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● Technical Note

ESTIMATION OF THE NOISE IN MAGNITUDE MR IMAGES

J. SIJBERS,* A. J. DEN DEKKER,* J. VAN AUDEKERKE,* M. V ERHOYE,† AND D. VAN DYCK*
*Department of Physics, and †BioImaging Laboratory, Department of Biology, University of Antwerp, Antwerp, Belgium

Magnitude magnetic resonance data are Rician distributed. In this note a new method is proposed to estimate the
image noise variance for this type of data distribution. The method is based on a double image acquisition,
thereby exploiting the knowledge of the Rice distribution moments. © 1998 Elsevier Science Inc.
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INTRODUCTION

Estimation of the image noise variance (NV) is important
for several reasons. Firstly, it provides a measure of the
image quality in terms of image detail. Furthermore,
knowledge of the NV is useful in the analysis of the
magnetic resonance (MR) system: e.g., to test the per-
formance of the MR system itself (receiver coil, pream-
plifier, etc.). Also, the NV is an important quality mea-
sure in functional MR imaging, where signal variations
of the order of a few percent need to be detected. Finally,
the NV value is often used as input for image processing
techniques such as image restoration1,2or image filtering.3,4

Commonly, the image NV is estimated from a single
magnitude image; thereby the NV is determined directly
from a large uniform signal region or from non-signal
regions.5,6 Although these methods may lead to useful
NV estimates, large homogeneous regions are often hard
to find, such that only a small amount of data points are
available for estimation. Also, back-ground data points
sometimes suffer from systematic intensity variations.
To cover these disadvantages, methods were developed
based on two acquisitions of the same image: the so-
called double acquisition methods. Thereby, the amount
of noise is for example computed by subtracting two
acquisitions of the same object and calculating the stan-
dard deviation of the resulting image pixels.7 Murphy et
al.8 elaborated this technique further and used a parallel
rod test object for NV measurements from the signal and
non-signal blocks. The double acquisition methods have

an advantage over the single image techniques in that
they are relatively insensitive to structured noise such as
ghosting, ringing and direct current artefacts. However, a
strict requirement is the perfect geometrical registration
of the images. To overcome this restriction, recently a
cross-correlation technique of the two acquisitions was
suggested.9 Besides geometrical registration, another
problem may arise: due to small timing errors the raw
data from one acquisition may be shifted relative to the
other. After Fourier transformation, this results in differ-
ent phase variations of the complex data such that the
above double acquisition NV estimation methods are no
longer valid. To overcome this problem, we propose an
NV estimation method based on two magnitude MR
images.

In magnetic resonance imaging (MRI), the acquired
complex data is known to be corrupted by white noise
having a Gaussian probability distribution (PD). After
inverse Fourier transformation the real and imaginary
data is still corrupted with Gaussian noise because of the
orthogonality of the Fourier transform. Although all in-
formation is present in the real and imaginary images, it
is common practice to work with magnitude and phase
images instead as they have more physical meaning
(proton density, flow, etc.). However, computation of a
magnitude image is a non-linear operation which
changes the data distribution. It can be shown that the
data in a magnitude image is no longer Gaussian but
Rician distributed.5,10 In this note it is demonstrated how
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the properties of this distribution can be exploited to
estimate the image noise variance.

This paper is organized as follows. We first review
briefly the properties of the Rice distribution. Then we
show how these properties can be exploited to estimate
the image noise variance using a double image acquisi-
tion. The proposed method is first tested on an artificial
image. This was done because in a controlled situation,
unforeseen errors, such as a bias, can be detected. Fi-
nally, the method is tested on various MR images.

THE RICE DISTRIBUTION

If the real and imaginary data, with mean valuesAR

and AI respectively, are corrupted by zero mean Gaus-
sian, stationary noise with standard deviations, it is easy
to show that the PDF of the magnitude data will be a
Rician distribution (pages 138–139 of11), given by:
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whereI0 is the zero order modified Bessel function of the
first kind. M denotes the pixel variable of the magnitude
image andA is given by:
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Notice that the Rice distribution tends to a Rayleigh
distribution when the signal-to-noise ratio goes to zero
(i.e., whenA/s30) and approaches a Gaussian distribu-
tion at high signal-to-noise ratio (i.e., whenA/s3`).

Moments of the Rice Distribution
Thevth moment of the Rice density function is given by:
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The previous equation can be analytically expressed as a
function of the confluent hypergeometric function1F1:
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For some particular moments, i.e., when
v

2
is an integer,

the confluent hypergeometric function becomes a simple
polynomial in its argument. Particularly the second mo-
ment is given by:

E@M2# 5 2s2 1 A2 (5)

NOISE VARIANCE ESTIMATION

From Eq. (5) one can determine the noise variances2.
In MR imaging, a common way to unbiasedly estimate
s2 of a magnitude image is by estimatingE[M2] from a
spatial average of the squared background data points,
whereA is known to be zero:6,10,12,13
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This approach usually requires user interaction to select
the background pixels.

We propose an alternative noise estimation scheme
using a double acquisition scheme. When two images are
acquired under identical imaging conditions, one can
solves2 from two equations and two unknowns using the
averaged and single images, since:
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where^& denotes a spatial average of the whole image.
The subscriptss anda refer to the single and averaged
images, respectively. From Eq. (8) and Eq. (7) an unbi-
ased estimator of the noise variance is derived:
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This approach has the following advantages:

● it does not require any user interaction as no back-
ground pixels need to be selected;

● it is insensitive to systematic errors as long as these
appear in both images. It is clear that, if this type of
error appears in only one of the two images, none of
the double acquisition methods yields the correct re-
sult;

● the precision of the noise variance estimator is drasti-
cally increased as all the data points are involved in the
estimation;

● it is valid for any image signal-to-noise ratio.

An obvious disadvantage is the double acquisition itself.
However, in MR acquisition schemes it is common prac-
tice to acquire two or more images for averaging. Hence,
those images may as well be used for the proposed noise
estimation procedure without additional acquisition time.
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In addition, the images require proper geometrical reg-
istration, i.e., no movement of the object during acqui-
sition is allowed.

EXPERIMENTS AND DISCUSSION

The performance of the noise variance estimation
method was in a first phase tested on an artificial image:
the ‘‘Lena’’ image, well known in image processing.
This was done because it is a controlled situation in
which a possible bias should be revealed if present. The
dimensions of the image were 1283 128. From the Lena
image, two independent Rician distributed images with
standard deviations were generated. The proposed noise
estimation method was tested for various values ofs.
Simulation results (see Fig. 2) show a perfect linear
behavior with unit slope of the estimated NV as a func-
tion of the true NV, demonstrating the accuracy of the
method. Futhermore, the NV estimation was observed to
be highly precise owing to the fact that all image pixels
were used in the estimation.

Next to the test images, the noise estimation method
was applied to magnetic resonance images. The data
were generated using an MR apparatus (SMIS, Surrey,
England) with a horizontal bore of 8 cm, a main mag-
netic field strength of 7 Tesla and a maximal gradient

strength of 0.1 Tesla/m. In all experiments a birdcage
radiofrequency coil with a diameter of 32 mm was used.
The method was tested using two-dimensional spin echo
as well as gradient echo sequences. The object imaged
was initially a vegetable (cucumber) and secondly an
animal (head of a mouse). For each experiment 20 im-
ages of size 2563 128 were acquired with repetition
time 5 500 ms and echo time5 30 ms. For each object,
the number of averages was varied from 2 until 32 with
step 2. For each NA, 20 images were acquired, allowing
10 independent noise estimations from two images using
Eqs. (7–8). Only the mean value and standard deviation
of the 10 NV estimates were retained.

No artefacts were observed in the images of the cu-
cumber though small ringing and ghosting artefacts were
present in the images of the mouse head. These, how-
ever, did not influence the NV estimations as they ap-
peared in both images. The results of the experiment (for
the mouse head) are shown in Fig. 1 where the inverse
NV estimates are plotted as a function of the number of
averages, along with their 95% confidence intervals. As
can be observed from the figure, the results are in cor-
respondence with the theory in that the inverse NV
estimates increase linearly with the number of averages,
with zero offset.

Fig. 1. Estimation of the noise variance: simulation experiment.
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CONCLUSION

When it comes to estimation of the image noise vari-
ance, methods based on a double acquisition are far
superior to single image techniques in terms of precision.
However, existing double acquisition methods become
useless when different phase variations are present in the
two images. To overcome this problem, a noise variance
estimation method has been proposed based on two mag-
nitude images. Under the condition of geometrical reg-
istration, the proposed noise variance estimator has been
shown to be highly precise and accurate.
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Fig. 2. Estimation of the noise variance from magnitude MR images.
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