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Moisture Content Estimation of 
Porous Building Stones using 
Hyperspectral Imaging
Danish Ali Chaghdo   1,2 ✉, Bikram Koirala   2, Laura Cristina3, Tim De Kock   4, 
Laurent Fontaine1, Roald Hayen1 & Paul Scheunders   2

Moisture poses a major threat to built heritage through processes such as frost damage, salt 
crystallization and biological growth, which accelerate stone deterioration. Stone moisture content can 
be determined non-destructively by spectral reflectance in the shortwave infrared (SWIR) wavelength 
range. To validate this, large cubic and small cylindrical samples from six stone types, Brick, Euville, 
Massangis, Neubrunn, Obernkirchen, and Savonnières, with different controlled moisture levels 
were prepared, and a comprehensive SWIR hyperspectral image dataset was created. The acquired 
hyperspectral images were processed using the Normalized Relative Arc Lengths (NRAL) method to 
generate moisture maps that illustrate the spatial distribution of water within each sample. Because 
moisture distribution is influenced by pore characteristics and grain arrangement, the moisture maps 
were validated through petrographic examination. For quantitative validation, the mean moisture 
content of each sample was compared with the corresponding gravimetric moisture content. The results 
demonstrated strong agreement between the estimated and gravimetric moisture values, with root 
mean square errors ranging from 1 and 2 g/g  × 100.

Background & Summary
Built heritage (BH) is considered important because it serves as an expression of the cultural identity of cit-
ies and communities, providing tangible evidence of the past1. Due to the immense value of BH, its preserva-
tion for future generations is a collective responsibility2. This effort typically follows a structured approach that 
involves analysis, diagnosis, and continuous monitoring in order to determine appropriate intervention strate-
gies. Among the various natural degradation processes affecting building materials, water stands out as one of 
the major drivers for deterioration3,4. Several undesirable phenomena are related to water, such as frost damage5, 
salt crystallization6, and biological growth7, making water a concrete threat to architectural heritage8. Because 
the preservation of BH is a major concern2, detecting the presence of moisture and monitoring it over time is of 
considerable importance for its maintenance4.

Direct moisture measurement methods, of which gravimetric and calcium carbide methods are the most 
popular, are generally considered the most reliable for quantitative measurement of moisture content (MC) in 
building elements through appropriate sampling9. However, these techniques require sample collection and 
hole drilling. Sampling is usually carried out using a powder form drill or as a core sample of approximately 
2 cm in diameter and as deep as necessary. This is an invasive procedure that may pose a risk of damage to 
historical materials. In addition, due to the heterogeneous distribution of water, sampling should be repeated 
several times at different positions, which further increases the destructive character4. The MC is then assessed 
by determining the mass of water in the samples (gravimetric technique)10 or measuring the pressure caused by 
a chemical reaction and correlating the pressure with the MC (calcium carbide technique)4,9. Although these 
methods are accurate and the results are reliable9, especially gravimetric analysis11, they are not recommended 
for application to BH materials due to their destructive approach12. Furthermore, given the destructive nature 

1Monuments and Monumental Decoration Lab, Royal Institute of Cultural Heritage (KIK-IRPA), JubelPark 1, Brussels, 
1000, Belgium. 2Visionlab, Department of Physics, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, 
Belgium. 3Department of Physics ”G. Occhialini”, University of Milano-Bicocca, Piazza della Scienza, 3, Milan, 20126, 
Italy. 4Antwerp Cultural Heritage Sciences, University of Antwerp, Mutsaardstraat 31, Antwerp, 2000, Belgium. 
✉e-mail: danish.ali.chaghdo@kikirpa.be

Data Descriptor

OPEN

Content courtesy of Springer Nature, terms of use apply. Rights reserved



2Scientific Data |          (2026) 13:102  | https://doi.org/10.1038/s41597-025-06416-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

of the analysis, sampling points are often chosen to minimize the damage caused by the technique, with the risk 
of unrepresentative results13.

Over the years, non-destructive methods have been proposed to overcome physical sampling14. Within 
non-destructive techniques, two different categories can be distinguished: point-based techniques and imag-
ing techniques. Point-based methods, such as ultrasonic testing15, moisture meters16, and microwave systems17, 
provide local information by analyzing specific points in the material12. While these methods are effective for 
localized analysis, point techniques often fail to capture broader patterns of damage or moisture distribution12. 
Since the main objective is to determine MC, imaging techniques could provide more representative results 
and indicate the best spots for local analysis18. The study of BH by non-invasive imaging analysis provides a 
preliminary screening of the object under investigation and a comprehensive evaluation of its surface. A correct 
analytical approach will then include, if necessary, the use of non-invasive analytical point-based techniques19. 
Among imaging techniques, Infrared Thermography (IRT) has been widely used for the detection of moisture20, 
because it is a non-destructive technique and allows in situ measurements21. Because changes in MC correlate 
with changes in surface temperature, IRT can be used to map moisture distribution and identify areas of atypical 
moisture content. However, the quantitative analysis of surface temperature differences in relation to the MC of 
walls remains challenging due to the complex and variable relationship between evaporative flow and surface 
temperature22. The Earth Resistivity Tomography (ERT) method provides valuable insights into the distribu-
tion of moisture within historic stone structures, allowing for both 2D and 3D imaging. However, compared 
to high-resolution techniques, ERT has lower spatial resolution, which may limit the accuracy and detail of 
moisture mapping in these materials23. Advanced laboratory techniques have been used for more detailed anal-
ysis of moisture content and moisture transport. With portable nuclear magnetic resonance (NMR) sensors, 
the distribution of moisture in historic walls can be mapped24,25. This method is not applicable in the presence 
of magnetic fields, and organic materials may distort the results4. Neutron scattering-based techniques in two 
(radiography26,27) and three dimensions (tomography28) have high accuracy in water content estimation but 
lower spatial resolution compared to other attenuation techniques4.

Over the last years, there has been a growing interest in hyperspectral imaging (HSI) techniques18, with 
several applications in the domain of BH29. HSI was introduced into the domain of BH in the 1990s and has 
continued to improve since then, with an increase in the quality of spectroscopic information in acquired imag-
ing data19. This technique consists of acquiring images in a sufficient number of contiguous spectral bands. As 
a result, each pixel in the image has an associated reflectance spectrum. The collected dataset typically includes 
hundreds of images acquired in narrow spectral bands (bandwidth: 2-10 nm) and recorded over an extended 
spectral range19,30, spanning from the visible and near-infrared (VNIR, 400-1000 nm) to the shortwave-infrared 
(SWIR, 1001-2500 nm) range. HSI offers significant potential for the quantitative evaluation of MC in building 
materials because water exhibits strong absorption, especially in the SWIR range (e.g., absorption peaks around 
1400 and 1900 nm). In these wavelength ranges, the optical reflectance properties of water-bearing materials are 
mainly influenced by water. Despite the promising potential of HSI for MC monitoring31, the application of this 
technique in the context of BH remains significantly limited32,33.

In contrast, over the past two decades, researchers in the remote sensing community have exploited the 
potential of HSI to estimate soil MC, leveraging its ability to provide large-scale, non-contact, and timely 
assessments34. The methodologies developed to quantitatively estimate soil MC can be grouped into empirical 
methods35 and methods based on physical modeling36. Empirical methods include spectral indices, statisti-
cal relationships, exponential functions, wavelet analysis, and multivariate analysis37. Physical methods aim to 
describe the physical interaction between light and soils, with the advantage that it allows simulation of the 
reflectance spectrum of moist soils37.

It is a well-known fact that variations in illumination and viewing angles significantly impact the measured 
reflectance spectra. Additionally, the measured reflectance of moist soil highly depends on the soil grain size 
and grain size distribution. Existing empirical and physical methods cannot efficiently address these challenges.

Recently, an efficient quantitative method for soil moisture estimation has been proposed37. The proposed 
method generates a proxy for soil MC by expressing the reflectance of a moist sample relative to that of both a 
dry and a saturated sample. This proxy is then normalized by the MC of the saturated soil sample to obtain an 
estimate of the MC of the moist sample. The approach ensures invariance to variations in illumination, viewing 
angles, and soil type. Since this method’s effectiveness has already been demonstrated, it has been adopted in this 
study to produce moisture data for stone samples obtained from BH. The remainder of this manuscript is organ-
ized as follows. Section 2 describes the materials used, the sample preparation, and the acquisition setup. Data 
records are described in Section 3. Section 4 presents a technical validation of the moisture data, which includes 
a comparison of the moisture data with polarized microscopic images obtained by petrographic examination 
and scatterplots comparing the mean moisture data of each sample with the gravimetric moisture content.

Methods
Material Description.  In this study, we selected representative porous materials, limestone, sandstone, and 
brick, commonly used in construction, while excluding dense or clay rich rocks. The selection aimed to cover 
different mineralogies (siliciclastic rocks, carbonate rocks, and bricks with fired/calcined clay) and a range of pore 
structures (unimodal and multimodal). Six samples, Euville, Neubrunn, Savonnières, Massangis, Obernkirchen, 
and Brick, were chosen to represent the heterogeneity of natural stones in accordance with EN 1936 and EN 1926 
standards. Euville is a crinoidal limestone of Upper Jurassic age from Commercy, France (48.750° N, 5.625° E); 
Massangis is a bioclastic oolitic limestone of Middle Jurassic age from Massangis, France (47.624° N, 3.973° E); 
Neubrunn is a sandstone of Upper Triassic age from Neubrunn, Germany (49.731° N, 9.672° E); Obernkirchen is 
a sandstone of Early Cretaceous age from Obernkirchen, Germany (52.264° N, 9.130° E); Savonnières is an oolitic 
limestone of Upper Jurassic age from Savonnières-en-Perthois, France (48.606° N, 5.132° E). Additionally, a red 
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brick excavated from the Kipdorp archaeological site in Antwerp, Belgium (51.2199° N, 4.4159° E), was included 
in the study.

To account for material heterogeneity, six replicate specimens were prepared for each stone type, such that 
the experimental data set consisted of 36 specimens in total: 30 natural stone samples (5 stone types  × 6 repli-
cates) and 6 brick samples. From the natural stones, cubic samples of size (6 × 6 × 6 cm3) were prepared, while 
the archaeological brick samples exhibited more irregular dimensions averaging 3.5 × 5.5 × 6.5 cm3 but also 
having one fresh cut, flattened surface.

To assess the local spatial homogeneity or heterogeneity of the material, small cylindrical samples (nominal 
diameter 10 mm, height 20 mm) were extracted from each of the 36 larger samples using wet core drilling, 
followed by flattening the top and bottom surfaces with a stone cutter. These dimensions of smaller cylindrical 
samples are chosen with the understanding that, in future work, these samples will be utilized to assess the pore 
size distribution of stone samples through Mercury Intrusion Porosimetry (MIP).

All samples were labeled as big or small B (red brick), E (Euville), M (Massangis), N (Neubrunn), OB 
(Obernkirchen) and S (Savonnières), along with a number (1 to 6) to denote the specific replicate.

Sample Preparation.  Firstly, some preliminary tests have been carried out to evaluate the drying process 
of the different types of stones, and the time required for complete drying. The samples were oven-dried at 60°C 
for 24 hours. It is important to note that drying at 60 °C for 24 hours was chosen because it is a well-established 
in-house procedure at KIK-IRPA, a federal scientific institute in Belgium, where it has been routinely applied for 
several years in stone and mortar characterization studies. The dry condition was reached when the change in 
weight between repeated measurements was considered negligible. The weights were measured with an analytical 
balance (readability 0,01g)

Samples were vacuum saturated under the following procedure:

•	 The stone samples are placed inside a exsiccator connected to a vacuum pump.
•	 After 2 hours of vacuum drying, water is gradually introduced into the exsiccator through a dedicated inlet.
•	 After full immersion, the samples are left in water for 4 days, a period considered sufficient for the water to 

fully penetrate the pores of the stones (see Fig. 1). The samples are assumed to be fully saturated (saturation 
100%).

Different degrees of MC, relative to saturation were considered to obtain a representative picture of the 
phenomenon. The selected degrees of saturation were: 25%, 50%, 75%, 90% and 100%. The 90% saturation 
level was considered to eventually evaluate a non-linear behavior of the measurements close to the saturation 
level. Moreover, any liquid water present on the surface of the fully saturated samples was carefully removed 
with a damp cloth to minimize its influence on the measured spectral reflectance. To calculate the masses at 
x = 25%, 50%, 75% and 90% degree of saturation, the following equation was used: 

m m x m m
100

( )
(1)x d d% 100%= + −

 where mx% is the mass of the sample at x% saturation level, md is the mass of the dry sample and m100% is the 
mass of the saturated sample. The MC of a sample will be expressed as: 

Fig. 1  (a) Stone samples are placed inside a desiccator, and water is gradually introduced through a pipe inside 
the desiccator after removing the air with a vacuum pump. (b) Disposition of the stone samples inside the 
desiccator.
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The different saturation levels are obtained by drying the samples in the oven (60∘C) until they reach the 

correct calculated mass. The mass of the sample was continuously monitored to achieve the desired saturation 
level. The time interval between two different mass measurements was approximately 5 min. For small samples, 
mass differences between percentage levels were small (between 0.06 and 0.21 g). Therefore, in a few cases, it 
was necessary to add some water with a pipette when the drying process in the oven resulted in a weight lower 
than the calculated one.

Hyperspectral imaging only captures information about the sample’s top surface. For the bulk water content 
to align with the averaged hyperspectral estimation over the entire surface, the water must be evenly distributed 
throughout the sample. Sample homogeneity is essential so that the obtained HSI results can be considered as 
information from the bulk. Therefore, samples were wrapped in plastic films after obtaining the target weight 
and kept for minimum 48 hours to obtain equilibrium water distributions while avoiding water loss through 
evaporation. Two sheets of plastic were used to wrap the sample. This process was carefully repeated for all sam-
ples. After hyperspectral imaging, all samples were reweighed with an analytical balance to assess any mass loss. 
This operation was important to check that the same level of saturation was maintained.

Hyperspectral Image Acquisition Setup.  In this work, we used a Snapscan SWIR hyperspectral camera 
manufactured by Imec to acquire hyperspectral images of the prepared samples. The Snapscan SWIR camera 
operates over a spectral range of 1120.5-1675.1 nm, capturing 100 spectral bands with a spectral resolution vary-
ing from 0.32 nm to 15.37 nm and a mean interval of approximately 5.6 nm.

All samples were positioned consistently and scanned from the same side to ensure uniformity in data col-
lection. Four halogen lamps, placed at a 45-degree angle to the hyperspectral camera, provided uniform illumi-
nation to reduce shadows and increase brightness. Unlike traditional push broom systems, the Snapscan camera 
uses an internal sensor motion mechanism to capture a static, full image frame of the sample, improving spatial 
resolution and simplifying the setup. The original frame size of the raw images was 400 × 400 pixels for the 
larger samples. Since these images included both the sample and the background, the hyperspectral cubes were 
cropped to remove background pixels, resulting in final image cube sizes ranging from 286 × 210 × 100 to 391 
× 384 × 100.

Figure 2 presents an RGB image of one representative sample from each stone type, together with the cor-
responding mean reflectance spectra and ground-truth MC for the different moisture levels. It can be observed 
that the reflectance spectra of moist samples are primarily influenced by water, which plays a critical role in 
enabling accurate estimation of the MC of porous materials. However, significant differences in the measured 
spectra are observed among different stone samples due to variations in pore size and distribution. Therefore, to 
accurately predict moisture content from the measured spectra, a unique representation of the moist sample that 
is invariant to the material’s pore structure must be determined.

Generation of moisture data.  To determine a unique representation of moist samples that is invariant to 
variations in pore size and distribution, and to predict the moisture content, in37, a method called Normalized 
Relative Arc Lengths (NRAL) was proposed. The method is expected to be applicable to all porous materials (e.g., 
soil, clay, stone, wood, etc.). In this work, we applied this method to generate moisture data from the acquired 
spectral reflectance data of the stone samples. NRAL assumes that the data manifold generated by multiple moist 
samples with varying MC values forms a curve connecting the spectral reflectances of air-dried and saturated 

Fig. 2  (a) RGB images of the stone samples: (b) measured reflectance spectra for different MC levels and 
corresponding ground truth MC of stone samples.
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samples (the endmembers). Estimating MC thus becomes a matter of determining a moist sample’s relative posi-
tion along this curve.

To accurately determine the relative position of a sample, the length of the curve must be appropriately 
approximated. Since the curve between endmembers can be represented as a piecewise linear curve, its total 
length can be estimated by summing the Euclidean distances between consecutive intermediate points. 
Increasing the number of intermediate points improves the accuracy of this approximation.

However, in many practical cases, only a single spectrum of the moist sample is available for estimating its 
MC. In such scenarios, the approximated curve length becomes unreliable. To overcome this limitation, each 
spectrum can be projected onto the unit hypersphere, where the arc length between any two spectra (e.g., the 
endmembers) corresponds to the angle between them. This angle can be computed as the arc cosine of their dot 
product. The projection onto the unit hypersphere is achieved by normalizing each spectrum by its magnitude: 
(

� �
y y

y
→ ). An additional advantage of this representation is that the unit hypersphere space is invariant to 

variations in illumination and acquisition geometry.
Nevertheless, even after projecting the spectra onto the unit hypersphere, the spectral reflectance of a moist 

sample does not necessarily lie precisely along the arc connecting the two endmembers (see Fig. 3). To address 
this limitation, NRAL employs the spherical law of cosines (see37 for a detailed explanation): 
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s1 2 . The relative position of the moist sample along the curve is calculated as the 
ratio between b1 and the sum (b1 + b2), expressed as = +a b b b/( )1 1 2�

In the final step, the relative position of the moist sample can be calibrated against the MC of the saturated 
sample (m100%) to establish the following relationship: 

x aMC ( %) MC (100%) (4)�= ×

Moisture Maps.  Moisture maps were generated by applying the NRAL method to each hyperspectral pixel in 
order to visualize the spatial distribution of moisture within the stone samples. These maps help to identify zones 
of varying moisture content and provide insights into the absorption and retention behavior of the materials. 
These maps show that at any given bulk moisture content, the distribution of the moisture can be quite heteroge-
neous on a smaller scale, reflecting the rock texture. Figures 4, 5, 6, 7, 8 and 9 present the moisture maps for the 
big samples B2, E4, M3, N3, OB3 and S1 respectively, at different stages of moisture content.

Fig. 3  Red curve: the arc connecting the dry endmember Rd and the saturated endmember Rs; Blue curves: the 
arcs connecting the moist soil (y) with the endmembers. c and c′ denote the arc lengths between y and the 
endmembers, respectively. y′ denotes the projection of y on the arc connecting the endmembers, and b1 and b2 
denote the true arc lengths between y′ and the endmembers (adapted from37).
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In Brick, the moisture maps (sample B2), as shown in Fig. 4, show moisture first filling the large, 
well-connected shrinkage cracks (porosity zone 1) at 25% MC, followed by progressive infiltration at 50% and 
75% MC into the clay matrix (porosity zone 2), with the clay-rich inclusions (porosity zone 3) absorbing the 
lowest relative amount of moisture at each step. Despite near-full saturation at 90% and 100% MC, some inner 
parts of clay-rich inclusions remained relatively dry, indicating limited effective porosity.

The moisture maps of Euville limestone, as shown in Fig. 5, indicate that the stone is virtually dry at the initial 
state. At 25% MC, water is mainly located in the most accessible pores, corresponding to the intergranular pore 
network forming a continuous system of interconnected voids (highlighted in yellow and green on the maps). 
From 50 to 100% MC, the water is evenly distributed throughout the stone.

Fig. 4  Moisture maps of brick sample B2 at varying moisture levels, with corresponding RGB image of the area 
of interest.The arrows show big clay inclusions comparable to those described in subsection 4.2.

Fig. 5  Moisture maps of Euville sample E4 at varying moisture levels, with corresponding RGB image of the 
area of interest.
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The moisture maps of Massangis limestone (sample M3), as shown in Fig. 6 show that moisture is present in 
the stone at relatively low MC (25%), but preferentially in certain zones. Although these zones of higher moisture 
content are gradually expanding at 50, 75 and 90% MC, there remain small zones with a lower moisture content 
at full saturation level (100% MC). In the case of Massangis, the distribution of moisture can be explained by the 
microstructure of the stone. Indeed, water preferentially occupies yellowish patches, the greyish patches being 
less absorbent, as can been seen on the close-up of the stone surface (RGB image of M3 on the left in Fig. 6.

For Neubrunn sandstone (sample N3), as shown in Fig. 7, the moisture distribution initially appeared homo-
geneous at low saturation level (25% MC), but began to reflect existing laminae in the stone at higher MCs. The 
presence of these laminae is typical of sedimentary sandstones; however, they were not clearly visible in the 
physical samples. We can suppose that water accumulated preferentially in laminae with slightly larger and/or 
slightly better-connected pores at 50% and 75% MC. At near-full saturation level (90%–100% MC), the laminae 
with lower initial absorption contained even slightly more water than the others, possibly due to a higher content 
in the finest pores enhancing capillary suction power.

The moisture maps of Obernkirchen sandstone, as shown in Fig. 8, indicate that the stone is virtually dry 
at the initial state. At 25% MC, water is evenly distributed, primarily within the intergranular pores. At 50% 
MC, the water remains evenly distributed throughout the stone. Similarly, at 75 and 90% MC, the distribution 
shows little to no difference compared with lower saturation levels. At full saturation (100% MC), the stone is 
uniformly moist, indicating complete saturation of the accessible pore network.

The moisture maps of Savonnières limestone, as shown in Fig. 9, indicate that the stone is virtually dry at 
the initial state. At 25 and 50% MC, water is unevenly distributed, reflecting subtle differences in pore size and 

Fig. 6  Moisture maps of Massangis sample M3 at varying moisture levels, with corresponding RGB image of 
the area of interest.

Fig. 7  Moisture maps of Neubrunn sample N3 at varying moisture levels, with corresponding RGB image of the 
area of interest.
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cementation between successive sets of cross-laminae; less cemented laminae appear to absorb moisture more 
readily than the more compact ones. At 75 and 90% MC, the water distribution becomes more uniform, with 
only minor differences between these two saturation levels. At full saturation (100% MC), moisture is evenly 
distributed throughout the stone, with some laminae that were initially less absorbent now appearing as the most 
moisture-rich zones, likely due to capillary condensation effects.

Data Records
A dataset comprising hyperspectral images and corresponding moisture maps from six porous building mate-
rials is available on Zenodo38.

Technical Validation
In this section, we evaluate the moisture dataset using two complementary approaches. The first approach quan-
titatively compares the mean moisture content of each sample, as estimated by the NRAL method, with the 
gravimetric moisture content of the bulk sample using scatterplots. The second approach qualitatively compares 
the moisture distribution on the top surface of each sample with polarized microscopic images obtained through 
petrographic analysis of thin sections, which reveal the pore characteristics and grain arrangements of the stone 
samples. The following subsections describe these two validation methods in detail.

Scatterplot Analysis.  Figure 10 presents scatterplots comparing the mean moisture content of each sample 
with the gravimetric moisture content. The results include data from both large cubic and small cylindrical sam-
ples across all six stone types and moisture levels. The error in the moisture content, expressed as the root mean 

Fig. 8  Moisture maps of Obernkirchen sample OB3 at varying moisture levels, with corresponding RGB image 
of the area of interest.

Fig. 9  Moisture maps of Savonnières sample S1 at varying moisture levels, with corresponding RGB image of 
the area of interest.
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squared error (RMSE), ranges from 1 to 2 g/g  × 100. As expected, the smaller samples exhibit slightly higher 
precision in moisture content values than the larger ones, primarily due to their lower spatial heterogeneity. 
For highly heterogeneous samples, such as sample M, the results are notably improved for the smaller samples. 
Samples E and S remain heterogeneous even at smaller scales, with both wet and dry regions coexisting within the 
samples, which explains the relatively higher RMSE.

Fig. 10  Measured vs Estimated MC of stones: (a) Top row: results from the big cubic samples; (b) Bottom row; 
results from the small cylindrical samples.

Fig. 11  (a) General view of the thin section of the brick (single shot taken using a light table and a camera). 
Large rounded voids and shrinkage cracks are labelled as ‘1’, the clay matrix is labelled as ‘2’, and the big clay-
rich inclusions are labelled as ‘3’. The red frames indicate the locations of the detailed views shown in (b) and 
(c). (b) Detail view on the clay matrix in the thin section (single polarized light). Minute shrinkage cracks in the 
clay matrix can be seen in yellow, while quartz grains in white are nonporous. (c) Detail view on a big clay-rich 
inclusion (single polarized light) surrounded by a large shrinkage crack (in yellow).
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Petrographic analysis.  Since the distribution of moisture within a sample depends on its pore character-
istics and grain arrangement, a detailed petrographic examination was conducted. The polarized microscopic 
images obtained through this analysis were used to validate the moisture data derived from the hyperspectral 
images.

The Brick shows a heterogeneous pore system (see Fig. 11(a) for a general view of the related thin section). 
The largest pores corresponds to millimeter-sized voids and shrinkage cracks wider than 0.1 mm (indicated as 
‘1’ in the Fig. 11(a)). The fired clay matrix which include sand grains shows inherent fine porosity (indicated 
as ‘2’ in the Fig. 11(a)). The finest pores can be found in the unmixed clay lumps which lack sand grains (indi-
cated as ‘3’ in Fig. 11(c)). This microstructural heterogeneity aligns well with the moisture maps (see Fig. 4). 
Throughout increasing saturation, the highest water content is observed in the porous zones like tapered voids, 
cracks and the fired clay matrix. The unmixed clay lumps consistently shows low water saturated due to the 
extremely fine pores which are not voluminous enough to contain large amounts of water.

Euville limestone, (see Fig. 12 for a detailed view) is primarily composed of crinoidal grains wih syntaxial 
calcite cement. The porosity is mainly intergranular (highlighted in yellow) and relatively unimodal. This cor-
responds closely with the moisture maps (see Fig. 5, showing progressive water saturation of the intergranular 
pores, followed by gradual saturation of the intragranular pore network in tandem with the intragranular pores 
of the crinoidal grains and their syntaxial cement.

In Massangis limestone, more porous zones alternatve with more dense zones (see Fig. 13), which have previ-
ously been described39. In dense zones, the natural cement fills most of the intergranular pore space, resulting in 

Fig. 12  Detail view showing the general appearance of Euville stone under a polarizing microscope (single 
polarized light). The intergranular pores can be seen in yellow. In this picture, most of the stone grains appear in 
grey and are covered by overgrowths of calcite cement (in white). Rest of the stone grains appear in black.

Fig. 13  Detail view showing the general appearance of Massangis stone in the thin section (single polarized 
light). The more compact zones correspond to places where the stone grains (mainly oolites, in dark grey 
or black) are almost entirely cemented by the calcite binder (in white). The less compact zones show large 
macropores (in yellow) and a lower content of intergranular calcite binder.
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a relative low and fine inter- and intragranular porosity. In more porous zones, dedolomitization has led to larger 
moldic and intergranular macropores, recognizable by their rhomboedric shape (in yellow on the figure). This 
diagenetic zonation results in zones with different moisture content, which is clearly observable in the moisture 
maps (see Fig. 6), with larger amounts of water concentrated in the moldic, more porous zones.

In Neubrunn sandstone (see Fig. 14) for a detailed view), the main porosity type corresponds to intergranu-
lar pores (highlighted in yellow), susceptible to grain size variations according to its bedding. This corresponds 
to the moisture maps; with progressive water saturation in the intergranular pores, however, with rock lamina 
becoming pronounced as lamina with finer grains and thus pores are expected to retain most water at low overall 
mosisture content. However, with increasing overall moisture content, lamina with larger pores progressively 
become filled with a proportional larger volume of water (see Fig. 7

Obernkirchen sandstone (see Fig. 15) for a detailed view), is not very distinct from Neurbrunn sandstone, 
showing an intergranular porosity (highlighted in yellow) but less distinct layering. Petrographic characteriza-
tion of Obernkirchen sandstone shows that water is primarily accommodated in the intergranular pore network, 
accounting for the largely homogeneous moisture distribution at all saturation levels (see Fig. 8). The limited 
presence of intragranular pores within rock fragments explains the minimal additional moisture uptake, sup-
porting the consistency between the mapped moisture patterns and the stone’s internal pore structure.

Savonnières limestone has a multimodal pore size distribution (see Fig. 16) for a detailed view with expla-
nation). From large to small size, it considers well connected intergranular and poorly connected intragranular 
pores, complemented by smaller intergranular pores between the dogtooth cement and the finest intragranular 
pores in the micritic structure of the ooid grains. In addition, the stone shows layering on the macroscale. This 

Fig. 14  Detail view showing the general appearance of Neubrunn sandstone in the thin section (single 
polarized light). The intergranular pores are visible in yellow on the picture. Quartz grains (nonporous) appear 
white. Feldspar grains and rock fragments (microporous) are light grey.

Fig. 15  Photomicrograph showing the general appearance of Obernkirchen sandstone under a polarizing 
microscope (single polarized light). The intergranular pores are visible in yellow on the picture. Quartz grains 
(nonporous) appear white. Rock fragments (microporous) appear in light grey.
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causes the initial uneven water distribution and the eventual homogenization at higher saturation levels (see 
Fig. 9).

In summary, hyperspectral imaging-derived moisture maps are rigorously validated through complemen-
tary quantitative and qualitative approaches. Quantitative comparison with gravimetric measurements shows 
strong agreement, with low RMSE values (1-2 g/g  × 100), confirming reliable mean moisture estimates across 
heterogeneous samples. As observed in the moisture maps, Brick exhibits sequential wetting, with moisture first 
occupying large shrinkage cracks before spreading into the clay matrix and fine inclusions, consistent with its 
petrographic pore structure. In Massangis limestone, the patchy zones of higher moisture content correspond 
to large, poorly cemented areas revealed in thin sections, while Euville limestone shows progressive wetting 
from intergranular pores to intragranular and intercrystalline spaces, reflecting the mapped saturation patterns. 
Neubrunn and Obernkirchen sandstones demonstrate moisture preferentially following intergranular pores and 
laminae, and in Savonnières limestone, heterogeneous absorption aligns with large pores, as indicated by the 
maps. Together, the quantitative and petrographic validations confirm that the moisture maps faithfully capture 
pore-scale water distribution and material-specific moisture dynamics, demonstrating the coherence and relia-
bility of the dataset. In future work, additional stone and brick types will be studied, hyperspectral microscopy 
will be applied to cylindrical sub-samples, and pore-scale moisture behavior will be benchmarked against MIP.

Consent for publication.  The authors confirm that they consent to the publication of this dataset in 
*Scientific Data*. Users of the data are required to provide appropriate credit and citation to this publication.

Data availability
The full dataset is openly available through the Zenodo repository and can be accessed via https://doi.org/10.5281/
zenodo.17726161

Code availability
The code used to estimate the moisture content of the moist samples and generate the corresponding moisture 
maps is openly accessible on GitHub: https://github.com/Danish-ac98/Hyperspectral_Dataset.
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