
Magnetic Resonance in Medicine 65:138–145 (2011)

More Accurate Estimation of Diffusion Tensor Parameters
Using Diffusion Kurtosis Imaging

Jelle Veraart,1* Dirk H. J. Poot,1,2 Wim Van Hecke,3,4 Ines Blockx,5 Annemie Van der Linden,5

Marleen Verhoye,5 and Jan Sijbers1

With diffusion tensor imaging, the diffusion of water molecules
through brain structures is quantified by parameters, which are
estimated assuming monoexponential diffusion-weighted sig-
nal attenuation. The estimated diffusion parameters, however,
depend on the diffusion weighting strength, the b-value, which
hampers the interpretation and comparison of various diffusion
tensor imaging studies. In this study, a likelihood ratio test is
used to show that the diffusion kurtosis imaging model pro-
vides a more accurate parameterization of both the Gaussian
and non-Gaussian diffusion component compared with diffusion
tensor imaging. As a result, the diffusion kurtosis imaging model
provides a b-value-independent estimation of the widely used
diffusion tensor parameters as demonstrated with diffusion-
weighted rat data, which was acquired with eight different
b-values, uniformly distributed in a range of [0,2800 sec/mm2].
In addition, the diffusion parameter values are significantly
increased in comparison to the values estimated with the dif-
fusion tensor imaging model in all major rat brain structures. As
incorrectly assuming additive Gaussian noise on the diffusion-
weighted data will result in an overestimated degree of non-
Gaussian diffusion and a b-value-dependent underestimation of
diffusivity measures, a Rician noise model was used in this study.
Magn Reson Med 65:138–145, 2011. © 2010 Wiley-Liss, Inc.
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Diffusion tensor magnetic resonance imaging (DTI) is
an important medical imaging modality in neuroscience
research, because it allows the study of the complex net-
work of myelinated axons, in vivo and noninvasively
(1,2). In DTI, the diffusion of water molecules through
brain structures is mathematically described by a second
order 3D diffusion tensor (DT). It is generally accepted
that the first eigenvector of the tensor, corresponding to
the direction of maximal diffusion, is aligned with the
underlying fiber structures. Furthermore, the diffusion
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is often quantified with diffusion parameters (i.e., frac-
tional anisotropy (FA) and mean (MD), radial (D⊥) and
axial (D‖) diffusivity), which provide insight in the orga-
nization, structural integrity, and development of white
matter (WM) structures of the normal and pathological
brain (3–9).

In DTI, the diffusion of water molecules along a certain
gradient direction is assumed to occur in an unrestricted
environment. Consequently, the molecules’ probability of
diffusing from one location to another in a given time is
described by a Gaussian distribution of which the stan-
dard deviation relates to the apparent diffusion coefficient
(ADC). As a result, the normalized diffusion-weighted sig-
nal that is measured along a certain axis can be described by
a monoexponential function; the exponent equals the ADC,
weighted by the diffusion weighting strength that is given
by the b-value. Several DTI studies, however, reported
that the estimation of diffusion parameters depends on the
b-value that is used during data acquisition. Therefore,
the comparison and interpretation of various DTI stud-
ies are hampered. Jones and Basser (10) and Andersson
(11) attributed the b-value dependency to the use of an
inaccurate, Gaussian noise model while estimating diffu-
sion parameters with a (weighted) least squares estimator,
as MR images are corrupted with Rician noise (12,13).
Other related work addressed the b-value dependency of
the quantification of DTI measures in biological tissue
to the complex relation between the diffusion-weighted
signal and the b-value due to factors such as cerebral
perfusion, restricted diffusion, membrane permeability,
and extra- and intracellular water compartments (8,14,
15). As a result, the diffusion will appear non-Gaussian
and hence cannot be approximated accurately by a DTI
model (8,16,17).

Recently, Jensen et al. (17) and Lu et al. (18) intro-
duced diffusion kurtosis imaging (DKI), a higher order
diffusion model that is a straightforward extension of the
DTI model. DKI approximates the diffusion-weighted sig-
nal attenuation more accurately by quantifying the degree
of non-Gaussian diffusion. To this end, the exponent of the
DTI model is extended with a quadratic term in the b-value.
The coefficient of the additional term relates to the apparent
excess kurtosis (AKC), a dimensionless metric quantifying
the non-gaussianity. By measuring the AKC in at least 15
different gradient directions, a fourth-order 3D, fully sym-
metric tensor—the diffusion kurtosis tensor (DKT)—can be
calculated in addition to the DT. As the DKI model is param-
eterized by 22 elements: nondiffusion-weighted signal b0,
six independent DT elements, and 15 independent DKT
elements, it requires at least diffusion weighting along 15
noncollinear gradient directions with one or two nonzero
b-values in such a way that a total of 22 diffusion-weighted
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images (DWIs) are acquired. Therefore, the DKI model is
still feasible for clinical studies.

As DTI and DKI both provide a parameterization of the
diffusion-weighted signal, we will evaluate the relevance
for extending the DTI model to the DKI model using a like-
lihood ratio test in which the Rician distribution of the
diffusion-weighted data is taken into account. Next, we will
quantify the effect of the DKI model on the calculation of
the conventional, and widely used, DT parameters in the
structures of the healthy rat brain. In the analysis, the b-
value dependency of the estimated diffusion parameters
will be of particular interest.

MATERIALS AND METHODS

Data Acquisition

Diffusion-weighted data were acquired from nine adult,
normal Sprague Dawley rat brains on a 9.4 T Bruker
Biospec scanner (Ettlingen, Germany) using a spin
echo EPI sequence with an encoding scheme of 30
diffusion-weighted gradient directions (19) using TR/TE =
6500/24 msec, δ = 5 msec/∆ = 12 msec, an acquisition
matrix = 96 × 64 with resolution = 0.3 × 0.3 mm2, and
35 slices with slice thickness = 0.6 mm. For each of the 30
gradients, seven diffusion gradient strengths were applied,
corresponding to the following b-values: 400, 800, 1200,
1600, 2000, 2400, and 2800 sec/mm2. In addition, seven
images without diffusion weighting (b0) were acquired.
This sequence was repeated four times. Hence, in total, 868
DWIs were acquired for each data set.

Estimation of Diffusion Parameters

Diffusion Models

The natural logarithm of the magnitude of the noise-free
diffusion-weighted signal, S(b, g), as a function of the dif-
fusion weighting strength b and gradient direction g can
be approximated by a Taylor expansion around b = 0. The
second-order approximation is given by:

ln S(b, g) = ln S(0) − b
3∑

i,j=1

gigjDij

+ b2

6

(
3∑

i=1

Dii

3

)2 3∑
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gigjgkglWijkl + O(b3),

[1]

with gi the ith component of g and S(0) the nondiffusion-
weighted signal intensity. Dij is the ijth element of the fully
symmetric DT D, characterized by six independent ele-
ments: θD = {Dij}i≤j≤3 = {D11, D12, D22, D13, D23, D33}, and
Wijkl denotes an element of the diffusion kurtosis tensor W ,
which is fully parameterized by 15 independent elements
θK = {Wijkl}i≤j≤k≤l≤3.

The frequently used DTI model is simply given by the
first two terms of Eq. 1:

S(b, g; θDTI) = S(0) exp


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ij


 . [2]

In Eq. 2, DAPP
ij is the ijth element of DAPP, which is the appar-

ent DT. The parameter vector θDTI is the concatenation of
S(0) and the six-element vector θAPP

D , which describes the six
independent elements of DAPP. The DKI model additionally
includes the second-order term of Eq. 1:

S(b, g; θDKI) = S(0) exp
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with W APP
ijkl the ijklth element of W APP, the apparent kurto-

sis tensor. The DKI model is parameterized by θDKI, which
includes S(0), θAPP

D , and θAPP
K . The latter parametrizes the 15

independent elements of W APP.
As fitting one of both models to the diffusion-weighted

data results in an estimate for the diffusion coefficient, θAPP
D ,

the diffusion parameters (FA, MD, D⊥, and D‖) can be cal-
culated for each voxel by the eigenvalue decomposition of
the related DTs (2). Note that DAPP of Eqs. 2 and 3 is not
quantitatively equal.

Parameter Estimation

Two algorithms were used to estimate the parameter vector
θD with either of the diffusion models. The first algo-
rithm estimated the parameters θDTI and θDKI with the
weighted least squares (WLS) algorithm. The second algo-
rithm estimated the parameters with maximum likelihood
(ML) estimator. ML estimators are known to be asymp-
totically unbiased and to exploit the a priori knowledge
of the data statistics in an optimal way. Nevertheless,
although theoretical properties of the WLS are less favor-
able, WLS estimation is more commonly used because
of ease of implementation and lower computational
cost (11).

Weighted Least Squares Estimation. In this approach,
the tensors were fitted linearly to the log-transformed
diffusion-weighted data, such that the sum of the weighted
squared differences was minimized (20). The use and
implementation of the WLS estimator is fully elaborated
in the appendix.

Maximum Likelihood Estimation. As the magnitude
diffusion-weighted data are independently Rice dis-
tributed, the actual probability density function (PDF) of
the magnitude of the observed diffusion-weighted signal is
given by (13):

p(yn|S(bn, gn; θ), σ) = yn

σ2 e

(
− y2

n+(S(bn ,gn ;θ))2

2σ2

)
I0

(
ynS(bn, gn; θ)

σ2

)
,

[4]

with yn the nth observation after applying diffusion weight-
ing with strength bn and gradient direction gn. The under-
lying magnitude signal, S(bn, gn; θ), is given by Eqs. 2 and
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3 for DTI and DKI, respectively. The noise level σ was esti-
mated from the histogram mode of the image background
(21). Furthermore, I0 is the order zero modified Bessel func-
tion of the first kind. The parameter vector θ was estimated
from the N independent DWIs with a ML estimator in each
voxel by substituting the observed values for the stochastic
variables and maximizing over the parameters:

θ̂ML = arg max
θ

N∑
n=1

ln p(yn|S(bn, gn; θ), σ). [5]

An ML estimator is asymptotically consistent, meaning
that for N → ∞, the bias tends to zero, while the variance of
the parameter estimator converges to the Cramér-Rao lower
bound (CRLB).

Cramér-Rao Lower Bound. As the CRLB is the theoretical
lower bound on the variance of an unbiased estimator (22),
the precision of the ML estimator based on both the DTI and
the DKI model was evaluated with the CRLB. The CRLB
states that the covariance matrix of an unbiased estimator
of the model parameter θ is equal to or greater than the
inverse of the Fisher information matrix, I :

COV(θ) ≥ I−1, [6]

with

Iij = −E

[∑N
n=1∂

2 ln p(yn|S(bn, gn; θ̂))
∂θi∂θj

]
, [7]

in which E[] denotes the expectation operator (23).

Experiments

Evaluation of Goodness-of-Fit

Likelihood Ratio Test. As the DTI and DKI model are the
first- and second-order Taylor expansion of the natural log-
arithm of the true magnitude of the diffusion-weighted
signal, both diffusion models are nested. Therefore, one
can use a likelihood ratio test to evaluate whether the DKI
model fits the experimental data significantly better and
should thus be preferred over the DTI model. The null
hypothesis, H0, stating that increasing the number of model
parameters does not significantly improve the description
of the experimental data is rejected if the probability of the
likelihood ratio Λ exceeds a given threshold (24). The rejec-
tion of H0 is only expected if the apparent non-Gaussian
diffusion component is inherent to the diffusion process
and cannot entirely be regarded as a noise artifact (10). Λ

was calculated in each voxel as:

Λ = −2 ln
∏N

n=1 p(yn|S(bn, gn; θ̂
DTI

))∏N
n=1 p(yn|S(bn, gn; θ̂

DKI
))

, [8]

with θ̂
DTI

and θ̂
DKI

the parameter vectors estimated with the
DTI and DKI model, respectively. These parameters were
estimated by fitting either of the diffusion models to all 868

DWIs with the asymptotically unbiased ML estimator, as it
was observed that the nonlinear fitting algorithm provides
the most accurate description of the true diffusion profile
(10,11). The threshold on Λ to reject H0 is derived from the
χ2-distribution with j degrees of freedom. The parameter
j denotes the number of additional parameter of the DKI
model with respect to the DTI model; in this analysis, j
equals 15. Furthermore, the significance level was set to
1%, resulting in a threshold on Λ of 30.8.

Validation of the Distribution of Λ. The critical value for
rejecting a null hypothesis was computed using the theo-
retical asymptotic distribution of the likelihood ratio test
statistics, the χ2

j -distribution. However, because of the lim-
ited number of data points for every voxel in this study, this
may lead to an inaccurate false-positive rate (Pf ), the prob-
ability of falsely rejecting H0. Therefore, the validity of the
χ2

j -distribution was evaluated by a simulation experiment.
First, a diffusion-weighted data set, associated to purely

Gaussian diffusion, was synthesized by recalculating the
diffusion-weighted signal in each voxel using Eq. 2. S(0)
and DAPP corresponded to the parameter vector θ̂

DTI
. θ̂

DTI
was

estimated with the ML algorithm by fitting the DTI model
to each voxel of the experimental data set. The gradient
directions g and the b-values used to recalculate DWIs
with Eq. 2 correspond to the ones used to acquire the
experimental data (see section “Data Acquisition”). Next,
the simulated diffusion-weighted data were corrupted with
Rician noise with a level equal to the estimated noise
level in the experimental data; the SNR of the simulated
nondiffusion-weighted images was 20.3. Finally, θ̂

DTI
and

θ̂
DKI

were estimated by fitting, respectively, the DTI and DKI
model to the simulated diffusion-weighted data.

Because of the simulation setup, all kurtosis tensor ele-
ments were expected to be zero in each voxel. As a result,
the validity of the theoretical χ2

15-distribution could be
evaluated by comparing χ2

15 with the observed distribution
of the Λs over the entire volume.

b-Value Dependency of Diffusion Parameters Using the
DTI and DKI Model

The dependency of the DT parameter on the b-value was
evaluated for both the DTI model and the DKI model. There-
fore, both diffusion models were fitted to several subsets of
the diffusion-weighted data that were selected in such a
way that each subset contained the images corresponding
to a unique (set of) b-value(s). An overview of the analyzed
models and their associated DWI subsets is given by:

i. The DTs and its related parameters MD, FA, D⊥, and D‖
were estimated by fitting the DTI model to seven differ-
ent subsets, each including 127 DWIs: seven b0 images
and all images of the four repetitions associated with a
unique nonzero b-value. This DTI approach with one
nonzero b-value is called single b-valued DTI in the
remainder of this work.

ii. As the DKI model requires DWIs that are at least
acquired with two different nonzero b-values, the sub-
sets of (i) were inadequate. Therefore, 21 different
subsets were defined by selecting, in addition to seven
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Table 1
An Overview of the Different Diffusion Models and Their
Corresponding DWI Subsets That Were Used to Estimate the
Diffusion Parameters in the Rat Brain Structures with a Comparable
Precision, Quantified by the CRLB

Model b-Value(s) # Grad. dirs NEX N

(a) DTI 1200 30 2 62
(b) DKI 800, 2400 30 4 248
(c) DTI 400, 2400 30 2 124

b0 images, the images of only the first two repetitions
associated to one out of all two-combinations of the
nonzero b-values. So, the total number of DWIs was
127 for each set as well.

iii. Finally, the DTI model was fitted to the same 21 subsets
as defined in (ii). This analysis will be referred to as
double b-valued DTI.

For every model and subset, the distributions of MD, FA,
D⊥, and D‖ over all WM voxels were calculated. Note that
the set of WM voxels included every voxel exceeding an FA
threshold of 0.25. The FA map used to mask the WM was
estimated by fitting the DTI model to all DWIs that were
acquired with a b-value of 1200 sec/mm2, and this single
mask was used for all analyses.

Diffusion Parameter Estimation with DKI vs. DTI
Model in the Rat Brain Structures

Regions of interest (ROI) were manually segmented by an
expert and confirmed by a second one. The delineation
of some gray matter [GM; caudate putamen (CPu) and the
hippocampus (HP)] and WM structures [corpus callosum
(CC) and external capsule (EC)] was based on a rat brain
atlas (25). Nondiffusion-weighted images and DT paramet-
ric maps were used to guide the segmentation of the ROIs,
using AMIRA software (Visage Imaging, Berlin, Germany).
First, the DT parameter values (FA, MD, D⊥, and D‖) were
estimated by fitting (a) the single b-valued DTI, (b) the DKI,
and (c) the double b-valued DTI model to new, well cho-
sen, subsets of the diffusion-weighted data set with the
ML estimator. Next, the parameter distributions within the
delineated anatomical structures were calculated for (a),
(b), and (c). Finally, for each structure, all distributions
were statistically compared with a paired Wilcoxon signed
rank test.

During this experiment, DWI subsets for (a), (b), and
(c) were selected in such a way that the precision of the
parameter estimation was similar for all three approaches.
As the asymptotically unbiased ML estimator was used in
this experiment, the variance of the estimator tended to the
CRLB. The selected subsets (see Table 1) consisted out of
one or two shells of which the strength was indicated by
the b-value(s). For each shell, DWIs were acquired along
the same 30 diffusion gradient directions with multiple
repetitions (NEX). The subset that was used for the sin-
gle b-valued DTI (a) analysis was selected so that its set
of b-values and gradient directions was in agreement with
conventional DTI studies. The other subsets were selected
in such a way that the associated CRLB distributions of
MD over all voxels were not significantly different to the

CRLB distribution of MD that corresponds to (a). Significant
(P < 0.1) differences between distributions were shown
with the Wilcoxon signed rank test.

Note that number of DWIs (N) for the DKI model (b) was
substantially increased, compared with the DTI model, to
obtain a similar precision of the DT parameters.

RESULTS

Noise Levels

The estimated SNR, defined as the ratio of the median
voxel value of the b0 image to the noise level, was 20.3.
As the images were acquired with a single coil receiver,
the noise was homogeneously distributed over the entire
volume (26).

Likelihood Ratio Test

Validation of Distribution of Λ

Figure 1 shows the logarithmic plot of the observed false-
positive rate (Pf ) as a function of the Pf , computed from
the χ2

15-distribution, which is the asymptotic distribution
for the likelihood ratio test statistics. The diagonal corre-
sponds to the asymptotic distribution. The shaded areas
indicate the 95% confidence region of the observed Pf as
computed by the binomial counting statistics.

As the diagonal is within the 95% confidence bound, one
can conclude that the distribution of Λ over all simulated
voxels is well approximated by χ2

15.

Evaluation of Goodness-of-Fit

In Fig. 2a, the likelihood ratio value, Λ, is visualized in each
voxel of a single axial slice of the rat brain. In the majority

FIG. 1. Logarithmic plot of Pf of (blue) the observed Λ distribution
and (green) the theoretical χ2

15-distribution as a function of the Pf

computed from the χ2
15-distribution, which is the asymptotic distribu-

tion for the likelihood ratio test statistics. The shaded areas indicate
the 95% confidence regions of the Pf of the Λ distribution as com-
puted by the binomial counting statistics. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 2. a: The likelihood ratio Λ is visualized in each voxel of one
axial slice of the rat brain. H0 was rejected in each voxel for which Λ

exceeded the critical value of 30.8. b: The corresponding FA map is
shown as anatomical reference.

(>95%) of all voxels, Λ widely exceeds the critical value
of 30.8, corresponding to a significance level of 1% in a
χ2

15-distribution. Only in the cerebrospinal fluid (CSF) of
the rat brain, in which Gaussian diffusion is expected, Λ

is lower than the critical value. Hence, the null hypothesis
H0, which states that DKI does not significantly improve
the description of diffusion-weighted data, compared with
DTI, is rejected brain for all areas with exception of the CSF.
The FA map of the same axial slice is shown as anatomical
reference (see Fig. 2b).

b-Value Dependency of Diffusion Parameters Using
the DTI and DKI Model

Figure 3 shows the effect of the selected b-value(s) on the
estimation of diffusion parameters. This effect differs for

the diffusion models: (i) single b-valued DTI, (ii) DKI, and
(iii) double b-valued DTI. The height of the bars relates
to the median of distribution of the diffusion parameters
corresponding to either of the diffusion model and a b-
value-dependent subset, calculated over all WM voxels.
The lower and upper edges of the error bars indicate the
25th and 75th percentile of the distributions. With sin-
gle b-valued DTI (i), the diffusion parameters MD, D⊥, D‖,
and, although less pronounced, FA significantly decrease
with increasing b-value. Even in the range of low b-values,
400−1200 sec/mm2, the shifts in median values are clearly
visible. The b-value dependency is reduced when fitting
the DTI model to subsets that contained data acquired with
more than one b-value (iii). However, even then, one can
easily observe that the parameters MD, D⊥, and D‖ vary
more with the b-value of the DWI from which they were
estimated than the same parameters estimated with the DKI
model (ii).

Diffusion Parameter Estimation with DKI vs. DTI Model in
the Rat Brain Structures

Figure 4 shows the ROI measurements of various diffusion
parameters that were computed by different diffusion mod-
els in multiple anatomical structures of the rat brain. The
median values of the diffusion parameters, calculated over
all voxels in each anatomical structure, are indicated by
the height of the bars, while the edges of the error bars
are the 25th and 75th percentiles. These results suggest
that the quantification of DT parameters strongly depends
on the diffusion model selection. A statistically significant
(P < 0.001) increase of MD, D⊥, and D‖ was noticed when
estimating the parameters with the DKI model compared
with the DTI model. The estimated parameter values also
depend on the number of different b-values included in the

FIG. 3. The height of the bars represents the median of the distribution of the associated DTI parameter over all WM voxels, whereas the
edges of the error bars correspond to the 25th and 75th percentile. One can observe that the parameter estimation with DKI (ii) is less b-value
dependent, compared with the single and double b-valued DTI model, (i) and (iii), respectively. The b-value dependency was evaluated by
fitting the DTI and DKI models to well-chosen subsets which were characterized by a unique (set of) b-value(s). The selected subsets were
summarized in the legend by means of their associated nonzero b-value(s) [sec2/mm].
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FIG. 4. The average diffusion parameter values in typical rat brain structures [caudate putamen (CPu), corpus callosum (CC), external
capsule (EC) and hippocampus (HP)] calculated using different strategies: single b-valued DTI, DKI and double b-valued DTI. One can
notice a significant increase of MD, D⊥, and D‖ when performing a DKI analysis compared with the DTI approaches. The estimated values
of those diffusion parameters also depend on the number of different b-values included in the DTI model. Adding an additional higher
b-value to the acquisition scheme results in significant decreased diffusion parameter values when performing a DTI analysis. No statistical
significant differences were observed when comparing the FA values estimated with single b-valued DTI and the DKI model. In addition,
double b-valued DTI resulted in significant increased FA values compared with single b-valued DTI and DKI. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

DTI analysis. Adding a higher b-value to the acquisition
scheme results in significantly decreased parameter values
when performing a DTI analysis (P < 0.001). No statisti-
cal significant differences (P > 0.05) were observed when
comparing the FA values estimated with single b-valued
DTI and the DKI model. In addition, double b-valued DTI
resulted in significantly increased FA values (P < 0.01)
compared with single b-valued DTI and DKI.

As the biased WLS estimator is likely to be used more
often in practice because of its simplicity, it is briefly sug-
gested that using a WLS estimator instead of a ML estimator
would slightly increase the discrepancies between DT mea-
sures estimated using (a) single b-valued DTI, (b) DKI, or (c)
double b-valued DTI. In Table 2, the median values of the
MD, calculated over all voxels in each anatomical structure,
estimated with both the WLS and ML estimator are sum-
marized for all diffusion models. In general, one can note a

decrease of MD with the WLS estimator instead of the ML
estimator. However, the MD decrease is slightly larger with
the DTI models compared with the DKI model.

Table 2
The Median Values of the MD, Over All Voxels in the Studied
Anatomical Structures, Estimated with the WLS and ML for (a)
Single b-Valued DTI, (b) DKI, or (c) Double b-Valued DTI

MD (×10−4 mm2/sec)

ML WLS

CPu CC EC HC CPu CC EC HC

(a) 7.35 7.99 7.49 7.62 7.07 7.44 7.04 7.41
(b) 8.65 9.87 9.34 8.70 8.41 9.32 8.90 8.55
(c) 6.06 6.77 6.01 6.52 5.57 5.61 5.23 6.07

In general, a decrease of MD is noticed when using the WLS estima-
tor instead of the ML estimator. However, the MD decrease is slightly
more expressed with the DTI models compared with the DKI model.
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DISCUSSION

Diffusion of water molecules is a physical property of the
tissue being measured, and, thus, its estimated coefficient
should not depend on scanner settings or properties, such
as the b-value (27). However, because of the nonlinear
relation between the natural logarithm of the diffusion-
weighted signal and the b-value, the DTI model results in
an inaccurate and b-value-dependent parameterization of
the diffusion profile.

In previous studies, several new diffusion models, such
as the biexponential and the cumulant expansion model,
were presented to improve the description of nonmo-
noexponential diffusion-weighted signal attenuation as
observed in biological tissue (17,28,29). The cumulant
expansion model can be interpreted as a truncated Taylor
expansion of the log-transformed diffusion-weighted signal
in terms of the b-value. The model provides a good approx-
imation to the true signal within a certain range of b-values;
for the second-order cumulant expansion, the b-values
should be limited to ∼2500 sec/mm2 (17,30). The coeffi-
cient of the second-order term is associated to the apparent
excess kurtosis probing the degree of non-Gaussian diffu-
sion due to microscopic restrictions in biological tissue
(17). Therefore, the cumulant expansion supports another
interpretation of nonmonoexponential diffusion-weighted
signal decay compared with the biexponential model that
suggests the presence of two compartments in the brain
tissue. However, Kisiliv and Il’Yasov stated that the good
accuracy of data fitting with the biexponential model does
not prove the presence of distinct compartments in the
human brain’s GM (30). In addition, they demonstrated that
with isotropic diffusion, the second-order cumulant expan-
sion describes the experimental data equally well without
the artificial appearance of two compartments.

Recently, Jensen et al. (17) proposed the DKI model as a
3D generalization of the second-order cumulant expansion
that can be used to study the (non-)Gaussian diffusion in
GM and WM on a direction-dependent basis. It is a straight-
forward extension of the DTI model that allows estimating
a higher order DKT in addition to the DT with only minor
changes in data acquisition and processing. The physical
interpretation and the clinical relevance of the additional
kurtosis parameters are currently studied (31,32). In this
study, however, we focused on the quantification of the
widely used DT parameters of which the estimated values
clearly depend on the diffusion model as demonstrated in
our experiments. As the DTI and DKI model could both
be used to estimate the DT elements and its associated
parameters, we studied the relevance of extending the DTI
model to parameterize the diffusion-weighted signal decay
with a likelihood ratio test in which we included a Rician
noise model. Our results suggest that DKI provides a signifi-
cantly improved fit to the experimental diffusion-weighted
signal, resulting in a more plausible parameterization in
all voxels of the GM and WM of the rat brain. Only in
the brain CSF, we concluded that the DTI and DKI mod-
els describe the data equally well, which is in agreement
with the assumption of Gaussian diffusion in the CSF.

A decreased precision of the DT parameter estima-
tion is inherent to the DKI model because of the addi-
tional model parameters compared with the DTI model.

Therefore, previous DKI studies increased the voxel sizes
and/or the number of acquired DWIs. In this work, an equal
or, at least, a similar precision of DT parameter estimation
as obtained in DTI was achieved by substantially increas-
ing the number of data points (see Table 1) as a result of
which the clinical feasibility might be questioned. How-
ever, recently, Poot et al. proposed a procedure to optimize
the acquisition scheme to achieve a minimal CRLB of the
diffusion parameters of interest (33). The procedure allows
reducing the time needed to acquire a DKI data set. Further-
more, an improved and robust computational framework
that allows fewer DWIs to estimate both diffusion tensors
with DKI was recently proposed by Tabesh et al. (34).

As DKI offers a more probable parameterization of the
diffusion parameters, including the six independent DT
elements, it was worth studying the properties of the DT
estimation with DKI. Our main findings are as follows:

a. The estimation of diffusion parameters with the DKI
model is less dependent on the b-value, compared
with the more commonly used DTI model. The b-value
dependency of the DTI model can also be reduced
by fitting the model to DWIs acquired with multiple
nonzero b-values, but not to the degree obtained with
the DKI model.

b. The diffusion indices that are linearly related to the
ADC are significantly increased over the entire rat
brain when fitting the DKI model to the diffusion-
weighted data. The observed FA values are less sen-
sitive to the model selection.

The second finding was already suggested by Hui et al.
(35) and Cheung et al. (8). However, both studies lack
unbiased quantitative results because of intersubject and
ROI differences, a Gaussian noise model, and the use of
high b-values in the DTI analysis. Both the Gaussian noise
model and the high b-values resulted in underestimated
diffusivity measures within their DTI analysis.

In this study, we stressed on the use of a proper noise
model in quantitative studies to avoid biased results. How-
ever, one should note that in case of parallel imaging, which
is commonly used in clinical studies nowadays, the noise
amplitude is spatially dependent and can be described by a
Rician or a χ-distribution according to the used reconstruc-
tion technique (26). As methods dedicated to those specific
noise characteristics are currently studied, the WLS estima-
tor is still widely used to estimate diffusion parameters in
clinical studies. We would like to point out that with the
WLS estimator, the b-value dependency of the DTI model
and the decreased diffusion parameters is even more pro-
nounced as a result of which DKI becomes more preferable
in such studies.

ACKNOWLEDGMENT

This work is supported by the Institute for the Promotion
of Innovation through Science and Technology in Flanders
(IWT-Vlaanderen).

APPENDIX

The tensors are fitted to each voxel of the diffusion-
weighted data set such that the sum of weighted squared
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differences is minimized (20). The WLS estimator of seven
unknown DTI coefficients, θ = [ln S(0), θD]T is

θ̂WLS = (
XT WX

)−1
XT W ln y, [A1]

with the nth element of y, y (n), the observation after apply-
ing diffusion weighting with strength b(n) and gradient
direction g(n). The nth row of X [N ×7] is defined as follows:

Xn,* = [−bn, α ◦ {−bngni gnj }i≤j≤3] [A2]

with α = [1, 2, 1, 2, 2, 1] and ◦ denotes the element-wise
product.

Furthermore, W is the diagonal matrix for which the
elements are defined as follows:

Wnn = y2
n , [A3]

which is motivated by assumption of a Gaussian noise
model as a result of which y2

n is proportional to the inverse
variance of

εn = yn − Xn,*θ̂WLS. [A4]

An extended algorithm is applied to fit the DKI model,
given by Eq. 3, to the DWIs. To estimate θ̂

DKI
with the WLS

estimator, a modified matrix X was constructed (18). The
nth row is given by:

Xn,* =
[
−bn, α ◦ {−bngni gnj }i≤j≤3,

β ◦
{

b(n)2

6
gni gnj gnk gnl

}
i≤j≤k≤l≤3


 [A5]

with β = [1, 4, 6, 4, 1, 4, 12, 12, 4, 6, 12, 6, 4, 4, 1].
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