)

To enforce both the ASC and the ANC we use a softmax func-
tion in the final layer of the encoder and the weights of the de-
coder (i.e., θ2) are constrained between 0 and 1 in every step
of the optimization to enforce the endmember constraint i.e.,
0 ≤ E ≤ 1.

The architecture of MiSiCNet is visualized in Fig. 1.
The main architecture is based on the convolutional encoder-
decoder with a skip connection. We use four convolutional
layers (Conv), excluding the skip connection (ConvSkip).
The number of filters for each convolutional layer is given in
Table 1. Each convolutional layer is followed by a batch nor-
malization (BN) layer which speeds up the learning process
and provides more robustness for selecting the hyperparam-
eters. To promote the nonlinearity, we use Leaky ReLU
(rectified linear unit) as the nonlinear activation function for
all the convolutional layers, except for the last one where
we use the softmax to enforce the ASC and ANC. We se-
lect random noise with the same size as the dataset as the
input (Z) and train the network iteratively to map the input
to the dataset. We fix all the hyperparameters used in the
experiments as given in Table 1, except the tuning parameter
(λ).

Fig. 1: The architecture of MiSiCNet. The proposed convo-
lutional network architecture uses a skip connection and five
convolutional layers.

Table 1: Hyperparameters of MiSiCNet used in the experi-
ments.

Hyperparameters

Input Ch. Ouput Ch. Filter Size Stride
Conv1 p 256 3x3 1
Conv2 256 256 3x3 1
Conv3 260 256 3x3 1
Conv4 256 r 3x3 1

ConvSkip p 4 1x1 1
Negative Slope

Leaky ReLU 0.1
Type Learning Rate Iterations

Optimizer Adam 0.001 8000

3. EXPERIMENTAL RESULTS

The simulated dataset contains 105×105 pixels which are
simulated by linear combinations of six endmembers (see Fig.
2(b) for the endmembers). Each facet of the data manifold
contains only one mixed data point, making it challenging to
reconstruct virtual endmembers geometrically.



Fig. 2: Simulated Data: left: Band number 70, right: End-
members.

The Samson hyperspectral dataset ( Fig. 3(a) ) contains
95×95 pixels. It contains 156 bands in the wavelength range
from 401 to 889 nm. There are three main materials (i.e.,
Soil, Tree, and Water). The ground truth endmembers shown
in Fig. 3(b) were manually selected from the hyperspectral
image, and the ground truth fractional abundances were gen-
erated using FCLSU.
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Fig. 3: Samson: left: True-color image, right: Endmembers.

Six unmixing techniques from different unmixing cate-
gories were used as competing methods in the experiments:
FCLSU (supervised unmixing using VCA [3] for the end-
member extraction) [1], NMF-QMV [11] (blind unmixing
by incorporating geometrical information), Collaborative
LASSO (Collab) [12] (sparse or semisupervised unmixing),
uDAS [7] (blind deep unmixing), UnDIP [8] (supervised deep
unmixing), and CyCUNet [10] (blind deep unmixing). For
MiSiCNet, we selected all the hyperparameters as given in
Table 1, and we set λ to 0.3 and 100 for the simulated dataset
and real datasets, respectively. We choose all the parameters
for the competing methods according to the reported default
values. Quantitative results are provided by the root mean
squared error (RMSE) in percentage and the spectral angle
distance (SAD) in degree.

Table 2 reports the RMSE results for the simulated
dataset. All the competing methods perform poorly. MiS-
iCNet shows considerable improvements even compared to
NMF-QMV. Additionally, the very low standard deviations
reported in the table confirm the robustness of MiSiCNet for
different noise levels. That is a valuable advantage revealed
from the experiments. For instance, the small (0.09%) perfor-
mance improvement of NMF-QMV over MiSiCNet for 20dB
of noise is statistically insignificant, due to the high standard
deviation of 0.2% for NMF-QMV compared to the very low
standard deviation of 0.07% for MiSiCNet.

Table 3 reports SAD for the simulated data set. The re-
sults follow the trend of RMSE. MiSiCNet considerably out-
performs the other techniques for all SNRs for the simulated

dataset. The simulated experiment reveals the importance of
the minimum volume term in the absence of pure pixels. Both
NMF-QMV and MisiCNet consider the geometry of the data
simplex by minimizing the volume term while all the other
techniques either ignore that or rely on the presence of pure
pixels.

Table 2: Simulated Data: RMSE

FCLSU UnDIP uDAS CyCUNet Collab. NMF-QMV MiSiCNet

20dB 12.55±1.89 12.15±1.04 11.43±2.69 19.51±5.89 12.05±0.61 4.03±0.54 3.96±0.04
30dB 21.45±2.49 10.49±0.21 12.57±5.11 15.87±2.71 13.83±1.94 3.79±2.33 2.45±0.02
40dB 21.6±4.11 10.52±0.22 10.84±4.29 14.57±1.3 14.11±1.93 7.37±1.13 2.15±0.03
50dB 22.89±2.71 10.37±0.17 10.76±4.24 15.96±2.02 14.14±1.18 6.91±1.17 2.12±0.03

Table 3: Simulated Data: SAD

VCA SiVM uDAS CyCUNet Collab. NMF-QMV MiSiCNet

20dB 7.83±0.88 8.03±0.08 11.77±3.62 9.41±0.63 8.36±0.63 2.47±0.48 1.76±0.03
30dB 7.72±1.29 7.83±0.02 14.68±4.42 9.73±0.5 7.21±0.57 8.45±7.73 0.83±0.02
40dB 8.24±1.02 7.85±0.01 13.95±5.97 9.96±0.6 7.82±1.2 22.95±2.75 0.64±0.02
50dB 7.73±1.23 7.86±0.01 14.47±5.77 10.57±0.23 7.65±0.28 24.13±1.26 0.62±0.02

Table 4 shows the abundance RMSE obtained by the
different unmixing techniques on the Samson data. MiS-
iCNet significantly improved the abundance estimation for
this dataset compared to the other methods. Additionally,
MiSiCNet considerably outperformed the other techniques
for all three individual abundances. MiSiCNet performed
12.3%, 3.63%, and 9.74% better on the Soil, Tree, and Wa-
ter abundances, respectively, compared with the second-best
results, given by Collab. Figs. 4 and 5 depict the estimated
abundances and endmembers, respectively, obtained by the
different techniques. This again confirms that MiSiCNet out-
performs the other techniques. Table 5 reports SAD values
of the endmembers on Samson. MiSiCNet outperforms the
other techniques in terms of SAD for Soil and Tree, but not
for Water. Overall, Collab shows 3.61 degree SAD improve-
ment over MiSiCNet. SAD does not follow the trend of the
abundance RMSE in real datasets, an effect which is caused
by spectral variability. As SAD removes the norm of the
endmember spectra, it ignores endmember scaling factors
(caused by multiple reflections of the light and variable il-
lumination conditions). However, such scaling factors may
considerably affect the abundance estimation.

Table 4: RMSE (Samson Dataset). The best performances
are shown in bold.

FCLSU UnDIP uDAS CyCUNet Collab. NMF-QMV MiSiCNet

Soil 17.66 17.78 17.99 24.17 15.06 52.35 2.76
Tree 6.53 13.30 13.83 13.86 6.07 39.90 2.44
Water 14.92 20.96 23.03 26.54 11.81 45.98 2.07
Overall 13.87 17.63 18.67 22.21 11.59 46.36 2.44



Table 5: SAD (Samson Dataset). The best performances are
shown in bold.

VCA SiVM uDAS CyCUNet Collab. NMF-QMV MiSiCNet

Soil 1.49 1.49 2.05 6.55 0.89 2.24 0.64
Tree 5.51 4.28 5.50 8.69 4.77 7.10 2.60
Water 8.91 8.91 8.75 11.92 8.03 87.10 21.27
Overall 5.30 4.89 5.43 9.06 4.56 32.14 8.17

Fig. 4: Samson dataset - The visual comparison of the abun-
dance maps obtained by the different unmixing techniques.

4. CONCLUSION

In this work, we proposed the minimum simplex convolu-
tional network for deep hyperspectral unmixing. The method
solves a blind unmixing problem by utilizing a deep convo-
lutional network. The proposed method was validated on
a simulated dataset and a real dataset. Although the simu-
lated data contains only one mixed data point on each facet of
the data manifold, the method accurately reconstructed vir-
tual endmembers. The experimental results on both real and
simulated datasets showed considerable improvements, both
in terms of the quality metrics and visually.
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