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Abstract

Effective denoising is vital for proper analysis and accurate quantitative measurements from magnetic resonance (MR) images. Even
though many methods were proposed to denoise MR images, only few deal with the estimation of true signal from MR images acquired with
phased-array coils. If the magnitude data from phased array coils are reconstructed as the root sum of squares, in the absence of noise
correlations and subsampling, the data is assumed to follow a non central-x distribution. However, when the k-space is subsampled to
increase the acquisition speed (as in GRAPPA like methods), noise becomes spatially varying. In this note, we propose a method to denoise
multiple-coil acquired MR images. Both the non central-x distribution and the spatially varying nature of the noise is taken into account in
the proposed method. Experiments were conducted on both simulated and real data sets to validate and to demonstrate the effectiveness of the

proposed method.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Stochastic noise is one of the main causes of quality
deterioration in magnetic resonance (MR) images, and
hence, estimation and removal of noise remains an active
area of research. Consideration of how noise affects the true
signal is important for proper interpretation and analysis of
MR images [1]. Noise in the MRI can be naturally reduced
by averaging complex images after multiple acquisitions.
This, however, may not be feasible in clinical and small
animal MR imaging (MRI) where there is an increasing need
for speed. Also, time-sensitive acquisitions in contrast
material-enhanced studies, functional studies, diffusion
MRI or studies with limited imaging time, experiments
cannot be repeated to do averaging. Thus, post processing
techniques to remove noise in the magnitude image is
important. It is usually assumed that the noise in the MRI &-
space data from each receiver channel is normally distrib-
uted. Due to the orthogonality of the Fourier basis functions,
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the noise remains Gaussian distributed after an inverse
Fourier transform. However, the subsequent nonlinear
operation, being the computation of the root of the sum of
squares (SoS) of the Gaussian distributed complex image(s),
leads to a magnitude image, which is no longer Gaussian
distributed. In single coil systems, such magnitude data is
governed by a stationary Rician distribution. For multi-coil
systems, the magnitude image is non central Chi (nc-x)
distributed, provided that the k space was fully sampled and
no correlations between the coil data exists [2,3]. Multiple
coil systems were initially developed to enhance the signal-
to-noise ratio (SNR) of the acquired images and later parallel
MRI (pMRI) techniques were employed to it to accelerate
the acquisition process through k-space subsampling.
Nevertheless, the subsampling of k-space can cause the
noise in the magnitude image to be non-stationary.

In the recent past, several adaptive filtering techniques to
improve the quality of magnitude MR images have been
proposed [4-9]. The Rician nature of the noise was
incorporated in most of these methods to make it a suitable
candidate for denoising magnitude MR images. However,
none of the aforementioned methods are adapted to deal with
nc-x distributed data. Employing a Rician model to describe
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nc-x distributed data (if the number of coils >1) may,
however, introduce a bias in the estimated parameters. This
bias will increase with increasing number of coils. However,
multi-channel MRI acquisition schemes with pMRI tech-
niques are becoming increasingly popular. Very recently,
Brion et al [10] proposed a method to estimate the underlying
true signal from nc-x distributed data. In their paper, a linear
minimum mean square estimator (LMMSE) method was
used to estimate the true underlying intensity. In this
technical note, a recently proposed nonlocal maximum
likelihood (NLML) estimation method [11] is extended to
deal with nc-x distributed and the spatially varying nature of
the noise, which significantly increases its applicability.

In Sections 2 and 3, the theory behind the denoising
method is clarified. In Section 4, results are shown on
simulated as well as experimental MR images. Finally,
conclusions are drawn in Section 5.

2. Theory

In a multiple-coil MR acquisition system, the acquired
signal in the presence of noise in each coil can be typically
modeled as a complex Gaussian process. Thus, the complex
signal in each coil / (for /=1,2,...L) after the inverse Fourier
transform can be expressed as [3].

Ci(x) = S(x) +ny (x; (72) (1)

where Sj(x) represents the true complex signal in the absence
of noise for each coil / and n, (x;a§)=n,,_ (X;O’é) +jny (x;ag),
the complex Gaussian noise in each coil /. If no subsampling
is done, the composite magnitude signal M(x) can be written
as [3,12].

ME) =\ |G| 2)

Assuming absence of noise correlation and that the L
coils are statistically independent, the probability density
function (PDF) of the composite magnitude signal, M,
follows a nc-y distribution defined by [12]:
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where 4 is the underlying true composite magnitude signal
in the absence of noise, aé, the variance of the Gaussian
noise in the complex data which is assumed to be the same
for all L channels and ; _; is the (L—1)" order modified
Bessel function of the first kind.

3. Methods

The objective of the proposed method is to estimate the
true underlying intensity 4 from the composite magnitude

image in which the observations follow a nc-y distribution.
For this purpose, we extended the NLML method which was
originally proposed for denoising images with Rician noise.

3.1. Extended NLML method

Let M,,M.,,....M, be n i.i.d nc-y observations. Then the
joint PDF of the observation is
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Given the observed data and a model of interest, the
unknown parameters in the PDF can be estimated by
maximizing the corresponding likelihood function. The
unknown parameter in Eq. (4) is the true underlying intensity
A. However, if agz is not known in advance, it can also be
estimated along with 4 by maximizing the likelihood
function £ or equivalently In £, with respect to 4 and O';Z

{QML, (‘;ﬁ/,L} = arg{rggg((lnﬁ)} (5)

where

and 4, and 63, are the estimated underlying true intensity
and the noise variance respectively. Nevertheless, to estimate
Ay and Gy for each pixel in the image using Eq. (5),
samples {M;} with identical underlying intensity and noise
variance need to be selected. The straightforward approach
to select samples {M;} is to select all pixels from a local
neighborhood. However, it is clear that around edges and
fine structures the assumption of uniform underlying
intensity is violated, and, as a result, blurring will be
introduced in the image. An alternate approach is to use non
local (NL) pixels instead [11]. The NL pixels are selected
based on the intensity similarity of the pixel neighborhood. If
the neighborhoods of two pixels are similar, then their
central pixels should have a similar meaning and thus similar
gray values [13]. The similarity of the pixel neighborhoods
can be computed by taking the intensity distance (Euclidian
distance) between them [11]:

dij = ||Ni=Nj| (7)

where d;; is the intensity distance between the neighbor-
hoods N; and N; of the pixels i and j. For each pixel i, the
intensity distance d between 7 and all other non local pixels j
as defined by Eq. (7), in the search window are measured.
The first & pixels are then selected as {M;} after sorting the
NL pixels in the increasing order of the distance d for the
maximum likelihood (ML) estimation. Even though, in
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theory the search window is the whole image, for complexity
reasons most implementations restrict the search area to a
window surrounding i. In our implementation, a search
window of size 11x11x11 was used.

If the noise level is spatially invariant, the noise standard
deviation, o, can be estimated from the background region
of the image. This o, can be used in Eq. (6) to estimate the
underlying true intensity A. Estimating A using ML with a
known o, converges faster and will be more precise than
estimating both A and o, simultaneously. The noise level
can be estimated from the background as:

o[22
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where <Mpz> is the mean of the central y distributed
background region. An explicit segmentation is needed in
this case to extract the background regions, which can be
sometimes difficult. Also, artifacts (e.g. Ghost artifacts)
can influence the estimation. Explicit segmentation, and to
some extent, the influence of artifacts can be avoided by
using the local statistics for noise estimation as suggested in
[3] as:

L=1/7_
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where <Mp(i)> corresponds to the local mean computed for
each pixel 7 in the image.

3.2. Estimation of the number of coils L

An important parameter in the nc-y PDF is the number of
coils L. Usually the experimenter knows L in advance.
However, L can also be computed from the data statistics. If
the k-space is not subsampled and if the background pixels in
the acquired magnitude image follow a central y distribution,
then the number of coils can be estimated from the SNR of
the background region (the ratio of the mean of the central
distributed background region and its standard deviation).
This SNR from the background region will be constant for a
particular L [2,14]. This can be easily proved from the
moments of the central-y distribution.

Let M3 represent the background region of the composite
magnitude image. Then the first and second moments of Mp
can be written as [12,14]:

<Mp > =pLo, (10)
and

<Mj> =2Lo? (11)
where

2L-1)!
N o (12)

The variance of Mp in terms of the moments can be
written as:

012\43 = <M} > —<Mp>* (13)
Substituting Eq. (10) and Eq. (11) in Eq. (13) yields.

Gp = —oMs (14)

Now by substituting Eq. (14) in Eq. (10) we can compute
the SNR as:

<Mp> _ Pi (15)

Oy 2L-p?

This SNR will always be a constant for a particular value
of L as long as thebackground follows a central-y
distribution. SNR for different values of L computed using
Eq. (15) is given in Table 1. In summary, L can be predicted
by measuring the SNR of the background region of the
image. However, when the k-space is subsampled or if there
exists correlation between the data from different coils, then
the background region will not strictly follow a central-y
distribution and as a result the values in Table 1 may not
hold. This is discussed in detail in the work of Aja-Fernandez
et al. [15].

4. Experiments and Results

Synthetic experiments for image denoising were carried
out on the standard BrainWeb MR volume [16]. In the first
experiment, a synthetic image was created by multiplying the
BrainWeb image with eight complex-valued coil sensitivi-
ties. Gaussian noise was then added to the real and imaginary
parts of the image from each coil before creating the final
magnitude image using the SoS method. Due to the SoS
operation, the noise in the magnitude image follows a nc-y
distribution. This noisy image is then denoised with the
proposed method and also with the LMMSE method in [10],
which was recently proposed for denoising nc-y distributed
MR images. The denoising methods were executed with the
following parameters.(i) proposed method : search window
size : 11x11x11, neighborhood size : 3x3x3 and sample size
k = 20 (i) LMMSE : window size: 5x5x5. The noise
variance ng used in both methods was estimated using
Eq. (9).

The visual quality comparison of the methods can be
made from the results given in Fig. 1. In visual analysis, the
expectations are (i) perceptually flat regions should be as

Table 1
SNR of the central-y distributed background region for different values of L
L 1 2 4 8 16 32 64

SNR 19131 2.7548 3.9429 5.6146 7.9694 11.2918 15.9845
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Fig. 1. Denoising of MRI with nc-y distributed noise. (A) Ground Truth reconstructed with SoS method with L=8 (B) Ground Truth corrupted with nc-x
distributed noise of o, = 15 (C) denoised with LMMSE method (D) denoised with proposed method (E) and (F) corresponding residual images of (C) and (D)

(scale 0-25).

smooth as possible (ii) image edges and corners should be
well preserved (iii) texture detail should not be lost and
(iv) few or ideally no artifacts [11,17]. It can be observed
from Fig. 1 that the image denoised with the proposed
method is closer to the original one (based on the above
mentioned criteria) than the image denoised with the
LMMSE approach. This is clearly visible from the residual
images. For quantitative analysis, the experiment was
repeated with various values of o, varying from 5 to 30

Table 2
Quantitative analysis of the proposed method with LMMSE method
proposed in [10]

5 10 15 20 25 30

Og

Noisy

PSNR 35.23 28.15 23.29 19.73 16.87 14.48
MSSIM 0.9318  0.8129  0.6938  0.5978  0.5157  0.4466
LMMSE

PSNR 37.05 3242 30.12 28.95 28.11 27.45
MSSIM 0.9618  0.9131 0.8703  0.8407 0.8155  0.7882
Proposed

PSNR 36.01 35.38 34.01 32.27 30.45 28.71
MSSIM 0.9706  0.9612 09371  0.9021 0.8612 08118

This experiment was conducted on the synthetic image of the brain
reconstructed with SoS method with L=8.

and the results based on PSNR and mean SSIM [18] are
given in the Table 2. In the quantitative analysis, the
background region was excluded; that is, only the area of
the image inside the skull was considered. The values in
Table 2 highlight the effectiveness of the proposed method
for denoising nc-y data.

In the second experiment, synthetic images were
reconstructed with SoS, SENSE [19] and GRAPPA [20]
method using 4 coils. For SENSE and GRAPPA an
acceleration factor of 2 were used. Gaussian noise of
standard deviation, o, = 10, was added to the complex
synthetic image (4 complex images with different sensitiv-
ities) to create the noisy image. The SoS image was
reconstructed from the complex images by taking the root
sum of squares. For SENSE and GRAPPA reconstruction
experiment, the complex k-space images were created by
taking the Fourier transform of the complex noisy image.
These k-space images were then subsampled with a factor of
2. SENSE and GRAPPA methods were then applied to
reconstruct the images from the subsampled k-space images.
The PULSAR toolbox [21] was used for the SENSE and
GRAPPA reconstruction. The proposed denoising algorithm
was then applied over all the 3 reconstructed magnitude
images (i.e., SoS, SENSE and GRAPPA). In the case of
denoising SENSE reconstructed images, the number of coils
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L should be taken as 1, since the final magnitude image is
generated from only 1 complex (composite) image. Hence in
SENSE reconstructed images, the noise will be Rician
distributed (which is a special case of nc-y with L=1), but
spatially varying. The result of this experiment is shown
in Fig. 2.

It can be observed from the results that the proposed
method performs well in all the cases. However, there is
some bias in the denoised image of the GRAPPA
reconstructed image which is visible in the residual image.
This bias is because of the influence of the signal correlation

in L. The denoising experiment was executed with a constant
value for L (in this case L=4). Even if the coils are initially
uncorrelated (which was the case in our simulations), signals
will be correlated due to GRAPPA reconstruction [22]. The
correlation will increase with the increase in the number of
coils used for image acquisition. Correlations will affect the
number of degrees of freedom of the distribution [15]. As a
result, the value of the number of coils, L, will reduce and
vary across the image. Ignoring effective L can thus create
bias in the denoised image especially when there is high
signal correlation. However, estimation of effective L

Fig. 2. Denoising of multiple-coil acquired MRI. (A) [PSNR: 29.49,MSSIM: 0.8256], (B) [PSNR: 24.44 MSSIM: 0.6749] and (C) [PSNR: 24.77,MSSIM:
0.6848] are images acquired with L=4 and o,~10 and reconstructed with SoS, SENSE (acceleration factor: 2) and GRAPPA (acceleration factor: 2)
respectively. (D) [PSNR: 34.88, MSSIM: 0.9714], (E) [PSNR: 31.81, MSSIM: 0.9079] and (F) [PSNR: 28.41, MSSIM : 0.9111] are the denoised images of SoS,
SENSE and GRAPPA reconstructed images. (G), (H) and (I) are the corresponding residual images (scale 0-25) with respect to the Ground Truth.
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Fig. 3. Experiments on ex vivo mice images. (A) (B) and (C) original mice image acquired with 2x2 channel phased array coil and reconstructed with SoS,
SENSE and GRAPPA. (D), (E) and (F) are the corresponding denoised images using the proposed method.

requires raw MR data from each coil. Also, maximum
likelihood estimation might not converge properly when the
selected samples doesn’t exactly follows the nc-yx distribu-
tion (especially when estimating A and o simultaneously
with a large L).

For the experiments on the real data, we acquired ex
vivo MR images (2D) of a mouse brain with a 2x2
channel phased array coil using Bruker 7.0T scanner. The
images were acquired with SoS and GRAPPA (with an
acceleration factor of 2) and later an image was also
reconstructed with SENSE (with an acceleration factor of
2) from the raw data using the PULSAR tool box. The
proposed denoising method was then applied on all the
three reconstructed images. The results are shown in
Fig. 3. This experiment on the real data set additionally
indicates the effectiveness of the proposed method. We
also analyzed the background region of the acquired SoS
image to check whether there is any significant correlation
between the data from different coils. If there is no
significant correlation, the background region of the SoS
image should follow a central-y distribution. Fig. 4 shows
the distribution of the background region of the mouse
brain image acquired with SoS method. Comparison with
the true central-y distribution shows that there is no
significant correlation between the signals from different
coils in this case.

5. Conclusion

We have proposed a method to denoise MR images in
which the data follows a nc-y distribution. The proposed
method is an extension of the NLML method which was
proposed for denoising images corrupted with Rician noise.
We extended this method to nc-y distributed data and also
the spatially varying nature of the noise is incorporated.

x 10
3 T
real data histogram
25F of background region |
central y, pdf
2 - 4
151 1
1 - 4
05F 1
0 Wi i i Waddo i i
0 100 200 300 400 500 600 700

Fig. 4. Actual distribution of the background region of the mice image
(acquired with SoS with L=4) compared with the central-y PDF (with L=4
and o, estimated from the background region of the image).
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Experiments were conducted on both simulated and real
images. The experimental results shows that the proposed
method is very effective for MR images which follows
nc-y distribution.
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